Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / kernel / events / core.c
blob065f9188b44a0d8ee66cc76314ae247dbe45cb57
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
59 #include "internal.h"
61 #include <asm/irq_regs.h>
63 typedef int (*remote_function_f)(void *);
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
72 static void remote_function(void *data)
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
92 tfc->ret = tfc->func(tfc->info);
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
117 int ret;
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
125 if (ret != -EAGAIN)
126 break;
128 cond_resched();
131 return ret;
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
140 * Calls the function @func on the remote cpu.
142 * returns: @func return value or -ENXIO when the cpu is offline
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
153 smp_call_function_single(cpu, remote_function, &data, 1);
155 return data.ret;
158 enum event_type_t {
159 EVENT_FLEXIBLE = 0x01,
160 EVENT_PINNED = 0x02,
161 EVENT_TIME = 0x04,
162 EVENT_FROZEN = 0x08,
163 /* see ctx_resched() for details */
164 EVENT_CPU = 0x10,
165 EVENT_CGROUP = 0x20,
167 /* compound helpers */
168 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
169 EVENT_TIME_FROZEN = EVENT_TIME | EVENT_FROZEN,
172 static inline void __perf_ctx_lock(struct perf_event_context *ctx)
174 raw_spin_lock(&ctx->lock);
175 WARN_ON_ONCE(ctx->is_active & EVENT_FROZEN);
178 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
179 struct perf_event_context *ctx)
181 __perf_ctx_lock(&cpuctx->ctx);
182 if (ctx)
183 __perf_ctx_lock(ctx);
186 static inline void __perf_ctx_unlock(struct perf_event_context *ctx)
189 * If ctx_sched_in() didn't again set any ALL flags, clean up
190 * after ctx_sched_out() by clearing is_active.
192 if (ctx->is_active & EVENT_FROZEN) {
193 if (!(ctx->is_active & EVENT_ALL))
194 ctx->is_active = 0;
195 else
196 ctx->is_active &= ~EVENT_FROZEN;
198 raw_spin_unlock(&ctx->lock);
201 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
202 struct perf_event_context *ctx)
204 if (ctx)
205 __perf_ctx_unlock(ctx);
206 __perf_ctx_unlock(&cpuctx->ctx);
209 #define TASK_TOMBSTONE ((void *)-1L)
211 static bool is_kernel_event(struct perf_event *event)
213 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
216 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
218 struct perf_event_context *perf_cpu_task_ctx(void)
220 lockdep_assert_irqs_disabled();
221 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
225 * On task ctx scheduling...
227 * When !ctx->nr_events a task context will not be scheduled. This means
228 * we can disable the scheduler hooks (for performance) without leaving
229 * pending task ctx state.
231 * This however results in two special cases:
233 * - removing the last event from a task ctx; this is relatively straight
234 * forward and is done in __perf_remove_from_context.
236 * - adding the first event to a task ctx; this is tricky because we cannot
237 * rely on ctx->is_active and therefore cannot use event_function_call().
238 * See perf_install_in_context().
240 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
243 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
244 struct perf_event_context *, void *);
246 struct event_function_struct {
247 struct perf_event *event;
248 event_f func;
249 void *data;
252 static int event_function(void *info)
254 struct event_function_struct *efs = info;
255 struct perf_event *event = efs->event;
256 struct perf_event_context *ctx = event->ctx;
257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
258 struct perf_event_context *task_ctx = cpuctx->task_ctx;
259 int ret = 0;
261 lockdep_assert_irqs_disabled();
263 perf_ctx_lock(cpuctx, task_ctx);
265 * Since we do the IPI call without holding ctx->lock things can have
266 * changed, double check we hit the task we set out to hit.
268 if (ctx->task) {
269 if (ctx->task != current) {
270 ret = -ESRCH;
271 goto unlock;
275 * We only use event_function_call() on established contexts,
276 * and event_function() is only ever called when active (or
277 * rather, we'll have bailed in task_function_call() or the
278 * above ctx->task != current test), therefore we must have
279 * ctx->is_active here.
281 WARN_ON_ONCE(!ctx->is_active);
283 * And since we have ctx->is_active, cpuctx->task_ctx must
284 * match.
286 WARN_ON_ONCE(task_ctx != ctx);
287 } else {
288 WARN_ON_ONCE(&cpuctx->ctx != ctx);
291 efs->func(event, cpuctx, ctx, efs->data);
292 unlock:
293 perf_ctx_unlock(cpuctx, task_ctx);
295 return ret;
298 static void event_function_call(struct perf_event *event, event_f func, void *data)
300 struct perf_event_context *ctx = event->ctx;
301 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
302 struct perf_cpu_context *cpuctx;
303 struct event_function_struct efs = {
304 .event = event,
305 .func = func,
306 .data = data,
309 if (!event->parent) {
311 * If this is a !child event, we must hold ctx::mutex to
312 * stabilize the event->ctx relation. See
313 * perf_event_ctx_lock().
315 lockdep_assert_held(&ctx->mutex);
318 if (!task) {
319 cpu_function_call(event->cpu, event_function, &efs);
320 return;
323 if (task == TASK_TOMBSTONE)
324 return;
326 again:
327 if (!task_function_call(task, event_function, &efs))
328 return;
330 local_irq_disable();
331 cpuctx = this_cpu_ptr(&perf_cpu_context);
332 perf_ctx_lock(cpuctx, ctx);
334 * Reload the task pointer, it might have been changed by
335 * a concurrent perf_event_context_sched_out().
337 task = ctx->task;
338 if (task == TASK_TOMBSTONE)
339 goto unlock;
340 if (ctx->is_active) {
341 perf_ctx_unlock(cpuctx, ctx);
342 local_irq_enable();
343 goto again;
345 func(event, NULL, ctx, data);
346 unlock:
347 perf_ctx_unlock(cpuctx, ctx);
348 local_irq_enable();
352 * Similar to event_function_call() + event_function(), but hard assumes IRQs
353 * are already disabled and we're on the right CPU.
355 static void event_function_local(struct perf_event *event, event_f func, void *data)
357 struct perf_event_context *ctx = event->ctx;
358 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
359 struct task_struct *task = READ_ONCE(ctx->task);
360 struct perf_event_context *task_ctx = NULL;
362 lockdep_assert_irqs_disabled();
364 if (task) {
365 if (task == TASK_TOMBSTONE)
366 return;
368 task_ctx = ctx;
371 perf_ctx_lock(cpuctx, task_ctx);
373 task = ctx->task;
374 if (task == TASK_TOMBSTONE)
375 goto unlock;
377 if (task) {
379 * We must be either inactive or active and the right task,
380 * otherwise we're screwed, since we cannot IPI to somewhere
381 * else.
383 if (ctx->is_active) {
384 if (WARN_ON_ONCE(task != current))
385 goto unlock;
387 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
388 goto unlock;
390 } else {
391 WARN_ON_ONCE(&cpuctx->ctx != ctx);
394 func(event, cpuctx, ctx, data);
395 unlock:
396 perf_ctx_unlock(cpuctx, task_ctx);
399 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
400 PERF_FLAG_FD_OUTPUT |\
401 PERF_FLAG_PID_CGROUP |\
402 PERF_FLAG_FD_CLOEXEC)
405 * branch priv levels that need permission checks
407 #define PERF_SAMPLE_BRANCH_PERM_PLM \
408 (PERF_SAMPLE_BRANCH_KERNEL |\
409 PERF_SAMPLE_BRANCH_HV)
412 * perf_sched_events : >0 events exist
415 static void perf_sched_delayed(struct work_struct *work);
416 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
417 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
418 static DEFINE_MUTEX(perf_sched_mutex);
419 static atomic_t perf_sched_count;
421 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
423 static atomic_t nr_mmap_events __read_mostly;
424 static atomic_t nr_comm_events __read_mostly;
425 static atomic_t nr_namespaces_events __read_mostly;
426 static atomic_t nr_task_events __read_mostly;
427 static atomic_t nr_freq_events __read_mostly;
428 static atomic_t nr_switch_events __read_mostly;
429 static atomic_t nr_ksymbol_events __read_mostly;
430 static atomic_t nr_bpf_events __read_mostly;
431 static atomic_t nr_cgroup_events __read_mostly;
432 static atomic_t nr_text_poke_events __read_mostly;
433 static atomic_t nr_build_id_events __read_mostly;
435 static LIST_HEAD(pmus);
436 static DEFINE_MUTEX(pmus_lock);
437 static struct srcu_struct pmus_srcu;
438 static cpumask_var_t perf_online_mask;
439 static cpumask_var_t perf_online_core_mask;
440 static cpumask_var_t perf_online_die_mask;
441 static cpumask_var_t perf_online_cluster_mask;
442 static cpumask_var_t perf_online_pkg_mask;
443 static cpumask_var_t perf_online_sys_mask;
444 static struct kmem_cache *perf_event_cache;
447 * perf event paranoia level:
448 * -1 - not paranoid at all
449 * 0 - disallow raw tracepoint access for unpriv
450 * 1 - disallow cpu events for unpriv
451 * 2 - disallow kernel profiling for unpriv
453 int sysctl_perf_event_paranoid __read_mostly = 2;
455 /* Minimum for 512 kiB + 1 user control page */
456 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
459 * max perf event sample rate
461 #define DEFAULT_MAX_SAMPLE_RATE 100000
462 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
463 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
465 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
467 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
468 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
470 static int perf_sample_allowed_ns __read_mostly =
471 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
473 static void update_perf_cpu_limits(void)
475 u64 tmp = perf_sample_period_ns;
477 tmp *= sysctl_perf_cpu_time_max_percent;
478 tmp = div_u64(tmp, 100);
479 if (!tmp)
480 tmp = 1;
482 WRITE_ONCE(perf_sample_allowed_ns, tmp);
485 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
487 int perf_event_max_sample_rate_handler(const struct ctl_table *table, int write,
488 void *buffer, size_t *lenp, loff_t *ppos)
490 int ret;
491 int perf_cpu = sysctl_perf_cpu_time_max_percent;
493 * If throttling is disabled don't allow the write:
495 if (write && (perf_cpu == 100 || perf_cpu == 0))
496 return -EINVAL;
498 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
499 if (ret || !write)
500 return ret;
502 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
503 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
504 update_perf_cpu_limits();
506 return 0;
509 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
511 int perf_cpu_time_max_percent_handler(const struct ctl_table *table, int write,
512 void *buffer, size_t *lenp, loff_t *ppos)
514 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
516 if (ret || !write)
517 return ret;
519 if (sysctl_perf_cpu_time_max_percent == 100 ||
520 sysctl_perf_cpu_time_max_percent == 0) {
521 printk(KERN_WARNING
522 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
523 WRITE_ONCE(perf_sample_allowed_ns, 0);
524 } else {
525 update_perf_cpu_limits();
528 return 0;
532 * perf samples are done in some very critical code paths (NMIs).
533 * If they take too much CPU time, the system can lock up and not
534 * get any real work done. This will drop the sample rate when
535 * we detect that events are taking too long.
537 #define NR_ACCUMULATED_SAMPLES 128
538 static DEFINE_PER_CPU(u64, running_sample_length);
540 static u64 __report_avg;
541 static u64 __report_allowed;
543 static void perf_duration_warn(struct irq_work *w)
545 printk_ratelimited(KERN_INFO
546 "perf: interrupt took too long (%lld > %lld), lowering "
547 "kernel.perf_event_max_sample_rate to %d\n",
548 __report_avg, __report_allowed,
549 sysctl_perf_event_sample_rate);
552 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
554 void perf_sample_event_took(u64 sample_len_ns)
556 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
557 u64 running_len;
558 u64 avg_len;
559 u32 max;
561 if (max_len == 0)
562 return;
564 /* Decay the counter by 1 average sample. */
565 running_len = __this_cpu_read(running_sample_length);
566 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
567 running_len += sample_len_ns;
568 __this_cpu_write(running_sample_length, running_len);
571 * Note: this will be biased artificially low until we have
572 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
573 * from having to maintain a count.
575 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
576 if (avg_len <= max_len)
577 return;
579 __report_avg = avg_len;
580 __report_allowed = max_len;
583 * Compute a throttle threshold 25% below the current duration.
585 avg_len += avg_len / 4;
586 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
587 if (avg_len < max)
588 max /= (u32)avg_len;
589 else
590 max = 1;
592 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
593 WRITE_ONCE(max_samples_per_tick, max);
595 sysctl_perf_event_sample_rate = max * HZ;
596 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
598 if (!irq_work_queue(&perf_duration_work)) {
599 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
600 "kernel.perf_event_max_sample_rate to %d\n",
601 __report_avg, __report_allowed,
602 sysctl_perf_event_sample_rate);
606 static atomic64_t perf_event_id;
608 static void update_context_time(struct perf_event_context *ctx);
609 static u64 perf_event_time(struct perf_event *event);
611 void __weak perf_event_print_debug(void) { }
613 static inline u64 perf_clock(void)
615 return local_clock();
618 static inline u64 perf_event_clock(struct perf_event *event)
620 return event->clock();
624 * State based event timekeeping...
626 * The basic idea is to use event->state to determine which (if any) time
627 * fields to increment with the current delta. This means we only need to
628 * update timestamps when we change state or when they are explicitly requested
629 * (read).
631 * Event groups make things a little more complicated, but not terribly so. The
632 * rules for a group are that if the group leader is OFF the entire group is
633 * OFF, irrespective of what the group member states are. This results in
634 * __perf_effective_state().
636 * A further ramification is that when a group leader flips between OFF and
637 * !OFF, we need to update all group member times.
640 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
641 * need to make sure the relevant context time is updated before we try and
642 * update our timestamps.
645 static __always_inline enum perf_event_state
646 __perf_effective_state(struct perf_event *event)
648 struct perf_event *leader = event->group_leader;
650 if (leader->state <= PERF_EVENT_STATE_OFF)
651 return leader->state;
653 return event->state;
656 static __always_inline void
657 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
659 enum perf_event_state state = __perf_effective_state(event);
660 u64 delta = now - event->tstamp;
662 *enabled = event->total_time_enabled;
663 if (state >= PERF_EVENT_STATE_INACTIVE)
664 *enabled += delta;
666 *running = event->total_time_running;
667 if (state >= PERF_EVENT_STATE_ACTIVE)
668 *running += delta;
671 static void perf_event_update_time(struct perf_event *event)
673 u64 now = perf_event_time(event);
675 __perf_update_times(event, now, &event->total_time_enabled,
676 &event->total_time_running);
677 event->tstamp = now;
680 static void perf_event_update_sibling_time(struct perf_event *leader)
682 struct perf_event *sibling;
684 for_each_sibling_event(sibling, leader)
685 perf_event_update_time(sibling);
688 static void
689 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
691 if (event->state == state)
692 return;
694 perf_event_update_time(event);
696 * If a group leader gets enabled/disabled all its siblings
697 * are affected too.
699 if ((event->state < 0) ^ (state < 0))
700 perf_event_update_sibling_time(event);
702 WRITE_ONCE(event->state, state);
706 * UP store-release, load-acquire
709 #define __store_release(ptr, val) \
710 do { \
711 barrier(); \
712 WRITE_ONCE(*(ptr), (val)); \
713 } while (0)
715 #define __load_acquire(ptr) \
716 ({ \
717 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
718 barrier(); \
719 ___p; \
722 #define for_each_epc(_epc, _ctx, _pmu, _cgroup) \
723 list_for_each_entry(_epc, &((_ctx)->pmu_ctx_list), pmu_ctx_entry) \
724 if (_cgroup && !_epc->nr_cgroups) \
725 continue; \
726 else if (_pmu && _epc->pmu != _pmu) \
727 continue; \
728 else
730 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
732 struct perf_event_pmu_context *pmu_ctx;
734 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
735 perf_pmu_disable(pmu_ctx->pmu);
738 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
740 struct perf_event_pmu_context *pmu_ctx;
742 for_each_epc(pmu_ctx, ctx, NULL, cgroup)
743 perf_pmu_enable(pmu_ctx->pmu);
746 static void ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
747 static void ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type);
749 #ifdef CONFIG_CGROUP_PERF
751 static inline bool
752 perf_cgroup_match(struct perf_event *event)
754 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
756 /* @event doesn't care about cgroup */
757 if (!event->cgrp)
758 return true;
760 /* wants specific cgroup scope but @cpuctx isn't associated with any */
761 if (!cpuctx->cgrp)
762 return false;
765 * Cgroup scoping is recursive. An event enabled for a cgroup is
766 * also enabled for all its descendant cgroups. If @cpuctx's
767 * cgroup is a descendant of @event's (the test covers identity
768 * case), it's a match.
770 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
771 event->cgrp->css.cgroup);
774 static inline void perf_detach_cgroup(struct perf_event *event)
776 css_put(&event->cgrp->css);
777 event->cgrp = NULL;
780 static inline int is_cgroup_event(struct perf_event *event)
782 return event->cgrp != NULL;
785 static inline u64 perf_cgroup_event_time(struct perf_event *event)
787 struct perf_cgroup_info *t;
789 t = per_cpu_ptr(event->cgrp->info, event->cpu);
790 return t->time;
793 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
795 struct perf_cgroup_info *t;
797 t = per_cpu_ptr(event->cgrp->info, event->cpu);
798 if (!__load_acquire(&t->active))
799 return t->time;
800 now += READ_ONCE(t->timeoffset);
801 return now;
804 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
806 if (adv)
807 info->time += now - info->timestamp;
808 info->timestamp = now;
810 * see update_context_time()
812 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
815 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
817 struct perf_cgroup *cgrp = cpuctx->cgrp;
818 struct cgroup_subsys_state *css;
819 struct perf_cgroup_info *info;
821 if (cgrp) {
822 u64 now = perf_clock();
824 for (css = &cgrp->css; css; css = css->parent) {
825 cgrp = container_of(css, struct perf_cgroup, css);
826 info = this_cpu_ptr(cgrp->info);
828 __update_cgrp_time(info, now, true);
829 if (final)
830 __store_release(&info->active, 0);
835 static inline void update_cgrp_time_from_event(struct perf_event *event)
837 struct perf_cgroup_info *info;
840 * ensure we access cgroup data only when needed and
841 * when we know the cgroup is pinned (css_get)
843 if (!is_cgroup_event(event))
844 return;
846 info = this_cpu_ptr(event->cgrp->info);
848 * Do not update time when cgroup is not active
850 if (info->active)
851 __update_cgrp_time(info, perf_clock(), true);
854 static inline void
855 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
857 struct perf_event_context *ctx = &cpuctx->ctx;
858 struct perf_cgroup *cgrp = cpuctx->cgrp;
859 struct perf_cgroup_info *info;
860 struct cgroup_subsys_state *css;
863 * ctx->lock held by caller
864 * ensure we do not access cgroup data
865 * unless we have the cgroup pinned (css_get)
867 if (!cgrp)
868 return;
870 WARN_ON_ONCE(!ctx->nr_cgroups);
872 for (css = &cgrp->css; css; css = css->parent) {
873 cgrp = container_of(css, struct perf_cgroup, css);
874 info = this_cpu_ptr(cgrp->info);
875 __update_cgrp_time(info, ctx->timestamp, false);
876 __store_release(&info->active, 1);
881 * reschedule events based on the cgroup constraint of task.
883 static void perf_cgroup_switch(struct task_struct *task)
885 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
886 struct perf_cgroup *cgrp;
889 * cpuctx->cgrp is set when the first cgroup event enabled,
890 * and is cleared when the last cgroup event disabled.
892 if (READ_ONCE(cpuctx->cgrp) == NULL)
893 return;
895 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
897 cgrp = perf_cgroup_from_task(task, NULL);
898 if (READ_ONCE(cpuctx->cgrp) == cgrp)
899 return;
901 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
902 perf_ctx_disable(&cpuctx->ctx, true);
904 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
906 * must not be done before ctxswout due
907 * to update_cgrp_time_from_cpuctx() in
908 * ctx_sched_out()
910 cpuctx->cgrp = cgrp;
912 * set cgrp before ctxsw in to allow
913 * perf_cgroup_set_timestamp() in ctx_sched_in()
914 * to not have to pass task around
916 ctx_sched_in(&cpuctx->ctx, NULL, EVENT_ALL|EVENT_CGROUP);
918 perf_ctx_enable(&cpuctx->ctx, true);
919 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
922 static int perf_cgroup_ensure_storage(struct perf_event *event,
923 struct cgroup_subsys_state *css)
925 struct perf_cpu_context *cpuctx;
926 struct perf_event **storage;
927 int cpu, heap_size, ret = 0;
930 * Allow storage to have sufficient space for an iterator for each
931 * possibly nested cgroup plus an iterator for events with no cgroup.
933 for (heap_size = 1; css; css = css->parent)
934 heap_size++;
936 for_each_possible_cpu(cpu) {
937 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
938 if (heap_size <= cpuctx->heap_size)
939 continue;
941 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
942 GFP_KERNEL, cpu_to_node(cpu));
943 if (!storage) {
944 ret = -ENOMEM;
945 break;
948 raw_spin_lock_irq(&cpuctx->ctx.lock);
949 if (cpuctx->heap_size < heap_size) {
950 swap(cpuctx->heap, storage);
951 if (storage == cpuctx->heap_default)
952 storage = NULL;
953 cpuctx->heap_size = heap_size;
955 raw_spin_unlock_irq(&cpuctx->ctx.lock);
957 kfree(storage);
960 return ret;
963 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
964 struct perf_event_attr *attr,
965 struct perf_event *group_leader)
967 struct perf_cgroup *cgrp;
968 struct cgroup_subsys_state *css;
969 CLASS(fd, f)(fd);
970 int ret = 0;
972 if (fd_empty(f))
973 return -EBADF;
975 css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
976 &perf_event_cgrp_subsys);
977 if (IS_ERR(css))
978 return PTR_ERR(css);
980 ret = perf_cgroup_ensure_storage(event, css);
981 if (ret)
982 return ret;
984 cgrp = container_of(css, struct perf_cgroup, css);
985 event->cgrp = cgrp;
988 * all events in a group must monitor
989 * the same cgroup because a task belongs
990 * to only one perf cgroup at a time
992 if (group_leader && group_leader->cgrp != cgrp) {
993 perf_detach_cgroup(event);
994 ret = -EINVAL;
996 return ret;
999 static inline void
1000 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1002 struct perf_cpu_context *cpuctx;
1004 if (!is_cgroup_event(event))
1005 return;
1007 event->pmu_ctx->nr_cgroups++;
1010 * Because cgroup events are always per-cpu events,
1011 * @ctx == &cpuctx->ctx.
1013 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1015 if (ctx->nr_cgroups++)
1016 return;
1018 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
1021 static inline void
1022 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1024 struct perf_cpu_context *cpuctx;
1026 if (!is_cgroup_event(event))
1027 return;
1029 event->pmu_ctx->nr_cgroups--;
1032 * Because cgroup events are always per-cpu events,
1033 * @ctx == &cpuctx->ctx.
1035 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037 if (--ctx->nr_cgroups)
1038 return;
1040 cpuctx->cgrp = NULL;
1043 #else /* !CONFIG_CGROUP_PERF */
1045 static inline bool
1046 perf_cgroup_match(struct perf_event *event)
1048 return true;
1051 static inline void perf_detach_cgroup(struct perf_event *event)
1054 static inline int is_cgroup_event(struct perf_event *event)
1056 return 0;
1059 static inline void update_cgrp_time_from_event(struct perf_event *event)
1063 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1064 bool final)
1068 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1069 struct perf_event_attr *attr,
1070 struct perf_event *group_leader)
1072 return -EINVAL;
1075 static inline void
1076 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1080 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1082 return 0;
1085 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1087 return 0;
1090 static inline void
1091 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1095 static inline void
1096 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1100 static void perf_cgroup_switch(struct task_struct *task)
1103 #endif
1106 * set default to be dependent on timer tick just
1107 * like original code
1109 #define PERF_CPU_HRTIMER (1000 / HZ)
1111 * function must be called with interrupts disabled
1113 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1115 struct perf_cpu_pmu_context *cpc;
1116 bool rotations;
1118 lockdep_assert_irqs_disabled();
1120 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1121 rotations = perf_rotate_context(cpc);
1123 raw_spin_lock(&cpc->hrtimer_lock);
1124 if (rotations)
1125 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1126 else
1127 cpc->hrtimer_active = 0;
1128 raw_spin_unlock(&cpc->hrtimer_lock);
1130 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1133 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1135 struct hrtimer *timer = &cpc->hrtimer;
1136 struct pmu *pmu = cpc->epc.pmu;
1137 u64 interval;
1140 * check default is sane, if not set then force to
1141 * default interval (1/tick)
1143 interval = pmu->hrtimer_interval_ms;
1144 if (interval < 1)
1145 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1147 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1149 raw_spin_lock_init(&cpc->hrtimer_lock);
1150 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1151 timer->function = perf_mux_hrtimer_handler;
1154 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1156 struct hrtimer *timer = &cpc->hrtimer;
1157 unsigned long flags;
1159 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1160 if (!cpc->hrtimer_active) {
1161 cpc->hrtimer_active = 1;
1162 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1163 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1165 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1167 return 0;
1170 static int perf_mux_hrtimer_restart_ipi(void *arg)
1172 return perf_mux_hrtimer_restart(arg);
1175 void perf_pmu_disable(struct pmu *pmu)
1177 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1178 if (!(*count)++)
1179 pmu->pmu_disable(pmu);
1182 void perf_pmu_enable(struct pmu *pmu)
1184 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1185 if (!--(*count))
1186 pmu->pmu_enable(pmu);
1189 static void perf_assert_pmu_disabled(struct pmu *pmu)
1191 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1194 static void get_ctx(struct perf_event_context *ctx)
1196 refcount_inc(&ctx->refcount);
1199 static void *alloc_task_ctx_data(struct pmu *pmu)
1201 if (pmu->task_ctx_cache)
1202 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1204 return NULL;
1207 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1209 if (pmu->task_ctx_cache && task_ctx_data)
1210 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1213 static void free_ctx(struct rcu_head *head)
1215 struct perf_event_context *ctx;
1217 ctx = container_of(head, struct perf_event_context, rcu_head);
1218 kfree(ctx);
1221 static void put_ctx(struct perf_event_context *ctx)
1223 if (refcount_dec_and_test(&ctx->refcount)) {
1224 if (ctx->parent_ctx)
1225 put_ctx(ctx->parent_ctx);
1226 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1227 put_task_struct(ctx->task);
1228 call_rcu(&ctx->rcu_head, free_ctx);
1233 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1234 * perf_pmu_migrate_context() we need some magic.
1236 * Those places that change perf_event::ctx will hold both
1237 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1239 * Lock ordering is by mutex address. There are two other sites where
1240 * perf_event_context::mutex nests and those are:
1242 * - perf_event_exit_task_context() [ child , 0 ]
1243 * perf_event_exit_event()
1244 * put_event() [ parent, 1 ]
1246 * - perf_event_init_context() [ parent, 0 ]
1247 * inherit_task_group()
1248 * inherit_group()
1249 * inherit_event()
1250 * perf_event_alloc()
1251 * perf_init_event()
1252 * perf_try_init_event() [ child , 1 ]
1254 * While it appears there is an obvious deadlock here -- the parent and child
1255 * nesting levels are inverted between the two. This is in fact safe because
1256 * life-time rules separate them. That is an exiting task cannot fork, and a
1257 * spawning task cannot (yet) exit.
1259 * But remember that these are parent<->child context relations, and
1260 * migration does not affect children, therefore these two orderings should not
1261 * interact.
1263 * The change in perf_event::ctx does not affect children (as claimed above)
1264 * because the sys_perf_event_open() case will install a new event and break
1265 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1266 * concerned with cpuctx and that doesn't have children.
1268 * The places that change perf_event::ctx will issue:
1270 * perf_remove_from_context();
1271 * synchronize_rcu();
1272 * perf_install_in_context();
1274 * to affect the change. The remove_from_context() + synchronize_rcu() should
1275 * quiesce the event, after which we can install it in the new location. This
1276 * means that only external vectors (perf_fops, prctl) can perturb the event
1277 * while in transit. Therefore all such accessors should also acquire
1278 * perf_event_context::mutex to serialize against this.
