1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
9 * Copyright (C) 2011 Renesas Solutions Corp.
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/reset.h>
25 #include <linux/sh_dma.h>
26 #include <linux/spi/spi.h>
27 #include <linux/spinlock.h>
29 #define RSPI_SPCR 0x00 /* Control Register */
30 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31 #define RSPI_SPPCR 0x02 /* Pin Control Register */
32 #define RSPI_SPSR 0x03 /* Status Register */
33 #define RSPI_SPDR 0x04 /* Data Register */
34 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
35 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
36 #define RSPI_SPBR 0x0a /* Bit Rate Register */
37 #define RSPI_SPDCR 0x0b /* Data Control Register */
38 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
39 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
41 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
43 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
44 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
45 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
46 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
47 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
48 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
49 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
50 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51 #define RSPI_NUM_SPCMD 8
52 #define RSPI_RZ_NUM_SPCMD 4
53 #define QSPI_NUM_SPCMD 4
56 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
60 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
68 /* SPCR - Control Register */
69 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70 #define SPCR_SPE 0x40 /* Function Enable */
71 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
76 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78 /* QSPI on R-Car Gen2 only */
79 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
82 /* SSLP - Slave Select Polarity Register */
83 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM 0x04
89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
95 /* SPSR - Status Register */
96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97 #define SPSR_TEND 0x40 /* Transmit End */
98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF 0x08 /* Parity Error Flag */
100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD SPDCR_SPLW1
117 #define SPDCR_SPLBYTE SPDCR_SPLW0
118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1 0x08
121 #define SPDCR_SLSEL0 0x04
122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1 0x02
124 #define SPDCR_SPFC0 0x01
125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE 0x01 /* Parity Enable */
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146 #define SPCMD_LSBF 0x1000 /* LSB First */
147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150 #define SPCMD_SPB_16BIT 0x0100
151 #define SPCMD_SPB_20BIT 0x0000
152 #define SPCMD_SPB_24BIT 0x0100
153 #define SPCMD_SPB_32BIT 0x0200
154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1 0x0040
157 #define SPCMD_SPIMOD0 0x0020
158 #define SPCMD_SPIMOD_SINGLE 0
159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164 #define SPCMD_BRDV(brdv) ((brdv) << 2)
165 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
166 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
168 /* SPBFCR - Buffer Control Register */
169 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
170 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
171 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
172 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
173 /* QSPI on R-Car Gen2 */
174 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
175 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
176 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
177 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
179 #define QSPI_BUFFER_SIZE 32u
184 struct spi_controller
*ctlr
;
185 struct platform_device
*pdev
;
186 wait_queue_head_t wait
;
187 spinlock_t lock
; /* Protects RMW-access to RSPI_SSLP */
193 const struct spi_ops
*ops
;
195 unsigned dma_callbacked
:1;
196 unsigned byte_access
:1;
199 static void rspi_write8(const struct rspi_data
*rspi
, u8 data
, u16 offset
)
201 iowrite8(data
, rspi
->addr
+ offset
);
204 static void rspi_write16(const struct rspi_data
*rspi
, u16 data
, u16 offset
)
