1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for Atmel AT32 and AT91 SPI Controllers
5 * Copyright (C) 2006 Atmel Corporation
8 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/iopoll.h>
26 #include <trace/events/spi.h>
28 /* SPI register offsets */
31 #define SPI_RDR 0x0008
32 #define SPI_TDR 0x000c
34 #define SPI_IER 0x0014
35 #define SPI_IDR 0x0018
36 #define SPI_IMR 0x001c
37 #define SPI_CSR0 0x0030
38 #define SPI_CSR1 0x0034
39 #define SPI_CSR2 0x0038
40 #define SPI_CSR3 0x003c
41 #define SPI_FMR 0x0040
42 #define SPI_FLR 0x0044
43 #define SPI_VERSION 0x00fc
44 #define SPI_RPR 0x0100
45 #define SPI_RCR 0x0104
46 #define SPI_TPR 0x0108
47 #define SPI_TCR 0x010c
48 #define SPI_RNPR 0x0110
49 #define SPI_RNCR 0x0114
50 #define SPI_TNPR 0x0118
51 #define SPI_TNCR 0x011c
52 #define SPI_PTCR 0x0120
53 #define SPI_PTSR 0x0124
56 #define SPI_SPIEN_OFFSET 0
57 #define SPI_SPIEN_SIZE 1
58 #define SPI_SPIDIS_OFFSET 1
59 #define SPI_SPIDIS_SIZE 1
60 #define SPI_SWRST_OFFSET 7
61 #define SPI_SWRST_SIZE 1
62 #define SPI_LASTXFER_OFFSET 24
63 #define SPI_LASTXFER_SIZE 1
64 #define SPI_TXFCLR_OFFSET 16
65 #define SPI_TXFCLR_SIZE 1
66 #define SPI_RXFCLR_OFFSET 17
67 #define SPI_RXFCLR_SIZE 1
68 #define SPI_FIFOEN_OFFSET 30
69 #define SPI_FIFOEN_SIZE 1
70 #define SPI_FIFODIS_OFFSET 31
71 #define SPI_FIFODIS_SIZE 1
74 #define SPI_MSTR_OFFSET 0
75 #define SPI_MSTR_SIZE 1
76 #define SPI_PS_OFFSET 1
78 #define SPI_PCSDEC_OFFSET 2
79 #define SPI_PCSDEC_SIZE 1
80 #define SPI_FDIV_OFFSET 3
81 #define SPI_FDIV_SIZE 1
82 #define SPI_MODFDIS_OFFSET 4
83 #define SPI_MODFDIS_SIZE 1
84 #define SPI_WDRBT_OFFSET 5
85 #define SPI_WDRBT_SIZE 1
86 #define SPI_LLB_OFFSET 7
87 #define SPI_LLB_SIZE 1
88 #define SPI_PCS_OFFSET 16
89 #define SPI_PCS_SIZE 4
90 #define SPI_DLYBCS_OFFSET 24
91 #define SPI_DLYBCS_SIZE 8
93 /* Bitfields in RDR */
94 #define SPI_RD_OFFSET 0
95 #define SPI_RD_SIZE 16
97 /* Bitfields in TDR */
98 #define SPI_TD_OFFSET 0
99 #define SPI_TD_SIZE 16
101 /* Bitfields in SR */
102 #define SPI_RDRF_OFFSET 0
103 #define SPI_RDRF_SIZE 1
104 #define SPI_TDRE_OFFSET 1
105 #define SPI_TDRE_SIZE 1
106 #define SPI_MODF_OFFSET 2
107 #define SPI_MODF_SIZE 1
108 #define SPI_OVRES_OFFSET 3
109 #define SPI_OVRES_SIZE 1
110 #define SPI_ENDRX_OFFSET 4
111 #define SPI_ENDRX_SIZE 1
112 #define SPI_ENDTX_OFFSET 5
113 #define SPI_ENDTX_SIZE 1
114 #define SPI_RXBUFF_OFFSET 6
115 #define SPI_RXBUFF_SIZE 1
116 #define SPI_TXBUFE_OFFSET 7
117 #define SPI_TXBUFE_SIZE 1
118 #define SPI_NSSR_OFFSET 8
119 #define SPI_NSSR_SIZE 1
120 #define SPI_TXEMPTY_OFFSET 9
121 #define SPI_TXEMPTY_SIZE 1
122 #define SPI_SPIENS_OFFSET 16
123 #define SPI_SPIENS_SIZE 1
124 #define SPI_TXFEF_OFFSET 24
125 #define SPI_TXFEF_SIZE 1
126 #define SPI_TXFFF_OFFSET 25
127 #define SPI_TXFFF_SIZE 1
128 #define SPI_TXFTHF_OFFSET 26
129 #define SPI_TXFTHF_SIZE 1
130 #define SPI_RXFEF_OFFSET 27
131 #define SPI_RXFEF_SIZE 1
132 #define SPI_RXFFF_OFFSET 28
133 #define SPI_RXFFF_SIZE 1
134 #define SPI_RXFTHF_OFFSET 29
135 #define SPI_RXFTHF_SIZE 1
136 #define SPI_TXFPTEF_OFFSET 30
137 #define SPI_TXFPTEF_SIZE 1
138 #define SPI_RXFPTEF_OFFSET 31
139 #define SPI_RXFPTEF_SIZE 1
141 /* Bitfields in CSR0 */
142 #define SPI_CPOL_OFFSET 0
143 #define SPI_CPOL_SIZE 1
144 #define SPI_NCPHA_OFFSET 1
145 #define SPI_NCPHA_SIZE 1
146 #define SPI_CSAAT_OFFSET 3
147 #define SPI_CSAAT_SIZE 1
148 #define SPI_BITS_OFFSET 4
149 #define SPI_BITS_SIZE 4
150 #define SPI_SCBR_OFFSET 8
151 #define SPI_SCBR_SIZE 8
152 #define SPI_DLYBS_OFFSET 16
153 #define SPI_DLYBS_SIZE 8
154 #define SPI_DLYBCT_OFFSET 24
155 #define SPI_DLYBCT_SIZE 8
157 /* Bitfields in RCR */
158 #define SPI_RXCTR_OFFSET 0
159 #define SPI_RXCTR_SIZE 16
161 /* Bitfields in TCR */
162 #define SPI_TXCTR_OFFSET 0
163 #define SPI_TXCTR_SIZE 16
165 /* Bitfields in RNCR */
166 #define SPI_RXNCR_OFFSET 0
167 #define SPI_RXNCR_SIZE 16
169 /* Bitfields in TNCR */
170 #define SPI_TXNCR_OFFSET 0
171 #define SPI_TXNCR_SIZE 16
173 /* Bitfields in PTCR */
174 #define SPI_RXTEN_OFFSET 0
175 #define SPI_RXTEN_SIZE 1
176 #define SPI_RXTDIS_OFFSET 1
177 #define SPI_RXTDIS_SIZE 1
178 #define SPI_TXTEN_OFFSET 8
179 #define SPI_TXTEN_SIZE 1
180 #define SPI_TXTDIS_OFFSET 9
181 #define SPI_TXTDIS_SIZE 1
183 /* Bitfields in FMR */
184 #define SPI_TXRDYM_OFFSET 0
185 #define SPI_TXRDYM_SIZE 2
186 #define SPI_RXRDYM_OFFSET 4
187 #define SPI_RXRDYM_SIZE 2
188 #define SPI_TXFTHRES_OFFSET 16
189 #define SPI_TXFTHRES_SIZE 6
190 #define SPI_RXFTHRES_OFFSET 24
191 #define SPI_RXFTHRES_SIZE 6
193 /* Bitfields in FLR */
194 #define SPI_TXFL_OFFSET 0
195 #define SPI_TXFL_SIZE 6
196 #define SPI_RXFL_OFFSET 16
197 #define SPI_RXFL_SIZE 6
199 /* Constants for BITS */
200 #define SPI_BITS_8_BPT 0
201 #define SPI_BITS_9_BPT 1
202 #define SPI_BITS_10_BPT 2
203 #define SPI_BITS_11_BPT 3
204 #define SPI_BITS_12_BPT 4
205 #define SPI_BITS_13_BPT 5
206 #define SPI_BITS_14_BPT 6
207 #define SPI_BITS_15_BPT 7
208 #define SPI_BITS_16_BPT 8
209 #define SPI_ONE_DATA 0
210 #define SPI_TWO_DATA 1
211 #define SPI_FOUR_DATA 2
213 /* Bit manipulation macros */