1280 * However; because event->ctx can change while we're waiting to acquire
1281 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1282 * function.
1284 * Lock order:
1285 * exec_update_lock
1286 * task_struct::perf_event_mutex
1287 * perf_event_context::mutex
1288 * perf_event::child_mutex;
1289 * perf_event_context::lock
1290 * mmap_lock
1291 * perf_event::mmap_mutex
1292 * perf_buffer::aux_mutex
1293 * perf_addr_filters_head::lock
1295 * cpu_hotplug_lock
1296 * pmus_lock
1297 * cpuctx->mutex / perf_event_context::mutex
1299 static struct perf_event_context *
1300 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1302 struct perf_event_context *ctx;
1304 again:
1305 rcu_read_lock();
1306 ctx = READ_ONCE(event->ctx);
1307 if (!refcount_inc_not_zero(&ctx->refcount)) {
1308 rcu_read_unlock();
1309 goto again;
1311 rcu_read_unlock();
1313 mutex_lock_nested(&ctx->mutex, nesting);
1314 if (event->ctx != ctx) {
1315 mutex_unlock(&ctx->mutex);
1316 put_ctx(ctx);
1317 goto again;
1320 return ctx;
1323 static inline struct perf_event_context *
1324 perf_event_ctx_lock(struct perf_event *event)
1326 return perf_event_ctx_lock_nested(event, 0);
1329 static void perf_event_ctx_unlock(struct perf_event *event,
1330 struct perf_event_context *ctx)
1332 mutex_unlock(&ctx->mutex);
1333 put_ctx(ctx);
1337 * This must be done under the ctx->lock, such as to serialize against
1338 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1339 * calling scheduler related locks and ctx->lock nests inside those.
1341 static __must_check struct perf_event_context *
1342 unclone_ctx(struct perf_event_context *ctx)
1344 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1346 lockdep_assert_held(&ctx->lock);
1348 if (parent_ctx)
1349 ctx->parent_ctx = NULL;
1350 ctx->generation++;
1352 return parent_ctx;
1355 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1356 enum pid_type type)
1358 u32 nr;
1360 * only top level events have the pid namespace they were created in
1362 if (event->parent)
1363 event = event->parent;
1365 nr = __task_pid_nr_ns(p, type, event->ns);
1366 /* avoid -1 if it is idle thread or runs in another ns */
1367 if (!nr && !pid_alive(p))
1368 nr = -1;
1369 return nr;
1372 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1374 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1377 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1379 return perf_event_pid_type(event, p, PIDTYPE_PID);
1383 * If we inherit events we want to return the parent event id
1384 * to userspace.
1386 static u64 primary_event_id(struct perf_event *event)
1388 u64 id = event->id;
1390 if (event->parent)
1391 id = event->parent->id;
1393 return id;
1397 * Get the perf_event_context for a task and lock it.
1399 * This has to cope with the fact that until it is locked,
1400 * the context could get moved to another task.
1402 static struct perf_event_context *
1403 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1405 struct perf_event_context *ctx;
1407 retry:
1409 * One of the few rules of preemptible RCU is that one cannot do
1410 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1411 * part of the read side critical section was irqs-enabled -- see
1412 * rcu_read_unlock_special().
1414 * Since ctx->lock nests under rq->lock we must ensure the entire read
1415 * side critical section has interrupts disabled.
1417 local_irq_save(*flags);
1418 rcu_read_lock();
1419 ctx = rcu_dereference(task->perf_event_ctxp);
1420 if (ctx) {
1422 * If this context is a clone of another, it might
1423 * get swapped for another underneath us by
1424 * perf_event_task_sched_out, though the
1425 * rcu_read_lock() protects us from any context
1426 * getting freed. Lock the context and check if it
1427 * got swapped before we could get the lock, and retry
1428 * if so. If we locked the right context, then it
1429 * can't get swapped on us any more.
1431 raw_spin_lock(&ctx->lock);
1432 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1433 raw_spin_unlock(&ctx->lock);
1434 rcu_read_unlock();
1435 local_irq_restore(*flags);
1436 goto retry;
1439 if (ctx->task == TASK_TOMBSTONE ||
1440 !refcount_inc_not_zero(&ctx->refcount)) {
1441 raw_spin_unlock(&ctx->lock);
1442 ctx = NULL;
1443 } else {
1444 WARN_ON_ONCE(ctx->task != task);
1447 rcu_read_unlock();
1448 if (!ctx)
1449 local_irq_restore(*flags);
1450 return ctx;
1454 * Get the context for a task and increment its pin_count so it
1455 * can't get swapped to another task. This also increments its
1456 * reference count so that the context can't get freed.
1458 static struct perf_event_context *
1459 perf_pin_task_context(struct task_struct *task)
1461 struct perf_event_context *ctx;
1462 unsigned long flags;
1464 ctx = perf_lock_task_context(task, &flags);
1465 if (ctx) {
1466 ++ctx->pin_count;
1467 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1469 return ctx;
1472 static void perf_unpin_context(struct perf_event_context *ctx)
1474 unsigned long flags;
1476 raw_spin_lock_irqsave(&ctx->lock, flags);
1477 --ctx->pin_count;
1478 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1482 * Update the record of the current time in a context.
1484 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1486 u64 now = perf_clock();
1488 lockdep_assert_held(&ctx->lock);
1490 if (adv)
1491 ctx->time += now - ctx->timestamp;
1492 ctx->timestamp = now;
1495 * The above: time' = time + (now - timestamp), can be re-arranged
1496 * into: time` = now + (time - timestamp), which gives a single value
1497 * offset to compute future time without locks on.
1499 * See perf_event_time_now(), which can be used from NMI context where
1500 * it's (obviously) not possible to acquire ctx->lock in order to read
1501 * both the above values in a consistent manner.
1503 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1506 static void update_context_time(struct perf_event_context *ctx)
1508 __update_context_time(ctx, true);
1511 static u64 perf_event_time(struct perf_event *event)
1513 struct perf_event_context *ctx = event->ctx;
1515 if (unlikely(!ctx))
1516 return 0;
1518 if (is_cgroup_event(event))
1519 return perf_cgroup_event_time(event);
1521 return ctx->time;
1524 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1526 struct perf_event_context *ctx = event->ctx;
1528 if (unlikely(!ctx))
1529 return 0;
1531 if (is_cgroup_event(event))
1532 return perf_cgroup_event_time_now(event, now);
1534 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1535 return ctx->time;
1537 now += READ_ONCE(ctx->timeoffset);
1538 return now;
1541 static enum event_type_t get_event_type(struct perf_event *event)
1543 struct perf_event_context *ctx = event->ctx;
1544 enum event_type_t event_type;
1546 lockdep_assert_held(&ctx->lock);
1549 * It's 'group type', really, because if our group leader is
1550 * pinned, so are we.
1552 if (event->group_leader != event)
1553 event = event->group_leader;
1555 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1556 if (!ctx->task)
1557 event_type |= EVENT_CPU;
1559 return event_type;
1563 * Helper function to initialize event group nodes.
1565 static void init_event_group(struct perf_event *event)
1567 RB_CLEAR_NODE(&event->group_node);
1568 event->group_index = 0;
1572 * Extract pinned or flexible groups from the context
1573 * based on event attrs bits.
1575 static struct perf_event_groups *
1576 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 if (event->attr.pinned)
1579 return &ctx->pinned_groups;
1580 else
1581 return &ctx->flexible_groups;
1585 * Helper function to initializes perf_event_group trees.
1587 static void perf_event_groups_init(struct perf_event_groups *groups)
1589 groups->tree = RB_ROOT;
1590 groups->index = 0;
1593 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1595 struct cgroup *cgroup = NULL;
1597 #ifdef CONFIG_CGROUP_PERF
1598 if (event->cgrp)
1599 cgroup = event->cgrp->css.cgroup;
1600 #endif
1602 return cgroup;
1606 * Compare function for event groups;
1608 * Implements complex key that first sorts by CPU and then by virtual index
1609 * which provides ordering when rotating groups for the same CPU.
1611 static __always_inline int
1612 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1613 const struct cgroup *left_cgroup, const u64 left_group_index,
1614 const struct perf_event *right)
1616 if (left_cpu < right->cpu)
1617 return -1;
1618 if (left_cpu > right->cpu)
1619 return 1;
1621 if (left_pmu) {
1622 if (left_pmu < right->pmu_ctx->pmu)
1623 return -1;
1624 if (left_pmu > right->pmu_ctx->pmu)
1625 return 1;
1628 #ifdef CONFIG_CGROUP_PERF
1630 const struct cgroup *right_cgroup = event_cgroup(right);
1632 if (left_cgroup != right_cgroup) {
1633 if (!left_cgroup) {
1635 * Left has no cgroup but right does, no
1636 * cgroups come first.
1638 return -1;
1640 if (!right_cgroup) {
1642 * Right has no cgroup but left does, no
1643 * cgroups come first.
1645 return 1;
1647 /* Two dissimilar cgroups, order by id. */
1648 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649 return -1;
1651 return 1;
1654 #endif
1656 if (left_group_index < right->group_index)
1657 return -1;
1658 if (left_group_index > right->group_index)
1659 return 1;
1661 return 0;
1664 #define __node_2_pe(node) \
1665 rb_entry((node), struct perf_event, group_node)
1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1669 struct perf_event *e = __node_2_pe(a);
1670 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1671 e->group_index, __node_2_pe(b)) < 0;
1674 struct __group_key {
1675 int cpu;
1676 struct pmu *pmu;
1677 struct cgroup *cgroup;
1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1682 const struct __group_key *a = key;
1683 const struct perf_event *b = __node_2_pe(node);
1685 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1686 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1689 static inline int
1690 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1692 const struct __group_key *a = key;
1693 const struct perf_event *b = __node_2_pe(node);
1695 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1696 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1697 b->group_index, b);
1701 * Insert @event into @groups' tree; using
1702 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1703 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1705 static void
1706 perf_event_groups_insert(struct perf_event_groups *groups,
1707 struct perf_event *event)
1709 event->group_index = ++groups->index;
1711 rb_add(&event->group_node, &groups->tree, __group_less);
1715 * Helper function to insert event into the pinned or flexible groups.
1717 static void
1718 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1720 struct perf_event_groups *groups;
1722 groups = get_event_groups(event, ctx);
1723 perf_event_groups_insert(groups, event);
1727 * Delete a group from a tree.
1729 static void
1730 perf_event_groups_delete(struct perf_event_groups *groups,
1731 struct perf_event *event)
1733 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1734 RB_EMPTY_ROOT(&groups->tree));
1736 rb_erase(&event->group_node, &groups->tree);
1737 init_event_group(event);
1741 * Helper function to delete event from its groups.
1743 static void
1744 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1746 struct perf_event_groups *groups;
1748 groups = get_event_groups(event, ctx);
1749 perf_event_groups_delete(groups, event);
1753 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1755 static struct perf_event *
1756 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1757 struct pmu *pmu, struct cgroup *cgrp)
1759 struct __group_key key = {
1760 .cpu = cpu,
1761 .pmu = pmu,
1762 .cgroup = cgrp,
1764 struct rb_node *node;
1766 node = rb_find_first(&key, &groups->tree, __group_cmp);
1767 if (node)
1768 return __node_2_pe(node);
1770 return NULL;
1773 static struct perf_event *
1774 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1776 struct __group_key key = {
1777 .cpu = event->cpu,
1778 .pmu = pmu,
1779 .cgroup = event_cgroup(event),
1781 struct rb_node *next;
1783 next = rb_next_match(&key, &event->group_node, __group_cmp);
1784 if (next)
1785 return __node_2_pe(next);
1787 return NULL;
1790 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1791 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1792 event; event = perf_event_groups_next(event, pmu))
1795 * Iterate through the whole groups tree.
1797 #define perf_event_groups_for_each(event, groups) \
1798 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1799 typeof(*event), group_node); event; \
1800 event = rb_entry_safe(rb_next(&event->group_node), \
1801 typeof(*event), group_node))
1804 * Does the event attribute request inherit with PERF_SAMPLE_READ
1806 static inline bool has_inherit_and_sample_read(struct perf_event_attr *attr)
1808 return attr->inherit && (attr->sample_type & PERF_SAMPLE_READ);
1812 * Add an event from the lists for its context.
1813 * Must be called with ctx->mutex and ctx->lock held.
1815 static void
1816 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1818 lockdep_assert_held(&ctx->lock);
1820 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1821 event->attach_state |= PERF_ATTACH_CONTEXT;
1823 event->tstamp = perf_event_time(event);
1826 * If we're a stand alone event or group leader, we go to the context
1827 * list, group events are kept attached to the group so that
1828 * perf_group_detach can, at all times, locate all siblings.
1830 if (event->group_leader == event) {
1831 event->group_caps = event->event_caps;
1832 add_event_to_groups(event, ctx);
1835 list_add_rcu(&event->event_entry, &ctx->event_list);
1836 ctx->nr_events++;
1837 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1838 ctx->nr_user++;
1839 if (event->attr.inherit_stat)
1840 ctx->nr_stat++;
1841 if (has_inherit_and_sample_read(&event->attr))
1842 local_inc(&ctx->nr_no_switch_fast);
1844 if (event->state > PERF_EVENT_STATE_OFF)
1845 perf_cgroup_event_enable(event, ctx);
1847 ctx->generation++;
1848 event->pmu_ctx->nr_events++;
1852 * Initialize event state based on the perf_event_attr::disabled.
1854 static inline void perf_event__state_init(struct perf_event *event)
1856 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1857 PERF_EVENT_STATE_INACTIVE;
1860 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1862 int entry = sizeof(u64); /* value */
1863 int size = 0;
1864 int nr = 1;
1866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1867 size += sizeof(u64);
1869 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1870 size += sizeof(u64);
1872 if (read_format & PERF_FORMAT_ID)
1873 entry += sizeof(u64);
1875 if (read_format & PERF_FORMAT_LOST)
1876 entry += sizeof(u64);
1878 if (read_format & PERF_FORMAT_GROUP) {
1879 nr += nr_siblings;
1880 size += sizeof(u64);
1884 * Since perf_event_validate_size() limits this to 16k and inhibits
1885 * adding more siblings, this will never overflow.
1887 return size + nr * entry;
1890 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1892 struct perf_sample_data *data;
1893 u16 size = 0;
1895 if (sample_type & PERF_SAMPLE_IP)
1896 size += sizeof(data->ip);
1898 if (sample_type & PERF_SAMPLE_ADDR)
1899 size += sizeof(data->addr);
1901 if (sample_type & PERF_SAMPLE_PERIOD)
1902 size += sizeof(data->period);
1904 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1905 size += sizeof(data->weight.full);
1907 if (sample_type & PERF_SAMPLE_READ)
1908 size += event->read_size;
1910 if (sample_type & PERF_SAMPLE_DATA_SRC)
1911 size += sizeof(data->data_src.val);
1913 if (sample_type & PERF_SAMPLE_TRANSACTION)
1914 size += sizeof(data->txn);
1916 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1917 size += sizeof(data->phys_addr);
1919 if (sample_type & PERF_SAMPLE_CGROUP)
1920 size += sizeof(data->cgroup);
1922 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1923 size += sizeof(data->data_page_size);
1925 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1926 size += sizeof(data->code_page_size);
1928 event->header_size = size;
1932 * Called at perf_event creation and when events are attached/detached from a
1933 * group.
1935 static void perf_event__header_size(struct perf_event *event)
1937 event->read_size =
1938 __perf_event_read_size(event->attr.read_format,
1939 event->group_leader->nr_siblings);
1940 __perf_event_header_size(event, event->attr.sample_type);
1943 static void perf_event__id_header_size(struct perf_event *event)
1945 struct perf_sample_data *data;
1946 u64 sample_type = event->attr.sample_type;
1947 u16 size = 0;
1949 if (sample_type & PERF_SAMPLE_TID)
1950 size += sizeof(data->tid_entry);
1952 if (sample_type & PERF_SAMPLE_TIME)
1953 size += sizeof(data->time);
1955 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1956 size += sizeof(data->id);
1958 if (sample_type & PERF_SAMPLE_ID)
1959 size += sizeof(data->id);
1961 if (sample_type & PERF_SAMPLE_STREAM_ID)
1962 size += sizeof(data->stream_id);
1964 if (sample_type & PERF_SAMPLE_CPU)
1965 size += sizeof(data->cpu_entry);
1967 event->id_header_size = size;
1971 * Check that adding an event to the group does not result in anybody
1972 * overflowing the 64k event limit imposed by the output buffer.
1974 * Specifically, check that the read_size for the event does not exceed 16k,
1975 * read_size being the one term that grows with groups size. Since read_size
1976 * depends on per-event read_format, also (re)check the existing events.
1978 * This leaves 48k for the constant size fields and things like callchains,
1979 * branch stacks and register sets.
1981 static bool perf_event_validate_size(struct perf_event *event)
1983 struct perf_event *sibling, *group_leader = event->group_leader;
1985 if (__perf_event_read_size(event->attr.read_format,
1986 group_leader->nr_siblings + 1) > 16*1024)
1987 return false;
1989 if (__perf_event_read_size(group_leader->attr.read_format,
1990 group_leader->nr_siblings + 1) > 16*1024)
1991 return false;
1994 * When creating a new group leader, group_leader->ctx is initialized
1995 * after the size has been validated, but we cannot safely use
1996 * for_each_sibling_event() until group_leader->ctx is set. A new group
1997 * leader cannot have any siblings yet, so we can safely skip checking
1998 * the non-existent siblings.
2000 if (event == group_leader)
2001 return true;
2003 for_each_sibling_event(sibling, group_leader) {
2004 if (__perf_event_read_size(sibling->attr.read_format,
2005 group_leader->nr_siblings + 1) > 16*1024)
2006 return false;
2009 return true;
2012 static void perf_group_attach(struct perf_event *event)
2014 struct perf_event *group_leader = event->group_leader, *pos;
2016 lockdep_assert_held(&event->ctx->lock);
2019 * We can have double attach due to group movement (move_group) in
2020 * perf_event_open().
2022 if (event->attach_state & PERF_ATTACH_GROUP)
2023 return;
2025 event->attach_state |= PERF_ATTACH_GROUP;
2027 if (group_leader == event)
2028 return;
2030 WARN_ON_ONCE(group_leader->ctx != event->ctx);
2032 group_leader->group_caps &= event->event_caps;
2034 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2035 group_leader->nr_siblings++;
2036 group_leader->group_generation++;
2038 perf_event__header_size(group_leader);
2040 for_each_sibling_event(pos, group_leader)
2041 perf_event__header_size(pos);
2045 * Remove an event from the lists for its context.
2046 * Must be called with ctx->mutex and ctx->lock held.
2048 static void
2049 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2051 WARN_ON_ONCE(event->ctx != ctx);
2052 lockdep_assert_held(&ctx->lock);
2055 * We can have double detach due to exit/hot-unplug + close.
2057 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2058 return;
2060 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2062 ctx->nr_events--;
2063 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2064 ctx->nr_user--;
2065 if (event->attr.inherit_stat)
2066 ctx->nr_stat--;
2067 if (has_inherit_and_sample_read(&event->attr))
2068 local_dec(&ctx->nr_no_switch_fast);
2070 list_del_rcu(&event->event_entry);
2072 if (event->group_leader == event)
2073 del_event_from_groups(event, ctx);
2076 * If event was in error state, then keep it
2077 * that way, otherwise bogus counts will be
2078 * returned on read(). The only way to get out
2079 * of error state is by explicit re-enabling
2080 * of the event
2082 if (event->state > PERF_EVENT_STATE_OFF) {
2083 perf_cgroup_event_disable(event, ctx);
2084 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2087 ctx->generation++;
2088 event->pmu_ctx->nr_events--;
2091 static int
2092 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2094 if (!has_aux(aux_event))
2095 return 0;
2097 if (!event->pmu->aux_output_match)
2098 return 0;
2100 return event->pmu->aux_output_match(aux_event);
2103 static void put_event(struct perf_event *event);
2104 static void event_sched_out(struct perf_event *event,
2105 struct perf_event_context *ctx);
2107 static void perf_put_aux_event(struct perf_event *event)
2109 struct perf_event_context *ctx = event->ctx;
2110 struct perf_event *iter;
2113 * If event uses aux_event tear down the link
2115 if (event->aux_event) {
2116 iter = event->aux_event;
2117 event->aux_event = NULL;
2118 put_event(iter);
2119 return;
2123 * If the event is an aux_event, tear down all links to
2124 * it from other events.
2126 for_each_sibling_event(iter, event->group_leader) {
2127 if (iter->aux_event != event)
2128 continue;
2130 iter->aux_event = NULL;
2131 put_event(event);
2134 * If it's ACTIVE, schedule it out and put it into ERROR
2135 * state so that we don't try to schedule it again. Note
2136 * that perf_event_enable() will clear the ERROR status.
2138 event_sched_out(iter, ctx);
2139 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2143 static bool perf_need_aux_event(struct perf_event *event)
2145 return event->attr.aux_output || has_aux_action(event);
2148 static int perf_get_aux_event(struct perf_event *event,
2149 struct perf_event *group_leader)
2152 * Our group leader must be an aux event if we want to be
2153 * an aux_output. This way, the aux event will precede its
2154 * aux_output events in the group, and therefore will always
2155 * schedule first.
2157 if (!group_leader)
2158 return 0;
2161 * aux_output and aux_sample_size are mutually exclusive.
2163 if (event->attr.aux_output && event->attr.aux_sample_size)
2164 return 0;
2166 if (event->attr.aux_output &&
2167 !perf_aux_output_match(event, group_leader))
2168 return 0;
2170 if ((event->attr.aux_pause || event->attr.aux_resume) &&
2171 !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
2172 return 0;
2174 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2175 return 0;
2177 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2178 return 0;
2181 * Link aux_outputs to their aux event; this is undone in
2182 * perf_group_detach() by perf_put_aux_event(). When the
2183 * group in torn down, the aux_output events loose their
2184 * link to the aux_event and can't schedule any more.
2186 event->aux_event = group_leader;
2188 return 1;
2191 static inline struct list_head *get_event_list(struct perf_event *event)
2193 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2194 &event->pmu_ctx->flexible_active;
2198 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2199 * cannot exist on their own, schedule them out and move them into the ERROR
2200 * state. Also see _perf_event_enable(), it will not be able to recover
2201 * this ERROR state.
2203 static inline void perf_remove_sibling_event(struct perf_event *event)
2205 event_sched_out(event, event->ctx);
2206 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2209 static void perf_group_detach(struct perf_event *event)
2211 struct perf_event *leader = event->group_leader;
2212 struct perf_event *sibling, *tmp;
2213 struct perf_event_context *ctx = event->ctx;
2215 lockdep_assert_held(&ctx->lock);
2218 * We can have double detach due to exit/hot-unplug + close.
2220 if (!(event->attach_state & PERF_ATTACH_GROUP))
2221 return;
2223 event->attach_state &= ~PERF_ATTACH_GROUP;
2225 perf_put_aux_event(event);
2228 * If this is a sibling, remove it from its group.
2230 if (leader != event) {
2231 list_del_init(&event->sibling_list);
2232 event->group_leader->nr_siblings--;
2233 event->group_leader->group_generation++;
2234 goto out;
2238 * If this was a group event with sibling events then
2239 * upgrade the siblings to singleton events by adding them
2240 * to whatever list we are on.
2242 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2244 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2245 perf_remove_sibling_event(sibling);
2247 sibling->group_leader = sibling;
2248 list_del_init(&sibling->sibling_list);
2250 /* Inherit group flags from the previous leader */
2251 sibling->group_caps = event->group_caps;
2253 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2254 add_event_to_groups(sibling, event->ctx);
2256 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2257 list_add_tail(&sibling->active_list, get_event_list(sibling));
2260 WARN_ON_ONCE(sibling->ctx != event->ctx);
2263 out:
2264 for_each_sibling_event(tmp, leader)
2265 perf_event__header_size(tmp);
2267 perf_event__header_size(leader);
2270 static void sync_child_event(struct perf_event *child_event);
2272 static void perf_child_detach(struct perf_event *event)
2274 struct perf_event *parent_event = event->parent;
2276 if (!(event->attach_state & PERF_ATTACH_CHILD))
2277 return;
2279 event->attach_state &= ~PERF_ATTACH_CHILD;
2281 if (WARN_ON_ONCE(!parent_event))
2282 return;
2284 lockdep_assert_held(&parent_event->child_mutex);
2286 sync_child_event(event);
2287 list_del_init(&event->child_list);
2290 static bool is_orphaned_event(struct perf_event *event)
2292 return event->state == PERF_EVENT_STATE_DEAD;
2295 static inline int
2296 event_filter_match(struct perf_event *event)
2298 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2299 perf_cgroup_match(event);
2302 static void
2303 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2305 struct perf_event_pmu_context *epc = event->pmu_ctx;
2306 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2307 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2309 // XXX cpc serialization, probably per-cpu IRQ disabled
2311 WARN_ON_ONCE(event->ctx != ctx);
2312 lockdep_assert_held(&ctx->lock);
2314 if (event->state != PERF_EVENT_STATE_ACTIVE)
2315 return;
2318 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2319 * we can schedule events _OUT_ individually through things like
2320 * __perf_remove_from_context().
2322 list_del_init(&event->active_list);
2324 perf_pmu_disable(event->pmu);
2326 event->pmu->del(event, 0);
2327 event->oncpu = -1;
2329 if (event->pending_disable) {
2330 event->pending_disable = 0;
2331 perf_cgroup_event_disable(event, ctx);
2332 state = PERF_EVENT_STATE_OFF;
2335 perf_event_set_state(event, state);
2337 if (!is_software_event(event))
2338 cpc->active_oncpu--;
2339 if (event->attr.freq && event->attr.sample_freq) {
2340 ctx->nr_freq--;
2341 epc->nr_freq--;
2343 if (event->attr.exclusive || !cpc->active_oncpu)
2344 cpc->exclusive = 0;
2346 perf_pmu_enable(event->pmu);
2349 static void
2350 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2352 struct perf_event *event;
2354 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2355 return;
2357 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2359 event_sched_out(group_event, ctx);
2362 * Schedule out siblings (if any):
2364 for_each_sibling_event(event, group_event)
2365 event_sched_out(event, ctx);
2368 static inline void
2369 __ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx, bool final)
2371 if (ctx->is_active & EVENT_TIME) {
2372 if (ctx->is_active & EVENT_FROZEN)
2373 return;
2374 update_context_time(ctx);
2375 update_cgrp_time_from_cpuctx(cpuctx, final);
2379 static inline void
2380 ctx_time_update(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2382 __ctx_time_update(cpuctx, ctx, false);
2386 * To be used inside perf_ctx_lock() / perf_ctx_unlock(). Lasts until perf_ctx_unlock().
2388 static inline void
2389 ctx_time_freeze(struct perf_cpu_context *cpuctx, struct perf_event_context *ctx)
2391 ctx_time_update(cpuctx, ctx);
2392 if (ctx->is_active & EVENT_TIME)
2393 ctx->is_active |= EVENT_FROZEN;
2396 static inline void
2397 ctx_time_update_event(struct perf_event_context *ctx, struct perf_event *event)
2399 if (ctx->is_active & EVENT_TIME) {
2400 if (ctx->is_active & EVENT_FROZEN)
2401 return;
2402 update_context_time(ctx);
2403 update_cgrp_time_from_event(event);
2407 #define DETACH_GROUP 0x01UL
2408 #define DETACH_CHILD 0x02UL
2409 #define DETACH_DEAD 0x04UL
2412 * Cross CPU call to remove a performance event
2414 * We disable the event on the hardware level first. After that we
2415 * remove it from the context list.
2417 static void
2418 __perf_remove_from_context(struct perf_event *event,
2419 struct perf_cpu_context *cpuctx,
2420 struct perf_event_context *ctx,
2421 void *info)
2423 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2424 unsigned long flags = (unsigned long)info;
2426 ctx_time_update(cpuctx, ctx);
2429 * Ensure event_sched_out() switches to OFF, at the very least
2430 * this avoids raising perf_pending_task() at this time.