206 iowrite16(data
, rspi
->addr
+ offset
);
209 static void rspi_write32(const struct rspi_data
*rspi
, u32 data
, u16 offset
)
211 iowrite32(data
, rspi
->addr
+ offset
);
214 static u8
rspi_read8(const struct rspi_data
*rspi
, u16 offset
)
216 return ioread8(rspi
->addr
+ offset
);
219 static u16
rspi_read16(const struct rspi_data
*rspi
, u16 offset
)
221 return ioread16(rspi
->addr
+ offset
);
224 static void rspi_write_data(const struct rspi_data
*rspi
, u16 data
)
226 if (rspi
->byte_access
)
227 rspi_write8(rspi
, data
, RSPI_SPDR
);
229 rspi_write16(rspi
, data
, RSPI_SPDR
);
232 static u16
rspi_read_data(const struct rspi_data
*rspi
)
234 if (rspi
->byte_access
)
235 return rspi_read8(rspi
, RSPI_SPDR
);
237 return rspi_read16(rspi
, RSPI_SPDR
);
240 /* optional functions */
242 int (*set_config_register
)(struct rspi_data
*rspi
, int access_size
);
243 int (*transfer_one
)(struct spi_controller
*ctlr
,
244 struct spi_device
*spi
, struct spi_transfer
*xfer
);
253 static void rspi_set_rate(struct rspi_data
*rspi
)
255 unsigned long clksrc
;
258 clksrc
= clk_get_rate(rspi
->clk
);
259 spbr
= DIV_ROUND_UP(clksrc
, 2 * rspi
->speed_hz
) - 1;
260 while (spbr
> 255 && brdv
< 3) {
262 spbr
= DIV_ROUND_UP(spbr
+ 1, 2) - 1;
265 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
266 rspi
->spcmd
|= SPCMD_BRDV(brdv
);
267 rspi
->speed_hz
= DIV_ROUND_UP(clksrc
, (2U << brdv
) * (spbr
+ 1));
271 * functions for RSPI on legacy SH
273 static int rspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
275 /* Sets output mode, MOSI signal, and (optionally) loopback */
276 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
278 /* Sets transfer bit rate */
281 /* Disable dummy transmission, set 16-bit word access, 1 frame */
282 rspi_write8(rspi
, 0, RSPI_SPDCR
);
283 rspi
->byte_access
= 0;
285 /* Sets RSPCK, SSL, next-access delay value */
286 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
287 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
288 rspi_write8(rspi
, 0x00, RSPI_SPND
);
290 /* Sets parity, interrupt mask */
291 rspi_write8(rspi
, 0x00, RSPI_SPCR2
);
293 /* Resets sequencer */
294 rspi_write8(rspi
, 0, RSPI_SPSCR
);
295 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
296 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
299 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
305 * functions for RSPI on RZ
307 static int rspi_rz_set_config_register(struct rspi_data
*rspi
, int access_size
)
309 /* Sets output mode, MOSI signal, and (optionally) loopback */
310 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
312 /* Sets transfer bit rate */
315 /* Disable dummy transmission, set byte access */
316 rspi_write8(rspi
, SPDCR_SPLBYTE
, RSPI_SPDCR
);
317 rspi
->byte_access
= 1;
319 /* Sets RSPCK, SSL, next-access delay value */
320 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
321 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
322 rspi_write8(rspi
, 0x00, RSPI_SPND
);
324 /* Resets sequencer */
325 rspi_write8(rspi
, 0, RSPI_SPSCR
);
326 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
327 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
330 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
338 static int qspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
340 unsigned long clksrc
;
343 /* Sets output mode, MOSI signal, and (optionally) loopback */
344 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
346 /* Sets transfer bit rate */
347 clksrc
= clk_get_rate(rspi
->clk
);
348 if (rspi
->speed_hz
>= clksrc
) {
350 rspi
->speed_hz
= clksrc
;
352 spbr
= DIV_ROUND_UP(clksrc
, 2 * rspi
->speed_hz
);
353 while (spbr
> 255 && brdv
< 3) {
355 spbr
= DIV_ROUND_UP(spbr
, 2);
357 spbr
= clamp(spbr
, 0, 255);
358 rspi
->speed_hz
= DIV_ROUND_UP(clksrc
, (2U << brdv
) * spbr
);
360 rspi_write8(rspi
, spbr
, RSPI_SPBR
);
361 rspi
->spcmd
|= SPCMD_BRDV(brdv
);
363 /* Disable dummy transmission, set byte access */
364 rspi_write8(rspi
, 0, RSPI_SPDCR
);
365 rspi
->byte_access
= 1;
367 /* Sets RSPCK, SSL, next-access delay value */
368 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
369 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
370 rspi_write8(rspi
, 0x00, RSPI_SPND
);
372 /* Data Length Setting */
373 if (access_size
== 8)
374 rspi
->spcmd
|= SPCMD_SPB_8BIT
;
375 else if (access_size