214 #define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216 #define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218 #define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220 #define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
224 /* Register access macros */
225 #define spi_readl(port, reg) \
226 readl_relaxed((port)->regs + SPI_##reg)
227 #define spi_writel(port, reg, value) \
228 writel_relaxed((value), (port)->regs + SPI_##reg)
229 #define spi_writew(port, reg, value) \
230 writew_relaxed((value), (port)->regs + SPI_##reg)
232 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
233 * cache operations; better heuristics consider wordsize and bitrate.
235 #define DMA_MIN_BYTES 16
237 #define AUTOSUSPEND_TIMEOUT 2000
239 struct atmel_spi_caps
{
242 bool has_dma_support
;
243 bool has_pdc_support
;
247 * The core SPI transfer engine just talks to a register bank to set up
248 * DMA transfers; transfer queue progress is driven by IRQs. The clock
249 * framework provides the base clock, subdivided for each spi_device.
259 struct platform_device
*pdev
;
260 unsigned long spi_clk
;
262 struct spi_transfer
*current_transfer
;
263 int current_remaining_bytes
;
265 dma_addr_t dma_addr_rx_bbuf
;
266 dma_addr_t dma_addr_tx_bbuf
;
270 struct completion xfer_completion
;
272 struct atmel_spi_caps caps
;
282 u8 native_cs_for_gpio
;
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device
{
290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS 0xffffffff
294 * This frequency can be anything supported by the controller, but to avoid
295 * unnecessary delay, the highest possible frequency is chosen.
297 * This frequency is the highest possible which is not interfering with other
298 * chip select registers (see Note for Serial Clock Bit Rate configuration in
299 * Atmel-11121F-ATARM-SAMA5D3-Series-Datasheet_02-Feb-16, page 1283)
301 #define DUMMY_MSG_FREQUENCY 0x02
303 * 8 bits is the minimum data the controller is capable of sending.
305 * This message can be anything as it should not be treated by any SPI device.
307 #define DUMMY_MSG 0xAA
310 * Version 2 of the SPI controller has
312 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
313 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
315 * - SPI_CSRx.SBCR allows faster clocking
317 static bool atmel_spi_is_v2(struct atmel_spi
*as
)
319 return as
->caps
.is_spi2
;
323 * Send a dummy message.
325 * This is sometimes needed when using a CS GPIO to force clock transition when
326 * switching between devices with different polarities.
328 static void atmel_spi_send_dummy(struct atmel_spi
*as
, struct spi_device
*spi
, int chip_select
)
334 * Set a clock frequency to allow sending message on SPI bus.
335 * The frequency here can be anything, but is needed for
336 * the controller to send the data.
338 csr
= spi_readl(as
, CSR0
+ 4 * chip_select
);
339 csr
= SPI_BFINS(SCBR
, DUMMY_MSG_FREQUENCY
, csr
);
340 spi_writel(as
, CSR0
+ 4 * chip_select
, csr
);
343 * Read all data coming from SPI bus, needed to be able to send
347 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
352 spi_writel(as
, TDR
, DUMMY_MSG
);
354 readl_poll_timeout_atomic(as
->regs
+ SPI_SR
, status
,
355 (status
& SPI_BIT(TXEMPTY
)), 1, 1000);
360 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
361 * they assume that spi slave device state will not change on deselect, so
362 * that automagic deselection is OK. ("NPCSx rises if no data is to be
363 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
364 * controllers have CSAAT and friends.
366 * Even controller newer than ar91rm9200, using GPIOs can make sens as
367 * it lets us support active-high chipselects despite the controller's
368 * belief that only active-low devices/systems exists.
370 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
371 * right when driven with GPIO. ("Mode Fault does not allow more than one
372 * Master on Chip Select 0.") No workaround exists for that ... so for
373 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
374 * and (c) will trigger that first erratum in some cases.
376 * When changing the clock polarity, the SPI controller waits for the next
377 * transmission to enforce the default clock state. This may be an issue when
378 * using a GPIO as Chip Select: the clock level is applied only when the first
379 * packet is sent, once the CS has already been asserted. The workaround is to
380 * avoid this by sending a first (dummy) message before toggling the CS state.
382 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
384 struct atmel_spi_device
*asd
= spi
->controller_state
;
389 if (spi_get_csgpiod(spi
, 0))
390 chip_select
= as
->native_cs_for_gpio
;
392 chip_select
= spi_get_chipselect(spi
, 0);
394 if (atmel_spi_is_v2(as
)) {
395 spi_writel(as
, CSR0
+ 4 * chip_select
, asd
->csr
);
396 /* For the low SPI version, there is a issue that PDC transfer
397 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
399 spi_writel(as
, CSR0
, asd
->csr
);
400 if (as
->caps
.has_wdrbt
) {
402 SPI_BF(PCS
, ~(0x01 << chip_select
))
408 SPI_BF(PCS
, ~(0x01 << chip_select
))
413 mr
= spi_readl(as
, MR
);
416 * Ensures the clock polarity is valid before we actually
417 * assert the CS to avoid spurious clock edges to be
418 * processed by the spi devices.