2432 if (flags & DETACH_DEAD)
2433 event->pending_disable = 1;
2434 event_sched_out(event, ctx);
2435 if (flags & DETACH_GROUP)
2436 perf_group_detach(event);
2437 if (flags & DETACH_CHILD)
2438 perf_child_detach(event);
2439 list_del_event(event, ctx);
2440 if (flags & DETACH_DEAD)
2441 event->state = PERF_EVENT_STATE_DEAD;
2443 if (!pmu_ctx->nr_events) {
2444 pmu_ctx->rotate_necessary = 0;
2446 if (ctx->task && ctx->is_active) {
2447 struct perf_cpu_pmu_context *cpc;
2449 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2450 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2451 cpc->task_epc = NULL;
2455 if (!ctx->nr_events && ctx->is_active) {
2456 if (ctx == &cpuctx->ctx)
2457 update_cgrp_time_from_cpuctx(cpuctx, true);
2459 ctx->is_active = 0;
2460 if (ctx->task) {
2461 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2462 cpuctx->task_ctx = NULL;
2468 * Remove the event from a task's (or a CPU's) list of events.
2470 * If event->ctx is a cloned context, callers must make sure that
2471 * every task struct that event->ctx->task could possibly point to
2472 * remains valid. This is OK when called from perf_release since
2473 * that only calls us on the top-level context, which can't be a clone.
2474 * When called from perf_event_exit_task, it's OK because the
2475 * context has been detached from its task.
2477 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2479 struct perf_event_context *ctx = event->ctx;
2481 lockdep_assert_held(&ctx->mutex);
2484 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2485 * to work in the face of TASK_TOMBSTONE, unlike every other
2486 * event_function_call() user.
2488 raw_spin_lock_irq(&ctx->lock);
2489 if (!ctx->is_active) {
2490 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2491 ctx, (void *)flags);
2492 raw_spin_unlock_irq(&ctx->lock);
2493 return;
2495 raw_spin_unlock_irq(&ctx->lock);
2497 event_function_call(event, __perf_remove_from_context, (void *)flags);
2501 * Cross CPU call to disable a performance event
2503 static void __perf_event_disable(struct perf_event *event,
2504 struct perf_cpu_context *cpuctx,
2505 struct perf_event_context *ctx,
2506 void *info)
2508 if (event->state < PERF_EVENT_STATE_INACTIVE)
2509 return;
2511 perf_pmu_disable(event->pmu_ctx->pmu);
2512 ctx_time_update_event(ctx, event);
2514 if (event == event->group_leader)
2515 group_sched_out(event, ctx);
2516 else
2517 event_sched_out(event, ctx);
2519 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2520 perf_cgroup_event_disable(event, ctx);
2522 perf_pmu_enable(event->pmu_ctx->pmu);
2526 * Disable an event.
2528 * If event->ctx is a cloned context, callers must make sure that
2529 * every task struct that event->ctx->task could possibly point to
2530 * remains valid. This condition is satisfied when called through
2531 * perf_event_for_each_child or perf_event_for_each because they
2532 * hold the top-level event's child_mutex, so any descendant that
2533 * goes to exit will block in perf_event_exit_event().
2535 * When called from perf_pending_disable it's OK because event->ctx
2536 * is the current context on this CPU and preemption is disabled,
2537 * hence we can't get into perf_event_task_sched_out for this context.
2539 static void _perf_event_disable(struct perf_event *event)
2541 struct perf_event_context *ctx = event->ctx;
2543 raw_spin_lock_irq(&ctx->lock);
2544 if (event->state <= PERF_EVENT_STATE_OFF) {
2545 raw_spin_unlock_irq(&ctx->lock);
2546 return;
2548 raw_spin_unlock_irq(&ctx->lock);
2550 event_function_call(event, __perf_event_disable, NULL);
2553 void perf_event_disable_local(struct perf_event *event)
2555 event_function_local(event, __perf_event_disable, NULL);
2559 * Strictly speaking kernel users cannot create groups and therefore this
2560 * interface does not need the perf_event_ctx_lock() magic.
2562 void perf_event_disable(struct perf_event *event)
2564 struct perf_event_context *ctx;
2566 ctx = perf_event_ctx_lock(event);
2567 _perf_event_disable(event);
2568 perf_event_ctx_unlock(event, ctx);
2570 EXPORT_SYMBOL_GPL(perf_event_disable);
2572 void perf_event_disable_inatomic(struct perf_event *event)
2574 event->pending_disable = 1;
2575 irq_work_queue(&event->pending_disable_irq);
2578 #define MAX_INTERRUPTS (~0ULL)
2580 static void perf_log_throttle(struct perf_event *event, int enable);
2581 static void perf_log_itrace_start(struct perf_event *event);
2583 static int
2584 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2586 struct perf_event_pmu_context *epc = event->pmu_ctx;
2587 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2588 int ret = 0;
2590 WARN_ON_ONCE(event->ctx != ctx);
2592 lockdep_assert_held(&ctx->lock);
2594 if (event->state <= PERF_EVENT_STATE_OFF)
2595 return 0;
2597 WRITE_ONCE(event->oncpu, smp_processor_id());
2599 * Order event::oncpu write to happen before the ACTIVE state is
2600 * visible. This allows perf_event_{stop,read}() to observe the correct
2601 * ->oncpu if it sees ACTIVE.
2603 smp_wmb();
2604 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2607 * Unthrottle events, since we scheduled we might have missed several
2608 * ticks already, also for a heavily scheduling task there is little
2609 * guarantee it'll get a tick in a timely manner.
2611 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2612 perf_log_throttle(event, 1);
2613 event->hw.interrupts = 0;
2616 perf_pmu_disable(event->pmu);
2618 perf_log_itrace_start(event);
2620 if (event->pmu->add(event, PERF_EF_START)) {
2621 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2622 event->oncpu = -1;
2623 ret = -EAGAIN;
2624 goto out;
2627 if (!is_software_event(event))
2628 cpc->active_oncpu++;
2629 if (event->attr.freq && event->attr.sample_freq) {
2630 ctx->nr_freq++;
2631 epc->nr_freq++;
2633 if (event->attr.exclusive)
2634 cpc->exclusive = 1;
2636 out:
2637 perf_pmu_enable(event->pmu);
2639 return ret;
2642 static int
2643 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2645 struct perf_event *event, *partial_group = NULL;
2646 struct pmu *pmu = group_event->pmu_ctx->pmu;
2648 if (group_event->state == PERF_EVENT_STATE_OFF)
2649 return 0;
2651 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2653 if (event_sched_in(group_event, ctx))
2654 goto error;
2657 * Schedule in siblings as one group (if any):
2659 for_each_sibling_event(event, group_event) {
2660 if (event_sched_in(event, ctx)) {
2661 partial_group = event;
2662 goto group_error;
2666 if (!pmu->commit_txn(pmu))
2667 return 0;
2669 group_error:
2671 * Groups can be scheduled in as one unit only, so undo any
2672 * partial group before returning:
2673 * The events up to the failed event are scheduled out normally.
2675 for_each_sibling_event(event, group_event) {
2676 if (event == partial_group)
2677 break;
2679 event_sched_out(event, ctx);
2681 event_sched_out(group_event, ctx);
2683 error:
2684 pmu->cancel_txn(pmu);
2685 return -EAGAIN;
2689 * Work out whether we can put this event group on the CPU now.
2691 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2693 struct perf_event_pmu_context *epc = event->pmu_ctx;
2694 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2697 * Groups consisting entirely of software events can always go on.
2699 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2700 return 1;
2702 * If an exclusive group is already on, no other hardware
2703 * events can go on.
2705 if (cpc->exclusive)
2706 return 0;
2708 * If this group is exclusive and there are already
2709 * events on the CPU, it can't go on.
2711 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2712 return 0;
2714 * Otherwise, try to add it if all previous groups were able
2715 * to go on.
2717 return can_add_hw;
2720 static void add_event_to_ctx(struct perf_event *event,
2721 struct perf_event_context *ctx)
2723 list_add_event(event, ctx);
2724 perf_group_attach(event);
2727 static void task_ctx_sched_out(struct perf_event_context *ctx,
2728 struct pmu *pmu,
2729 enum event_type_t event_type)
2731 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2733 if (!cpuctx->task_ctx)
2734 return;
2736 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2737 return;
2739 ctx_sched_out(ctx, pmu, event_type);
2742 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2743 struct perf_event_context *ctx,
2744 struct pmu *pmu)
2746 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_PINNED);
2747 if (ctx)
2748 ctx_sched_in(ctx, pmu, EVENT_PINNED);
2749 ctx_sched_in(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2750 if (ctx)
2751 ctx_sched_in(ctx, pmu, EVENT_FLEXIBLE);
2755 * We want to maintain the following priority of scheduling:
2756 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2757 * - task pinned (EVENT_PINNED)
2758 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2759 * - task flexible (EVENT_FLEXIBLE).
2761 * In order to avoid unscheduling and scheduling back in everything every
2762 * time an event is added, only do it for the groups of equal priority and
2763 * below.
2765 * This can be called after a batch operation on task events, in which case
2766 * event_type is a bit mask of the types of events involved. For CPU events,
2767 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2769 static void ctx_resched(struct perf_cpu_context *cpuctx,
2770 struct perf_event_context *task_ctx,
2771 struct pmu *pmu, enum event_type_t event_type)
2773 bool cpu_event = !!(event_type & EVENT_CPU);
2774 struct perf_event_pmu_context *epc;
2777 * If pinned groups are involved, flexible groups also need to be
2778 * scheduled out.
2780 if (event_type & EVENT_PINNED)
2781 event_type |= EVENT_FLEXIBLE;
2783 event_type &= EVENT_ALL;
2785 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2786 perf_pmu_disable(epc->pmu);
2788 if (task_ctx) {
2789 for_each_epc(epc, task_ctx, pmu, false)
2790 perf_pmu_disable(epc->pmu);
2792 task_ctx_sched_out(task_ctx, pmu, event_type);
2796 * Decide which cpu ctx groups to schedule out based on the types
2797 * of events that caused rescheduling:
2798 * - EVENT_CPU: schedule out corresponding groups;
2799 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2800 * - otherwise, do nothing more.
2802 if (cpu_event)
2803 ctx_sched_out(&cpuctx->ctx, pmu, event_type);
2804 else if (event_type & EVENT_PINNED)
2805 ctx_sched_out(&cpuctx->ctx, pmu, EVENT_FLEXIBLE);
2807 perf_event_sched_in(cpuctx, task_ctx, pmu);
2809 for_each_epc(epc, &cpuctx->ctx, pmu, false)
2810 perf_pmu_enable(epc->pmu);
2812 if (task_ctx) {
2813 for_each_epc(epc, task_ctx, pmu, false)
2814 perf_pmu_enable(epc->pmu);
2818 void perf_pmu_resched(struct pmu *pmu)
2820 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2821 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2823 perf_ctx_lock(cpuctx, task_ctx);
2824 ctx_resched(cpuctx, task_ctx, pmu, EVENT_ALL|EVENT_CPU);
2825 perf_ctx_unlock(cpuctx, task_ctx);
2829 * Cross CPU call to install and enable a performance event
2831 * Very similar to remote_function() + event_function() but cannot assume that
2832 * things like ctx->is_active and cpuctx->task_ctx are set.
2834 static int __perf_install_in_context(void *info)
2836 struct perf_event *event = info;
2837 struct perf_event_context *ctx = event->ctx;
2838 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2839 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2840 bool reprogram = true;
2841 int ret = 0;
2843 raw_spin_lock(&cpuctx->ctx.lock);
2844 if (ctx->task) {
2845 raw_spin_lock(&ctx->lock);
2846 task_ctx = ctx;
2848 reprogram = (ctx->task == current);
2851 * If the task is running, it must be running on this CPU,
2852 * otherwise we cannot reprogram things.
2854 * If its not running, we don't care, ctx->lock will
2855 * serialize against it becoming runnable.
2857 if (task_curr(ctx->task) && !reprogram) {
2858 ret = -ESRCH;
2859 goto unlock;
2862 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2863 } else if (task_ctx) {
2864 raw_spin_lock(&task_ctx->lock);
2867 #ifdef CONFIG_CGROUP_PERF
2868 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2870 * If the current cgroup doesn't match the event's
2871 * cgroup, we should not try to schedule it.
2873 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2874 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2875 event->cgrp->css.cgroup);
2877 #endif
2879 if (reprogram) {
2880 ctx_time_freeze(cpuctx, ctx);
2881 add_event_to_ctx(event, ctx);
2882 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu,
2883 get_event_type(event));
2884 } else {
2885 add_event_to_ctx(event, ctx);
2888 unlock:
2889 perf_ctx_unlock(cpuctx, task_ctx);
2891 return ret;
2894 static bool exclusive_event_installable(struct perf_event *event,
2895 struct perf_event_context *ctx);
2898 * Attach a performance event to a context.
2900 * Very similar to event_function_call, see comment there.
2902 static void
2903 perf_install_in_context(struct perf_event_context *ctx,
2904 struct perf_event *event,
2905 int cpu)
2907 struct task_struct *task = READ_ONCE(ctx->task);
2909 lockdep_assert_held(&ctx->mutex);
2911 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2913 if (event->cpu != -1)
2914 WARN_ON_ONCE(event->cpu != cpu);
2917 * Ensures that if we can observe event->ctx, both the event and ctx
2918 * will be 'complete'. See perf_iterate_sb_cpu().
2920 smp_store_release(&event->ctx, ctx);
2923 * perf_event_attr::disabled events will not run and can be initialized
2924 * without IPI. Except when this is the first event for the context, in
2925 * that case we need the magic of the IPI to set ctx->is_active.
2927 * The IOC_ENABLE that is sure to follow the creation of a disabled
2928 * event will issue the IPI and reprogram the hardware.
2930 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2931 ctx->nr_events && !is_cgroup_event(event)) {
2932 raw_spin_lock_irq(&ctx->lock);
2933 if (ctx->task == TASK_TOMBSTONE) {
2934 raw_spin_unlock_irq(&ctx->lock);
2935 return;
2937 add_event_to_ctx(event, ctx);
2938 raw_spin_unlock_irq(&ctx->lock);
2939 return;
2942 if (!task) {
2943 cpu_function_call(cpu, __perf_install_in_context, event);
2944 return;
2948 * Should not happen, we validate the ctx is still alive before calling.
2950 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2951 return;
2954 * Installing events is tricky because we cannot rely on ctx->is_active
2955 * to be set in case this is the nr_events 0 -> 1 transition.
2957 * Instead we use task_curr(), which tells us if the task is running.
2958 * However, since we use task_curr() outside of rq::lock, we can race
2959 * against the actual state. This means the result can be wrong.
2961 * If we get a false positive, we retry, this is harmless.
2963 * If we get a false negative, things are complicated. If we are after
2964 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2965 * value must be correct. If we're before, it doesn't matter since
2966 * perf_event_context_sched_in() will program the counter.
2968 * However, this hinges on the remote context switch having observed
2969 * our task->perf_event_ctxp[] store, such that it will in fact take
2970 * ctx::lock in perf_event_context_sched_in().
2972 * We do this by task_function_call(), if the IPI fails to hit the task
2973 * we know any future context switch of task must see the
2974 * perf_event_ctpx[] store.
2978 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2979 * task_cpu() load, such that if the IPI then does not find the task
2980 * running, a future context switch of that task must observe the
2981 * store.
2983 smp_mb();
2984 again:
2985 if (!task_function_call(task, __perf_install_in_context, event))
2986 return;
2988 raw_spin_lock_irq(&ctx->lock);
2989 task = ctx->task;
2990 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2992 * Cannot happen because we already checked above (which also
2993 * cannot happen), and we hold ctx->mutex, which serializes us
2994 * against perf_event_exit_task_context().
2996 raw_spin_unlock_irq(&ctx->lock);
2997 return;
3000 * If the task is not running, ctx->lock will avoid it becoming so,
3001 * thus we can safely install the event.
3003 if (task_curr(task)) {
3004 raw_spin_unlock_irq(&ctx->lock);
3005 goto again;
3007 add_event_to_ctx(event, ctx);
3008 raw_spin_unlock_irq(&ctx->lock);
3012 * Cross CPU call to enable a performance event
3014 static void __perf_event_enable(struct perf_event *event,
3015 struct perf_cpu_context *cpuctx,
3016 struct perf_event_context *ctx,
3017 void *info)
3019 struct perf_event *leader = event->group_leader;
3020 struct perf_event_context *task_ctx;
3022 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3023 event->state <= PERF_EVENT_STATE_ERROR)
3024 return;
3026 ctx_time_freeze(cpuctx, ctx);
3028 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3029 perf_cgroup_event_enable(event, ctx);
3031 if (!ctx->is_active)
3032 return;
3034 if (!event_filter_match(event))
3035 return;
3038 * If the event is in a group and isn't the group leader,
3039 * then don't put it on unless the group is on.
3041 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
3042 return;
3044 task_ctx = cpuctx->task_ctx;
3045 if (ctx->task)
3046 WARN_ON_ONCE(task_ctx != ctx);
3048 ctx_resched(cpuctx, task_ctx, event->pmu_ctx->pmu, get_event_type(event));
3052 * Enable an event.
3054 * If event->ctx is a cloned context, callers must make sure that
3055 * every task struct that event->ctx->task could possibly point to
3056 * remains valid. This condition is satisfied when called through
3057 * perf_event_for_each_child or perf_event_for_each as described
3058 * for perf_event_disable.
3060 static void _perf_event_enable(struct perf_event *event)
3062 struct perf_event_context *ctx = event->ctx;
3064 raw_spin_lock_irq(&ctx->lock);
3065 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3066 event->state < PERF_EVENT_STATE_ERROR) {
3067 out:
3068 raw_spin_unlock_irq(&ctx->lock);
3069 return;
3073 * If the event is in error state, clear that first.
3075 * That way, if we see the event in error state below, we know that it
3076 * has gone back into error state, as distinct from the task having
3077 * been scheduled away before the cross-call arrived.
3079 if (event->state == PERF_EVENT_STATE_ERROR) {
3081 * Detached SIBLING events cannot leave ERROR state.
3083 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3084 event->group_leader == event)
3085 goto out;
3087 event->state = PERF_EVENT_STATE_OFF;
3089 raw_spin_unlock_irq(&ctx->lock);
3091 event_function_call(event, __perf_event_enable, NULL);
3095 * See perf_event_disable();
3097 void perf_event_enable(struct perf_event *event)
3099 struct perf_event_context *ctx;
3101 ctx = perf_event_ctx_lock(event);
3102 _perf_event_enable(event);
3103 perf_event_ctx_unlock(event, ctx);
3105 EXPORT_SYMBOL_GPL(perf_event_enable);
3107 struct stop_event_data {
3108 struct perf_event *event;
3109 unsigned int restart;
3112 static int __perf_event_stop(void *info)
3114 struct stop_event_data *sd = info;
3115 struct perf_event *event = sd->event;
3117 /* if it's already INACTIVE, do nothing */
3118 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3119 return 0;
3121 /* matches smp_wmb() in event_sched_in() */
3122 smp_rmb();
3125 * There is a window with interrupts enabled before we get here,
3126 * so we need to check again lest we try to stop another CPU's event.
3128 if (READ_ONCE(event->oncpu) != smp_processor_id())
3129 return -EAGAIN;
3131 event->pmu->stop(event, PERF_EF_UPDATE);
3134 * May race with the actual stop (through perf_pmu_output_stop()),
3135 * but it is only used for events with AUX ring buffer, and such
3136 * events will refuse to restart because of rb::aux_mmap_count==0,
3137 * see comments in perf_aux_output_begin().
3139 * Since this is happening on an event-local CPU, no trace is lost
3140 * while restarting.
3142 if (sd->restart)
3143 event->pmu->start(event, 0);
3145 return 0;
3148 static int perf_event_stop(struct perf_event *event, int restart)
3150 struct stop_event_data sd = {
3151 .event = event,
3152 .restart = restart,
3154 int ret = 0;
3156 do {
3157 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3158 return 0;
3160 /* matches smp_wmb() in event_sched_in() */
3161 smp_rmb();
3164 * We only want to restart ACTIVE events, so if the event goes
3165 * inactive here (event->oncpu==-1), there's nothing more to do;
3166 * fall through with ret==-ENXIO.
3168 ret = cpu_function_call(READ_ONCE(event->oncpu),
3169 __perf_event_stop, &sd);
3170 } while (ret == -EAGAIN);
3172 return ret;
3176 * In order to contain the amount of racy and tricky in the address filter
3177 * configuration management, it is a two part process:
3179 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3180 * we update the addresses of corresponding vmas in
3181 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3182 * (p2) when an event is scheduled in (pmu::add), it calls
3183 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3184 * if the generation has changed since the previous call.
3186 * If (p1) happens while the event is active, we restart it to force (p2).
3188 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3189 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3190 * ioctl;
3191 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3192 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3193 * for reading;
3194 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3195 * of exec.
3197 void perf_event_addr_filters_sync(struct perf_event *event)
3199 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3201 if (!has_addr_filter(event))
3202 return;
3204 raw_spin_lock(&ifh->lock);
3205 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3206 event->pmu->addr_filters_sync(event);
3207 event->hw.addr_filters_gen = event->addr_filters_gen;
3209 raw_spin_unlock(&ifh->lock);
3211 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3213 static int _perf_event_refresh(struct perf_event *event, int refresh)
3216 * not supported on inherited events
3218 if (event->attr.inherit || !is_sampling_event(event))
3219 return -EINVAL;
3221 atomic_add(refresh, &event->event_limit);
3222 _perf_event_enable(event);
3224 return 0;
3228 * See perf_event_disable()
3230 int perf_event_refresh(struct perf_event *event, int refresh)
3232 struct perf_event_context *ctx;
3233 int ret;
3235 ctx = perf_event_ctx_lock(event);
3236 ret = _perf_event_refresh(event, refresh);
3237 perf_event_ctx_unlock(event, ctx);
3239 return ret;
3241 EXPORT_SYMBOL_GPL(perf_event_refresh);
3243 static int perf_event_modify_breakpoint(struct perf_event *bp,
3244 struct perf_event_attr *attr)
3246 int err;
3248 _perf_event_disable(bp);
3250 err = modify_user_hw_breakpoint_check(bp, attr, true);
3252 if (!bp->attr.disabled)
3253 _perf_event_enable(bp);
3255 return err;
3259 * Copy event-type-independent attributes that may be modified.
3261 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3262 const struct perf_event_attr *from)
3264 to->sig_data = from->sig_data;
3267 static int perf_event_modify_attr(struct perf_event *event,
3268 struct perf_event_attr *attr)
3270 int (*func)(struct perf_event *, struct perf_event_attr *);
3271 struct perf_event *child;
3272 int err;
3274 if (event->attr.type != attr->type)
3275 return -EINVAL;
3277 switch (event->attr.type) {
3278 case PERF_TYPE_BREAKPOINT:
3279 func = perf_event_modify_breakpoint;
3280 break;
3281 default:
3282 /* Place holder for future additions. */
3283 return -EOPNOTSUPP;
3286 WARN_ON_ONCE(event->ctx->parent_ctx);
3288 mutex_lock(&event->child_mutex);
3290 * Event-type-independent attributes must be copied before event-type
3291 * modification, which will validate that final attributes match the
3292 * source attributes after all relevant attributes have been copied.
3294 perf_event_modify_copy_attr(&event->attr, attr);
3295 err = func(event, attr);
3296 if (err)
3297 goto out;
3298 list_for_each_entry(child, &event->child_list, child_list) {
3299 perf_event_modify_copy_attr(&child->attr, attr);
3300 err = func(child, attr);
3301 if (err)
3302 goto out;
3304 out:
3305 mutex_unlock(&event->child_mutex);
3306 return err;
3309 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3310 enum event_type_t event_type)
3312 struct perf_event_context *ctx = pmu_ctx->ctx;
3313 struct perf_event *event, *tmp;
3314 struct pmu *pmu = pmu_ctx->pmu;
3316 if (ctx->task && !(ctx->is_active & EVENT_ALL)) {
3317 struct perf_cpu_pmu_context *cpc;
3319 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3320 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3321 cpc->task_epc = NULL;
3324 if (!(event_type & EVENT_ALL))
3325 return;
3327 perf_pmu_disable(pmu);
3328 if (event_type & EVENT_PINNED) {
3329 list_for_each_entry_safe(event, tmp,
3330 &pmu_ctx->pinned_active,
3331 active_list)
3332 group_sched_out(event, ctx);
3335 if (event_type & EVENT_FLEXIBLE) {
3336 list_for_each_entry_safe(event, tmp,
3337 &pmu_ctx->flexible_active,
3338 active_list)
3339 group_sched_out(event, ctx);
3341 * Since we cleared EVENT_FLEXIBLE, also clear
3342 * rotate_necessary, is will be reset by
3343 * ctx_flexible_sched_in() when needed.
3345 pmu_ctx->rotate_necessary = 0;
3347 perf_pmu_enable(pmu);
3351 * Be very careful with the @pmu argument since this will change ctx state.
3352 * The @pmu argument works for ctx_resched(), because that is symmetric in
3353 * ctx_sched_out() / ctx_sched_in() usage and the ctx state ends up invariant.
3355 * However, if you were to be asymmetrical, you could end up with messed up
3356 * state, eg. ctx->is_active cleared even though most EPCs would still actually
3357 * be active.
3359 static void
3360 ctx_sched_out(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3362 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3363 struct perf_event_pmu_context *pmu_ctx;
3364 int is_active = ctx->is_active;
3365 bool cgroup = event_type & EVENT_CGROUP;
3367 event_type &= ~EVENT_CGROUP;
3369 lockdep_assert_held(&ctx->lock);
3371 if (likely(!ctx->nr_events)) {
3373 * See __perf_remove_from_context().
3375 WARN_ON_ONCE(ctx->is_active);
3376 if (ctx->task)
3377 WARN_ON_ONCE(cpuctx->task_ctx);
3378 return;
3382 * Always update time if it was set; not only when it changes.
3383 * Otherwise we can 'forget' to update time for any but the last
3384 * context we sched out. For example:
3386 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3387 * ctx_sched_out(.event_type = EVENT_PINNED)
3389 * would only update time for the pinned events.
3391 __ctx_time_update(cpuctx, ctx, ctx == &cpuctx->ctx);
3394 * CPU-release for the below ->is_active store,
3395 * see __load_acquire() in perf_event_time_now()
3397 barrier();
3398 ctx->is_active &= ~event_type;
3400 if (!(ctx->is_active & EVENT_ALL)) {
3402 * For FROZEN, preserve TIME|FROZEN such that perf_event_time_now()
3403 * does not observe a hole. perf_ctx_unlock() will clean up.
3405 if (ctx->is_active & EVENT_FROZEN)
3406 ctx->is_active &= EVENT_TIME_FROZEN;
3407 else
3408 ctx->is_active = 0;
3411 if (ctx->task) {
3412 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3413 if (!(ctx->is_active & EVENT_ALL))
3414 cpuctx->task_ctx = NULL;
3417 is_active ^= ctx->is_active; /* changed bits */
3419 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
3420 __pmu_ctx_sched_out(pmu_ctx, is_active);
3424 * Test whether two contexts are equivalent, i.e. whether they have both been
3425 * cloned from the same version of the same context.
3427 * Equivalence is measured using a generation number in the context that is
3428 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3429 * and list_del_event().
3431 static int context_equiv(struct perf_event_context *ctx1,
3432 struct perf_event_context *ctx2)
3434 lockdep_assert_held(&ctx1->lock);
3435 lockdep_assert_held(&ctx2->lock);
3437 /* Pinning disables the swap optimization */
3438 if (ctx1->pin_count || ctx2->pin_count)
3439 return 0;
3441 /* If ctx1 is the parent of ctx2 */
3442 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3443 return 1;
3445 /* If ctx2 is the parent of ctx1 */
3446 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3447 return 1;
3450 * If ctx1 and ctx2 have the same parent; we flatten the parent
3451 * hierarchy, see perf_event_init_context().