== 16)
376 rspi
->spcmd
|= SPCMD_SPB_16BIT
;
378 rspi
->spcmd
|= SPCMD_SPB_32BIT
;
380 rspi
->spcmd
|= SPCMD_SCKDEN
| SPCMD_SLNDEN
| SPCMD_SPNDEN
;
382 /* Resets transfer data length */
383 rspi_write32(rspi
, 0, QSPI_SPBMUL0
);
385 /* Resets transmit and receive buffer */
386 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
387 /* Sets buffer to allow normal operation */
388 rspi_write8(rspi
, 0x00, QSPI_SPBFCR
);
390 /* Resets sequencer */
391 rspi_write8(rspi
, 0, RSPI_SPSCR
);
392 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
395 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
400 static void qspi_update(const struct rspi_data
*rspi
, u8 mask
, u8 val
, u8 reg
)
404 data
= rspi_read8(rspi
, reg
);
406 data
|= (val
& mask
);
407 rspi_write8(rspi
, data
, reg
);
410 static unsigned int qspi_set_send_trigger(struct rspi_data
*rspi
,
415 n
= min(len
, QSPI_BUFFER_SIZE
);
417 if (len
>= QSPI_BUFFER_SIZE
) {
418 /* sets triggering number to 32 bytes */
419 qspi_update(rspi
, SPBFCR_TXTRG_MASK
,
420 SPBFCR_TXTRG_32B
, QSPI_SPBFCR
);
422 /* sets triggering number to 1 byte */
423 qspi_update(rspi
, SPBFCR_TXTRG_MASK
,
424 SPBFCR_TXTRG_1B
, QSPI_SPBFCR
);
430 static int qspi_set_receive_trigger(struct rspi_data
*rspi
, unsigned int len
)
434 n
= min(len
, QSPI_BUFFER_SIZE
);
436 if (len
>= QSPI_BUFFER_SIZE
) {
437 /* sets triggering number to 32 bytes */
438 qspi_update(rspi
, SPBFCR_RXTRG_MASK
,
439 SPBFCR_RXTRG_32B
, QSPI_SPBFCR
);
441 /* sets triggering number to 1 byte */
442 qspi_update(rspi
, SPBFCR_RXTRG_MASK
,
443 SPBFCR_RXTRG_1B
, QSPI_SPBFCR
);
448 static void rspi_enable_irq(const struct rspi_data
*rspi
, u8 enable
)
450 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | enable
, RSPI_SPCR
);
453 static void rspi_disable_irq(const struct rspi_data
*rspi
, u8 disable
)
455 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~disable
, RSPI_SPCR
);
458 static int rspi_wait_for_interrupt(struct rspi_data
*rspi
, u8 wait_mask
,
463 rspi
->spsr
= rspi_read8(rspi
, RSPI_SPSR
);
464 if (rspi
->spsr
& wait_mask
)
467 rspi_enable_irq(rspi
, enable_bit
);
468 ret
= wait_event_timeout(rspi
->wait
, rspi
->spsr
& wait_mask
, HZ
);
469 if (ret
== 0 && !(rspi
->spsr
& wait_mask
))
475 static inline int rspi_wait_for_tx_empty(struct rspi_data
*rspi
)
477 return rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
);
480 static inline int rspi_wait_for_rx_full(struct rspi_data
*rspi
)
482 return rspi_wait_for_interrupt(rspi
, SPSR_SPRF
, SPCR_SPRIE
);
485 static int rspi_data_out(struct rspi_data
*rspi
, u8 data
)
487 int error
= rspi_wait_for_tx_empty(rspi
);
489 dev_err(&rspi
->ctlr
->dev
, "transmit timeout\n");
492 rspi_write_data(rspi
, data
);
496 static int rspi_data_in(struct rspi_data
*rspi
)
501 error
= rspi_wait_for_rx_full(rspi
);
503 dev_err(&rspi
->ctlr
->dev
, "receive timeout\n");
506 data
= rspi_read_data(rspi
);
510 static int rspi_pio_transfer(struct rspi_data
*rspi
, const u8
*tx
, u8
*rx
,
515 int ret
= rspi_data_out(rspi
, *tx
++);
520 int ret
= rspi_data_in(rspi
);
530 static void rspi_dma_complete(void *arg
)
532 struct rspi_data
*rspi
= arg
;
534 rspi
->dma_callbacked
= 1;
535 wake_up_interruptible(&rspi
->wait
);
538 static int rspi_dma_transfer(struct rspi_data
*rspi
, struct sg_table
*tx
,
541 struct dma_async_tx_descriptor
*desc_tx
= NULL
, *desc_rx
= NULL
;
543 unsigned int other_irq
= 0;
547 /* First prepare and submit the DMA request(s), as this may fail */
549 desc_rx
= dmaengine_prep_slave_sg(rspi
->ctlr
->dma_rx
, rx
->sgl
,
550 rx
->nents
, DMA_DEV_TO_MEM
,
551 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
557 desc_rx
->callback
= rspi_dma_complete
;
558 desc_rx
->callback_param
= rspi
;
559 cookie
= dmaengine_submit(desc_rx
);
560 if (dma_submit_error(cookie
)) {
565 irq_mask
|= SPCR_SPRIE
;
569 desc_tx
= dmaengine_prep_slave_sg(rspi
->ctlr
->dma_tx
, tx
->sgl
,
570 tx
->nents
, DMA_MEM_TO_DEV
,
571 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
579 desc_tx
->callback
= NULL
;
581 desc_tx
->callback
= rspi_dma_complete
;
582 desc_tx
->callback_param
= rspi
;
584 cookie
= dmaengine_submit(desc_tx
);
585 if (dma_submit_error(cookie
)) {
590 irq_mask
|= SPCR_SPTIE
;
594 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
595 * called. So, this driver disables the IRQ while DMA transfer.