420 if (spi_get_csgpiod(spi
, 0)) {
421 new_polarity
= (asd
->csr
& SPI_BIT(CPOL
)) != 0;
422 if (new_polarity
!= as
->last_polarity
) {
424 * Need to disable the GPIO before sending the dummy
425 * message because it is already set by the spi core.
427 gpiod_set_value_cansleep(spi_get_csgpiod(spi
, 0), 0);
428 atmel_spi_send_dummy(as
, spi
, chip_select
);
429 as
->last_polarity
= new_polarity
;
430 gpiod_set_value_cansleep(spi_get_csgpiod(spi
, 0), 1);
434 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
438 /* Make sure clock polarity is correct */
439 for (i
= 0; i
< spi
->controller
->num_chipselect
; i
++) {
440 csr
= spi_readl(as
, CSR0
+ 4 * i
);
441 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
442 spi_writel(as
, CSR0
+ 4 * i
,
443 csr
^ SPI_BIT(CPOL
));
446 mr
= spi_readl(as
, MR
);
447 mr
= SPI_BFINS(PCS
, ~(1 << chip_select
), mr
);
448 spi_writel(as
, MR
, mr
);
451 dev_dbg(&spi
->dev
, "activate NPCS, mr %08x\n", mr
);
454 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
459 if (spi_get_csgpiod(spi
, 0))
460 chip_select
= as
->native_cs_for_gpio
;
462 chip_select
= spi_get_chipselect(spi
, 0);
464 /* only deactivate *this* device; sometimes transfers to
465 * another device may be active when this routine is called.
467 mr
= spi_readl(as
, MR
);
468 if (~SPI_BFEXT(PCS
, mr
) & (1 << chip_select
)) {
469 mr
= SPI_BFINS(PCS
, 0xf, mr
);
470 spi_writel(as
, MR
, mr
);
473 dev_dbg(&spi
->dev
, "DEactivate NPCS, mr %08x\n", mr
);
475 if (!spi_get_csgpiod(spi
, 0))
476 spi_writel(as
, CR
, SPI_BIT(LASTXFER
));
479 static void atmel_spi_lock(struct atmel_spi
*as
) __acquires(&as
->lock
)
481 spin_lock_irqsave(&as
->lock
, as
->flags
);
484 static void atmel_spi_unlock(struct atmel_spi
*as
) __releases(&as
->lock
)
486 spin_unlock_irqrestore(&as
->lock
, as
->flags
);
489 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer
*xfer
)
491 return is_vmalloc_addr(xfer
->tx_buf
) || is_vmalloc_addr(xfer
->rx_buf
);
494 static inline bool atmel_spi_use_dma(struct atmel_spi
*as
,
495 struct spi_transfer
*xfer
)
497 return as
->use_dma
&& xfer
->len
>= DMA_MIN_BYTES
;
500 static bool atmel_spi_can_dma(struct spi_controller
*host
,
501 struct spi_device
*spi
,
502 struct spi_transfer
*xfer
)
504 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
506 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
))
507 return atmel_spi_use_dma(as
, xfer
) &&
508 !atmel_spi_is_vmalloc_xfer(xfer
);
510 return atmel_spi_use_dma(as
, xfer
);
514 static int atmel_spi_dma_slave_config(struct atmel_spi
*as
, u8 bits_per_word
)
516 struct spi_controller
*host
= platform_get_drvdata(as
->pdev
);
517 struct dma_slave_config slave_config
;
520 if (bits_per_word
> 8) {
521 slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
522 slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
524 slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
525 slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
528 slave_config
.dst_addr
= (dma_addr_t
)as
->phybase
+ SPI_TDR
;
529 slave_config
.src_addr
= (dma_addr_t
)as
->phybase
+ SPI_RDR
;
530 slave_config
.src_maxburst
= 1;
531 slave_config
.dst_maxburst
= 1;
532 slave_config
.device_fc
= false;
535 * This driver uses fixed peripheral select mode (PS bit set to '0' in
536 * the Mode Register).
537 * So according to the datasheet, when FIFOs are available (and
538 * enabled), the Transmit FIFO operates in Multiple Data Mode.
539 * In this mode, up to 2 data, not 4, can be written into the Transmit
540 * Data Register in a single access.
541 * However, the first data has to be written into the lowest 16 bits and
542 * the second data into the highest 16 bits of the Transmit
543 * Data Register. For 8bit data (the most frequent case), it would
544 * require to rework tx_buf so each data would actually fit 16 bits.
545 * So we'd rather write only one data at the time. Hence the transmit
546 * path works the same whether FIFOs are available (and enabled) or not.
548 if (dmaengine_slave_config(host
->dma_tx
, &slave_config
)) {
549 dev_err(&as
->pdev
->dev
,
550 "failed to configure tx dma channel\n");
555 * This driver configures the spi controller for host mode (MSTR bit
556 * set to '1' in the Mode Register).
557 * So according to the datasheet, when FIFOs are available (and
558 * enabled), the Receive FIFO operates in Single Data Mode.
559 * So the receive path works the same whether FIFOs are available (and
562 if (dmaengine_slave_config(host
->dma_rx
, &slave_config
)) {
563 dev_err(&as
->pdev
->dev
,
564 "failed to configure rx dma channel\n");
571 static int atmel_spi_configure_dma(struct spi_controller
*host
,
572 struct atmel_spi
*as
)
574 struct device
*dev
= &as
->pdev
->dev
;
577 host
->dma_tx
= dma_request_chan(dev
, "tx");
578 if (IS_ERR(host
->dma_tx
)) {
579 err
= PTR_ERR(host
->dma_tx
);
580 dev_dbg(dev
, "No TX DMA channel, DMA is disabled\n");
584 host
->dma_rx
= dma_request_chan(dev
, "rx");
585 if (IS_ERR(host
->dma_rx
)) {
586 err
= PTR_ERR(host
->dma_rx
);
588 * No reason to check EPROBE_DEFER here since we have already
589 * requested tx channel.