3453 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3454 ctx1->parent_gen == ctx2->parent_gen)
3455 return 1;
3457 /* Unmatched */
3458 return 0;
3461 static void __perf_event_sync_stat(struct perf_event *event,
3462 struct perf_event *next_event)
3464 u64 value;
3466 if (!event->attr.inherit_stat)
3467 return;
3470 * Update the event value, we cannot use perf_event_read()
3471 * because we're in the middle of a context switch and have IRQs
3472 * disabled, which upsets smp_call_function_single(), however
3473 * we know the event must be on the current CPU, therefore we
3474 * don't need to use it.
3476 if (event->state == PERF_EVENT_STATE_ACTIVE)
3477 event->pmu->read(event);
3479 perf_event_update_time(event);
3482 * In order to keep per-task stats reliable we need to flip the event
3483 * values when we flip the contexts.
3485 value = local64_read(&next_event->count);
3486 value = local64_xchg(&event->count, value);
3487 local64_set(&next_event->count, value);
3489 swap(event->total_time_enabled, next_event->total_time_enabled);
3490 swap(event->total_time_running, next_event->total_time_running);
3493 * Since we swizzled the values, update the user visible data too.
3495 perf_event_update_userpage(event);
3496 perf_event_update_userpage(next_event);
3499 static void perf_event_sync_stat(struct perf_event_context *ctx,
3500 struct perf_event_context *next_ctx)
3502 struct perf_event *event, *next_event;
3504 if (!ctx->nr_stat)
3505 return;
3507 update_context_time(ctx);
3509 event = list_first_entry(&ctx->event_list,
3510 struct perf_event, event_entry);
3512 next_event = list_first_entry(&next_ctx->event_list,
3513 struct perf_event, event_entry);
3515 while (&event->event_entry != &ctx->event_list &&
3516 &next_event->event_entry != &next_ctx->event_list) {
3518 __perf_event_sync_stat(event, next_event);
3520 event = list_next_entry(event, event_entry);
3521 next_event = list_next_entry(next_event, event_entry);
3525 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3526 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3527 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3528 !list_entry_is_head(pos1, head1, member) && \
3529 !list_entry_is_head(pos2, head2, member); \
3530 pos1 = list_next_entry(pos1, member), \
3531 pos2 = list_next_entry(pos2, member))
3533 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3534 struct perf_event_context *next_ctx)
3536 struct perf_event_pmu_context *prev_epc, *next_epc;
3538 if (!prev_ctx->nr_task_data)
3539 return;
3541 double_list_for_each_entry(prev_epc, next_epc,
3542 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3543 pmu_ctx_entry) {
3545 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3546 continue;
3549 * PMU specific parts of task perf context can require
3550 * additional synchronization. As an example of such
3551 * synchronization see implementation details of Intel
3552 * LBR call stack data profiling;
3554 if (prev_epc->pmu->swap_task_ctx)
3555 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3556 else
3557 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3561 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3563 struct perf_event_pmu_context *pmu_ctx;
3564 struct perf_cpu_pmu_context *cpc;
3566 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3567 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3569 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3570 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3574 static void
3575 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3577 struct perf_event_context *ctx = task->perf_event_ctxp;
3578 struct perf_event_context *next_ctx;
3579 struct perf_event_context *parent, *next_parent;
3580 int do_switch = 1;
3582 if (likely(!ctx))
3583 return;
3585 rcu_read_lock();
3586 next_ctx = rcu_dereference(next->perf_event_ctxp);
3587 if (!next_ctx)
3588 goto unlock;
3590 parent = rcu_dereference(ctx->parent_ctx);
3591 next_parent = rcu_dereference(next_ctx->parent_ctx);
3593 /* If neither context have a parent context; they cannot be clones. */
3594 if (!parent && !next_parent)
3595 goto unlock;
3597 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3599 * Looks like the two contexts are clones, so we might be
3600 * able to optimize the context switch. We lock both
3601 * contexts and check that they are clones under the
3602 * lock (including re-checking that neither has been
3603 * uncloned in the meantime). It doesn't matter which
3604 * order we take the locks because no other cpu could
3605 * be trying to lock both of these tasks.
3607 raw_spin_lock(&ctx->lock);
3608 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3609 if (context_equiv(ctx, next_ctx)) {
3611 perf_ctx_disable(ctx, false);
3613 /* PMIs are disabled; ctx->nr_no_switch_fast is stable. */
3614 if (local_read(&ctx->nr_no_switch_fast) ||
3615 local_read(&next_ctx->nr_no_switch_fast)) {
3617 * Must not swap out ctx when there's pending
3618 * events that rely on the ctx->task relation.
3620 * Likewise, when a context contains inherit +
3621 * SAMPLE_READ events they should be switched
3622 * out using the slow path so that they are
3623 * treated as if they were distinct contexts.
3625 raw_spin_unlock(&next_ctx->lock);
3626 rcu_read_unlock();
3627 goto inside_switch;
3630 WRITE_ONCE(ctx->task, next);
3631 WRITE_ONCE(next_ctx->task, task);
3633 perf_ctx_sched_task_cb(ctx, false);
3634 perf_event_swap_task_ctx_data(ctx, next_ctx);
3636 perf_ctx_enable(ctx, false);
3639 * RCU_INIT_POINTER here is safe because we've not
3640 * modified the ctx and the above modification of
3641 * ctx->task and ctx->task_ctx_data are immaterial
3642 * since those values are always verified under
3643 * ctx->lock which we're now holding.
3645 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3646 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3648 do_switch = 0;
3650 perf_event_sync_stat(ctx, next_ctx);
3652 raw_spin_unlock(&next_ctx->lock);
3653 raw_spin_unlock(&ctx->lock);
3655 unlock:
3656 rcu_read_unlock();
3658 if (do_switch) {
3659 raw_spin_lock(&ctx->lock);
3660 perf_ctx_disable(ctx, false);
3662 inside_switch:
3663 perf_ctx_sched_task_cb(ctx, false);
3664 task_ctx_sched_out(ctx, NULL, EVENT_ALL);
3666 perf_ctx_enable(ctx, false);
3667 raw_spin_unlock(&ctx->lock);
3671 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3672 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3674 void perf_sched_cb_dec(struct pmu *pmu)
3676 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3678 this_cpu_dec(perf_sched_cb_usages);
3679 barrier();
3681 if (!--cpc->sched_cb_usage)
3682 list_del(&cpc->sched_cb_entry);
3686 void perf_sched_cb_inc(struct pmu *pmu)
3688 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3690 if (!cpc->sched_cb_usage++)
3691 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3693 barrier();
3694 this_cpu_inc(perf_sched_cb_usages);
3698 * This function provides the context switch callback to the lower code
3699 * layer. It is invoked ONLY when the context switch callback is enabled.
3701 * This callback is relevant even to per-cpu events; for example multi event
3702 * PEBS requires this to provide PID/TID information. This requires we flush
3703 * all queued PEBS records before we context switch to a new task.
3705 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3707 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3708 struct pmu *pmu;
3710 pmu = cpc->epc.pmu;
3712 /* software PMUs will not have sched_task */
3713 if (WARN_ON_ONCE(!pmu->sched_task))
3714 return;
3716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3717 perf_pmu_disable(pmu);
3719 pmu->sched_task(cpc->task_epc, sched_in);
3721 perf_pmu_enable(pmu);
3722 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3725 static void perf_pmu_sched_task(struct task_struct *prev,
3726 struct task_struct *next,
3727 bool sched_in)
3729 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3730 struct perf_cpu_pmu_context *cpc;
3732 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3733 if (prev == next || cpuctx->task_ctx)
3734 return;
3736 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3737 __perf_pmu_sched_task(cpc, sched_in);
3740 static void perf_event_switch(struct task_struct *task,
3741 struct task_struct *next_prev, bool sched_in);
3744 * Called from scheduler to remove the events of the current task,
3745 * with interrupts disabled.
3747 * We stop each event and update the event value in event->count.
3749 * This does not protect us against NMI, but disable()
3750 * sets the disabled bit in the control field of event _before_
3751 * accessing the event control register. If a NMI hits, then it will
3752 * not restart the event.
3754 void __perf_event_task_sched_out(struct task_struct *task,
3755 struct task_struct *next)
3757 if (__this_cpu_read(perf_sched_cb_usages))
3758 perf_pmu_sched_task(task, next, false);
3760 if (atomic_read(&nr_switch_events))
3761 perf_event_switch(task, next, false);
3763 perf_event_context_sched_out(task, next);
3766 * if cgroup events exist on this CPU, then we need
3767 * to check if we have to switch out PMU state.
3768 * cgroup event are system-wide mode only
3770 perf_cgroup_switch(next);
3773 static bool perf_less_group_idx(const void *l, const void *r, void __always_unused *args)
3775 const struct perf_event *le = *(const struct perf_event **)l;
3776 const struct perf_event *re = *(const struct perf_event **)r;
3778 return le->group_index < re->group_index;
3781 DEFINE_MIN_HEAP(struct perf_event *, perf_event_min_heap);
3783 static const struct min_heap_callbacks perf_min_heap = {
3784 .less = perf_less_group_idx,
3785 .swp = NULL,
3788 static void __heap_add(struct perf_event_min_heap *heap, struct perf_event *event)
3790 struct perf_event **itrs = heap->data;
3792 if (event) {
3793 itrs[heap->nr] = event;
3794 heap->nr++;
3798 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3800 struct perf_cpu_pmu_context *cpc;
3802 if (!pmu_ctx->ctx->task)
3803 return;
3805 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3806 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3807 cpc->task_epc = pmu_ctx;
3810 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3811 struct perf_event_groups *groups, int cpu,
3812 struct pmu *pmu,
3813 int (*func)(struct perf_event *, void *),
3814 void *data)
3816 #ifdef CONFIG_CGROUP_PERF
3817 struct cgroup_subsys_state *css = NULL;
3818 #endif
3819 struct perf_cpu_context *cpuctx = NULL;
3820 /* Space for per CPU and/or any CPU event iterators. */
3821 struct perf_event *itrs[2];
3822 struct perf_event_min_heap event_heap;
3823 struct perf_event **evt;
3824 int ret;
3826 if (pmu->filter && pmu->filter(pmu, cpu))
3827 return 0;
3829 if (!ctx->task) {
3830 cpuctx = this_cpu_ptr(&perf_cpu_context);
3831 event_heap = (struct perf_event_min_heap){
3832 .data = cpuctx->heap,
3833 .nr = 0,
3834 .size = cpuctx->heap_size,
3837 lockdep_assert_held(&cpuctx->ctx.lock);
3839 #ifdef CONFIG_CGROUP_PERF
3840 if (cpuctx->cgrp)
3841 css = &cpuctx->cgrp->css;
3842 #endif
3843 } else {
3844 event_heap = (struct perf_event_min_heap){
3845 .data = itrs,
3846 .nr = 0,
3847 .size = ARRAY_SIZE(itrs),
3849 /* Events not within a CPU context may be on any CPU. */
3850 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3852 evt = event_heap.data;
3854 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3856 #ifdef CONFIG_CGROUP_PERF
3857 for (; css; css = css->parent)
3858 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3859 #endif
3861 if (event_heap.nr) {
3862 __link_epc((*evt)->pmu_ctx);
3863 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3866 min_heapify_all_inline(&event_heap, &perf_min_heap, NULL);
3868 while (event_heap.nr) {
3869 ret = func(*evt, data);
3870 if (ret)
3871 return ret;
3873 *evt = perf_event_groups_next(*evt, pmu);
3874 if (*evt)
3875 min_heap_sift_down_inline(&event_heap, 0, &perf_min_heap, NULL);
3876 else
3877 min_heap_pop_inline(&event_heap, &perf_min_heap, NULL);
3880 return 0;
3884 * Because the userpage is strictly per-event (there is no concept of context,
3885 * so there cannot be a context indirection), every userpage must be updated
3886 * when context time starts :-(
3888 * IOW, we must not miss EVENT_TIME edges.
3890 static inline bool event_update_userpage(struct perf_event *event)
3892 if (likely(!atomic_read(&event->mmap_count)))
3893 return false;
3895 perf_event_update_time(event);
3896 perf_event_update_userpage(event);
3898 return true;
3901 static inline void group_update_userpage(struct perf_event *group_event)
3903 struct perf_event *event;
3905 if (!event_update_userpage(group_event))
3906 return;
3908 for_each_sibling_event(event, group_event)
3909 event_update_userpage(event);
3912 static int merge_sched_in(struct perf_event *event, void *data)
3914 struct perf_event_context *ctx = event->ctx;
3915 int *can_add_hw = data;
3917 if (event->state <= PERF_EVENT_STATE_OFF)
3918 return 0;
3920 if (!event_filter_match(event))
3921 return 0;
3923 if (group_can_go_on(event, *can_add_hw)) {
3924 if (!group_sched_in(event, ctx))
3925 list_add_tail(&event->active_list, get_event_list(event));
3928 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3929 *can_add_hw = 0;
3930 if (event->attr.pinned) {
3931 perf_cgroup_event_disable(event, ctx);
3932 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3933 } else {
3934 struct perf_cpu_pmu_context *cpc;
3936 event->pmu_ctx->rotate_necessary = 1;
3937 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3938 perf_mux_hrtimer_restart(cpc);
3939 group_update_userpage(event);
3943 return 0;
3946 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3947 struct perf_event_groups *groups,
3948 struct pmu *pmu)
3950 int can_add_hw = 1;
3951 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3952 merge_sched_in, &can_add_hw);
3955 static void __pmu_ctx_sched_in(struct perf_event_pmu_context *pmu_ctx,
3956 enum event_type_t event_type)
3958 struct perf_event_context *ctx = pmu_ctx->ctx;
3960 if (event_type & EVENT_PINNED)
3961 pmu_groups_sched_in(ctx, &ctx->pinned_groups, pmu_ctx->pmu);
3962 if (event_type & EVENT_FLEXIBLE)
3963 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu_ctx->pmu);
3966 static void
3967 ctx_sched_in(struct perf_event_context *ctx, struct pmu *pmu, enum event_type_t event_type)
3969 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3970 struct perf_event_pmu_context *pmu_ctx;
3971 int is_active = ctx->is_active;
3972 bool cgroup = event_type & EVENT_CGROUP;
3974 event_type &= ~EVENT_CGROUP;
3976 lockdep_assert_held(&ctx->lock);
3978 if (likely(!ctx->nr_events))
3979 return;
3981 if (!(is_active & EVENT_TIME)) {
3982 /* start ctx time */
3983 __update_context_time(ctx, false);
3984 perf_cgroup_set_timestamp(cpuctx);
3986 * CPU-release for the below ->is_active store,
3987 * see __load_acquire() in perf_event_time_now()
3989 barrier();
3992 ctx->is_active |= (event_type | EVENT_TIME);
3993 if (ctx->task) {
3994 if (!(is_active & EVENT_ALL))
3995 cpuctx->task_ctx = ctx;
3996 else
3997 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
4000 is_active ^= ctx->is_active; /* changed bits */
4003 * First go through the list and put on any pinned groups
4004 * in order to give them the best chance of going on.
4006 if (is_active & EVENT_PINNED) {
4007 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4008 __pmu_ctx_sched_in(pmu_ctx, EVENT_PINNED);
4011 /* Then walk through the lower prio flexible groups */
4012 if (is_active & EVENT_FLEXIBLE) {
4013 for_each_epc(pmu_ctx, ctx, pmu, cgroup)
4014 __pmu_ctx_sched_in(pmu_ctx, EVENT_FLEXIBLE);
4018 static void perf_event_context_sched_in(struct task_struct *task)
4020 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4021 struct perf_event_context *ctx;
4023 rcu_read_lock();
4024 ctx = rcu_dereference(task->perf_event_ctxp);
4025 if (!ctx)
4026 goto rcu_unlock;
4028 if (cpuctx->task_ctx == ctx) {
4029 perf_ctx_lock(cpuctx, ctx);
4030 perf_ctx_disable(ctx, false);
4032 perf_ctx_sched_task_cb(ctx, true);
4034 perf_ctx_enable(ctx, false);
4035 perf_ctx_unlock(cpuctx, ctx);
4036 goto rcu_unlock;
4039 perf_ctx_lock(cpuctx, ctx);
4041 * We must check ctx->nr_events while holding ctx->lock, such
4042 * that we serialize against perf_install_in_context().
4044 if (!ctx->nr_events)
4045 goto unlock;
4047 perf_ctx_disable(ctx, false);
4049 * We want to keep the following priority order:
4050 * cpu pinned (that don't need to move), task pinned,
4051 * cpu flexible, task flexible.
4053 * However, if task's ctx is not carrying any pinned
4054 * events, no need to flip the cpuctx's events around.
4056 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
4057 perf_ctx_disable(&cpuctx->ctx, false);
4058 ctx_sched_out(&cpuctx->ctx, NULL, EVENT_FLEXIBLE);
4061 perf_event_sched_in(cpuctx, ctx, NULL);
4063 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
4065 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
4066 perf_ctx_enable(&cpuctx->ctx, false);
4068 perf_ctx_enable(ctx, false);
4070 unlock:
4071 perf_ctx_unlock(cpuctx, ctx);
4072 rcu_unlock:
4073 rcu_read_unlock();
4077 * Called from scheduler to add the events of the current task
4078 * with interrupts disabled.
4080 * We restore the event value and then enable it.
4082 * This does not protect us against NMI, but enable()
4083 * sets the enabled bit in the control field of event _before_
4084 * accessing the event control register. If a NMI hits, then it will
4085 * keep the event running.
4087 void __perf_event_task_sched_in(struct task_struct *prev,
4088 struct task_struct *task)
4090 perf_event_context_sched_in(task);
4092 if (atomic_read(&nr_switch_events))
4093 perf_event_switch(task, prev, true);
4095 if (__this_cpu_read(perf_sched_cb_usages))
4096 perf_pmu_sched_task(prev, task, true);
4099 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4101 u64 frequency = event->attr.sample_freq;
4102 u64 sec = NSEC_PER_SEC;
4103 u64 divisor, dividend;
4105 int count_fls, nsec_fls, frequency_fls, sec_fls;
4107 count_fls = fls64(count);
4108 nsec_fls = fls64(nsec);
4109 frequency_fls = fls64(frequency);
4110 sec_fls = 30;
4113 * We got @count in @nsec, with a target of sample_freq HZ
4114 * the target period becomes:
4116 * @count * 10^9
4117 * period = -------------------
4118 * @nsec * sample_freq
4123 * Reduce accuracy by one bit such that @a and @b converge
4124 * to a similar magnitude.
4126 #define REDUCE_FLS(a, b) \
4127 do { \
4128 if (a##_fls > b##_fls) { \
4129 a >>= 1; \
4130 a##_fls--; \
4131 } else { \
4132 b >>= 1; \
4133 b##_fls--; \
4135 } while (0)
4138 * Reduce accuracy until either term fits in a u64, then proceed with
4139 * the other, so that finally we can do a u64/u64 division.
4141 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4142 REDUCE_FLS(nsec, frequency);
4143 REDUCE_FLS(sec, count);
4146 if (count_fls + sec_fls > 64) {
4147 divisor = nsec * frequency;
4149 while (count_fls + sec_fls > 64) {
4150 REDUCE_FLS(count, sec);
4151 divisor >>= 1;
4154 dividend = count * sec;
4155 } else {
4156 dividend = count * sec;
4158 while (nsec_fls + frequency_fls > 64) {
4159 REDUCE_FLS(nsec, frequency);
4160 dividend >>= 1;
4163 divisor = nsec * frequency;
4166 if (!divisor)
4167 return dividend;
4169 return div64_u64(dividend, divisor);
4172 static DEFINE_PER_CPU(int, perf_throttled_count);
4173 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4175 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4177 struct hw_perf_event *hwc = &event->hw;
4178 s64 period, sample_period;
4179 s64 delta;
4181 period = perf_calculate_period(event, nsec, count);
4183 delta = (s64)(period - hwc->sample_period);
4184 if (delta >= 0)
4185 delta += 7;
4186 else
4187 delta -= 7;
4188 delta /= 8; /* low pass filter */
4190 sample_period = hwc->sample_period + delta;
4192 if (!sample_period)
4193 sample_period = 1;
4195 hwc->sample_period = sample_period;
4197 if (local64_read(&hwc->period_left) > 8*sample_period) {
4198 if (disable)
4199 event->pmu->stop(event, PERF_EF_UPDATE);
4201 local64_set(&hwc->period_left, 0);
4203 if (disable)
4204 event->pmu->start(event, PERF_EF_RELOAD);
4208 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4210 struct perf_event *event;
4211 struct hw_perf_event *hwc;
4212 u64 now, period = TICK_NSEC;
4213 s64 delta;
4215 list_for_each_entry(event, event_list, active_list) {
4216 if (event->state != PERF_EVENT_STATE_ACTIVE)
4217 continue;
4219 // XXX use visit thingy to avoid the -1,cpu match
4220 if (!event_filter_match(event))
4221 continue;
4223 hwc = &event->hw;
4225 if (hwc->interrupts == MAX_INTERRUPTS) {
4226 hwc->interrupts = 0;
4227 perf_log_throttle(event, 1);
4228 if (!event->attr.freq || !event->attr.sample_freq)
4229 event->pmu->start(event, 0);
4232 if (!event->attr.freq || !event->attr.sample_freq)
4233 continue;
4236 * stop the event and update event->count
4238 event->pmu->stop(event, PERF_EF_UPDATE);
4240 now = local64_read(&event->count);
4241 delta = now - hwc->freq_count_stamp;
4242 hwc->freq_count_stamp = now;
4245 * restart the event
4246 * reload only if value has changed
4247 * we have stopped the event so tell that
4248 * to perf_adjust_period() to avoid stopping it
4249 * twice.
4251 if (delta > 0)
4252 perf_adjust_period(event, period, delta, false);
4254 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4259 * combine freq adjustment with unthrottling to avoid two passes over the
4260 * events. At the same time, make sure, having freq events does not change
4261 * the rate of unthrottling as that would introduce bias.
4263 static void
4264 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4266 struct perf_event_pmu_context *pmu_ctx;
4269 * only need to iterate over all events iff:
4270 * - context have events in frequency mode (needs freq adjust)
4271 * - there are events to unthrottle on this cpu
4273 if (!(ctx->nr_freq || unthrottle))
4274 return;
4276 raw_spin_lock(&ctx->lock);
4278 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4279 if (!(pmu_ctx->nr_freq || unthrottle))
4280 continue;
4281 if (!perf_pmu_ctx_is_active(pmu_ctx))
4282 continue;
4283 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4284 continue;
4286 perf_pmu_disable(pmu_ctx->pmu);
4287 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4288 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4289 perf_pmu_enable(pmu_ctx->pmu);
4292 raw_spin_unlock(&ctx->lock);
4296 * Move @event to the tail of the @ctx's elegible events.
4298 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4301 * Rotate the first entry last of non-pinned groups. Rotation might be
4302 * disabled by the inheritance code.
4304 if (ctx->rotate_disable)
4305 return;
4307 perf_event_groups_delete(&ctx->flexible_groups, event);
4308 perf_event_groups_insert(&ctx->flexible_groups, event);
4311 /* pick an event from the flexible_groups to rotate */
4312 static inline struct perf_event *
4313 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4315 struct perf_event *event;
4316 struct rb_node *node;
4317 struct rb_root *tree;
4318 struct __group_key key = {
4319 .pmu = pmu_ctx->pmu,
4322 /* pick the first active flexible event */
4323 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4324 struct perf_event, active_list);
4325 if (event)
4326 goto out;
4328 /* if no active flexible event, pick the first event */
4329 tree = &pmu_ctx->ctx->flexible_groups.tree;
4331 if (!pmu_ctx->ctx->task) {
4332 key.cpu = smp_processor_id();
4334 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4335 if (node)
4336 event = __node_2_pe(node);
4337 goto out;
4340 key.cpu = -1;
4341 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4342 if (node) {
4343 event = __node_2_pe(node);
4344 goto out;
4347 key.cpu = smp_processor_id();
4348 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4349 if (node)
4350 event = __node_2_pe(node);
4352 out:
4354 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4355 * finds there are unschedulable events, it will set it again.
4357 pmu_ctx->rotate_necessary = 0;
4359 return event;
4362 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4364 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4365 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4366 struct perf_event *cpu_event = NULL, *task_event = NULL;
4367 int cpu_rotate, task_rotate;
4368 struct pmu *pmu;
4371 * Since we run this from IRQ context, nobody can install new
4372 * events, thus the event count values are stable.
4375 cpu_epc = &cpc->epc;
4376 pmu = cpu_epc->pmu;
4377 task_epc = cpc->task_epc;
4379 cpu_rotate = cpu_epc->rotate_necessary;
4380 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4382 if (!(cpu_rotate || task_rotate))
4383 return false;
4385 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4386 perf_pmu_disable(pmu);
4388 if (task_rotate)
4389 task_event = ctx_event_to_rotate(task_epc);
4390 if (cpu_rotate)
4391 cpu_event = ctx_event_to_rotate(cpu_epc);
4394 * As per the order given at ctx_resched() first 'pop' task flexible
4395 * and then, if needed CPU flexible.
4397 if (task_event || (task_epc && cpu_event)) {
4398 update_context_time(task_epc->ctx);
4399 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4402 if (cpu_event) {
4403 update_context_time(&cpuctx->ctx);
4404 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4405 rotate_ctx(&cpuctx->ctx, cpu_event);
4406 __pmu_ctx_sched_in(cpu_epc, EVENT_FLEXIBLE);
4409 if (task_event)
4410 rotate_ctx(task_epc->ctx, task_event);
4412 if (task_event || (task_epc && cpu_event))
4413 __pmu_ctx_sched_in(task_epc, EVENT_FLEXIBLE);
4415 perf_pmu_enable(pmu);
4416 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4418 return true;
4421 void perf_event_task_tick(void)
4423 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4424 struct perf_event_context *ctx;
4425 int throttled;
4427 lockdep_assert_irqs_disabled();
4429 __this_cpu_inc(perf_throttled_seq);
4430 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4431 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4433 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4435 rcu_read_lock();
4436 ctx = rcu_dereference(current->perf_event_ctxp);
4437 if (ctx)
4438 perf_adjust_freq_unthr_context(ctx, !!throttled);
4439 rcu_read_unlock();
4442 static int event_enable_on_exec(struct perf_event *event,
4443 struct perf_event_context *ctx)
4445 if (!event->attr.enable_on_exec)
4446 return 0;
4448 event->attr.enable_on_exec = 0;
4449 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4450 return 0;
4452 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4454 return 1;
4458 * Enable all of a task's events that have been marked enable-on-exec.
4459 * This expects task == current.
4461 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4463 struct perf_event_context *clone_ctx = NULL;
4464 enum event_type_t event_type = 0;
4465 struct perf_cpu_context *cpuctx;
4466 struct perf_event *event;
4467 unsigned long flags;
4468 int enabled = 0;
4470 local_irq_save(flags);
4471 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4472 goto out;
4474 if (!ctx->nr_events)
4475 goto out;
4477 cpuctx = this_cpu_ptr(&perf_cpu_context);
4478 perf_ctx_lock(cpuctx, ctx);
4479 ctx_time_freeze(cpuctx, ctx);
4481 list_for_each_entry(event, &ctx->event_list, event_entry) {
4482 enabled |= event_enable_on_exec(event, ctx);
4483 event_type |= get_event_type(event);
4487 * Unclone and reschedule this context if we enabled any event.
4489 if (enabled) {
4490 clone_ctx = unclone_ctx(ctx);
4491 ctx_resched(cpuctx, ctx, NULL, event_type);
4493 perf_ctx_unlock(cpuctx, ctx);
4495 out:
4496 local_irq_restore(flags);
4498 if (clone_ctx)
4499 put_ctx(clone_ctx);
4502 static void perf_remove_from_owner(struct perf_event *event);
4503 static void perf_event_exit_event(struct perf_event *event,
4504 struct perf_event_context *ctx);
4507 * Removes all events from the current task that have been marked
4508 * remove-on-exec, and feeds their values back to parent events.