598 disable_irq(other_irq
= rspi
->tx_irq
);
599 if (rx
&& rspi
->rx_irq
!= other_irq
)
600 disable_irq(rspi
->rx_irq
);
602 rspi_enable_irq(rspi
, irq_mask
);
603 rspi
->dma_callbacked
= 0;
607 dma_async_issue_pending(rspi
->ctlr
->dma_rx
);
609 dma_async_issue_pending(rspi
->ctlr
->dma_tx
);
611 ret
= wait_event_interruptible_timeout(rspi
->wait
,
612 rspi
->dma_callbacked
, HZ
);
613 if (ret
> 0 && rspi
->dma_callbacked
) {
616 dmaengine_synchronize(rspi
->ctlr
->dma_tx
);
618 dmaengine_synchronize(rspi
->ctlr
->dma_rx
);
621 dev_err(&rspi
->ctlr
->dev
, "DMA timeout\n");
625 dmaengine_terminate_sync(rspi
->ctlr
->dma_tx
);
627 dmaengine_terminate_sync(rspi
->ctlr
->dma_rx
);
630 rspi_disable_irq(rspi
, irq_mask
);
633 enable_irq(rspi
->tx_irq
);
634 if (rx
&& rspi
->rx_irq
!= other_irq
)
635 enable_irq(rspi
->rx_irq
);
641 dmaengine_terminate_sync(rspi
->ctlr
->dma_rx
);
643 if (ret
== -EAGAIN
) {
644 dev_warn_once(&rspi
->ctlr
->dev
,
645 "DMA not available, falling back to PIO\n");
650 static void rspi_receive_init(const struct rspi_data
*rspi
)
654 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
655 if (spsr
& SPSR_SPRF
)
656 rspi_read_data(rspi
); /* dummy read */
657 if (spsr
& SPSR_OVRF
)
658 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPSR
) & ~SPSR_OVRF
,
662 static void rspi_rz_receive_init(const struct rspi_data
*rspi
)
664 rspi_receive_init(rspi
);
665 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, RSPI_SPBFCR
);
666 rspi_write8(rspi
, 0, RSPI_SPBFCR
);
669 static void qspi_receive_init(const struct rspi_data
*rspi
)
673 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
674 if (spsr
& SPSR_SPRF
)
675 rspi_read_data(rspi
); /* dummy read */
676 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
677 rspi_write8(rspi
, 0, QSPI_SPBFCR
);
680 static bool __rspi_can_dma(const struct rspi_data
*rspi
,
681 const struct spi_transfer
*xfer
)
683 return xfer
->len
> rspi
->ops
->fifo_size
;
686 static bool rspi_can_dma(struct spi_controller
*ctlr
, struct spi_device
*spi
,
687 struct spi_transfer
*xfer
)
689 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
691 return __rspi_can_dma(rspi
, xfer
);
694 static int rspi_dma_check_then_transfer(struct rspi_data
*rspi
,
695 struct spi_transfer
*xfer
)
697 if (!rspi
->ctlr
->can_dma
|| !__rspi_can_dma(rspi
, xfer
))
700 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
701 return rspi_dma_transfer(rspi
, &xfer
->tx_sg
,
702 xfer
->rx_buf
? &xfer
->rx_sg
: NULL
);
705 static int rspi_common_transfer(struct rspi_data
*rspi
,
706 struct spi_transfer
*xfer
)
710 xfer
->effective_speed_hz
= rspi
->speed_hz
;
712 ret
= rspi_dma_check_then_transfer(rspi
, xfer
);
716 ret
= rspi_pio_transfer(rspi
, xfer
->tx_buf
, xfer
->rx_buf
, xfer
->len
);
720 /* Wait for the last transmission */
721 rspi_wait_for_tx_empty(rspi
);
726 static int rspi_transfer_one(struct spi_controller
*ctlr
,
727 struct spi_device
*spi
, struct spi_transfer
*xfer
)
729 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
732 spcr
= rspi_read8(rspi
, RSPI_SPCR
);
734 rspi_receive_init(rspi
);
739 rspi_write8(rspi
, spcr
, RSPI_SPCR
);
741 return rspi_common_transfer(rspi
, xfer
);
744 static int rspi_rz_transfer_one(struct spi_controller
*ctlr
,
745 struct spi_device
*spi
,
746 struct spi_transfer
*xfer
)
748 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
750 rspi_rz_receive_init(rspi
);
752 return rspi_common_transfer(rspi
, xfer
);
755 static int qspi_trigger_transfer_out_in(struct rspi_data
*rspi
, const u8
*tx
,
756 u8
*rx
, unsigned int len
)
762 n
= qspi_set_send_trigger(rspi
, len
);
763 qspi_set_receive_trigger(rspi
, len
);
764 ret
= rspi_wait_for_tx_empty(rspi
);
766 dev_err(&rspi
->ctlr
->dev
, "transmit timeout\n");
769 for (i
= 0; i
< n
; i
++)
770 rspi_write_data(rspi
, *tx
++);
772 ret
= rspi_wait_for_rx_full(rspi
);
774 dev_err(&rspi
->ctlr
->dev
, "receive timeout\n");
777 for (i
= 0; i
< n
; i
++)
778 *rx
++ = rspi_read_data(rspi
);