591 dev_dbg(dev
, "No RX DMA channel, DMA is disabled\n");
595 err
= atmel_spi_dma_slave_config(as
, 8);
599 dev_info(&as
->pdev
->dev
,
600 "Using %s (tx) and %s (rx) for DMA transfers\n",
601 dma_chan_name(host
->dma_tx
),
602 dma_chan_name(host
->dma_rx
));
606 if (!IS_ERR(host
->dma_rx
))
607 dma_release_channel(host
->dma_rx
);
608 if (!IS_ERR(host
->dma_tx
))
609 dma_release_channel(host
->dma_tx
);
611 host
->dma_tx
= host
->dma_rx
= NULL
;
615 static void atmel_spi_stop_dma(struct spi_controller
*host
)
618 dmaengine_terminate_all(host
->dma_rx
);
620 dmaengine_terminate_all(host
->dma_tx
);
623 static void atmel_spi_release_dma(struct spi_controller
*host
)
626 dma_release_channel(host
->dma_rx
);
630 dma_release_channel(host
->dma_tx
);
635 /* This function is called by the DMA driver from tasklet context */
636 static void dma_callback(void *data
)
638 struct spi_controller
*host
= data
;
639 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
641 if (is_vmalloc_addr(as
->current_transfer
->rx_buf
) &&
642 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
643 memcpy(as
->current_transfer
->rx_buf
, as
->addr_rx_bbuf
,
644 as
->current_transfer
->len
);
646 complete(&as
->xfer_completion
);
650 * Next transfer using PIO without FIFO.
652 static void atmel_spi_next_xfer_single(struct spi_controller
*host
,
653 struct spi_transfer
*xfer
)
655 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
656 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
658 dev_vdbg(host
->dev
.parent
, "atmel_spi_next_xfer_pio\n");
660 /* Make sure data is not remaining in RDR */
662 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
)) {
667 if (xfer
->bits_per_word
> 8)
668 spi_writel(as
, TDR
, *(u16
*)(xfer
->tx_buf
+ xfer_pos
));
670 spi_writel(as
, TDR
, *(u8
*)(xfer
->tx_buf
+ xfer_pos
));
672 dev_dbg(host
->dev
.parent
,
673 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
674 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
675 xfer
->bits_per_word
);
677 /* Enable relevant interrupts */
678 spi_writel(as
, IER
, SPI_BIT(RDRF
) | SPI_BIT(OVRES
));
682 * Next transfer using PIO with FIFO.
684 static void atmel_spi_next_xfer_fifo(struct spi_controller
*host
,
685 struct spi_transfer
*xfer
)
687 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
688 u32 current_remaining_data
, num_data
;
689 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
690 const u16
*words
= (const u16
*)((u8
*)xfer
->tx_buf
+ offset
);
691 const u8
*bytes
= (const u8
*)((u8
*)xfer
->tx_buf
+ offset
);
695 dev_vdbg(host
->dev
.parent
, "atmel_spi_next_xfer_fifo\n");
697 /* Compute the number of data to transfer in the current iteration */
698 current_remaining_data
= ((xfer
->bits_per_word
> 8) ?
699 ((u32
)as
->current_remaining_bytes
>> 1) :
700 (u32
)as
->current_remaining_bytes
);
701 num_data
= min(current_remaining_data
, as
->fifo_size
);
703 /* Flush RX and TX FIFOs */
704 spi_writel(as
, CR
, SPI_BIT(RXFCLR
) | SPI_BIT(TXFCLR
));
705 while (spi_readl(as
, FLR
))
708 /* Set RX FIFO Threshold to the number of data to transfer */
709 fifomr
= spi_readl(as
, FMR
);
710 spi_writel(as
, FMR
, SPI_BFINS(RXFTHRES
, num_data
, fifomr
));
712 /* Clear FIFO flags in the Status Register, especially RXFTHF */
713 (void)spi_readl(as
, SR
);
716 while (num_data
>= 2) {
717 if (xfer
->bits_per_word
> 8) {
725 spi_writel(as
, TDR
, (td1
<< 16) | td0
);
730 if (xfer
->bits_per_word
> 8)
735 spi_writew(as
, TDR
, td0
);
739 dev_dbg(host
->dev
.parent
,
740 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
741 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->rx_buf
,
742 xfer
->bits_per_word
);
745 * Enable RX FIFO Threshold Flag interrupt to be notified about
746 * transfer completion.
748 spi_writel(as
, IER
, SPI_BIT(RXFTHF
) | SPI_BIT(OVRES
));
752 * Next transfer using PIO.
754 static void atmel_spi_next_xfer_pio(struct spi_controller
*host
,
755 struct spi_transfer
*xfer
)
757 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
760 atmel_spi_next_xfer_fifo(host
, xfer
);
762 atmel_spi_next_xfer_single(host
, xfer
);
766 * Submit next transfer for DMA.
768 static int atmel_spi_next_xfer_dma_submit(struct spi_controller
*host
,
769 struct spi_transfer
*xfer
,
772 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
773 struct dma_chan
*rxchan
= host
->dma_rx
;
774 struct dma_chan
*txchan
= host
->dma_tx
;
775 struct dma_async_tx_descriptor
*rxdesc
;
776 struct dma_async_tx_descriptor
*txdesc
;
779 dev_vdbg(host
->dev
.parent
, "atmel_spi_next_xfer_dma_submit\n");
781 /* Check that the channels are available */
782 if (!rxchan
|| !txchan
)
788 if (atmel_spi_dma_slave_config(as
, xfer
->bits_per_word
))
791 /* Send both scatterlists */
792 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
793 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
794 rxdesc
= dmaengine_prep_slave_single(rxchan
,
795 as
->dma_addr_rx_bbuf
,
801 rxdesc
= dmaengine_prep_slave_sg(rxchan
,
811 if (atmel_spi_is_vmalloc_xfer(xfer
) &&
812 IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
813 memcpy(as
->addr_tx_bbuf
, xfer
->tx_buf
, xfer
->len
);
814 txdesc
= dmaengine_prep_slave_single(txchan
,
815 as
->dma_addr_tx_bbuf
,
816 xfer
->len
, DMA_MEM_TO_DEV
,
820 txdesc
= dmaengine_prep_slave_sg(txchan
,
830 dev_dbg(host
->dev
.parent
,
831 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
832 xfer
, xfer
->len
, xfer
->tx_buf
, (unsigned long long)xfer
->tx_dma
,
833 xfer
->rx_buf
, (unsigned long long)xfer
->rx_dma
);
835 /* Enable relevant interrupts */
836 spi_writel(as
, IER
, SPI_BIT(OVRES
));
838 /* Put the callback on the RX transfer only, that should finish last */
839 rxdesc
->callback
= dma_callback
;
840 rxdesc
->callback_param
= host
;
842 /* Submit and fire RX and TX with TX last so we're ready to read! */
843 cookie
= rxdesc
->tx_submit(rxdesc
);
844 if (dma_submit_error(cookie
))
846 cookie
= txdesc
->tx_submit(txdesc
);
847 if (dma_submit_error(cookie
))
849 rxchan
->device
->device_issue_pending(rxchan
);
850 txchan
->device
->device_issue_pending(txchan
);
855 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
856 atmel_spi_stop_dma(host
);
861 static void atmel_spi_next_xfer_data(struct spi_controller
*host
,
862 struct spi_transfer
*xfer
,
867 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
868 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
869 if (*plen
> host
->max_dma_len
)
870 *plen
= host
->max_dma_len
;
873 static int atmel_spi_set_xfer_speed(struct atmel_spi
*as
,
874 struct spi_device
*spi
,
875 struct spi_transfer
*xfer
)
878 unsigned long bus_hz
;
881 if (spi_get_csgpiod(spi
, 0))
882 chip_select
= as
->native_cs_for_gpio
;
884 chip_select
= spi_get_chipselect(spi
, 0);
886 /* v1 chips start out at half the peripheral bus speed. */
887 bus_hz
= as
->spi_clk
;
888 if (!atmel_spi_is_v2(as
))
892 * Calculate the lowest divider that satisfies the
893 * constraint, assuming div32/fdiv/mbz == 0.