4510 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4512 struct perf_event_context *clone_ctx = NULL;
4513 struct perf_event *event, *next;
4514 unsigned long flags;
4515 bool modified = false;
4517 mutex_lock(&ctx->mutex);
4519 if (WARN_ON_ONCE(ctx->task != current))
4520 goto unlock;
4522 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4523 if (!event->attr.remove_on_exec)
4524 continue;
4526 if (!is_kernel_event(event))
4527 perf_remove_from_owner(event);
4529 modified = true;
4531 perf_event_exit_event(event, ctx);
4534 raw_spin_lock_irqsave(&ctx->lock, flags);
4535 if (modified)
4536 clone_ctx = unclone_ctx(ctx);
4537 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539 unlock:
4540 mutex_unlock(&ctx->mutex);
4542 if (clone_ctx)
4543 put_ctx(clone_ctx);
4546 struct perf_read_data {
4547 struct perf_event *event;
4548 bool group;
4549 int ret;
4552 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu);
4554 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4556 int local_cpu = smp_processor_id();
4557 u16 local_pkg, event_pkg;
4559 if ((unsigned)event_cpu >= nr_cpu_ids)
4560 return event_cpu;
4562 if (event->group_caps & PERF_EV_CAP_READ_SCOPE) {
4563 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(event->pmu->scope, event_cpu);
4565 if (cpumask && cpumask_test_cpu(local_cpu, cpumask))
4566 return local_cpu;
4569 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4570 event_pkg = topology_physical_package_id(event_cpu);
4571 local_pkg = topology_physical_package_id(local_cpu);
4573 if (event_pkg == local_pkg)
4574 return local_cpu;
4577 return event_cpu;
4581 * Cross CPU call to read the hardware event
4583 static void __perf_event_read(void *info)
4585 struct perf_read_data *data = info;
4586 struct perf_event *sub, *event = data->event;
4587 struct perf_event_context *ctx = event->ctx;
4588 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4589 struct pmu *pmu = event->pmu;
4592 * If this is a task context, we need to check whether it is
4593 * the current task context of this cpu. If not it has been
4594 * scheduled out before the smp call arrived. In that case
4595 * event->count would have been updated to a recent sample
4596 * when the event was scheduled out.
4598 if (ctx->task && cpuctx->task_ctx != ctx)
4599 return;
4601 raw_spin_lock(&ctx->lock);
4602 ctx_time_update_event(ctx, event);
4604 perf_event_update_time(event);
4605 if (data->group)
4606 perf_event_update_sibling_time(event);
4608 if (event->state != PERF_EVENT_STATE_ACTIVE)
4609 goto unlock;
4611 if (!data->group) {
4612 pmu->read(event);
4613 data->ret = 0;
4614 goto unlock;
4617 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4619 pmu->read(event);
4621 for_each_sibling_event(sub, event) {
4622 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4624 * Use sibling's PMU rather than @event's since
4625 * sibling could be on different (eg: software) PMU.
4627 sub->pmu->read(sub);
4631 data->ret = pmu->commit_txn(pmu);
4633 unlock:
4634 raw_spin_unlock(&ctx->lock);
4637 static inline u64 perf_event_count(struct perf_event *event, bool self)
4639 if (self)
4640 return local64_read(&event->count);
4642 return local64_read(&event->count) + atomic64_read(&event->child_count);
4645 static void calc_timer_values(struct perf_event *event,
4646 u64 *now,
4647 u64 *enabled,
4648 u64 *running)
4650 u64 ctx_time;
4652 *now = perf_clock();
4653 ctx_time = perf_event_time_now(event, *now);
4654 __perf_update_times(event, ctx_time, enabled, running);
4658 * NMI-safe method to read a local event, that is an event that
4659 * is:
4660 * - either for the current task, or for this CPU
4661 * - does not have inherit set, for inherited task events
4662 * will not be local and we cannot read them atomically
4663 * - must not have a pmu::count method
4665 int perf_event_read_local(struct perf_event *event, u64 *value,
4666 u64 *enabled, u64 *running)
4668 unsigned long flags;
4669 int event_oncpu;
4670 int event_cpu;
4671 int ret = 0;
4674 * Disabling interrupts avoids all counter scheduling (context
4675 * switches, timer based rotation and IPIs).
4677 local_irq_save(flags);
4680 * It must not be an event with inherit set, we cannot read
4681 * all child counters from atomic context.
4683 if (event->attr.inherit) {
4684 ret = -EOPNOTSUPP;
4685 goto out;
4688 /* If this is a per-task event, it must be for current */
4689 if ((event->attach_state & PERF_ATTACH_TASK) &&
4690 event->hw.target != current) {
4691 ret = -EINVAL;
4692 goto out;
4696 * Get the event CPU numbers, and adjust them to local if the event is
4697 * a per-package event that can be read locally
4699 event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4700 event_cpu = __perf_event_read_cpu(event, event->cpu);
4702 /* If this is a per-CPU event, it must be for this CPU */
4703 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4704 event_cpu != smp_processor_id()) {
4705 ret = -EINVAL;
4706 goto out;
4709 /* If this is a pinned event it must be running on this CPU */
4710 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4711 ret = -EBUSY;
4712 goto out;
4716 * If the event is currently on this CPU, its either a per-task event,
4717 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4718 * oncpu == -1).
4720 if (event_oncpu == smp_processor_id())
4721 event->pmu->read(event);
4723 *value = local64_read(&event->count);
4724 if (enabled || running) {
4725 u64 __enabled, __running, __now;
4727 calc_timer_values(event, &__now, &__enabled, &__running);
4728 if (enabled)
4729 *enabled = __enabled;
4730 if (running)
4731 *running = __running;
4733 out:
4734 local_irq_restore(flags);
4736 return ret;
4739 static int perf_event_read(struct perf_event *event, bool group)
4741 enum perf_event_state state = READ_ONCE(event->state);
4742 int event_cpu, ret = 0;
4745 * If event is enabled and currently active on a CPU, update the
4746 * value in the event structure:
4748 again:
4749 if (state == PERF_EVENT_STATE_ACTIVE) {
4750 struct perf_read_data data;
4753 * Orders the ->state and ->oncpu loads such that if we see
4754 * ACTIVE we must also see the right ->oncpu.
4756 * Matches the smp_wmb() from event_sched_in().
4758 smp_rmb();
4760 event_cpu = READ_ONCE(event->oncpu);
4761 if ((unsigned)event_cpu >= nr_cpu_ids)
4762 return 0;
4764 data = (struct perf_read_data){
4765 .event = event,
4766 .group = group,
4767 .ret = 0,
4770 preempt_disable();
4771 event_cpu = __perf_event_read_cpu(event, event_cpu);
4774 * Purposely ignore the smp_call_function_single() return
4775 * value.
4777 * If event_cpu isn't a valid CPU it means the event got
4778 * scheduled out and that will have updated the event count.
4780 * Therefore, either way, we'll have an up-to-date event count
4781 * after this.
4783 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4784 preempt_enable();
4785 ret = data.ret;
4787 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4788 struct perf_event_context *ctx = event->ctx;
4789 unsigned long flags;
4791 raw_spin_lock_irqsave(&ctx->lock, flags);
4792 state = event->state;
4793 if (state != PERF_EVENT_STATE_INACTIVE) {
4794 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4795 goto again;
4799 * May read while context is not active (e.g., thread is
4800 * blocked), in that case we cannot update context time
4802 ctx_time_update_event(ctx, event);
4804 perf_event_update_time(event);
4805 if (group)
4806 perf_event_update_sibling_time(event);
4807 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4810 return ret;
4814 * Initialize the perf_event context in a task_struct:
4816 static void __perf_event_init_context(struct perf_event_context *ctx)
4818 raw_spin_lock_init(&ctx->lock);
4819 mutex_init(&ctx->mutex);
4820 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4821 perf_event_groups_init(&ctx->pinned_groups);
4822 perf_event_groups_init(&ctx->flexible_groups);
4823 INIT_LIST_HEAD(&ctx->event_list);
4824 refcount_set(&ctx->refcount, 1);
4827 static void
4828 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4830 epc->pmu = pmu;
4831 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4832 INIT_LIST_HEAD(&epc->pinned_active);
4833 INIT_LIST_HEAD(&epc->flexible_active);
4834 atomic_set(&epc->refcount, 1);
4837 static struct perf_event_context *
4838 alloc_perf_context(struct task_struct *task)
4840 struct perf_event_context *ctx;
4842 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4843 if (!ctx)
4844 return NULL;
4846 __perf_event_init_context(ctx);
4847 if (task)
4848 ctx->task = get_task_struct(task);
4850 return ctx;
4853 static struct task_struct *
4854 find_lively_task_by_vpid(pid_t vpid)
4856 struct task_struct *task;
4858 rcu_read_lock();
4859 if (!vpid)
4860 task = current;
4861 else
4862 task = find_task_by_vpid(vpid);
4863 if (task)
4864 get_task_struct(task);
4865 rcu_read_unlock();
4867 if (!task)
4868 return ERR_PTR(-ESRCH);
4870 return task;
4874 * Returns a matching context with refcount and pincount.
4876 static struct perf_event_context *
4877 find_get_context(struct task_struct *task, struct perf_event *event)
4879 struct perf_event_context *ctx, *clone_ctx = NULL;
4880 struct perf_cpu_context *cpuctx;
4881 unsigned long flags;
4882 int err;
4884 if (!task) {
4885 /* Must be root to operate on a CPU event: */
4886 err = perf_allow_cpu(&event->attr);
4887 if (err)
4888 return ERR_PTR(err);
4890 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4891 ctx = &cpuctx->ctx;
4892 get_ctx(ctx);
4893 raw_spin_lock_irqsave(&ctx->lock, flags);
4894 ++ctx->pin_count;
4895 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4897 return ctx;
4900 err = -EINVAL;
4901 retry:
4902 ctx = perf_lock_task_context(task, &flags);
4903 if (ctx) {
4904 clone_ctx = unclone_ctx(ctx);
4905 ++ctx->pin_count;
4907 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4909 if (clone_ctx)
4910 put_ctx(clone_ctx);
4911 } else {
4912 ctx = alloc_perf_context(task);
4913 err = -ENOMEM;
4914 if (!ctx)
4915 goto errout;
4917 err = 0;
4918 mutex_lock(&task->perf_event_mutex);
4920 * If it has already passed perf_event_exit_task().
4921 * we must see PF_EXITING, it takes this mutex too.
4923 if (task->flags & PF_EXITING)
4924 err = -ESRCH;
4925 else if (task->perf_event_ctxp)
4926 err = -EAGAIN;
4927 else {
4928 get_ctx(ctx);
4929 ++ctx->pin_count;
4930 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4932 mutex_unlock(&task->perf_event_mutex);
4934 if (unlikely(err)) {
4935 put_ctx(ctx);
4937 if (err == -EAGAIN)
4938 goto retry;
4939 goto errout;
4943 return ctx;
4945 errout:
4946 return ERR_PTR(err);
4949 static struct perf_event_pmu_context *
4950 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4951 struct perf_event *event)
4953 struct perf_event_pmu_context *new = NULL, *epc;
4954 void *task_ctx_data = NULL;
4956 if (!ctx->task) {
4958 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4959 * relies on the fact that find_get_pmu_context() cannot fail
4960 * for CPU contexts.
4962 struct perf_cpu_pmu_context *cpc;
4964 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4965 epc = &cpc->epc;
4966 raw_spin_lock_irq(&ctx->lock);
4967 if (!epc->ctx) {
4968 atomic_set(&epc->refcount, 1);
4969 epc->embedded = 1;
4970 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4971 epc->ctx = ctx;
4972 } else {
4973 WARN_ON_ONCE(epc->ctx != ctx);
4974 atomic_inc(&epc->refcount);
4976 raw_spin_unlock_irq(&ctx->lock);
4977 return epc;
4980 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4981 if (!new)
4982 return ERR_PTR(-ENOMEM);
4984 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4985 task_ctx_data = alloc_task_ctx_data(pmu);
4986 if (!task_ctx_data) {
4987 kfree(new);
4988 return ERR_PTR(-ENOMEM);
4992 __perf_init_event_pmu_context(new, pmu);
4995 * XXX
4997 * lockdep_assert_held(&ctx->mutex);
4999 * can't because perf_event_init_task() doesn't actually hold the
5000 * child_ctx->mutex.
5003 raw_spin_lock_irq(&ctx->lock);
5004 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
5005 if (epc->pmu == pmu) {
5006 WARN_ON_ONCE(epc->ctx != ctx);
5007 atomic_inc(&epc->refcount);
5008 goto found_epc;
5012 epc = new;
5013 new = NULL;
5015 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
5016 epc->ctx = ctx;
5018 found_epc:
5019 if (task_ctx_data && !epc->task_ctx_data) {
5020 epc->task_ctx_data = task_ctx_data;
5021 task_ctx_data = NULL;
5022 ctx->nr_task_data++;
5024 raw_spin_unlock_irq(&ctx->lock);
5026 free_task_ctx_data(pmu, task_ctx_data);
5027 kfree(new);
5029 return epc;
5032 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
5034 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
5037 static void free_epc_rcu(struct rcu_head *head)
5039 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
5041 kfree(epc->task_ctx_data);
5042 kfree(epc);
5045 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
5047 struct perf_event_context *ctx = epc->ctx;
5048 unsigned long flags;
5051 * XXX
5053 * lockdep_assert_held(&ctx->mutex);
5055 * can't because of the call-site in _free_event()/put_event()
5056 * which isn't always called under ctx->mutex.
5058 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
5059 return;
5061 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
5063 list_del_init(&epc->pmu_ctx_entry);
5064 epc->ctx = NULL;
5066 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
5067 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
5069 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5071 if (epc->embedded)
5072 return;
5074 call_rcu(&epc->rcu_head, free_epc_rcu);
5077 static void perf_event_free_filter(struct perf_event *event);
5079 static void free_event_rcu(struct rcu_head *head)
5081 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5083 if (event->ns)
5084 put_pid_ns(event->ns);
5085 perf_event_free_filter(event);
5086 kmem_cache_free(perf_event_cache, event);
5089 static void ring_buffer_attach(struct perf_event *event,
5090 struct perf_buffer *rb);
5092 static void detach_sb_event(struct perf_event *event)
5094 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5096 raw_spin_lock(&pel->lock);
5097 list_del_rcu(&event->sb_list);
5098 raw_spin_unlock(&pel->lock);
5101 static bool is_sb_event(struct perf_event *event)
5103 struct perf_event_attr *attr = &event->attr;
5105 if (event->parent)
5106 return false;
5108 if (event->attach_state & PERF_ATTACH_TASK)
5109 return false;
5111 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5112 attr->comm || attr->comm_exec ||
5113 attr->task || attr->ksymbol ||
5114 attr->context_switch || attr->text_poke ||
5115 attr->bpf_event)
5116 return true;
5117 return false;
5120 static void unaccount_pmu_sb_event(struct perf_event *event)
5122 if (is_sb_event(event))
5123 detach_sb_event(event);
5126 #ifdef CONFIG_NO_HZ_FULL
5127 static DEFINE_SPINLOCK(nr_freq_lock);
5128 #endif
5130 static void unaccount_freq_event_nohz(void)
5132 #ifdef CONFIG_NO_HZ_FULL
5133 spin_lock(&nr_freq_lock);
5134 if (atomic_dec_and_test(&nr_freq_events))
5135 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5136 spin_unlock(&nr_freq_lock);
5137 #endif
5140 static void unaccount_freq_event(void)
5142 if (tick_nohz_full_enabled())
5143 unaccount_freq_event_nohz();
5144 else
5145 atomic_dec(&nr_freq_events);
5148 static void unaccount_event(struct perf_event *event)
5150 bool dec = false;
5152 if (event->parent)
5153 return;
5155 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5156 dec = true;
5157 if (event->attr.mmap || event->attr.mmap_data)
5158 atomic_dec(&nr_mmap_events);
5159 if (event->attr.build_id)
5160 atomic_dec(&nr_build_id_events);
5161 if (event->attr.comm)
5162 atomic_dec(&nr_comm_events);
5163 if (event->attr.namespaces)
5164 atomic_dec(&nr_namespaces_events);
5165 if (event->attr.cgroup)
5166 atomic_dec(&nr_cgroup_events);
5167 if (event->attr.task)
5168 atomic_dec(&nr_task_events);
5169 if (event->attr.freq)
5170 unaccount_freq_event();
5171 if (event->attr.context_switch) {
5172 dec = true;
5173 atomic_dec(&nr_switch_events);
5175 if (is_cgroup_event(event))
5176 dec = true;
5177 if (has_branch_stack(event))
5178 dec = true;
5179 if (event->attr.ksymbol)
5180 atomic_dec(&nr_ksymbol_events);
5181 if (event->attr.bpf_event)
5182 atomic_dec(&nr_bpf_events);
5183 if (event->attr.text_poke)
5184 atomic_dec(&nr_text_poke_events);
5186 if (dec) {
5187 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5188 schedule_delayed_work(&perf_sched_work, HZ);
5191 unaccount_pmu_sb_event(event);
5194 static void perf_sched_delayed(struct work_struct *work)
5196 mutex_lock(&perf_sched_mutex);
5197 if (atomic_dec_and_test(&perf_sched_count))
5198 static_branch_disable(&perf_sched_events);
5199 mutex_unlock(&perf_sched_mutex);
5203 * The following implement mutual exclusion of events on "exclusive" pmus
5204 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5205 * at a time, so we disallow creating events that might conflict, namely:
5207 * 1) cpu-wide events in the presence of per-task events,
5208 * 2) per-task events in the presence of cpu-wide events,
5209 * 3) two matching events on the same perf_event_context.
5211 * The former two cases are handled in the allocation path (perf_event_alloc(),
5212 * _free_event()), the latter -- before the first perf_install_in_context().
5214 static int exclusive_event_init(struct perf_event *event)
5216 struct pmu *pmu = event->pmu;
5218 if (!is_exclusive_pmu(pmu))
5219 return 0;
5222 * Prevent co-existence of per-task and cpu-wide events on the
5223 * same exclusive pmu.
5225 * Negative pmu::exclusive_cnt means there are cpu-wide
5226 * events on this "exclusive" pmu, positive means there are
5227 * per-task events.
5229 * Since this is called in perf_event_alloc() path, event::ctx
5230 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5231 * to mean "per-task event", because unlike other attach states it
5232 * never gets cleared.
5234 if (event->attach_state & PERF_ATTACH_TASK) {
5235 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5236 return -EBUSY;
5237 } else {
5238 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5239 return -EBUSY;
5242 return 0;
5245 static void exclusive_event_destroy(struct perf_event *event)
5247 struct pmu *pmu = event->pmu;
5249 if (!is_exclusive_pmu(pmu))
5250 return;
5252 /* see comment in exclusive_event_init() */
5253 if (event->attach_state & PERF_ATTACH_TASK)
5254 atomic_dec(&pmu->exclusive_cnt);
5255 else
5256 atomic_inc(&pmu->exclusive_cnt);
5259 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5261 if ((e1->pmu == e2->pmu) &&
5262 (e1->cpu == e2->cpu ||
5263 e1->cpu == -1 ||
5264 e2->cpu == -1))
5265 return true;
5266 return false;
5269 static bool exclusive_event_installable(struct perf_event *event,
5270 struct perf_event_context *ctx)
5272 struct perf_event *iter_event;
5273 struct pmu *pmu = event->pmu;
5275 lockdep_assert_held(&ctx->mutex);
5277 if (!is_exclusive_pmu(pmu))
5278 return true;
5280 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5281 if (exclusive_event_match(iter_event, event))
5282 return false;
5285 return true;
5288 static void perf_addr_filters_splice(struct perf_event *event,
5289 struct list_head *head);
5291 static void perf_pending_task_sync(struct perf_event *event)
5293 struct callback_head *head = &event->pending_task;
5295 if (!event->pending_work)
5296 return;
5298 * If the task is queued to the current task's queue, we
5299 * obviously can't wait for it to complete. Simply cancel it.
5301 if (task_work_cancel(current, head)) {
5302 event->pending_work = 0;
5303 local_dec(&event->ctx->nr_no_switch_fast);
5304 return;
5308 * All accesses related to the event are within the same RCU section in
5309 * perf_pending_task(). The RCU grace period before the event is freed
5310 * will make sure all those accesses are complete by then.
5312 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5315 static void _free_event(struct perf_event *event)
5317 irq_work_sync(&event->pending_irq);
5318 irq_work_sync(&event->pending_disable_irq);
5319 perf_pending_task_sync(event);
5321 unaccount_event(event);
5323 security_perf_event_free(event);
5325 if (event->rb) {
5327 * Can happen when we close an event with re-directed output.
5329 * Since we have a 0 refcount, perf_mmap_close() will skip
5330 * over us; possibly making our ring_buffer_put() the last.
5332 mutex_lock(&event->mmap_mutex);
5333 ring_buffer_attach(event, NULL);
5334 mutex_unlock(&event->mmap_mutex);
5337 if (is_cgroup_event(event))
5338 perf_detach_cgroup(event);
5340 if (!event->parent) {
5341 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5342 put_callchain_buffers();
5345 perf_event_free_bpf_prog(event);
5346 perf_addr_filters_splice(event, NULL);
5347 kfree(event->addr_filter_ranges);
5349 if (event->destroy)
5350 event->destroy(event);
5353 * Must be after ->destroy(), due to uprobe_perf_close() using
5354 * hw.target.
5356 if (event->hw.target)
5357 put_task_struct(event->hw.target);
5359 if (event->pmu_ctx)
5360 put_pmu_ctx(event->pmu_ctx);
5363 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5364 * all task references must be cleaned up.
5366 if (event->ctx)
5367 put_ctx(event->ctx);
5369 exclusive_event_destroy(event);
5370 module_put(event->pmu->module);
5372 call_rcu(&event->rcu_head, free_event_rcu);
5376 * Used to free events which have a known refcount of 1, such as in error paths
5377 * where the event isn't exposed yet and inherited events.
5379 static void free_event(struct perf_event *event)
5381 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5382 "unexpected event refcount: %ld; ptr=%p\n",
5383 atomic_long_read(&event->refcount), event)) {
5384 /* leak to avoid use-after-free */
5385 return;
5388 _free_event(event);
5392 * Remove user event from the owner task.
5394 static void perf_remove_from_owner(struct perf_event *event)
5396 struct task_struct *owner;
5398 rcu_read_lock();
5400 * Matches the smp_store_release() in perf_event_exit_task(). If we
5401 * observe !owner it means the list deletion is complete and we can
5402 * indeed free this event, otherwise we need to serialize on
5403 * owner->perf_event_mutex.
5405 owner = READ_ONCE(event->owner);
5406 if (owner) {
5408 * Since delayed_put_task_struct() also drops the last
5409 * task reference we can safely take a new reference
5410 * while holding the rcu_read_lock().
5412 get_task_struct(owner);
5414 rcu_read_unlock();
5416 if (owner) {
5418 * If we're here through perf_event_exit_task() we're already
5419 * holding ctx->mutex which would be an inversion wrt. the
5420 * normal lock order.
5422 * However we can safely take this lock because its the child
5423 * ctx->mutex.
5425 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5428 * We have to re-check the event->owner field, if it is cleared
5429 * we raced with perf_event_exit_task(), acquiring the mutex
5430 * ensured they're done, and we can proceed with freeing the
5431 * event.
5433 if (event->owner) {
5434 list_del_init(&event->owner_entry);
5435 smp_store_release(&event->owner, NULL);
5437 mutex_unlock(&owner->perf_event_mutex);
5438 put_task_struct(owner);
5442 static void put_event(struct perf_event *event)
5444 if (!atomic_long_dec_and_test(&event->refcount))
5445 return;
5447 _free_event(event);
5451 * Kill an event dead; while event:refcount will preserve the event
5452 * object, it will not preserve its functionality. Once the last 'user'
5453 * gives up the object, we'll destroy the thing.
5455 int perf_event_release_kernel(struct perf_event *event)
5457 struct perf_event_context *ctx = event->ctx;
5458 struct perf_event *child, *tmp;
5459 LIST_HEAD(free_list);
5462 * If we got here through err_alloc: free_event(event); we will not
5463 * have attached to a context yet.
5465 if (!ctx) {
5466 WARN_ON_ONCE(event->attach_state &
5467 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5468 goto no_ctx;
5471 if (!is_kernel_event(event))
5472 perf_remove_from_owner(event);
5474 ctx = perf_event_ctx_lock(event);
5475 WARN_ON_ONCE(ctx->parent_ctx);
5478 * Mark this event as STATE_DEAD, there is no external reference to it
5479 * anymore.
5481 * Anybody acquiring event->child_mutex after the below loop _must_
5482 * also see this, most importantly inherit_event() which will avoid
5483 * placing more children on the list.
5485 * Thus this guarantees that we will in fact observe and kill _ALL_
5486 * child events.
5488 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5490 perf_event_ctx_unlock(event, ctx);
5492 again:
5493 mutex_lock(&event->child_mutex);
5494 list_for_each_entry(child, &event->child_list, child_list) {
5495 void *var = NULL;
5498 * Cannot change, child events are not migrated, see the
5499 * comment with perf_event_ctx_lock_nested().
5501 ctx = READ_ONCE(child->ctx);
5503 * Since child_mutex nests inside ctx::mutex, we must jump
5504 * through hoops. We start by grabbing a reference on the ctx.
5506 * Since the event cannot get freed while we hold the
5507 * child_mutex, the context must also exist and have a !0
5508 * reference count.
5510 get_ctx(ctx);
5513 * Now that we have a ctx ref, we can drop child_mutex, and
5514 * acquire ctx::mutex without fear of it going away. Then we
5515 * can re-acquire child_mutex.
5517 mutex_unlock(&event->child_mutex);
5518 mutex_lock(&ctx->mutex);
5519 mutex_lock(&event->child_mutex);
5522 * Now that we hold ctx::mutex and child_mutex, revalidate our
5523 * state, if child is still the first entry, it didn't get freed
5524 * and we can continue doing so.
5526 tmp = list_first_entry_or_null(&event->child_list,
5527 struct perf_event, child_list);
5528 if (tmp == child) {
5529 perf_remove_from_context(child, DETACH_GROUP);
5530 list_move(&child->child_list, &free_list);
5532 * This matches the refcount bump in inherit_event();
5533 * this can't be the last reference.
5535 put_event(event);
5536 } else {
5537 var = &ctx->refcount;
5540 mutex_unlock(&event->child_mutex);
5541 mutex_unlock(&ctx->mutex);
5542 put_ctx(ctx);
5544 if (var) {
5546 * If perf_event_free_task() has deleted all events from the
5547 * ctx while the child_mutex got released above, make sure to
5548 * notify about the preceding put_ctx().
5550 smp_mb(); /* pairs with wait_var_event() */
5551 wake_up_var(var);
5553 goto again;
5555 mutex_unlock(&event->child_mutex);
5557 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5558 void *var = &child->ctx->refcount;
5560 list_del(&child->child_list);
5561 free_event(child);
5564 * Wake any perf_event_free_task() waiting for this event to be
5565 * freed.
5567 smp_mb(); /* pairs with wait_var_event() */
5568 wake_up_var(var);
5571 no_ctx:
5572 put_event(event); /* Must be the 'last' reference */
5573 return 0;
5575 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5578 * Called when the last reference to the file is gone.