786 static int qspi_transfer_out_in(struct rspi_data
*rspi
,
787 struct spi_transfer
*xfer
)
791 qspi_receive_init(rspi
);
793 ret
= rspi_dma_check_then_transfer(rspi
, xfer
);
797 return qspi_trigger_transfer_out_in(rspi
, xfer
->tx_buf
,
798 xfer
->rx_buf
, xfer
->len
);
801 static int qspi_transfer_out(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
803 const u8
*tx
= xfer
->tx_buf
;
804 unsigned int n
= xfer
->len
;
808 if (rspi
->ctlr
->can_dma
&& __rspi_can_dma(rspi
, xfer
)) {
809 ret
= rspi_dma_transfer(rspi
, &xfer
->tx_sg
, NULL
);
815 len
= qspi_set_send_trigger(rspi
, n
);
816 ret
= rspi_wait_for_tx_empty(rspi
);
818 dev_err(&rspi
->ctlr
->dev
, "transmit timeout\n");
821 for (i
= 0; i
< len
; i
++)
822 rspi_write_data(rspi
, *tx
++);
827 /* Wait for the last transmission */
828 rspi_wait_for_tx_empty(rspi
);
833 static int qspi_transfer_in(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
835 u8
*rx
= xfer
->rx_buf
;
836 unsigned int n
= xfer
->len
;
840 if (rspi
->ctlr
->can_dma
&& __rspi_can_dma(rspi
, xfer
)) {
841 ret
= rspi_dma_transfer(rspi
, NULL
, &xfer
->rx_sg
);
847 len
= qspi_set_receive_trigger(rspi
, n
);
848 ret
= rspi_wait_for_rx_full(rspi
);
850 dev_err(&rspi
->ctlr
->dev
, "receive timeout\n");
853 for (i
= 0; i
< len
; i
++)
854 *rx
++ = rspi_read_data(rspi
);
862 static int qspi_transfer_one(struct spi_controller
*ctlr
,
863 struct spi_device
*spi
, struct spi_transfer
*xfer
)
865 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
867 xfer
->effective_speed_hz
= rspi
->speed_hz
;
868 if (spi
->mode
& SPI_LOOP
) {
869 return qspi_transfer_out_in(rspi
, xfer
);
870 } else if (xfer
->tx_nbits
> SPI_NBITS_SINGLE
) {
871 /* Quad or Dual SPI Write */
872 return qspi_transfer_out(rspi
, xfer
);
873 } else if (xfer
->rx_nbits
> SPI_NBITS_SINGLE
) {
874 /* Quad or Dual SPI Read */
875 return qspi_transfer_in(rspi
, xfer
);
877 /* Single SPI Transfer */
878 return qspi_transfer_out_in(rspi
, xfer
);
882 static u16
qspi_transfer_mode(const struct spi_transfer
*xfer
)
885 switch (xfer
->tx_nbits
) {
887 return SPCMD_SPIMOD_QUAD
;
889 return SPCMD_SPIMOD_DUAL
;
894 switch (xfer
->rx_nbits
) {
896 return SPCMD_SPIMOD_QUAD
| SPCMD_SPRW
;
898 return SPCMD_SPIMOD_DUAL
| SPCMD_SPRW
;
906 static int qspi_setup_sequencer(struct rspi_data
*rspi
,
907 const struct spi_message
*msg
)
909 const struct spi_transfer
*xfer
;
910 unsigned int i
= 0, len
= 0;
911 u16 current_mode
= 0xffff, mode
;
913 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
914 mode
= qspi_transfer_mode(xfer
);
915 if (mode
== current_mode
) {
920 /* Transfer mode change */
922 /* Set transfer data length of previous transfer */
923 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
926 if (i
>= QSPI_NUM_SPCMD
) {
927 dev_err(&msg
->spi
->dev
,
928 "Too many different transfer modes");
932 /* Program transfer mode for this transfer */
933 rspi_write16(rspi
, rspi
->spcmd
| mode
, RSPI_SPCMD(i
));
939 /* Set final transfer data length and sequence length */
940 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
941 rspi_write8(rspi
, i
- 1, RSPI_SPSCR
);
947 static int rspi_setup(struct spi_device
*spi
)
949 struct rspi_data
*rspi
= spi_controller_get_devdata(spi
->controller
);
952 if (spi_get_csgpiod(spi
, 0))
955 pm_runtime_get_sync(&rspi
->pdev
->dev
);
956 spin_lock_irq(&rspi
->lock
);
958 sslp
= rspi_read8(rspi
, RSPI_SSLP
);
959 if (spi
->mode
& SPI_CS_HIGH
)
960 sslp
|= SSLP_SSLP(spi_get_chipselect(spi
, 0));
962 sslp
&= ~SSLP_SSLP(spi_get_chipselect(spi
, 0));
963 rspi_write8(rspi
, sslp
, RSPI_SSLP
);
965 spin_unlock_irq(&rspi
->lock
);
966 pm_runtime_put(&rspi
->pdev
->dev
);
970 static int rspi_prepare_message(struct spi_controller
*ctlr
,
971 struct spi_message
*msg
)
973 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
974 struct spi_device
*spi
= msg
->spi
;
975 const struct spi_transfer
*xfer
;
979 * As the Bit Rate Register must not be changed while the device is
980 * active, all transfers in a message must use the same bit rate.