895 scbr
= DIV_ROUND_UP(bus_hz
, xfer
->speed_hz
);
898 * If the resulting divider doesn't fit into the
899 * register bitfield, we can't satisfy the constraint.
901 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
903 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
904 xfer
->speed_hz
, scbr
, bus_hz
/255);
909 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
910 xfer
->speed_hz
, scbr
, bus_hz
);
913 csr
= spi_readl(as
, CSR0
+ 4 * chip_select
);
914 csr
= SPI_BFINS(SCBR
, scbr
, csr
);
915 spi_writel(as
, CSR0
+ 4 * chip_select
, csr
);
916 xfer
->effective_speed_hz
= bus_hz
/ scbr
;
922 * Submit next transfer for PDC.
923 * lock is held, spi irq is blocked
925 static void atmel_spi_pdc_next_xfer(struct spi_controller
*host
,
926 struct spi_transfer
*xfer
)
928 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
930 dma_addr_t tx_dma
, rx_dma
;
932 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
934 len
= as
->current_remaining_bytes
;
935 atmel_spi_next_xfer_data(host
, xfer
, &tx_dma
, &rx_dma
, &len
);
936 as
->current_remaining_bytes
-= len
;
938 spi_writel(as
, RPR
, rx_dma
);
939 spi_writel(as
, TPR
, tx_dma
);
941 if (xfer
->bits_per_word
> 8)
943 spi_writel(as
, RCR
, len
);
944 spi_writel(as
, TCR
, len
);
947 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
948 xfer
, xfer
->len
, xfer
->tx_buf
,
949 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
950 (unsigned long long)xfer
->rx_dma
);
952 if (as
->current_remaining_bytes
) {
953 len
= as
->current_remaining_bytes
;
954 atmel_spi_next_xfer_data(host
, xfer
, &tx_dma
, &rx_dma
, &len
);
955 as
->current_remaining_bytes
-= len
;
957 spi_writel(as
, RNPR
, rx_dma
);
958 spi_writel(as
, TNPR
, tx_dma
);
960 if (xfer
->bits_per_word
> 8)
962 spi_writel(as
, RNCR
, len
);
963 spi_writel(as
, TNCR
, len
);
966 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
967 xfer
, xfer
->len
, xfer
->tx_buf
,
968 (unsigned long long)xfer
->tx_dma
, xfer
->rx_buf
,
969 (unsigned long long)xfer
->rx_dma
);
972 /* REVISIT: We're waiting for RXBUFF before we start the next
973 * transfer because we need to handle some difficult timing
974 * issues otherwise. If we wait for TXBUFE in one transfer and
975 * then starts waiting for RXBUFF in the next, it's difficult
976 * to tell the difference between the RXBUFF interrupt we're
977 * actually waiting for and the RXBUFF interrupt of the
980 * It should be doable, though. Just not now...
982 spi_writel(as
, IER
, SPI_BIT(RXBUFF
) | SPI_BIT(OVRES
));
983 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
987 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
988 * - The buffer is either valid for CPU access, else NULL
989 * - If the buffer is valid, so is its DMA address
992 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
994 struct device
*dev
= &as
->pdev
->dev
;
996 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
998 /* tx_buf is a const void* where we need a void * for the dma
1000 void *nonconst_tx
= (void *)xfer
->tx_buf
;
1002 xfer
->tx_dma
= dma_map_single(dev
,
1003 nonconst_tx
, xfer
->len
,
1005 if (dma_mapping_error(dev
, xfer
->tx_dma
))
1009 xfer
->rx_dma
= dma_map_single(dev
,
1010 xfer
->rx_buf
, xfer
->len
,
1012 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
1014 dma_unmap_single(dev
,
1015 xfer
->tx_dma
, xfer
->len
,
1023 static void atmel_spi_dma_unmap_xfer(struct spi_controller
*host
,
1024 struct spi_transfer
*xfer
)
1026 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
1027 dma_unmap_single(host
->dev
.parent
, xfer
->tx_dma
,
1028 xfer
->len
, DMA_TO_DEVICE
);
1029 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
1030 dma_unmap_single(host
->dev
.parent
, xfer
->rx_dma
,
1031 xfer
->len
, DMA_FROM_DEVICE
);
1034 static void atmel_spi_disable_pdc_transfer(struct atmel_spi
*as
)
1036 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1040 atmel_spi_pump_single_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1044 unsigned long xfer_pos
= xfer
->len
- as
->current_remaining_bytes
;
1046 if (xfer
->bits_per_word
> 8) {
1047 rxp16
= (u16
*)(((u8
*)xfer
->rx_buf
) + xfer_pos
);
1048 *rxp16
= spi_readl(as
, RDR
);
1050 rxp
= ((u8
*)xfer
->rx_buf
) + xfer_pos
;
1051 *rxp
= spi_readl(as
, RDR
);
1053 if (xfer
->bits_per_word
> 8) {
1054 if (as
->current_remaining_bytes
> 2)
1055 as
->current_remaining_bytes
-= 2;
1057 as
->current_remaining_bytes
= 0;
1059 as
->current_remaining_bytes
--;
1064 atmel_spi_pump_fifo_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1066 u32 fifolr
= spi_readl(as
, FLR
);
1067 u32 num_bytes
, num_data
= SPI_BFEXT(RXFL
, fifolr
);
1068 u32 offset
= xfer
->len
- as
->current_remaining_bytes
;
1069 u16
*words
= (u16
*)((u8
*)xfer
->rx_buf
+ offset
);
1070 u8
*bytes
= (u8
*)((u8
*)xfer
->rx_buf
+ offset
);
1071 u16 rd
; /* RD field is the lowest 16 bits of RDR */
1073 /* Update the number of remaining bytes to transfer */
1074 num_bytes
= ((xfer
->bits_per_word
> 8) ?