5580 static int perf_release(struct inode *inode, struct file *file)
5582 perf_event_release_kernel(file->private_data);
5583 return 0;
5586 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5588 struct perf_event *child;
5589 u64 total = 0;
5591 *enabled = 0;
5592 *running = 0;
5594 mutex_lock(&event->child_mutex);
5596 (void)perf_event_read(event, false);
5597 total += perf_event_count(event, false);
5599 *enabled += event->total_time_enabled +
5600 atomic64_read(&event->child_total_time_enabled);
5601 *running += event->total_time_running +
5602 atomic64_read(&event->child_total_time_running);
5604 list_for_each_entry(child, &event->child_list, child_list) {
5605 (void)perf_event_read(child, false);
5606 total += perf_event_count(child, false);
5607 *enabled += child->total_time_enabled;
5608 *running += child->total_time_running;
5610 mutex_unlock(&event->child_mutex);
5612 return total;
5615 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5617 struct perf_event_context *ctx;
5618 u64 count;
5620 ctx = perf_event_ctx_lock(event);
5621 count = __perf_event_read_value(event, enabled, running);
5622 perf_event_ctx_unlock(event, ctx);
5624 return count;
5626 EXPORT_SYMBOL_GPL(perf_event_read_value);
5628 static int __perf_read_group_add(struct perf_event *leader,
5629 u64 read_format, u64 *values)
5631 struct perf_event_context *ctx = leader->ctx;
5632 struct perf_event *sub, *parent;
5633 unsigned long flags;
5634 int n = 1; /* skip @nr */
5635 int ret;
5637 ret = perf_event_read(leader, true);
5638 if (ret)
5639 return ret;
5641 raw_spin_lock_irqsave(&ctx->lock, flags);
5643 * Verify the grouping between the parent and child (inherited)
5644 * events is still in tact.
5646 * Specifically:
5647 * - leader->ctx->lock pins leader->sibling_list
5648 * - parent->child_mutex pins parent->child_list
5649 * - parent->ctx->mutex pins parent->sibling_list
5651 * Because parent->ctx != leader->ctx (and child_list nests inside
5652 * ctx->mutex), group destruction is not atomic between children, also
5653 * see perf_event_release_kernel(). Additionally, parent can grow the
5654 * group.
5656 * Therefore it is possible to have parent and child groups in a
5657 * different configuration and summing over such a beast makes no sense
5658 * what so ever.
5660 * Reject this.
5662 parent = leader->parent;
5663 if (parent &&
5664 (parent->group_generation != leader->group_generation ||
5665 parent->nr_siblings != leader->nr_siblings)) {
5666 ret = -ECHILD;
5667 goto unlock;
5671 * Since we co-schedule groups, {enabled,running} times of siblings
5672 * will be identical to those of the leader, so we only publish one
5673 * set.
5675 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5676 values[n++] += leader->total_time_enabled +
5677 atomic64_read(&leader->child_total_time_enabled);
5680 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5681 values[n++] += leader->total_time_running +
5682 atomic64_read(&leader->child_total_time_running);
5686 * Write {count,id} tuples for every sibling.
5688 values[n++] += perf_event_count(leader, false);
5689 if (read_format & PERF_FORMAT_ID)
5690 values[n++] = primary_event_id(leader);
5691 if (read_format & PERF_FORMAT_LOST)
5692 values[n++] = atomic64_read(&leader->lost_samples);
5694 for_each_sibling_event(sub, leader) {
5695 values[n++] += perf_event_count(sub, false);
5696 if (read_format & PERF_FORMAT_ID)
5697 values[n++] = primary_event_id(sub);
5698 if (read_format & PERF_FORMAT_LOST)
5699 values[n++] = atomic64_read(&sub->lost_samples);
5702 unlock:
5703 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5704 return ret;
5707 static int perf_read_group(struct perf_event *event,
5708 u64 read_format, char __user *buf)
5710 struct perf_event *leader = event->group_leader, *child;
5711 struct perf_event_context *ctx = leader->ctx;
5712 int ret;
5713 u64 *values;
5715 lockdep_assert_held(&ctx->mutex);
5717 values = kzalloc(event->read_size, GFP_KERNEL);
5718 if (!values)
5719 return -ENOMEM;
5721 values[0] = 1 + leader->nr_siblings;
5723 mutex_lock(&leader->child_mutex);
5725 ret = __perf_read_group_add(leader, read_format, values);
5726 if (ret)
5727 goto unlock;
5729 list_for_each_entry(child, &leader->child_list, child_list) {
5730 ret = __perf_read_group_add(child, read_format, values);
5731 if (ret)
5732 goto unlock;
5735 mutex_unlock(&leader->child_mutex);
5737 ret = event->read_size;
5738 if (copy_to_user(buf, values, event->read_size))
5739 ret = -EFAULT;
5740 goto out;
5742 unlock:
5743 mutex_unlock(&leader->child_mutex);
5744 out:
5745 kfree(values);
5746 return ret;
5749 static int perf_read_one(struct perf_event *event,
5750 u64 read_format, char __user *buf)
5752 u64 enabled, running;
5753 u64 values[5];
5754 int n = 0;
5756 values[n++] = __perf_event_read_value(event, &enabled, &running);
5757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5758 values[n++] = enabled;
5759 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5760 values[n++] = running;
5761 if (read_format & PERF_FORMAT_ID)
5762 values[n++] = primary_event_id(event);
5763 if (read_format & PERF_FORMAT_LOST)
5764 values[n++] = atomic64_read(&event->lost_samples);
5766 if (copy_to_user(buf, values, n * sizeof(u64)))
5767 return -EFAULT;
5769 return n * sizeof(u64);
5772 static bool is_event_hup(struct perf_event *event)
5774 bool no_children;
5776 if (event->state > PERF_EVENT_STATE_EXIT)
5777 return false;
5779 mutex_lock(&event->child_mutex);
5780 no_children = list_empty(&event->child_list);
5781 mutex_unlock(&event->child_mutex);
5782 return no_children;
5786 * Read the performance event - simple non blocking version for now
5788 static ssize_t
5789 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5791 u64 read_format = event->attr.read_format;
5792 int ret;
5795 * Return end-of-file for a read on an event that is in
5796 * error state (i.e. because it was pinned but it couldn't be
5797 * scheduled on to the CPU at some point).
5799 if (event->state == PERF_EVENT_STATE_ERROR)
5800 return 0;
5802 if (count < event->read_size)
5803 return -ENOSPC;
5805 WARN_ON_ONCE(event->ctx->parent_ctx);
5806 if (read_format & PERF_FORMAT_GROUP)
5807 ret = perf_read_group(event, read_format, buf);
5808 else
5809 ret = perf_read_one(event, read_format, buf);
5811 return ret;
5814 static ssize_t
5815 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5817 struct perf_event *event = file->private_data;
5818 struct perf_event_context *ctx;
5819 int ret;
5821 ret = security_perf_event_read(event);
5822 if (ret)
5823 return ret;
5825 ctx = perf_event_ctx_lock(event);
5826 ret = __perf_read(event, buf, count);
5827 perf_event_ctx_unlock(event, ctx);
5829 return ret;
5832 static __poll_t perf_poll(struct file *file, poll_table *wait)
5834 struct perf_event *event = file->private_data;
5835 struct perf_buffer *rb;
5836 __poll_t events = EPOLLHUP;
5838 poll_wait(file, &event->waitq, wait);
5840 if (is_event_hup(event))
5841 return events;
5844 * Pin the event->rb by taking event->mmap_mutex; otherwise
5845 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5847 mutex_lock(&event->mmap_mutex);
5848 rb = event->rb;
5849 if (rb)
5850 events = atomic_xchg(&rb->poll, 0);
5851 mutex_unlock(&event->mmap_mutex);
5852 return events;
5855 static void _perf_event_reset(struct perf_event *event)
5857 (void)perf_event_read(event, false);
5858 local64_set(&event->count, 0);
5859 perf_event_update_userpage(event);
5862 /* Assume it's not an event with inherit set. */
5863 u64 perf_event_pause(struct perf_event *event, bool reset)
5865 struct perf_event_context *ctx;
5866 u64 count;
5868 ctx = perf_event_ctx_lock(event);
5869 WARN_ON_ONCE(event->attr.inherit);
5870 _perf_event_disable(event);
5871 count = local64_read(&event->count);
5872 if (reset)
5873 local64_set(&event->count, 0);
5874 perf_event_ctx_unlock(event, ctx);
5876 return count;
5878 EXPORT_SYMBOL_GPL(perf_event_pause);
5881 * Holding the top-level event's child_mutex means that any
5882 * descendant process that has inherited this event will block
5883 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5884 * task existence requirements of perf_event_enable/disable.
5886 static void perf_event_for_each_child(struct perf_event *event,
5887 void (*func)(struct perf_event *))
5889 struct perf_event *child;
5891 WARN_ON_ONCE(event->ctx->parent_ctx);
5893 mutex_lock(&event->child_mutex);
5894 func(event);
5895 list_for_each_entry(child, &event->child_list, child_list)
5896 func(child);
5897 mutex_unlock(&event->child_mutex);
5900 static void perf_event_for_each(struct perf_event *event,
5901 void (*func)(struct perf_event *))
5903 struct perf_event_context *ctx = event->ctx;
5904 struct perf_event *sibling;
5906 lockdep_assert_held(&ctx->mutex);
5908 event = event->group_leader;
5910 perf_event_for_each_child(event, func);
5911 for_each_sibling_event(sibling, event)
5912 perf_event_for_each_child(sibling, func);
5915 static void __perf_event_period(struct perf_event *event,
5916 struct perf_cpu_context *cpuctx,
5917 struct perf_event_context *ctx,
5918 void *info)
5920 u64 value = *((u64 *)info);
5921 bool active;
5923 if (event->attr.freq) {
5924 event->attr.sample_freq = value;
5925 } else {
5926 event->attr.sample_period = value;
5927 event->hw.sample_period = value;
5930 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5931 if (active) {
5932 perf_pmu_disable(event->pmu);
5934 * We could be throttled; unthrottle now to avoid the tick
5935 * trying to unthrottle while we already re-started the event.
5937 if (event->hw.interrupts == MAX_INTERRUPTS) {
5938 event->hw.interrupts = 0;
5939 perf_log_throttle(event, 1);
5941 event->pmu->stop(event, PERF_EF_UPDATE);
5944 local64_set(&event->hw.period_left, 0);
5946 if (active) {
5947 event->pmu->start(event, PERF_EF_RELOAD);
5948 perf_pmu_enable(event->pmu);
5952 static int perf_event_check_period(struct perf_event *event, u64 value)
5954 return event->pmu->check_period(event, value);
5957 static int _perf_event_period(struct perf_event *event, u64 value)
5959 if (!is_sampling_event(event))
5960 return -EINVAL;
5962 if (!value)
5963 return -EINVAL;
5965 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5966 return -EINVAL;
5968 if (perf_event_check_period(event, value))
5969 return -EINVAL;
5971 if (!event->attr.freq && (value & (1ULL << 63)))
5972 return -EINVAL;
5974 event_function_call(event, __perf_event_period, &value);
5976 return 0;
5979 int perf_event_period(struct perf_event *event, u64 value)
5981 struct perf_event_context *ctx;
5982 int ret;
5984 ctx = perf_event_ctx_lock(event);
5985 ret = _perf_event_period(event, value);
5986 perf_event_ctx_unlock(event, ctx);
5988 return ret;
5990 EXPORT_SYMBOL_GPL(perf_event_period);
5992 static const struct file_operations perf_fops;
5994 static inline bool is_perf_file(struct fd f)
5996 return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
5999 static int perf_event_set_output(struct perf_event *event,
6000 struct perf_event *output_event);
6001 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
6002 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6003 struct perf_event_attr *attr);
6005 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
6007 void (*func)(struct perf_event *);
6008 u32 flags = arg;
6010 switch (cmd) {
6011 case PERF_EVENT_IOC_ENABLE:
6012 func = _perf_event_enable;
6013 break;
6014 case PERF_EVENT_IOC_DISABLE:
6015 func = _perf_event_disable;
6016 break;
6017 case PERF_EVENT_IOC_RESET:
6018 func = _perf_event_reset;
6019 break;
6021 case PERF_EVENT_IOC_REFRESH:
6022 return _perf_event_refresh(event, arg);
6024 case PERF_EVENT_IOC_PERIOD:
6026 u64 value;
6028 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
6029 return -EFAULT;
6031 return _perf_event_period(event, value);
6033 case PERF_EVENT_IOC_ID:
6035 u64 id = primary_event_id(event);
6037 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
6038 return -EFAULT;
6039 return 0;
6042 case PERF_EVENT_IOC_SET_OUTPUT:
6044 CLASS(fd, output)(arg); // arg == -1 => empty
6045 struct perf_event *output_event = NULL;
6046 if (arg != -1) {
6047 if (!is_perf_file(output))
6048 return -EBADF;
6049 output_event = fd_file(output)->private_data;
6051 return perf_event_set_output(event, output_event);
6054 case PERF_EVENT_IOC_SET_FILTER:
6055 return perf_event_set_filter(event, (void __user *)arg);
6057 case PERF_EVENT_IOC_SET_BPF:
6059 struct bpf_prog *prog;
6060 int err;
6062 prog = bpf_prog_get(arg);
6063 if (IS_ERR(prog))
6064 return PTR_ERR(prog);
6066 err = perf_event_set_bpf_prog(event, prog, 0);
6067 if (err) {
6068 bpf_prog_put(prog);
6069 return err;
6072 return 0;
6075 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
6076 struct perf_buffer *rb;
6078 rcu_read_lock();
6079 rb = rcu_dereference(event->rb);
6080 if (!rb || !rb->nr_pages) {
6081 rcu_read_unlock();
6082 return -EINVAL;
6084 rb_toggle_paused(rb, !!arg);
6085 rcu_read_unlock();
6086 return 0;
6089 case PERF_EVENT_IOC_QUERY_BPF:
6090 return perf_event_query_prog_array(event, (void __user *)arg);
6092 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6093 struct perf_event_attr new_attr;
6094 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6095 &new_attr);
6097 if (err)
6098 return err;
6100 return perf_event_modify_attr(event, &new_attr);
6102 default:
6103 return -ENOTTY;
6106 if (flags & PERF_IOC_FLAG_GROUP)
6107 perf_event_for_each(event, func);
6108 else
6109 perf_event_for_each_child(event, func);
6111 return 0;
6114 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6116 struct perf_event *event = file->private_data;
6117 struct perf_event_context *ctx;
6118 long ret;
6120 /* Treat ioctl like writes as it is likely a mutating operation. */
6121 ret = security_perf_event_write(event);
6122 if (ret)
6123 return ret;
6125 ctx = perf_event_ctx_lock(event);
6126 ret = _perf_ioctl(event, cmd, arg);
6127 perf_event_ctx_unlock(event, ctx);
6129 return ret;
6132 #ifdef CONFIG_COMPAT
6133 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6134 unsigned long arg)
6136 switch (_IOC_NR(cmd)) {
6137 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6138 case _IOC_NR(PERF_EVENT_IOC_ID):
6139 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6140 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6141 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6142 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6143 cmd &= ~IOCSIZE_MASK;
6144 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6146 break;
6148 return perf_ioctl(file, cmd, arg);
6150 #else
6151 # define perf_compat_ioctl NULL
6152 #endif
6154 int perf_event_task_enable(void)
6156 struct perf_event_context *ctx;
6157 struct perf_event *event;
6159 mutex_lock(&current->perf_event_mutex);
6160 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6161 ctx = perf_event_ctx_lock(event);
6162 perf_event_for_each_child(event, _perf_event_enable);
6163 perf_event_ctx_unlock(event, ctx);
6165 mutex_unlock(&current->perf_event_mutex);
6167 return 0;
6170 int perf_event_task_disable(void)
6172 struct perf_event_context *ctx;
6173 struct perf_event *event;
6175 mutex_lock(&current->perf_event_mutex);
6176 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6177 ctx = perf_event_ctx_lock(event);
6178 perf_event_for_each_child(event, _perf_event_disable);
6179 perf_event_ctx_unlock(event, ctx);
6181 mutex_unlock(&current->perf_event_mutex);
6183 return 0;
6186 static int perf_event_index(struct perf_event *event)
6188 if (event->hw.state & PERF_HES_STOPPED)
6189 return 0;
6191 if (event->state != PERF_EVENT_STATE_ACTIVE)
6192 return 0;
6194 return event->pmu->event_idx(event);
6197 static void perf_event_init_userpage(struct perf_event *event)
6199 struct perf_event_mmap_page *userpg;
6200 struct perf_buffer *rb;
6202 rcu_read_lock();
6203 rb = rcu_dereference(event->rb);
6204 if (!rb)
6205 goto unlock;
6207 userpg = rb->user_page;
6209 /* Allow new userspace to detect that bit 0 is deprecated */
6210 userpg->cap_bit0_is_deprecated = 1;
6211 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6212 userpg->data_offset = PAGE_SIZE;
6213 userpg->data_size = perf_data_size(rb);
6215 unlock:
6216 rcu_read_unlock();
6219 void __weak arch_perf_update_userpage(
6220 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6225 * Callers need to ensure there can be no nesting of this function, otherwise
6226 * the seqlock logic goes bad. We can not serialize this because the arch
6227 * code calls this from NMI context.
6229 void perf_event_update_userpage(struct perf_event *event)
6231 struct perf_event_mmap_page *userpg;
6232 struct perf_buffer *rb;
6233 u64 enabled, running, now;
6235 rcu_read_lock();
6236 rb = rcu_dereference(event->rb);
6237 if (!rb)
6238 goto unlock;
6241 * compute total_time_enabled, total_time_running
6242 * based on snapshot values taken when the event
6243 * was last scheduled in.
6245 * we cannot simply called update_context_time()
6246 * because of locking issue as we can be called in
6247 * NMI context
6249 calc_timer_values(event, &now, &enabled, &running);
6251 userpg = rb->user_page;
6253 * Disable preemption to guarantee consistent time stamps are stored to
6254 * the user page.
6256 preempt_disable();
6257 ++userpg->lock;
6258 barrier();
6259 userpg->index = perf_event_index(event);
6260 userpg->offset = perf_event_count(event, false);
6261 if (userpg->index)
6262 userpg->offset -= local64_read(&event->hw.prev_count);
6264 userpg->time_enabled = enabled +
6265 atomic64_read(&event->child_total_time_enabled);
6267 userpg->time_running = running +
6268 atomic64_read(&event->child_total_time_running);
6270 arch_perf_update_userpage(event, userpg, now);
6272 barrier();
6273 ++userpg->lock;
6274 preempt_enable();
6275 unlock:
6276 rcu_read_unlock();
6278 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6280 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6282 struct perf_event *event = vmf->vma->vm_file->private_data;
6283 struct perf_buffer *rb;
6284 vm_fault_t ret = VM_FAULT_SIGBUS;
6286 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6287 if (vmf->pgoff == 0)
6288 ret = 0;
6289 return ret;
6292 rcu_read_lock();
6293 rb = rcu_dereference(event->rb);
6294 if (!rb)
6295 goto unlock;
6297 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6298 goto unlock;
6300 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6301 if (!vmf->page)
6302 goto unlock;
6304 get_page(vmf->page);
6305 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6306 vmf->page->index = vmf->pgoff;
6308 ret = 0;
6309 unlock:
6310 rcu_read_unlock();
6312 return ret;
6315 static void ring_buffer_attach(struct perf_event *event,
6316 struct perf_buffer *rb)
6318 struct perf_buffer *old_rb = NULL;
6319 unsigned long flags;
6321 WARN_ON_ONCE(event->parent);
6323 if (event->rb) {
6325 * Should be impossible, we set this when removing
6326 * event->rb_entry and wait/clear when adding event->rb_entry.
6328 WARN_ON_ONCE(event->rcu_pending);
6330 old_rb = event->rb;
6331 spin_lock_irqsave(&old_rb->event_lock, flags);
6332 list_del_rcu(&event->rb_entry);
6333 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6335 event->rcu_batches = get_state_synchronize_rcu();
6336 event->rcu_pending = 1;
6339 if (rb) {
6340 if (event->rcu_pending) {
6341 cond_synchronize_rcu(event->rcu_batches);
6342 event->rcu_pending = 0;
6345 spin_lock_irqsave(&rb->event_lock, flags);
6346 list_add_rcu(&event->rb_entry, &rb->event_list);
6347 spin_unlock_irqrestore(&rb->event_lock, flags);
6351 * Avoid racing with perf_mmap_close(AUX): stop the event
6352 * before swizzling the event::rb pointer; if it's getting
6353 * unmapped, its aux_mmap_count will be 0 and it won't
6354 * restart. See the comment in __perf_pmu_output_stop().
6356 * Data will inevitably be lost when set_output is done in
6357 * mid-air, but then again, whoever does it like this is
6358 * not in for the data anyway.
6360 if (has_aux(event))
6361 perf_event_stop(event, 0);
6363 rcu_assign_pointer(event->rb, rb);
6365 if (old_rb) {
6366 ring_buffer_put(old_rb);
6368 * Since we detached before setting the new rb, so that we
6369 * could attach the new rb, we could have missed a wakeup.
6370 * Provide it now.
6372 wake_up_all(&event->waitq);
6376 static void ring_buffer_wakeup(struct perf_event *event)
6378 struct perf_buffer *rb;
6380 if (event->parent)
6381 event = event->parent;
6383 rcu_read_lock();
6384 rb = rcu_dereference(event->rb);
6385 if (rb) {
6386 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6387 wake_up_all(&event->waitq);
6389 rcu_read_unlock();
6392 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6394 struct perf_buffer *rb;
6396 if (event->parent)
6397 event = event->parent;
6399 rcu_read_lock();
6400 rb = rcu_dereference(event->rb);
6401 if (rb) {
6402 if (!refcount_inc_not_zero(&rb->refcount))
6403 rb = NULL;
6405 rcu_read_unlock();
6407 return rb;
6410 void ring_buffer_put(struct perf_buffer *rb)
6412 if (!refcount_dec_and_test(&rb->refcount))
6413 return;
6415 WARN_ON_ONCE(!list_empty(&rb->event_list));
6417 call_rcu(&rb->rcu_head, rb_free_rcu);
6420 static void perf_mmap_open(struct vm_area_struct *vma)
6422 struct perf_event *event = vma->vm_file->private_data;
6424 atomic_inc(&event->mmap_count);
6425 atomic_inc(&event->rb->mmap_count);
6427 if (vma->vm_pgoff)
6428 atomic_inc(&event->rb->aux_mmap_count);
6430 if (event->pmu->event_mapped)
6431 event->pmu->event_mapped(event, vma->vm_mm);
6434 static void perf_pmu_output_stop(struct perf_event *event);
6437 * A buffer can be mmap()ed multiple times; either directly through the same
6438 * event, or through other events by use of perf_event_set_output().
6440 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6441 * the buffer here, where we still have a VM context. This means we need
6442 * to detach all events redirecting to us.
6444 static void perf_mmap_close(struct vm_area_struct *vma)
6446 struct perf_event *event = vma->vm_file->private_data;
6447 struct perf_buffer *rb = ring_buffer_get(event);
6448 struct user_struct *mmap_user = rb->mmap_user;
6449 int mmap_locked = rb->mmap_locked;
6450 unsigned long size = perf_data_size(rb);
6451 bool detach_rest = false;
6453 if (event->pmu->event_unmapped)
6454 event->pmu->event_unmapped(event, vma->vm_mm);
6457 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6458 * to avoid complications.
6460 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6461 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6463 * Stop all AUX events that are writing to this buffer,
6464 * so that we can free its AUX pages and corresponding PMU
6465 * data. Note that after rb::aux_mmap_count dropped to zero,
6466 * they won't start any more (see perf_aux_output_begin()).
6468 perf_pmu_output_stop(event);
6470 /* now it's safe to free the pages */
6471 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6472 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6474 /* this has to be the last one */
6475 rb_free_aux(rb);
6476 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6478 mutex_unlock(&rb->aux_mutex);
6481 if (atomic_dec_and_test(&rb->mmap_count))
6482 detach_rest = true;
6484 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6485 goto out_put;
6487 ring_buffer_attach(event, NULL);
6488 mutex_unlock(&event->mmap_mutex);
6490 /* If there's still other mmap()s of this buffer, we're done. */
6491 if (!detach_rest)
6492 goto out_put;
6495 * No other mmap()s, detach from all other events that might redirect
6496 * into the now unreachable buffer. Somewhat complicated by the
6497 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6499 again:
6500 rcu_read_lock();
6501 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6502 if (!atomic_long_inc_not_zero(&event->refcount)) {
6504 * This event is en-route to free_event() which will
6505 * detach it and remove it from the list.
6507 continue;
6509 rcu_read_unlock();
6511 mutex_lock(&event->mmap_mutex);
6513 * Check we didn't race with perf_event_set_output() which can
6514 * swizzle the rb from under us while we were waiting to
6515 * acquire mmap_mutex.
6517 * If we find a different rb; ignore this event, a next
6518 * iteration will no longer find it on the list. We have to
6519 * still restart the iteration to make sure we're not now
6520 * iterating the wrong list.
6522 if (event->rb == rb)
6523 ring_buffer_attach(event, NULL);
6525 mutex_unlock(&event->mmap_mutex);
6526 put_event(event);
6529 * Restart the iteration; either we're on the wrong list or
6530 * destroyed its integrity by doing a deletion.
6532 goto again;
6534 rcu_read_unlock();
6537 * It could be there's still a few 0-ref events on the list; they'll
6538 * get cleaned up by free_event() -- they'll also still have their
6539 * ref on the rb and will free it whenever they are done with it.
6541 * Aside from that, this buffer is 'fully' detached and unmapped,
6542 * undo the VM accounting.
6545 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6546 &mmap_user->locked_vm);
6547 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6548 free_uid(mmap_user);
6550 out_put:
6551 ring_buffer_put(rb); /* could be last */
6554 static const struct vm_operations_struct perf_mmap_vmops = {
6555 .open = perf_mmap_open,
6556 .close = perf_mmap_close, /* non mergeable */
6557 .fault = perf_mmap_fault,
6558 .page_mkwrite = perf_mmap_fault,
6561 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6563 struct perf_event *event = file->private_data;
6564 unsigned long user_locked, user_lock_limit;
6565 struct user_struct *user = current_user();
6566 struct mutex *aux_mutex = NULL;
6567 struct perf_buffer *rb = NULL;
6568 unsigned long locked, lock_limit;
6569 unsigned long vma_size;
6570 unsigned long nr_pages;
6571 long user_extra = 0, extra = 0;
6572 int ret = 0, flags = 0;
6575 * Don't allow mmap() of inherited per-task counters. This would
6576 * create a performance issue due to all children writing to the
6577 * same rb.
6579 if (event->cpu == -1 && event->attr.inherit)
6580 return -EINVAL;
6582 if (!(vma->vm_flags & VM_SHARED))
6583 return -EINVAL;
6585 ret = security_perf_event_read(event);
6586 if (ret)
6587 return ret;
6589 vma_size = vma->vm_end - vma->vm_start;
6591 if (vma->vm_pgoff == 0) {
6592 nr_pages = (vma_size / PAGE_SIZE) - 1;
6593 } else {
6595 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6596 * mapped, all subsequent mappings should have the same size
6597 * and offset. Must be above the normal perf buffer.
6599 u64 aux_offset, aux_size;
6601 if (!event->rb)
6602 return -EINVAL;
6604 nr_pages = vma_size / PAGE_SIZE;
6605 if (nr_pages > INT_MAX)
6606 return -ENOMEM;
6608 mutex_lock(&event->mmap_mutex);
6609 ret = -EINVAL;
6611 rb = event->rb;
6612 if (!rb)
6613 goto aux_unlock;
6615 aux_mutex = &rb->aux_mutex;
6616 mutex_lock(aux_mutex);
6618 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6619 aux_size = READ_ONCE(rb->user_page->aux_size);
6621 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6622 goto aux_unlock;
6624 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6625 goto aux_unlock;
6627 /* already mapped with a different offset */
6628 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6629 goto aux_unlock;
6631 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6632 goto aux_unlock;
6634 /* already mapped with a different size */
6635 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6636 goto aux_unlock;
6638 if (!is_power_of_2(nr_pages))
6639 goto aux_unlock;
6641 if (!atomic_inc_not_zero(&rb->mmap_count))
6642 goto aux_unlock;
6644 if (rb_has_aux(rb)) {
6645 atomic_inc(&rb->aux_mmap_count);
6646 ret = 0;
6647 goto unlock;
6650 atomic_set(&rb->aux_mmap_count, 1);
6651 user_extra = nr_pages;
6653 goto accounting;
6657 * If we have rb pages ensure they're a power-of-two number, so we
6658 * can do bitmasks instead of modulo.