981 * In theory, the sequencer could be enabled, and each Command Register
982 * could divide the base bit rate by a different value.
983 * However, most RSPI variants do not have Transfer Data Length
984 * Multiplier Setting Registers, so each sequence step would be limited
985 * to a single word, making this feature unsuitable for large
986 * transfers, which would gain most from it.
988 rspi
->speed_hz
= spi
->max_speed_hz
;
989 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
990 if (xfer
->speed_hz
< rspi
->speed_hz
)
991 rspi
->speed_hz
= xfer
->speed_hz
;
994 rspi
->spcmd
= SPCMD_SSLKP
;
995 if (spi
->mode
& SPI_CPOL
)
996 rspi
->spcmd
|= SPCMD_CPOL
;
997 if (spi
->mode
& SPI_CPHA
)
998 rspi
->spcmd
|= SPCMD_CPHA
;
999 if (spi
->mode
& SPI_LSB_FIRST
)
1000 rspi
->spcmd
|= SPCMD_LSBF
;
1002 /* Configure slave signal to assert */
1003 rspi
->spcmd
|= SPCMD_SSLA(spi_get_csgpiod(spi
, 0) ? rspi
->ctlr
->unused_native_cs
1004 : spi_get_chipselect(spi
, 0));
1006 /* CMOS output mode and MOSI signal from previous transfer */
1008 if (spi
->mode
& SPI_LOOP
)
1009 rspi
->sppcr
|= SPPCR_SPLP
;
1011 rspi
->ops
->set_config_register(rspi
, 8);
1013 if (msg
->spi
->mode
&
1014 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)) {
1015 /* Setup sequencer for messages with multiple transfer modes */
1016 ret
= qspi_setup_sequencer(rspi
, msg
);
1021 /* Enable SPI function in master mode */
1022 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | SPCR_SPE
, RSPI_SPCR
);
1026 static int rspi_unprepare_message(struct spi_controller
*ctlr
,
1027 struct spi_message
*msg
)
1029 struct rspi_data
*rspi
= spi_controller_get_devdata(ctlr
);
1031 /* Disable SPI function */
1032 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~SPCR_SPE
, RSPI_SPCR
);
1034 /* Reset sequencer for Single SPI Transfers */
1035 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
1036 rspi_write8(rspi
, 0, RSPI_SPSCR
);
1040 static irqreturn_t
rspi_irq_mux(int irq
, void *_sr
)
1042 struct rspi_data
*rspi
= _sr
;
1044 irqreturn_t ret
= IRQ_NONE
;
1047 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1048 if (spsr
& SPSR_SPRF
)
1049 disable_irq
|= SPCR_SPRIE
;
1050 if (spsr
& SPSR_SPTEF
)
1051 disable_irq
|= SPCR_SPTIE
;
1055 rspi_disable_irq(rspi
, disable_irq
);
1056 wake_up(&rspi
->wait
);
1062 static irqreturn_t
rspi_irq_rx(int irq
, void *_sr
)
1064 struct rspi_data
*rspi
= _sr
;
1067 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1068 if (spsr
& SPSR_SPRF
) {
1069 rspi_disable_irq(rspi
, SPCR_SPRIE
);
1070 wake_up(&rspi
->wait
);
1077 static irqreturn_t
rspi_irq_tx(int irq
, void *_sr
)
1079 struct rspi_data
*rspi
= _sr
;
1082 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1083 if (spsr
& SPSR_SPTEF
) {
1084 rspi_disable_irq(rspi
, SPCR_SPTIE
);
1085 wake_up(&rspi
->wait
);
1092 static struct dma_chan
*rspi_request_dma_chan(struct device
*dev
,
1093 enum dma_transfer_direction dir
,
1095 dma_addr_t port_addr
)
1097 dma_cap_mask_t mask
;
1098 struct dma_chan
*chan
;
1099 struct dma_slave_config cfg
;
1103 dma_cap_set(DMA_SLAVE
, mask
);
1105 chan
= dma_request_slave_channel_compat(mask
, shdma_chan_filter
,
1106 (void *)(unsigned long)id
, dev
,
1107 dir
== DMA_MEM_TO_DEV
? "tx" : "rx");
1109 dev_warn(dev
, "dma_request_slave_channel_compat failed\n");
1113 memset(&cfg
, 0, sizeof(cfg
));
1114 cfg
.dst_addr
= port_addr
+ RSPI_SPDR
;
1115 cfg
.src_addr
= port_addr
+ RSPI_SPDR
;
1116 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1117 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
1118 cfg
.direction
= dir
;
1120 ret
= dmaengine_slave_config(chan
, &cfg
);
1122 dev_warn(dev