1078 if (as
->current_remaining_bytes
> num_bytes
)
1079 as
->current_remaining_bytes
-= num_bytes
;
1081 as
->current_remaining_bytes
= 0;
1083 /* Handle odd number of bytes when data are more than 8bit width */
1084 if (xfer
->bits_per_word
> 8)
1085 as
->current_remaining_bytes
&= ~0x1;
1089 rd
= spi_readl(as
, RDR
);
1090 if (xfer
->bits_per_word
> 8)
1100 * Must update "current_remaining_bytes" to keep track of data
1104 atmel_spi_pump_pio_data(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
1107 atmel_spi_pump_fifo_data(as
, xfer
);
1109 atmel_spi_pump_single_data(as
, xfer
);
1116 atmel_spi_pio_interrupt(int irq
, void *dev_id
)
1118 struct spi_controller
*host
= dev_id
;
1119 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
1120 u32 status
, pending
, imr
;
1121 struct spi_transfer
*xfer
;
1124 imr
= spi_readl(as
, IMR
);
1125 status
= spi_readl(as
, SR
);
1126 pending
= status
& imr
;
1128 if (pending
& SPI_BIT(OVRES
)) {
1130 spi_writel(as
, IDR
, SPI_BIT(OVRES
));
1131 dev_warn(host
->dev
.parent
, "overrun\n");
1134 * When we get an overrun, we disregard the current
1135 * transfer. Data will not be copied back from any
1136 * bounce buffer and msg->actual_len will not be
1137 * updated with the last xfer.
1139 * We will also not process any remaning transfers in
1142 as
->done_status
= -EIO
;
1145 /* Clear any overrun happening while cleaning up */
1148 complete(&as
->xfer_completion
);
1150 } else if (pending
& (SPI_BIT(RDRF
) | SPI_BIT(RXFTHF
))) {
1153 if (as
->current_remaining_bytes
) {
1155 xfer
= as
->current_transfer
;
1156 atmel_spi_pump_pio_data(as
, xfer
);
1157 if (!as
->current_remaining_bytes
)
1158 spi_writel(as
, IDR
, pending
);
1160 complete(&as
->xfer_completion
);
1163 atmel_spi_unlock(as
);
1165 WARN_ONCE(pending
, "IRQ not handled, pending = %x\n", pending
);
1167 spi_writel(as
, IDR
, pending
);
1174 atmel_spi_pdc_interrupt(int irq
, void *dev_id
)
1176 struct spi_controller
*host
= dev_id
;
1177 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
1178 u32 status
, pending
, imr
;
1181 imr
= spi_readl(as
, IMR
);
1182 status
= spi_readl(as
, SR
);
1183 pending
= status
& imr
;
1185 if (pending
& SPI_BIT(OVRES
)) {
1189 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
1192 /* Clear any overrun happening while cleaning up */
1195 as
->done_status
= -EIO
;
1197 complete(&as
->xfer_completion
);
1199 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
1202 spi_writel(as
, IDR
, pending
);
1204 complete(&as
->xfer_completion
);
1210 static int atmel_word_delay_csr(struct spi_device
*spi
, struct atmel_spi
*as
)
1212 struct spi_delay
*delay
= &spi
->word_delay
;
1213 u32 value
= delay
->value
;
1215 switch (delay
->unit
) {
1216 case SPI_DELAY_UNIT_NSECS
:
1219 case SPI_DELAY_UNIT_USECS
:
1225 return (as
->spi_clk
/ 1000000 * value
) >> 5;
1228 static void initialize_native_cs_for_gpio(struct atmel_spi
*as
)
1231 struct spi_controller
*host
= platform_get_drvdata(as
->pdev
);
1233 if (!as
->native_cs_free
)
1234 return; /* already initialized */
1236 if (!host
->cs_gpiods
)
1237 return; /* No CS GPIO */
1240 * On the first version of the controller (AT91RM9200), CS0
1241 * can't be used associated with GPIO
1243 if (atmel_spi_is_v2(as
))
1249 if (host
->cs_gpiods
[i
])
1250 as
->native_cs_free
|= BIT(i
);
1252 if (as
->native_cs_free
)
1253 as
->native_cs_for_gpio
= ffs(as
->native_cs_free
);
1256 static int atmel_spi_setup(struct spi_device
*spi
)
1258 struct atmel_spi
*as
;
1259 struct atmel_spi_device
*asd
;
1261 unsigned int bits
= spi
->bits_per_word
;
1265 as
= spi_controller_get_devdata(spi
->controller
);
1267 /* see notes above re chipselect */
1268 if (!spi_get_csgpiod(spi
, 0) && (spi
->mode
& SPI_CS_HIGH
)) {
1269 dev_warn(&spi
->dev
, "setup: non GPIO CS can't be active-high\n");
1273 /* Setup() is called during spi_register_controller(aka
1274 * spi_register_master) but after all membmers of the cs_gpiod
1275 * array have been filled, so we can looked for which native
1276 * CS will be free for using with GPIO
1278 initialize_native_cs_for_gpio(as
);
1280 if (spi_get_csgpiod(spi
, 0) && as
->native_cs_free
) {
1282 "No native CS available to support this GPIO CS\n");
1286 if (spi_get_csgpiod(spi
, 0))
1287 chip_select
= as
->native_cs_for_gpio
;
1289 chip_select
= spi_get_chipselect(spi
, 0);
1291 csr
= SPI_BF(BITS
, bits
- 8);
1292 if (spi
->mode
& SPI_CPOL
)
1293 csr
|= SPI_BIT(CPOL
);
1294 if (!(spi
->mode
& SPI_CPHA
))
1295 csr
|= SPI_BIT(NCPHA
);
1297 if (!spi_get_csgpiod(spi
, 0))
1298 csr
|= SPI_BIT(CSAAT
);
1299 csr
|= SPI_BF(DLYBS
, 0);
1301 word_delay_csr
= atmel_word_delay_csr(spi
, as
);
1302 if (word_delay_csr
< 0)
1303 return word_delay_csr
;
1305 /* DLYBCT adds delays between words. This is useful for slow devices
1306 * that need a bit of time to setup the next transfer.