6660 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6661 return -EINVAL;
6663 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6664 return -EINVAL;
6666 WARN_ON_ONCE(event->ctx->parent_ctx);
6667 again:
6668 mutex_lock(&event->mmap_mutex);
6669 if (event->rb) {
6670 if (data_page_nr(event->rb) != nr_pages) {
6671 ret = -EINVAL;
6672 goto unlock;
6675 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6677 * Raced against perf_mmap_close(); remove the
6678 * event and try again.
6680 ring_buffer_attach(event, NULL);
6681 mutex_unlock(&event->mmap_mutex);
6682 goto again;
6685 goto unlock;
6688 user_extra = nr_pages + 1;
6690 accounting:
6691 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6694 * Increase the limit linearly with more CPUs:
6696 user_lock_limit *= num_online_cpus();
6698 user_locked = atomic_long_read(&user->locked_vm);
6701 * sysctl_perf_event_mlock may have changed, so that
6702 * user->locked_vm > user_lock_limit
6704 if (user_locked > user_lock_limit)
6705 user_locked = user_lock_limit;
6706 user_locked += user_extra;
6708 if (user_locked > user_lock_limit) {
6710 * charge locked_vm until it hits user_lock_limit;
6711 * charge the rest from pinned_vm
6713 extra = user_locked - user_lock_limit;
6714 user_extra -= extra;
6717 lock_limit = rlimit(RLIMIT_MEMLOCK);
6718 lock_limit >>= PAGE_SHIFT;
6719 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6721 if ((locked > lock_limit) && perf_is_paranoid() &&
6722 !capable(CAP_IPC_LOCK)) {
6723 ret = -EPERM;
6724 goto unlock;
6727 WARN_ON(!rb && event->rb);
6729 if (vma->vm_flags & VM_WRITE)
6730 flags |= RING_BUFFER_WRITABLE;
6732 if (!rb) {
6733 rb = rb_alloc(nr_pages,
6734 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6735 event->cpu, flags);
6737 if (!rb) {
6738 ret = -ENOMEM;
6739 goto unlock;
6742 atomic_set(&rb->mmap_count, 1);
6743 rb->mmap_user = get_current_user();
6744 rb->mmap_locked = extra;
6746 ring_buffer_attach(event, rb);
6748 perf_event_update_time(event);
6749 perf_event_init_userpage(event);
6750 perf_event_update_userpage(event);
6751 } else {
6752 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6753 event->attr.aux_watermark, flags);
6754 if (!ret)
6755 rb->aux_mmap_locked = extra;
6758 unlock:
6759 if (!ret) {
6760 atomic_long_add(user_extra, &user->locked_vm);
6761 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6763 atomic_inc(&event->mmap_count);
6764 } else if (rb) {
6765 atomic_dec(&rb->mmap_count);
6767 aux_unlock:
6768 if (aux_mutex)
6769 mutex_unlock(aux_mutex);
6770 mutex_unlock(&event->mmap_mutex);
6773 * Since pinned accounting is per vm we cannot allow fork() to copy our
6774 * vma.
6776 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6777 vma->vm_ops = &perf_mmap_vmops;
6779 if (event->pmu->event_mapped)
6780 event->pmu->event_mapped(event, vma->vm_mm);
6782 return ret;
6785 static int perf_fasync(int fd, struct file *filp, int on)
6787 struct inode *inode = file_inode(filp);
6788 struct perf_event *event = filp->private_data;
6789 int retval;
6791 inode_lock(inode);
6792 retval = fasync_helper(fd, filp, on, &event->fasync);
6793 inode_unlock(inode);
6795 if (retval < 0)
6796 return retval;
6798 return 0;
6801 static const struct file_operations perf_fops = {
6802 .release = perf_release,
6803 .read = perf_read,
6804 .poll = perf_poll,
6805 .unlocked_ioctl = perf_ioctl,
6806 .compat_ioctl = perf_compat_ioctl,
6807 .mmap = perf_mmap,
6808 .fasync = perf_fasync,
6812 * Perf event wakeup
6814 * If there's data, ensure we set the poll() state and publish everything
6815 * to user-space before waking everybody up.
6818 void perf_event_wakeup(struct perf_event *event)
6820 ring_buffer_wakeup(event);
6822 if (event->pending_kill) {
6823 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6824 event->pending_kill = 0;
6828 static void perf_sigtrap(struct perf_event *event)
6831 * We'd expect this to only occur if the irq_work is delayed and either
6832 * ctx->task or current has changed in the meantime. This can be the
6833 * case on architectures that do not implement arch_irq_work_raise().
6835 if (WARN_ON_ONCE(event->ctx->task != current))
6836 return;
6839 * Both perf_pending_task() and perf_pending_irq() can race with the
6840 * task exiting.
6842 if (current->flags & PF_EXITING)
6843 return;
6845 send_sig_perf((void __user *)event->pending_addr,
6846 event->orig_type, event->attr.sig_data);
6850 * Deliver the pending work in-event-context or follow the context.
6852 static void __perf_pending_disable(struct perf_event *event)
6854 int cpu = READ_ONCE(event->oncpu);
6857 * If the event isn't running; we done. event_sched_out() will have
6858 * taken care of things.
6860 if (cpu < 0)
6861 return;
6864 * Yay, we hit home and are in the context of the event.
6866 if (cpu == smp_processor_id()) {
6867 if (event->pending_disable) {
6868 event->pending_disable = 0;
6869 perf_event_disable_local(event);
6871 return;
6875 * CPU-A CPU-B
6877 * perf_event_disable_inatomic()
6878 * @pending_disable = CPU-A;
6879 * irq_work_queue();
6881 * sched-out
6882 * @pending_disable = -1;
6884 * sched-in
6885 * perf_event_disable_inatomic()
6886 * @pending_disable = CPU-B;
6887 * irq_work_queue(); // FAILS
6889 * irq_work_run()
6890 * perf_pending_disable()
6892 * But the event runs on CPU-B and wants disabling there.
6894 irq_work_queue_on(&event->pending_disable_irq, cpu);
6897 static void perf_pending_disable(struct irq_work *entry)
6899 struct perf_event *event = container_of(entry, struct perf_event, pending_disable_irq);
6900 int rctx;
6903 * If we 'fail' here, that's OK, it means recursion is already disabled
6904 * and we won't recurse 'further'.
6906 rctx = perf_swevent_get_recursion_context();
6907 __perf_pending_disable(event);
6908 if (rctx >= 0)
6909 perf_swevent_put_recursion_context(rctx);
6912 static void perf_pending_irq(struct irq_work *entry)
6914 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6915 int rctx;
6918 * If we 'fail' here, that's OK, it means recursion is already disabled
6919 * and we won't recurse 'further'.
6921 rctx = perf_swevent_get_recursion_context();
6924 * The wakeup isn't bound to the context of the event -- it can happen
6925 * irrespective of where the event is.
6927 if (event->pending_wakeup) {
6928 event->pending_wakeup = 0;
6929 perf_event_wakeup(event);
6932 if (rctx >= 0)
6933 perf_swevent_put_recursion_context(rctx);
6936 static void perf_pending_task(struct callback_head *head)
6938 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6939 int rctx;
6942 * All accesses to the event must belong to the same implicit RCU read-side
6943 * critical section as the ->pending_work reset. See comment in
6944 * perf_pending_task_sync().
6946 rcu_read_lock();
6948 * If we 'fail' here, that's OK, it means recursion is already disabled
6949 * and we won't recurse 'further'.
6951 rctx = perf_swevent_get_recursion_context();
6953 if (event->pending_work) {
6954 event->pending_work = 0;
6955 perf_sigtrap(event);
6956 local_dec(&event->ctx->nr_no_switch_fast);
6957 rcuwait_wake_up(&event->pending_work_wait);
6959 rcu_read_unlock();
6961 if (rctx >= 0)
6962 perf_swevent_put_recursion_context(rctx);
6965 #ifdef CONFIG_GUEST_PERF_EVENTS
6966 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6968 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6969 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6970 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6972 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6974 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6975 return;
6977 rcu_assign_pointer(perf_guest_cbs, cbs);
6978 static_call_update(__perf_guest_state, cbs->state);
6979 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6981 /* Implementing ->handle_intel_pt_intr is optional. */
6982 if (cbs->handle_intel_pt_intr)
6983 static_call_update(__perf_guest_handle_intel_pt_intr,
6984 cbs->handle_intel_pt_intr);
6986 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6988 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6990 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6991 return;
6993 rcu_assign_pointer(perf_guest_cbs, NULL);
6994 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6995 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6996 static_call_update(__perf_guest_handle_intel_pt_intr,
6997 (void *)&__static_call_return0);
6998 synchronize_rcu();
7000 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
7001 #endif
7003 static bool should_sample_guest(struct perf_event *event)
7005 return !event->attr.exclude_guest && perf_guest_state();
7008 unsigned long perf_misc_flags(struct perf_event *event,
7009 struct pt_regs *regs)
7011 if (should_sample_guest(event))
7012 return perf_arch_guest_misc_flags(regs);
7014 return perf_arch_misc_flags(regs);
7017 unsigned long perf_instruction_pointer(struct perf_event *event,
7018 struct pt_regs *regs)
7020 if (should_sample_guest(event))
7021 return perf_guest_get_ip();
7023 return perf_arch_instruction_pointer(regs);
7026 static void
7027 perf_output_sample_regs(struct perf_output_handle *handle,
7028 struct pt_regs *regs, u64 mask)
7030 int bit;
7031 DECLARE_BITMAP(_mask, 64);
7033 bitmap_from_u64(_mask, mask);
7034 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
7035 u64 val;
7037 val = perf_reg_value(regs, bit);
7038 perf_output_put(handle, val);
7042 static void perf_sample_regs_user(struct perf_regs *regs_user,
7043 struct pt_regs *regs)
7045 if (user_mode(regs)) {
7046 regs_user->abi = perf_reg_abi(current);
7047 regs_user->regs = regs;
7048 } else if (!(current->flags & PF_KTHREAD)) {
7049 perf_get_regs_user(regs_user, regs);
7050 } else {
7051 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
7052 regs_user->regs = NULL;
7056 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
7057 struct pt_regs *regs)
7059 regs_intr->regs = regs;
7060 regs_intr->abi = perf_reg_abi(current);
7065 * Get remaining task size from user stack pointer.
7067 * It'd be better to take stack vma map and limit this more
7068 * precisely, but there's no way to get it safely under interrupt,
7069 * so using TASK_SIZE as limit.
7071 static u64 perf_ustack_task_size(struct pt_regs *regs)
7073 unsigned long addr = perf_user_stack_pointer(regs);
7075 if (!addr || addr >= TASK_SIZE)
7076 return 0;
7078 return TASK_SIZE - addr;
7081 static u16
7082 perf_sample_ustack_size(u16 stack_size, u16 header_size,
7083 struct pt_regs *regs)
7085 u64 task_size;
7087 /* No regs, no stack pointer, no dump. */
7088 if (!regs)
7089 return 0;
7092 * Check if we fit in with the requested stack size into the:
7093 * - TASK_SIZE
7094 * If we don't, we limit the size to the TASK_SIZE.
7096 * - remaining sample size
7097 * If we don't, we customize the stack size to
7098 * fit in to the remaining sample size.
7101 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
7102 stack_size = min(stack_size, (u16) task_size);
7104 /* Current header size plus static size and dynamic size. */
7105 header_size += 2 * sizeof(u64);
7107 /* Do we fit in with the current stack dump size? */
7108 if ((u16) (header_size + stack_size) < header_size) {
7110 * If we overflow the maximum size for the sample,
7111 * we customize the stack dump size to fit in.
7113 stack_size = USHRT_MAX - header_size - sizeof(u64);
7114 stack_size = round_up(stack_size, sizeof(u64));
7117 return stack_size;
7120 static void
7121 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7122 struct pt_regs *regs)
7124 /* Case of a kernel thread, nothing to dump */
7125 if (!regs) {
7126 u64 size = 0;
7127 perf_output_put(handle, size);
7128 } else {
7129 unsigned long sp;
7130 unsigned int rem;
7131 u64 dyn_size;
7134 * We dump:
7135 * static size
7136 * - the size requested by user or the best one we can fit
7137 * in to the sample max size
7138 * data
7139 * - user stack dump data
7140 * dynamic size
7141 * - the actual dumped size
7144 /* Static size. */
7145 perf_output_put(handle, dump_size);
7147 /* Data. */
7148 sp = perf_user_stack_pointer(regs);
7149 rem = __output_copy_user(handle, (void *) sp, dump_size);
7150 dyn_size = dump_size - rem;
7152 perf_output_skip(handle, rem);
7154 /* Dynamic size. */
7155 perf_output_put(handle, dyn_size);
7159 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7160 struct perf_sample_data *data,
7161 size_t size)
7163 struct perf_event *sampler = event->aux_event;
7164 struct perf_buffer *rb;
7166 data->aux_size = 0;
7168 if (!sampler)
7169 goto out;
7171 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7172 goto out;
7174 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7175 goto out;
7177 rb = ring_buffer_get(sampler);
7178 if (!rb)
7179 goto out;
7182 * If this is an NMI hit inside sampling code, don't take
7183 * the sample. See also perf_aux_sample_output().
7185 if (READ_ONCE(rb->aux_in_sampling)) {
7186 data->aux_size = 0;
7187 } else {
7188 size = min_t(size_t, size, perf_aux_size(rb));
7189 data->aux_size = ALIGN(size, sizeof(u64));
7191 ring_buffer_put(rb);
7193 out:
7194 return data->aux_size;
7197 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7198 struct perf_event *event,
7199 struct perf_output_handle *handle,
7200 unsigned long size)
7202 unsigned long flags;
7203 long ret;
7206 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7207 * paths. If we start calling them in NMI context, they may race with
7208 * the IRQ ones, that is, for example, re-starting an event that's just
7209 * been stopped, which is why we're using a separate callback that
7210 * doesn't change the event state.
7212 * IRQs need to be disabled to prevent IPIs from racing with us.
7214 local_irq_save(flags);
7216 * Guard against NMI hits inside the critical section;
7217 * see also perf_prepare_sample_aux().
7219 WRITE_ONCE(rb->aux_in_sampling, 1);
7220 barrier();
7222 ret = event->pmu->snapshot_aux(event, handle, size);
7224 barrier();
7225 WRITE_ONCE(rb->aux_in_sampling, 0);
7226 local_irq_restore(flags);
7228 return ret;
7231 static void perf_aux_sample_output(struct perf_event *event,
7232 struct perf_output_handle *handle,
7233 struct perf_sample_data *data)
7235 struct perf_event *sampler = event->aux_event;
7236 struct perf_buffer *rb;
7237 unsigned long pad;
7238 long size;
7240 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7241 return;
7243 rb = ring_buffer_get(sampler);
7244 if (!rb)
7245 return;
7247 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7250 * An error here means that perf_output_copy() failed (returned a
7251 * non-zero surplus that it didn't copy), which in its current
7252 * enlightened implementation is not possible. If that changes, we'd
7253 * like to know.
7255 if (WARN_ON_ONCE(size < 0))
7256 goto out_put;
7259 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7260 * perf_prepare_sample_aux(), so should not be more than that.
7262 pad = data->aux_size - size;
7263 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7264 pad = 8;
7266 if (pad) {
7267 u64 zero = 0;
7268 perf_output_copy(handle, &zero, pad);
7271 out_put:
7272 ring_buffer_put(rb);
7276 * A set of common sample data types saved even for non-sample records
7277 * when event->attr.sample_id_all is set.
7279 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7280 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7281 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7283 static void __perf_event_header__init_id(struct perf_sample_data *data,
7284 struct perf_event *event,
7285 u64 sample_type)
7287 data->type = event->attr.sample_type;
7288 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7290 if (sample_type & PERF_SAMPLE_TID) {
7291 /* namespace issues */
7292 data->tid_entry.pid = perf_event_pid(event, current);
7293 data->tid_entry.tid = perf_event_tid(event, current);
7296 if (sample_type & PERF_SAMPLE_TIME)
7297 data->time = perf_event_clock(event);
7299 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7300 data->id = primary_event_id(event);
7302 if (sample_type & PERF_SAMPLE_STREAM_ID)
7303 data->stream_id = event->id;
7305 if (sample_type & PERF_SAMPLE_CPU) {
7306 data->cpu_entry.cpu = raw_smp_processor_id();
7307 data->cpu_entry.reserved = 0;
7311 void perf_event_header__init_id(struct perf_event_header *header,
7312 struct perf_sample_data *data,
7313 struct perf_event *event)
7315 if (event->attr.sample_id_all) {
7316 header->size += event->id_header_size;
7317 __perf_event_header__init_id(data, event, event->attr.sample_type);
7321 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7322 struct perf_sample_data *data)
7324 u64 sample_type = data->type;
7326 if (sample_type & PERF_SAMPLE_TID)
7327 perf_output_put(handle, data->tid_entry);
7329 if (sample_type & PERF_SAMPLE_TIME)
7330 perf_output_put(handle, data->time);
7332 if (sample_type & PERF_SAMPLE_ID)
7333 perf_output_put(handle, data->id);
7335 if (sample_type & PERF_SAMPLE_STREAM_ID)
7336 perf_output_put(handle, data->stream_id);
7338 if (sample_type & PERF_SAMPLE_CPU)
7339 perf_output_put(handle, data->cpu_entry);
7341 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7342 perf_output_put(handle, data->id);
7345 void perf_event__output_id_sample(struct perf_event *event,
7346 struct perf_output_handle *handle,
7347 struct perf_sample_data *sample)
7349 if (event->attr.sample_id_all)
7350 __perf_event__output_id_sample(handle, sample);
7353 static void perf_output_read_one(struct perf_output_handle *handle,
7354 struct perf_event *event,
7355 u64 enabled, u64 running)
7357 u64 read_format = event->attr.read_format;
7358 u64 values[5];
7359 int n = 0;
7361 values[n++] = perf_event_count(event, has_inherit_and_sample_read(&event->attr));
7362 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7363 values[n++] = enabled +
7364 atomic64_read(&event->child_total_time_enabled);
7366 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7367 values[n++] = running +
7368 atomic64_read(&event->child_total_time_running);
7370 if (read_format & PERF_FORMAT_ID)
7371 values[n++] = primary_event_id(event);
7372 if (read_format & PERF_FORMAT_LOST)
7373 values[n++] = atomic64_read(&event->lost_samples);
7375 __output_copy(handle, values, n * sizeof(u64));
7378 static void perf_output_read_group(struct perf_output_handle *handle,
7379 struct perf_event *event,
7380 u64 enabled, u64 running)
7382 struct perf_event *leader = event->group_leader, *sub;
7383 u64 read_format = event->attr.read_format;
7384 unsigned long flags;
7385 u64 values[6];
7386 int n = 0;
7387 bool self = has_inherit_and_sample_read(&event->attr);
7390 * Disabling interrupts avoids all counter scheduling
7391 * (context switches, timer based rotation and IPIs).
7393 local_irq_save(flags);
7395 values[n++] = 1 + leader->nr_siblings;
7397 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7398 values[n++] = enabled;
7400 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7401 values[n++] = running;
7403 if ((leader != event) &&
7404 (leader->state == PERF_EVENT_STATE_ACTIVE))
7405 leader->pmu->read(leader);
7407 values[n++] = perf_event_count(leader, self);
7408 if (read_format & PERF_FORMAT_ID)
7409 values[n++] = primary_event_id(leader);
7410 if (read_format & PERF_FORMAT_LOST)
7411 values[n++] = atomic64_read(&leader->lost_samples);
7413 __output_copy(handle, values, n * sizeof(u64));
7415 for_each_sibling_event(sub, leader) {
7416 n = 0;
7418 if ((sub != event) &&
7419 (sub->state == PERF_EVENT_STATE_ACTIVE))
7420 sub->pmu->read(sub);
7422 values[n++] = perf_event_count(sub, self);
7423 if (read_format & PERF_FORMAT_ID)
7424 values[n++] = primary_event_id(sub);
7425 if (read_format & PERF_FORMAT_LOST)
7426 values[n++] = atomic64_read(&sub->lost_samples);
7428 __output_copy(handle, values, n * sizeof(u64));
7431 local_irq_restore(flags);
7434 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7435 PERF_FORMAT_TOTAL_TIME_RUNNING)
7438 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7440 * The problem is that its both hard and excessively expensive to iterate the
7441 * child list, not to mention that its impossible to IPI the children running
7442 * on another CPU, from interrupt/NMI context.
7444 * Instead the combination of PERF_SAMPLE_READ and inherit will track per-thread
7445 * counts rather than attempting to accumulate some value across all children on
7446 * all cores.
7448 static void perf_output_read(struct perf_output_handle *handle,
7449 struct perf_event *event)
7451 u64 enabled = 0, running = 0, now;
7452 u64 read_format = event->attr.read_format;
7455 * compute total_time_enabled, total_time_running
7456 * based on snapshot values taken when the event
7457 * was last scheduled in.
7459 * we cannot simply called update_context_time()
7460 * because of locking issue as we are called in
7461 * NMI context
7463 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7464 calc_timer_values(event, &now, &enabled, &running);
7466 if (event->attr.read_format & PERF_FORMAT_GROUP)
7467 perf_output_read_group(handle, event, enabled, running);
7468 else
7469 perf_output_read_one(handle, event, enabled, running);
7472 void perf_output_sample(struct perf_output_handle *handle,
7473 struct perf_event_header *header,
7474 struct perf_sample_data *data,
7475 struct perf_event *event)
7477 u64 sample_type = data->type;
7479 perf_output_put(handle, *header);
7481 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7482 perf_output_put(handle, data->id);
7484 if (sample_type & PERF_SAMPLE_IP)
7485 perf_output_put(handle, data->ip);
7487 if (sample_type & PERF_SAMPLE_TID)
7488 perf_output_put(handle, data->tid_entry);
7490 if (sample_type & PERF_SAMPLE_TIME)
7491 perf_output_put(handle, data->time);
7493 if (sample_type & PERF_SAMPLE_ADDR)
7494 perf_output_put(handle, data->addr);
7496 if (sample_type & PERF_SAMPLE_ID)
7497 perf_output_put(handle, data->id);
7499 if (sample_type & PERF_SAMPLE_STREAM_ID)
7500 perf_output_put(handle, data->stream_id);
7502 if (sample_type & PERF_SAMPLE_CPU)
7503 perf_output_put(handle, data->cpu_entry);
7505 if (sample_type & PERF_SAMPLE_PERIOD)
7506 perf_output_put(handle, data->period);
7508 if (sample_type & PERF_SAMPLE_READ)
7509 perf_output_read(handle, event);
7511 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7512 int size = 1;
7514 size += data->callchain->nr;
7515 size *= sizeof(u64);
7516 __output_copy(handle, data->callchain, size);
7519 if (sample_type & PERF_SAMPLE_RAW) {
7520 struct perf_raw_record *raw = data->raw;
7522 if (raw) {
7523 struct perf_raw_frag *frag = &raw->frag;
7525 perf_output_put(handle, raw->size);
7526 do {
7527 if (frag->copy) {
7528 __output_custom(handle, frag->copy,
7529 frag->data, frag->size);
7530 } else {
7531 __output_copy(handle, frag->data,
7532 frag->size);
7534 if (perf_raw_frag_last(frag))
7535 break;
7536 frag = frag->next;
7537 } while (1);
7538 if (frag->pad)
7539 __output_skip(handle, NULL, frag->pad);
7540 } else {
7541 struct {
7542 u32 size;
7543 u32 data;
7544 } raw = {
7545 .size = sizeof(u32),
7546 .data = 0,
7548 perf_output_put(handle, raw);
7552 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7553 if (data->br_stack) {
7554 size_t size;
7556 size = data->br_stack->nr
7557 * sizeof(struct perf_branch_entry);
7559 perf_output_put(handle, data->br_stack->nr);
7560 if (branch_sample_hw_index(event))
7561 perf_output_put(handle, data->br_stack->hw_idx);
7562 perf_output_copy(handle, data->br_stack->entries, size);
7564 * Add the extension space which is appended
7565 * right after the struct perf_branch_stack.
7567 if (data->br_stack_cntr) {
7568 size = data->br_stack->nr * sizeof(u64);
7569 perf_output_copy(handle, data->br_stack_cntr, size);
7571 } else {
7573 * we always store at least the value of nr
7575 u64 nr = 0;
7576 perf_output_put(handle, nr);
7580 if (sample_type & PERF_SAMPLE_REGS_USER) {
7581 u64 abi = data->regs_user.abi;
7584 * If there are no regs to dump, notice it through
7585 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7587 perf_output_put(handle, abi);
7589 if (abi) {
7590 u64 mask = event->attr.sample_regs_user;
7591 perf_output_sample_regs(handle,
7592 data->regs_user.regs,
7593 mask);
7597 if (sample_type & PERF_SAMPLE_STACK_USER) {
7598 perf_output_sample_ustack(handle,
7599 data->stack_user_size,
7600 data->regs_user.regs);
7603 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7604 perf_output_put(handle, data->weight.full);
7606 if (sample_type & PERF_SAMPLE_DATA_SRC)
7607 perf_output_put(handle, data->data_src.val);
7609 if (sample_type & PERF_SAMPLE_TRANSACTION)
7610 perf_output_put(handle, data->txn);
7612 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7613 u64 abi = data->regs_intr.abi;
7615 * If there are no regs to dump, notice it through
7616 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7618 perf_output_put(handle, abi);
7620 if (abi) {
7621 u64 mask = event->attr.sample_regs_intr;
7623 perf_output_sample_regs(handle,
7624 data->regs_intr.regs,
7625 mask);
7629 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7630 perf_output_put(handle, data->phys_addr);
7632 if (sample_type & PERF_SAMPLE_CGROUP)
7633 perf_output_put(handle, data->cgroup);
7635 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7636 perf_output_put(handle, data->data_page_size);
7638 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7639 perf_output_put(handle, data->code_page_size);
7641 if (sample_type & PERF_SAMPLE_AUX) {
7642 perf_output_put(handle, data->aux_size);
7644 if (data->aux_size)
7645 perf_aux_sample_output(event, handle, data);
7648 if (!event->attr.watermark) {
7649 int wakeup_events = event->attr.wakeup_events;
7651 if (wakeup_events) {
7652 struct perf_buffer *rb = handle->rb;
7653 int events = local_inc_return(&rb->events);
7655 if (events >= wakeup_events) {
7656 local_sub(wakeup_events, &rb->events);
7657 local_inc(&rb->wakeup);
7663 static u64 perf_virt_to_phys(u64 virt)
7665 u64 phys_addr = 0;
7667 if (!virt)
7668 return 0;
7670 if (virt >= TASK_SIZE) {
7671 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7672 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7673 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7674 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7675 } else {
7677 * Walking the pages tables for user address.
7678 * Interrupts are disabled, so it prevents any tear down
7679 * of the page tables.
7680 * Try IRQ-safe get_user_page_fast_only first.
7681 * If failed, leave phys_addr as 0.
7683 if (current->mm != NULL) {
7684 struct page *p;
7686 pagefault_disable();
7687 if (get_user_page_fast_only(virt, 0, &p)) {
7688 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7689 put_page(p);
7691 pagefault_enable();
7695 return phys_addr;
7699 * Return the pagetable size of a given virtual address.