, "dmaengine_slave_config failed %d\n", ret
);
1123 dma_release_channel(chan
);
1130 static int rspi_request_dma(struct device
*dev
, struct spi_controller
*ctlr
,
1131 const struct resource
*res
)
1133 unsigned int dma_tx_id
, dma_rx_id
;
1136 /* In the OF case we will get the slave IDs from the DT */
1140 /* The driver assumes no error. */
1144 ctlr
->dma_tx
= rspi_request_dma_chan(dev
, DMA_MEM_TO_DEV
, dma_tx_id
,
1149 ctlr
->dma_rx
= rspi_request_dma_chan(dev
, DMA_DEV_TO_MEM
, dma_rx_id
,
1151 if (!ctlr
->dma_rx
) {
1152 dma_release_channel(ctlr
->dma_tx
);
1153 ctlr
->dma_tx
= NULL
;
1157 ctlr
->can_dma
= rspi_can_dma
;
1158 dev_info(dev
, "DMA available");
1162 static void rspi_release_dma(struct spi_controller
*ctlr
)
1165 dma_release_channel(ctlr
->dma_tx
);
1167 dma_release_channel(ctlr
->dma_rx
);
1170 static void rspi_remove(struct platform_device
*pdev
)
1172 struct rspi_data
*rspi
= platform_get_drvdata(pdev
);
1174 rspi_release_dma(rspi
->ctlr
);
1175 pm_runtime_disable(&pdev
->dev
);
1178 static const struct spi_ops rspi_ops
= {
1179 .set_config_register
= rspi_set_config_register
,
1180 .transfer_one
= rspi_transfer_one
,
1183 .flags
= SPI_CONTROLLER_MUST_TX
,
1188 static const struct spi_ops rspi_rz_ops __maybe_unused
= {
1189 .set_config_register
= rspi_rz_set_config_register
,
1190 .transfer_one
= rspi_rz_transfer_one
,
1193 .flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
,
1194 .fifo_size
= 8, /* 8 for TX, 32 for RX */
1198 static const struct spi_ops qspi_ops __maybe_unused
= {
1199 .set_config_register
= qspi_set_config_register
,
1200 .transfer_one
= qspi_transfer_one
,
1201 .extra_mode_bits
= SPI_TX_DUAL
| SPI_TX_QUAD
|
1202 SPI_RX_DUAL
| SPI_RX_QUAD
,
1205 .flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
,
1210 static const struct of_device_id rspi_of_match
[] __maybe_unused
= {
1211 /* RSPI on legacy SH */
1212 { .compatible
= "renesas,rspi", .data
= &rspi_ops
},
1213 /* RSPI on RZ/A1H */
1214 { .compatible
= "renesas,rspi-rz", .data
= &rspi_rz_ops
},
1215 /* QSPI on R-Car Gen2 */
1216 { .compatible
= "renesas,qspi", .data
= &qspi_ops
},
1220 MODULE_DEVICE_TABLE(of
, rspi_of_match
);
1223 static void rspi_reset_control_assert(void *data
)
1225 reset_control_assert(data
);
1228 static int rspi_parse_dt(struct device
*dev
, struct spi_controller
*ctlr
)
1230 struct reset_control
*rstc
;
1234 /* Parse DT properties */
1235 error
= of_property_read_u32(dev
->of_node
, "num-cs", &num_cs
);
1237 dev_err(dev
, "of_property_read_u32 num-cs failed %d\n", error
);
1241 ctlr
->num_chipselect
= num_cs
;
1243 rstc
= devm_reset_control_get_optional_exclusive(dev
, NULL
);
1245 return dev_err_probe(dev
, PTR_ERR(rstc
),
1246 "failed to get reset ctrl\n");
1248 error
= reset_control_deassert(rstc
);
1250 dev_err(dev
, "failed to deassert reset %d\n", error
);
1254 error
= devm_add_action_or_reset(dev
, rspi_reset_control_assert
, rstc
);
1256 dev_err(dev
, "failed to register assert devm action, %d\n", error
);
1263 #define rspi_of_match NULL
1264 static inline int rspi_parse_dt(struct device
*dev
, struct spi_controller
*ctlr
)
1268 #endif /* CONFIG_OF */
1270 static int rspi_request_irq(struct device
*dev
, unsigned int irq
,
1271 irq_handler_t handler
, const char *suffix
,
1274 const char *name
= devm_kasprintf(dev
, GFP_KERNEL
, "%s:%s",
1275 dev_name(dev
), suffix
);
1279 return devm_request_irq(dev
, irq
, handler
, 0, name
, dev_id
);
1282 static int rspi_probe(struct platform_device
*pdev
)
1284 struct resource
*res
;
1285 struct spi_controller
*ctlr
;
1286 struct rspi_data
*rspi
;
1288 const struct spi_ops
*ops
;
1289 unsigned long clksrc
;
1291 ctlr