1308 csr
|= SPI_BF(DLYBCT
, word_delay_csr
);
1310 asd
= spi
->controller_state
;
1312 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
1316 spi
->controller_state
= asd
;
1322 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1323 bits
, spi
->mode
, spi_get_chipselect(spi
, 0), csr
);
1325 if (!atmel_spi_is_v2(as
))
1326 spi_writel(as
, CSR0
+ 4 * chip_select
, csr
);
1331 static void atmel_spi_set_cs(struct spi_device
*spi
, bool enable
)
1333 struct atmel_spi
*as
= spi_controller_get_devdata(spi
->controller
);
1334 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1335 * since we already have routines for activate/deactivate translate
1336 * high/low to active/inactive
1338 enable
= (!!(spi
->mode
& SPI_CS_HIGH
) == enable
);
1341 cs_activate(as
, spi
);
1343 cs_deactivate(as
, spi
);
1348 static int atmel_spi_one_transfer(struct spi_controller
*host
,
1349 struct spi_device
*spi
,
1350 struct spi_transfer
*xfer
)
1352 struct atmel_spi
*as
;
1355 struct atmel_spi_device
*asd
;
1358 unsigned int dma_timeout
;
1361 as
= spi_controller_get_devdata(host
);
1363 asd
= spi
->controller_state
;
1364 bits
= (asd
->csr
>> 4) & 0xf;
1365 if (bits
!= xfer
->bits_per_word
- 8) {
1367 "you can't yet change bits_per_word in transfers\n");
1368 return -ENOPROTOOPT
;
1372 * DMA map early, for performance (empties dcache ASAP) and
1373 * better fault reporting.
1376 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
1380 atmel_spi_set_xfer_speed(as
, spi
, xfer
);
1382 as
->done_status
= 0;
1383 as
->current_transfer
= xfer
;
1384 as
->current_remaining_bytes
= xfer
->len
;
1385 while (as
->current_remaining_bytes
) {
1386 reinit_completion(&as
->xfer_completion
);
1390 atmel_spi_pdc_next_xfer(host
, xfer
);
1391 atmel_spi_unlock(as
);
1392 } else if (atmel_spi_use_dma(as
, xfer
)) {
1393 len
= as
->current_remaining_bytes
;
1394 ret
= atmel_spi_next_xfer_dma_submit(host
,
1398 "unable to use DMA, fallback to PIO\n");
1399 as
->done_status
= ret
;
1402 as
->current_remaining_bytes
-= len
;
1403 if (as
->current_remaining_bytes
< 0)
1404 as
->current_remaining_bytes
= 0;
1408 atmel_spi_next_xfer_pio(host
, xfer
);
1409 atmel_spi_unlock(as
);
1412 dma_timeout
= msecs_to_jiffies(spi_controller_xfer_timeout(host
, xfer
));
1413 ret_timeout
= wait_for_completion_timeout(&as
->xfer_completion
, dma_timeout
);
1415 dev_err(&spi
->dev
, "spi transfer timeout\n");
1416 as
->done_status
= -EIO
;
1419 if (as
->done_status
)
1423 if (as
->done_status
) {
1425 dev_warn(host
->dev
.parent
,
1426 "overrun (%u/%u remaining)\n",
1427 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
1430 * Clean up DMA registers and make sure the data
1431 * registers are empty.
1433 spi_writel(as
, RNCR
, 0);
1434 spi_writel(as
, TNCR
, 0);
1435 spi_writel(as
, RCR
, 0);
1436 spi_writel(as
, TCR
, 0);
1437 for (timeout
= 1000; timeout
; timeout
--)
1438 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
1441 dev_warn(host
->dev
.parent
,
1442 "timeout waiting for TXEMPTY");
1443 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
1446 /* Clear any overrun happening while cleaning up */
1449 } else if (atmel_spi_use_dma(as
, xfer
)) {
1450 atmel_spi_stop_dma(host
);
1455 atmel_spi_dma_unmap_xfer(host
, xfer
);
1458 atmel_spi_disable_pdc_transfer(as
);
1460 return as
->done_status
;
1463 static void atmel_spi_cleanup(struct spi_device
*spi
)
1465 struct atmel_spi_device
*asd
= spi
->controller_state
;
1470 spi
->controller_state
= NULL
;
1474 static inline unsigned int atmel_get_version(struct atmel_spi
*as
)
1476 return spi_readl(as
, VERSION
) & 0x00000fff;
1479 static void atmel_get_caps(struct atmel_spi
*as
)
1481 unsigned int version
;
1483 version
= atmel_get_version(as
);
1485 as
->caps
.is_spi2
= version
> 0x121;
1486 as
->caps
.has_wdrbt
= version
>= 0x210;
1487 as
->caps
.has_dma_support
= version
>= 0x212;
1488 as
->caps
.has_pdc_support
= version
< 0x212;
1491 static void atmel_spi_init(struct atmel_spi
*as
)
1493 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1494 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1496 /* It is recommended to enable FIFOs first thing after reset */
1498 spi_writel(as
, CR
, SPI_BIT(FIFOEN
));
1500 if (as
->caps
.has_wdrbt
) {
1501 spi_writel(as
, MR
, SPI_BIT(WDRBT
) | SPI_BIT(MODFDIS
)
1504 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
1508 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
1509 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
1512 static int atmel_spi_probe(struct platform_device
*pdev
)
1514 struct resource
*regs
;
1518 struct spi_controller
*host
;
1519 struct atmel_spi
*as
;
1521 /* Select default pin state */
1522 pinctrl_pm_select_default_state(&pdev
->dev
);
1524 irq
= platform_get_irq(pdev
, 0);
1528 clk
= devm_clk_get(&pdev
->dev
, "spi_clk");
1530 return PTR_ERR(clk
);
1532 /* setup spi core then atmel-specific driver state */
1533 host
= spi_alloc_host(&pdev
->dev
, sizeof(*as
));
1537 /* the spi->mode bits understood by this driver: */
1538 host
->use_gpio_descriptors
= true;
1539 host
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1540 host
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(8, 16);
1541 host
->dev
.of_node
= pdev
->dev
.of_node
;
1542 host
->bus_num
= pdev
->id
;
1543 host
->num_chipselect
= 4;
1544 host
->setup
= atmel_spi_setup
;
1545 host
->flags
= (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
|
1546 SPI_CONTROLLER_GPIO_SS
);
1547 host
->transfer_one
= atmel_spi_one_transfer
;
1548 host
->set_cs
= atmel_spi_set_cs
;
1549 host
->cleanup
= atmel_spi_cleanup
;
1550 host
->auto_runtime_pm
= true;
1551 host
->max_dma_len
= SPI_MAX_DMA_XFER
;
1552 host
->can_dma
= atmel_spi_can_dma
;
1553 platform_set_drvdata(pdev
, host
);
1555 as
= spi_controller_get_devdata(host
);
1557 spin_lock_init(&as
->lock
);
1560 as
->regs
= devm_platform_get_and_ioremap_resource(pdev
, 0, ®s
);
1561 if (IS_ERR(as
->regs
)) {
1562 ret
= PTR_ERR(as
->regs
);
1563 goto out_unmap_regs
;
1565 as
->phybase
= regs
->start
;
1569 init_completion(&as
->xfer_completion
);
1573 as
->use_dma
= false;
1574 as
->use_pdc
= false;
1575 if (as
->caps
.has_dma_support
) {
1576 ret
= atmel_spi_configure_dma(host
, as
);
1579 } else if (ret
== -EPROBE_DEFER
) {
1580 goto out_unmap_regs
;
1582 } else if (as
->caps
.has_pdc_support
) {
1586 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1587 as
->addr_rx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1589 &as
->dma_addr_rx_bbuf
,
1590 GFP_KERNEL
| GFP_DMA
);
1591 if (!as
->addr_rx_bbuf
) {
1592 as
->use_dma
= false;
1594 as
->addr_tx_bbuf
= dma_alloc_coherent(&pdev
->dev
,
1596 &as
->dma_addr_tx_bbuf
,
1597 GFP_KERNEL
| GFP_DMA
);
1598 if (!as
->addr_tx_bbuf
) {
1599 as
->use_dma
= false;
1600 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1602 as
->dma_addr_rx_bbuf
);
1606 dev_info(host
->dev
.parent
,
1607 " can not allocate dma coherent memory\n");
1610 if (as
->caps
.has_dma_support
&& !as
->use_dma
)
1611 dev_info(&pdev
->dev
, "Atmel SPI Controller using PIO only\n");
1614 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pdc_interrupt
,
1615 0, dev_name(&pdev
->dev
), host
);
1617 ret
= devm_request_irq(&pdev
->dev
, irq
, atmel_spi_pio_interrupt
,
1618 0, dev_name(&pdev
->dev
), host
);
1621 goto out_unmap_regs
;
1623 /* Initialize the hardware */
1624 ret
= clk_prepare_enable(clk
);
1628 as
->spi_clk
= clk_get_rate(clk
);
1631 if (!of_property_read_u32(pdev
->dev
.of_node
, "atmel,fifo-size",
1633 dev_info(&pdev
->dev
, "Using FIFO (%u data)\n", as
->fifo_size
);
1638 pm_runtime_set_autosuspend_delay(&pdev
->dev
, AUTOSUSPEND_TIMEOUT
);
1639 pm_runtime_use_autosuspend(&pdev
->dev
);
1640 pm_runtime_set_active(&pdev
->dev
);
1641 pm_runtime_enable(&pdev
->dev
);
1643 ret
= devm_spi_register_controller(&pdev
->dev
, host
);
1648 dev_info(&pdev
->dev
, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1649 atmel_get_version(as
), (unsigned long)regs
->start
,
1655 pm_runtime_disable(&pdev
->dev
);
1656 pm_runtime_set_suspended(&pdev
->dev
);
1659 atmel_spi_release_dma(host
);
1661 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1662 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1663 clk_disable_unprepare(clk
);
1666 spi_controller_put(host
);
1670 static void atmel_spi_remove(struct platform_device
*pdev
)
1672 struct spi_controller
*host
= platform_get_drvdata(pdev
);
1673 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
1675 pm_runtime_get_sync(&pdev
->dev
);
1677 /* reset the hardware and block queue progress */
1679 atmel_spi_stop_dma(host
);
1680 atmel_spi_release_dma(host
);
1681 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5
)) {
1682 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1684 as
->dma_addr_tx_bbuf
);
1685 dma_free_coherent(&pdev
->dev
, SPI_MAX_DMA_XFER
,
1687 as
->dma_addr_rx_bbuf
);
1691 spin_lock_irq(&as
->lock
);
1692 spi_writel(as
, CR
, SPI_BIT(SWRST
));
1693 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
1695 spin_unlock_irq(&as
->lock
);
1697 clk_disable_unprepare(as
->clk
);
1699 pm_runtime_put_noidle(&pdev
->dev
);
1700 pm_runtime_disable(&pdev
->dev
);
1703 static int atmel_spi_runtime_suspend(struct device
*dev
)
1705 struct spi_controller
*host
= dev_get_drvdata(dev
);
1706 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
1708 clk_disable_unprepare(as
->clk
);
1709 pinctrl_pm_select_sleep_state(dev
);
1714 static int atmel_spi_runtime_resume(struct device
*dev
)
1716 struct spi_controller
*host
= dev_get_drvdata(dev
);
1717 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
1719 pinctrl_pm_select_default_state(dev
);
1721 return clk_prepare_enable(as
->clk
);
1724 static int atmel_spi_suspend(struct device
*dev
)
1726 struct spi_controller
*host
= dev_get_drvdata(dev
);
1729 /* Stop the queue running */
1730 ret
= spi_controller_suspend(host
);
1734 if (!pm_runtime_suspended(dev
))
1735 atmel_spi_runtime_suspend(dev
);
1740 static int atmel_spi_resume(struct device
*dev
)
1742 struct spi_controller
*host
= dev_get_drvdata(dev
);
1743 struct atmel_spi
*as
= spi_controller_get_devdata(host
);
1746 ret
= clk_prepare_enable(as
->clk
);
1752 clk_disable_unprepare(as
->clk
);
1754 if (!pm_runtime_suspended(dev
)) {
1755 ret
= atmel_spi_runtime_resume(dev
);
1760 /* Start the queue running */
1761 return spi_controller_resume(host
);
1764 static const struct dev_pm_ops atmel_spi_pm_ops
= {
1765 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend
, atmel_spi_resume
)
1766 RUNTIME_PM_OPS(atmel_spi_runtime_suspend
,
1767 atmel_spi_runtime_resume
, NULL
)
1770 static const struct of_device_id atmel_spi_dt_ids
[] = {
1771 { .compatible
= "atmel,at91rm9200-spi" },
1775 MODULE_DEVICE_TABLE(of
, atmel_spi_dt_ids
);
1777 static struct platform_driver atmel_spi_driver
= {
1779 .name
= "atmel_spi",
1780 .pm
= pm_ptr(&atmel_spi_pm_ops
),
1781 .of_match_table
= atmel_spi_dt_ids
,
1783 .probe
= atmel_spi_probe
,
1784 .remove
= atmel_spi_remove
,
1786 module_platform_driver(atmel_spi_driver
);
1788 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1789 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1790 MODULE_LICENSE("GPL");
1791 MODULE_ALIAS("platform:atmel_spi");