= spi_alloc_host(&pdev
->dev
, sizeof(struct rspi_data
));
1295 ops
= of_device_get_match_data(&pdev
->dev
);
1297 ret
= rspi_parse_dt(&pdev
->dev
, ctlr
);
1301 ops
= (struct spi_ops
*)pdev
->id_entry
->driver_data
;
1302 ctlr
->num_chipselect
= 2; /* default */
1305 rspi
= spi_controller_get_devdata(ctlr
);
1306 platform_set_drvdata(pdev
, rspi
);
1310 rspi
->addr
= devm_platform_get_and_ioremap_resource(pdev
, 0, &res
);
1311 if (IS_ERR(rspi
->addr
)) {
1312 ret
= PTR_ERR(rspi
->addr
);
1316 rspi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1317 if (IS_ERR(rspi
->clk
)) {
1318 dev_err(&pdev
->dev
, "cannot get clock\n");
1319 ret
= PTR_ERR(rspi
->clk
);
1324 pm_runtime_enable(&pdev
->dev
);
1326 init_waitqueue_head(&rspi
->wait
);
1327 spin_lock_init(&rspi
->lock
);
1329 ctlr
->bus_num
= pdev
->id
;
1330 ctlr
->setup
= rspi_setup
;
1331 ctlr
->auto_runtime_pm
= true;
1332 ctlr
->transfer_one
= ops
->transfer_one
;
1333 ctlr
->prepare_message
= rspi_prepare_message
;
1334 ctlr
->unprepare_message
= rspi_unprepare_message
;
1335 ctlr
->mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_CS_HIGH
| SPI_LSB_FIRST
|
1336 SPI_LOOP
| ops
->extra_mode_bits
;
1337 clksrc
= clk_get_rate(rspi
->clk
);
1338 ctlr
->min_speed_hz
= DIV_ROUND_UP(clksrc
, ops
->max_div
);
1339 ctlr
->max_speed_hz
= DIV_ROUND_UP(clksrc
, ops
->min_div
);
1340 ctlr
->flags
= ops
->flags
;
1341 ctlr
->dev
.of_node
= pdev
->dev
.of_node
;
1342 ctlr
->use_gpio_descriptors
= true;
1343 ctlr
->max_native_cs
= rspi
->ops
->num_hw_ss
;
1345 ret
= platform_get_irq_byname_optional(pdev
, "rx");
1347 ret
= platform_get_irq_byname_optional(pdev
, "mux");
1349 ret
= platform_get_irq(pdev
, 0);
1351 rspi
->rx_irq
= rspi
->tx_irq
= ret
;
1354 ret
= platform_get_irq_byname(pdev
, "tx");
1359 if (rspi
->rx_irq
== rspi
->tx_irq
) {
1360 /* Single multiplexed interrupt */
1361 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_mux
,
1364 /* Multi-interrupt mode, only SPRI and SPTI are used */
1365 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_rx
,
1368 ret
= rspi_request_irq(&pdev
->dev
, rspi
->tx_irq
,
1369 rspi_irq_tx
, "tx", rspi
);
1372 dev_err(&pdev
->dev
, "request_irq error\n");
1376 ret
= rspi_request_dma(&pdev
->dev
, ctlr
, res
);
1378 dev_warn(&pdev
->dev
, "DMA not available, using PIO\n");
1380 ret
= devm_spi_register_controller(&pdev
->dev
, ctlr
);
1382 dev_err(&pdev
->dev
, "devm_spi_register_controller error.\n");
1386 dev_info(&pdev
->dev
, "probed\n");
1391 rspi_release_dma(ctlr
);
1393 pm_runtime_disable(&pdev
->dev
);
1395 spi_controller_put(ctlr
);
1400 static const struct platform_device_id spi_driver_ids
[] = {
1401 { "rspi", (kernel_ulong_t
)&rspi_ops
},
1405 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1407 #ifdef CONFIG_PM_SLEEP
1408 static int rspi_suspend(struct device
*dev
)
1410 struct rspi_data
*rspi
= dev_get_drvdata(dev
);
1412 return spi_controller_suspend(rspi
->ctlr
);
1415 static int rspi_resume(struct device
*dev
)
1417 struct rspi_data
*rspi
= dev_get_drvdata(dev
);
1419 return spi_controller_resume(rspi
->ctlr
);
1422 static SIMPLE_DEV_PM_OPS(rspi_pm_ops
, rspi_suspend
, rspi_resume
);
1423 #define DEV_PM_OPS &rspi_pm_ops
1425 #define DEV_PM_OPS NULL
1426 #endif /* CONFIG_PM_SLEEP */
1428 static struct platform_driver rspi_driver
= {
1429 .probe
= rspi_probe
,
1430 .remove
= rspi_remove
,
1431 .id_table
= spi_driver_ids
,
1433 .name
= "renesas_spi",
1435 .of_match_table
= of_match_ptr(rspi_of_match
),
1438 module_platform_driver(rspi_driver
);
1440 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1441 MODULE_LICENSE("GPL v2");
1442 MODULE_AUTHOR("Yoshihiro Shimoda");