7701 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7703 u64 size = 0;
7705 #ifdef CONFIG_HAVE_GUP_FAST
7706 pgd_t *pgdp, pgd;
7707 p4d_t *p4dp, p4d;
7708 pud_t *pudp, pud;
7709 pmd_t *pmdp, pmd;
7710 pte_t *ptep, pte;
7712 pgdp = pgd_offset(mm, addr);
7713 pgd = READ_ONCE(*pgdp);
7714 if (pgd_none(pgd))
7715 return 0;
7717 if (pgd_leaf(pgd))
7718 return pgd_leaf_size(pgd);
7720 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7721 p4d = READ_ONCE(*p4dp);
7722 if (!p4d_present(p4d))
7723 return 0;
7725 if (p4d_leaf(p4d))
7726 return p4d_leaf_size(p4d);
7728 pudp = pud_offset_lockless(p4dp, p4d, addr);
7729 pud = READ_ONCE(*pudp);
7730 if (!pud_present(pud))
7731 return 0;
7733 if (pud_leaf(pud))
7734 return pud_leaf_size(pud);
7736 pmdp = pmd_offset_lockless(pudp, pud, addr);
7737 again:
7738 pmd = pmdp_get_lockless(pmdp);
7739 if (!pmd_present(pmd))
7740 return 0;
7742 if (pmd_leaf(pmd))
7743 return pmd_leaf_size(pmd);
7745 ptep = pte_offset_map(&pmd, addr);
7746 if (!ptep)
7747 goto again;
7749 pte = ptep_get_lockless(ptep);
7750 if (pte_present(pte))
7751 size = __pte_leaf_size(pmd, pte);
7752 pte_unmap(ptep);
7753 #endif /* CONFIG_HAVE_GUP_FAST */
7755 return size;
7758 static u64 perf_get_page_size(unsigned long addr)
7760 struct mm_struct *mm;
7761 unsigned long flags;
7762 u64 size;
7764 if (!addr)
7765 return 0;
7768 * Software page-table walkers must disable IRQs,
7769 * which prevents any tear down of the page tables.
7771 local_irq_save(flags);
7773 mm = current->mm;
7774 if (!mm) {
7776 * For kernel threads and the like, use init_mm so that
7777 * we can find kernel memory.
7779 mm = &init_mm;
7782 size = perf_get_pgtable_size(mm, addr);
7784 local_irq_restore(flags);
7786 return size;
7789 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7791 struct perf_callchain_entry *
7792 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7794 bool kernel = !event->attr.exclude_callchain_kernel;
7795 bool user = !event->attr.exclude_callchain_user;
7796 /* Disallow cross-task user callchains. */
7797 bool crosstask = event->ctx->task && event->ctx->task != current;
7798 const u32 max_stack = event->attr.sample_max_stack;
7799 struct perf_callchain_entry *callchain;
7801 if (!kernel && !user)
7802 return &__empty_callchain;
7804 callchain = get_perf_callchain(regs, 0, kernel, user,
7805 max_stack, crosstask, true);
7806 return callchain ?: &__empty_callchain;
7809 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7811 return d * !!(flags & s);
7814 void perf_prepare_sample(struct perf_sample_data *data,
7815 struct perf_event *event,
7816 struct pt_regs *regs)
7818 u64 sample_type = event->attr.sample_type;
7819 u64 filtered_sample_type;
7822 * Add the sample flags that are dependent to others. And clear the
7823 * sample flags that have already been done by the PMU driver.
7825 filtered_sample_type = sample_type;
7826 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7827 PERF_SAMPLE_IP);
7828 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7829 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7830 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7831 PERF_SAMPLE_REGS_USER);
7832 filtered_sample_type &= ~data->sample_flags;
7834 if (filtered_sample_type == 0) {
7835 /* Make sure it has the correct data->type for output */
7836 data->type = event->attr.sample_type;
7837 return;
7840 __perf_event_header__init_id(data, event, filtered_sample_type);
7842 if (filtered_sample_type & PERF_SAMPLE_IP) {
7843 data->ip = perf_instruction_pointer(event, regs);
7844 data->sample_flags |= PERF_SAMPLE_IP;
7847 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7848 perf_sample_save_callchain(data, event, regs);
7850 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7851 data->raw = NULL;
7852 data->dyn_size += sizeof(u64);
7853 data->sample_flags |= PERF_SAMPLE_RAW;
7856 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7857 data->br_stack = NULL;
7858 data->dyn_size += sizeof(u64);
7859 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7862 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7863 perf_sample_regs_user(&data->regs_user, regs);
7866 * It cannot use the filtered_sample_type here as REGS_USER can be set
7867 * by STACK_USER (using __cond_set() above) and we don't want to update
7868 * the dyn_size if it's not requested by users.
7870 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7871 /* regs dump ABI info */
7872 int size = sizeof(u64);
7874 if (data->regs_user.regs) {
7875 u64 mask = event->attr.sample_regs_user;
7876 size += hweight64(mask) * sizeof(u64);
7879 data->dyn_size += size;
7880 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7883 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7885 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7886 * processed as the last one or have additional check added
7887 * in case new sample type is added, because we could eat
7888 * up the rest of the sample size.
7890 u16 stack_size = event->attr.sample_stack_user;
7891 u16 header_size = perf_sample_data_size(data, event);
7892 u16 size = sizeof(u64);
7894 stack_size = perf_sample_ustack_size(stack_size, header_size,
7895 data->regs_user.regs);
7898 * If there is something to dump, add space for the dump
7899 * itself and for the field that tells the dynamic size,
7900 * which is how many have been actually dumped.
7902 if (stack_size)
7903 size += sizeof(u64) + stack_size;
7905 data->stack_user_size = stack_size;
7906 data->dyn_size += size;
7907 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7910 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7911 data->weight.full = 0;
7912 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7915 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7916 data->data_src.val = PERF_MEM_NA;
7917 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7920 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7921 data->txn = 0;
7922 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7925 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7926 data->addr = 0;
7927 data->sample_flags |= PERF_SAMPLE_ADDR;
7930 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7931 /* regs dump ABI info */
7932 int size = sizeof(u64);
7934 perf_sample_regs_intr(&data->regs_intr, regs);
7936 if (data->regs_intr.regs) {
7937 u64 mask = event->attr.sample_regs_intr;
7939 size += hweight64(mask) * sizeof(u64);
7942 data->dyn_size += size;
7943 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7946 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7947 data->phys_addr = perf_virt_to_phys(data->addr);
7948 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7951 #ifdef CONFIG_CGROUP_PERF
7952 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7953 struct cgroup *cgrp;
7955 /* protected by RCU */
7956 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7957 data->cgroup = cgroup_id(cgrp);
7958 data->sample_flags |= PERF_SAMPLE_CGROUP;
7960 #endif
7963 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7964 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7965 * but the value will not dump to the userspace.
7967 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7968 data->data_page_size = perf_get_page_size(data->addr);
7969 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7972 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7973 data->code_page_size = perf_get_page_size(data->ip);
7974 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7977 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7978 u64 size;
7979 u16 header_size = perf_sample_data_size(data, event);
7981 header_size += sizeof(u64); /* size */
7984 * Given the 16bit nature of header::size, an AUX sample can
7985 * easily overflow it, what with all the preceding sample bits.
7986 * Make sure this doesn't happen by using up to U16_MAX bytes
7987 * per sample in total (rounded down to 8 byte boundary).
7989 size = min_t(size_t, U16_MAX - header_size,
7990 event->attr.aux_sample_size);
7991 size = rounddown(size, 8);
7992 size = perf_prepare_sample_aux(event, data, size);
7994 WARN_ON_ONCE(size + header_size > U16_MAX);
7995 data->dyn_size += size + sizeof(u64); /* size above */
7996 data->sample_flags |= PERF_SAMPLE_AUX;
8000 void perf_prepare_header(struct perf_event_header *header,
8001 struct perf_sample_data *data,
8002 struct perf_event *event,
8003 struct pt_regs *regs)
8005 header->type = PERF_RECORD_SAMPLE;
8006 header->size = perf_sample_data_size(data, event);
8007 header->misc = perf_misc_flags(event, regs);
8010 * If you're adding more sample types here, you likely need to do
8011 * something about the overflowing header::size, like repurpose the
8012 * lowest 3 bits of size, which should be always zero at the moment.
8013 * This raises a more important question, do we really need 512k sized
8014 * samples and why, so good argumentation is in order for whatever you
8015 * do here next.
8017 WARN_ON_ONCE(header->size & 7);
8020 static void __perf_event_aux_pause(struct perf_event *event, bool pause)
8022 if (pause) {
8023 if (!event->hw.aux_paused) {
8024 event->hw.aux_paused = 1;
8025 event->pmu->stop(event, PERF_EF_PAUSE);
8027 } else {
8028 if (event->hw.aux_paused) {
8029 event->hw.aux_paused = 0;
8030 event->pmu->start(event, PERF_EF_RESUME);
8035 static void perf_event_aux_pause(struct perf_event *event, bool pause)
8037 struct perf_buffer *rb;
8039 if (WARN_ON_ONCE(!event))
8040 return;
8042 rb = ring_buffer_get(event);
8043 if (!rb)
8044 return;
8046 scoped_guard (irqsave) {
8048 * Guard against self-recursion here. Another event could trip
8049 * this same from NMI context.
8051 if (READ_ONCE(rb->aux_in_pause_resume))
8052 break;
8054 WRITE_ONCE(rb->aux_in_pause_resume, 1);
8055 barrier();
8056 __perf_event_aux_pause(event, pause);
8057 barrier();
8058 WRITE_ONCE(rb->aux_in_pause_resume, 0);
8060 ring_buffer_put(rb);
8063 static __always_inline int
8064 __perf_event_output(struct perf_event *event,
8065 struct perf_sample_data *data,
8066 struct pt_regs *regs,
8067 int (*output_begin)(struct perf_output_handle *,
8068 struct perf_sample_data *,
8069 struct perf_event *,
8070 unsigned int))
8072 struct perf_output_handle handle;
8073 struct perf_event_header header;
8074 int err;
8076 /* protect the callchain buffers */
8077 rcu_read_lock();
8079 perf_prepare_sample(data, event, regs);
8080 perf_prepare_header(&header, data, event, regs);
8082 err = output_begin(&handle, data, event, header.size);
8083 if (err)
8084 goto exit;
8086 perf_output_sample(&handle, &header, data, event);
8088 perf_output_end(&handle);
8090 exit:
8091 rcu_read_unlock();
8092 return err;
8095 void
8096 perf_event_output_forward(struct perf_event *event,
8097 struct perf_sample_data *data,
8098 struct pt_regs *regs)
8100 __perf_event_output(event, data, regs, perf_output_begin_forward);
8103 void
8104 perf_event_output_backward(struct perf_event *event,
8105 struct perf_sample_data *data,
8106 struct pt_regs *regs)
8108 __perf_event_output(event, data, regs, perf_output_begin_backward);
8112 perf_event_output(struct perf_event *event,
8113 struct perf_sample_data *data,
8114 struct pt_regs *regs)
8116 return __perf_event_output(event, data, regs, perf_output_begin);
8120 * read event_id
8123 struct perf_read_event {
8124 struct perf_event_header header;
8126 u32 pid;
8127 u32 tid;
8130 static void
8131 perf_event_read_event(struct perf_event *event,
8132 struct task_struct *task)
8134 struct perf_output_handle handle;
8135 struct perf_sample_data sample;
8136 struct perf_read_event read_event = {
8137 .header = {
8138 .type = PERF_RECORD_READ,
8139 .misc = 0,
8140 .size = sizeof(read_event) + event->read_size,
8142 .pid = perf_event_pid(event, task),
8143 .tid = perf_event_tid(event, task),
8145 int ret;
8147 perf_event_header__init_id(&read_event.header, &sample, event);
8148 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
8149 if (ret)
8150 return;
8152 perf_output_put(&handle, read_event);
8153 perf_output_read(&handle, event);
8154 perf_event__output_id_sample(event, &handle, &sample);
8156 perf_output_end(&handle);
8159 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
8161 static void
8162 perf_iterate_ctx(struct perf_event_context *ctx,
8163 perf_iterate_f output,
8164 void *data, bool all)
8166 struct perf_event *event;
8168 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8169 if (!all) {
8170 if (event->state < PERF_EVENT_STATE_INACTIVE)
8171 continue;
8172 if (!event_filter_match(event))
8173 continue;
8176 output(event, data);
8180 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8182 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8183 struct perf_event *event;
8185 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8187 * Skip events that are not fully formed yet; ensure that
8188 * if we observe event->ctx, both event and ctx will be
8189 * complete enough. See perf_install_in_context().
8191 if (!smp_load_acquire(&event->ctx))
8192 continue;
8194 if (event->state < PERF_EVENT_STATE_INACTIVE)
8195 continue;
8196 if (!event_filter_match(event))
8197 continue;
8198 output(event, data);
8203 * Iterate all events that need to receive side-band events.
8205 * For new callers; ensure that account_pmu_sb_event() includes
8206 * your event, otherwise it might not get delivered.
8208 static void
8209 perf_iterate_sb(perf_iterate_f output, void *data,
8210 struct perf_event_context *task_ctx)
8212 struct perf_event_context *ctx;
8214 rcu_read_lock();
8215 preempt_disable();
8218 * If we have task_ctx != NULL we only notify the task context itself.
8219 * The task_ctx is set only for EXIT events before releasing task
8220 * context.
8222 if (task_ctx) {
8223 perf_iterate_ctx(task_ctx, output, data, false);
8224 goto done;
8227 perf_iterate_sb_cpu(output, data);
8229 ctx = rcu_dereference(current->perf_event_ctxp);
8230 if (ctx)
8231 perf_iterate_ctx(ctx, output, data, false);
8232 done:
8233 preempt_enable();
8234 rcu_read_unlock();
8238 * Clear all file-based filters at exec, they'll have to be
8239 * re-instated when/if these objects are mmapped again.
8241 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8243 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8244 struct perf_addr_filter *filter;
8245 unsigned int restart = 0, count = 0;
8246 unsigned long flags;
8248 if (!has_addr_filter(event))
8249 return;
8251 raw_spin_lock_irqsave(&ifh->lock, flags);
8252 list_for_each_entry(filter, &ifh->list, entry) {
8253 if (filter->path.dentry) {
8254 event->addr_filter_ranges[count].start = 0;
8255 event->addr_filter_ranges[count].size = 0;
8256 restart++;
8259 count++;
8262 if (restart)
8263 event->addr_filters_gen++;
8264 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8266 if (restart)
8267 perf_event_stop(event, 1);
8270 void perf_event_exec(void)
8272 struct perf_event_context *ctx;
8274 ctx = perf_pin_task_context(current);
8275 if (!ctx)
8276 return;
8278 perf_event_enable_on_exec(ctx);
8279 perf_event_remove_on_exec(ctx);
8280 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8282 perf_unpin_context(ctx);
8283 put_ctx(ctx);
8286 struct remote_output {
8287 struct perf_buffer *rb;
8288 int err;
8291 static void __perf_event_output_stop(struct perf_event *event, void *data)
8293 struct perf_event *parent = event->parent;
8294 struct remote_output *ro = data;
8295 struct perf_buffer *rb = ro->rb;
8296 struct stop_event_data sd = {
8297 .event = event,
8300 if (!has_aux(event))
8301 return;
8303 if (!parent)
8304 parent = event;
8307 * In case of inheritance, it will be the parent that links to the
8308 * ring-buffer, but it will be the child that's actually using it.
8310 * We are using event::rb to determine if the event should be stopped,
8311 * however this may race with ring_buffer_attach() (through set_output),
8312 * which will make us skip the event that actually needs to be stopped.
8313 * So ring_buffer_attach() has to stop an aux event before re-assigning
8314 * its rb pointer.
8316 if (rcu_dereference(parent->rb) == rb)
8317 ro->err = __perf_event_stop(&sd);
8320 static int __perf_pmu_output_stop(void *info)
8322 struct perf_event *event = info;
8323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8324 struct remote_output ro = {
8325 .rb = event->rb,
8328 rcu_read_lock();
8329 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8330 if (cpuctx->task_ctx)
8331 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8332 &ro, false);
8333 rcu_read_unlock();
8335 return ro.err;
8338 static void perf_pmu_output_stop(struct perf_event *event)
8340 struct perf_event *iter;
8341 int err, cpu;
8343 restart:
8344 rcu_read_lock();
8345 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8347 * For per-CPU events, we need to make sure that neither they
8348 * nor their children are running; for cpu==-1 events it's
8349 * sufficient to stop the event itself if it's active, since
8350 * it can't have children.
8352 cpu = iter->cpu;
8353 if (cpu == -1)
8354 cpu = READ_ONCE(iter->oncpu);
8356 if (cpu == -1)
8357 continue;
8359 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8360 if (err == -EAGAIN) {
8361 rcu_read_unlock();
8362 goto restart;
8365 rcu_read_unlock();
8369 * task tracking -- fork/exit
8371 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8374 struct perf_task_event {
8375 struct task_struct *task;
8376 struct perf_event_context *task_ctx;
8378 struct {
8379 struct perf_event_header header;
8381 u32 pid;
8382 u32 ppid;
8383 u32 tid;
8384 u32 ptid;
8385 u64 time;
8386 } event_id;
8389 static int perf_event_task_match(struct perf_event *event)
8391 return event->attr.comm || event->attr.mmap ||
8392 event->attr.mmap2 || event->attr.mmap_data ||
8393 event->attr.task;
8396 static void perf_event_task_output(struct perf_event *event,
8397 void *data)
8399 struct perf_task_event *task_event = data;
8400 struct perf_output_handle handle;
8401 struct perf_sample_data sample;
8402 struct task_struct *task = task_event->task;
8403 int ret, size = task_event->event_id.header.size;
8405 if (!perf_event_task_match(event))
8406 return;
8408 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8410 ret = perf_output_begin(&handle, &sample, event,
8411 task_event->event_id.header.size);
8412 if (ret)
8413 goto out;
8415 task_event->event_id.pid = perf_event_pid(event, task);
8416 task_event->event_id.tid = perf_event_tid(event, task);
8418 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8419 task_event->event_id.ppid = perf_event_pid(event,
8420 task->real_parent);
8421 task_event->event_id.ptid = perf_event_pid(event,
8422 task->real_parent);
8423 } else { /* PERF_RECORD_FORK */
8424 task_event->event_id.ppid = perf_event_pid(event, current);
8425 task_event->event_id.ptid = perf_event_tid(event, current);
8428 task_event->event_id.time = perf_event_clock(event);
8430 perf_output_put(&handle, task_event->event_id);
8432 perf_event__output_id_sample(event, &handle, &sample);
8434 perf_output_end(&handle);
8435 out:
8436 task_event->event_id.header.size = size;
8439 static void perf_event_task(struct task_struct *task,
8440 struct perf_event_context *task_ctx,
8441 int new)
8443 struct perf_task_event task_event;
8445 if (!atomic_read(&nr_comm_events) &&
8446 !atomic_read(&nr_mmap_events) &&
8447 !atomic_read(&nr_task_events))
8448 return;
8450 task_event = (struct perf_task_event){
8451 .task = task,
8452 .task_ctx = task_ctx,
8453 .event_id = {
8454 .header = {
8455 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8456 .misc = 0,
8457 .size = sizeof(task_event.event_id),
8459 /* .pid */
8460 /* .ppid */
8461 /* .tid */
8462 /* .ptid */
8463 /* .time */
8467 perf_iterate_sb(perf_event_task_output,
8468 &task_event,
8469 task_ctx);
8472 void perf_event_fork(struct task_struct *task)
8474 perf_event_task(task, NULL, 1);
8475 perf_event_namespaces(task);
8479 * comm tracking
8482 struct perf_comm_event {
8483 struct task_struct *task;
8484 char *comm;
8485 int comm_size;
8487 struct {
8488 struct perf_event_header header;
8490 u32 pid;
8491 u32 tid;
8492 } event_id;
8495 static int perf_event_comm_match(struct perf_event *event)
8497 return event->attr.comm;
8500 static void perf_event_comm_output(struct perf_event *event,
8501 void *data)
8503 struct perf_comm_event *comm_event = data;
8504 struct perf_output_handle handle;
8505 struct perf_sample_data sample;
8506 int size = comm_event->event_id.header.size;
8507 int ret;
8509 if (!perf_event_comm_match(event))
8510 return;
8512 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8513 ret = perf_output_begin(&handle, &sample, event,
8514 comm_event->event_id.header.size);
8516 if (ret)
8517 goto out;
8519 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8520 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8522 perf_output_put(&handle, comm_event->event_id);
8523 __output_copy(&handle, comm_event->comm,
8524 comm_event->comm_size);
8526 perf_event__output_id_sample(event, &handle, &sample);
8528 perf_output_end(&handle);
8529 out:
8530 comm_event->event_id.header.size = size;
8533 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8535 char comm[TASK_COMM_LEN];
8536 unsigned int size;
8538 memset(comm, 0, sizeof(comm));
8539 strscpy(comm, comm_event->task->comm, sizeof(comm));
8540 size = ALIGN(strlen(comm)+1, sizeof(u64));
8542 comm_event->comm = comm;
8543 comm_event->comm_size = size;
8545 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8547 perf_iterate_sb(perf_event_comm_output,
8548 comm_event,
8549 NULL);
8552 void perf_event_comm(struct task_struct *task, bool exec)
8554 struct perf_comm_event comm_event;
8556 if (!atomic_read(&nr_comm_events))
8557 return;
8559 comm_event = (struct perf_comm_event){
8560 .task = task,
8561 /* .comm */
8562 /* .comm_size */
8563 .event_id = {
8564 .header = {
8565 .type = PERF_RECORD_COMM,
8566 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8567 /* .size */
8569 /* .pid */
8570 /* .tid */
8574 perf_event_comm_event(&comm_event);
8578 * namespaces tracking
8581 struct perf_namespaces_event {
8582 struct task_struct *task;
8584 struct {
8585 struct perf_event_header header;
8587 u32 pid;
8588 u32 tid;
8589 u64 nr_namespaces;
8590 struct perf_ns_link_info link_info[NR_NAMESPACES];
8591 } event_id;
8594 static int perf_event_namespaces_match(struct perf_event *event)
8596 return event->attr.namespaces;
8599 static void perf_event_namespaces_output(struct perf_event *event,
8600 void *data)
8602 struct perf_namespaces_event *namespaces_event = data;
8603 struct perf_output_handle handle;
8604 struct perf_sample_data sample;
8605 u16 header_size = namespaces_event->event_id.header.size;
8606 int ret;
8608 if (!perf_event_namespaces_match(event))
8609 return;
8611 perf_event_header__init_id(&namespaces_event->event_id.header,
8612 &sample, event);
8613 ret = perf_output_begin(&handle, &sample, event,
8614 namespaces_event->event_id.header.size);
8615 if (ret)
8616 goto out;
8618 namespaces_event->event_id.pid = perf_event_pid(event,
8619 namespaces_event->task);
8620 namespaces_event->event_id.tid = perf_event_tid(event,
8621 namespaces_event->task);
8623 perf_output_put(&handle, namespaces_event->event_id);
8625 perf_event__output_id_sample(event, &handle, &sample);
8627 perf_output_end(&handle);
8628 out:
8629 namespaces_event->event_id.header.size = header_size;
8632 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8633 struct task_struct *task,
8634 const struct proc_ns_operations *ns_ops)
8636 struct path ns_path;
8637 struct inode *ns_inode;
8638 int error;
8640 error = ns_get_path(&ns_path, task, ns_ops);
8641 if (!error) {
8642 ns_inode = ns_path.dentry->d_inode;
8643 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8644 ns_link_info->ino = ns_inode->i_ino;
8645 path_put(&ns_path);
8649 void perf_event_namespaces(struct task_struct *task)
8651 struct perf_namespaces_event namespaces_event;
8652 struct perf_ns_link_info *ns_link_info;
8654 if (!atomic_read(&nr_namespaces_events))
8655 return;
8657 namespaces_event = (struct perf_namespaces_event){
8658 .task = task,
8659 .event_id = {
8660 .header = {
8661 .type = PERF_RECORD_NAMESPACES,
8662 .misc = 0,
8663 .size = sizeof(namespaces_event.event_id),
8665 /* .pid */
8666 /* .tid */
8667 .nr_namespaces = NR_NAMESPACES,
8668 /* .link_info[NR_NAMESPACES] */
8672 ns_link_info = namespaces_event.event_id.link_info;
8674 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8675 task, &mntns_operations);
8677 #ifdef CONFIG_USER_NS
8678 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8679 task, &userns_operations);
8680 #endif
8681 #ifdef CONFIG_NET_NS
8682 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8683 task, &netns_operations);
8684 #endif
8685 #ifdef CONFIG_UTS_NS
8686 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8687 task, &utsns_operations);
8688 #endif
8689 #ifdef CONFIG_IPC_NS
8690 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8691 task, &ipcns_operations);
8692 #endif
8693 #ifdef CONFIG_PID_NS
8694 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8695 task, &pidns_operations);
8696 #endif
8697 #ifdef CONFIG_CGROUPS
8698 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8699 task, &cgroupns_operations);
8700 #endif
8702 perf_iterate_sb(perf_event_namespaces_output,
8703 &namespaces_event,
8704 NULL);
8708 * cgroup tracking
8710 #ifdef CONFIG_CGROUP_PERF
8712 struct perf_cgroup_event {
8713 char *path;
8714 int path_size;
8715 struct {
8716 struct perf_event_header header;
8717 u64 id;
8718 char path[];
8719 } event_id;
8722 static int perf_event_cgroup_match(struct perf_event *event)
8724 return event->attr.cgroup;
8727 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8729 struct perf_cgroup_event *cgroup_event = data;
8730 struct perf_output_handle handle;
8731 struct perf_sample_data sample;
8732 u16 header_size = cgroup_event->event_id.header.size;
8733 int ret;
8735 if (!perf_event_cgroup_match(event))
8736 return;
8738 perf_event_header__init_id(&cgroup_event->event_id.header,
8739 &sample, event);
8740 ret = perf_output_begin(&handle, &sample, event,
8741 cgroup_event->event_id.header.size);
8742 if (ret)
8743 goto out;
8745 perf_output_put(&handle, cgroup_event->event_id);
8746 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8748 perf_event__output_id_sample(event, &handle, &sample);
8750 perf_output_end(&handle);
8751 out:
8752 cgroup_event->event_id.header.size = header_size;
8755 static void perf_event_cgroup(struct cgroup *cgrp)
8757 struct perf_cgroup_event cgroup_event;
8758 char path_enomem[16] = "//enomem";
8759 char *pathname;
8760 size_t size;
8762 if (!atomic_read(&nr_cgroup_events))
8763 return;
8765 cgroup_event = (struct perf_cgroup_event){
8766 .event_id = {
8767 .header = {
8768 .type = PERF_RECORD_CGROUP,
8769 .misc = 0,
8770 .size = sizeof(cgroup_event.event_id),
8772 .id = cgroup_id(cgrp),
8776 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8777 if (pathname == NULL) {
8778 cgroup_event.path = path_enomem;
8779 } else {
8780 /* just to be sure to have enough space for alignment */
8781 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8782 cgroup_event.path = pathname;
8786 * Since our buffer works in 8 byte units we need to align our string
8787 * size to a multiple of 8. However, we must guarantee the tail end is
8788 * zero'd out to avoid leaking random bits to userspace.
8790 size = strlen(cgroup_event.path) + 1;
8791 while (!IS_ALIGNED(size, sizeof(u64)))
8792 cgroup_event.path[size++] = '\0';
8794 cgroup_event.event_id.header.size += size;
8795 cgroup_event.path_size = size;
8797 perf_iterate_sb(perf_event_cgroup_output,
8798 &cgroup_event,
8799 NULL);
8801 kfree(pathname);
8804 #endif
8807 * mmap tracking
8810 struct perf_mmap_event {
8811 struct vm_area_struct *vma;
8813 const char *file_name;
8814 int file_size;
8815 int maj, min;
8816 u64 ino;
8817 u64 ino_generation;
8818 u32 prot, flags;
8819 u8 build_id[BUILD_ID_SIZE_MAX];
8820 u32 build_id_size;
8822 struct {
8823 struct perf_event_header header;
8825 u32 pid;
8826 u32 tid;
8827 u64 start;
8828 u64 len;
8829 u64 pgoff;
8830 } event_id;
8833 static int perf_event_mmap_match(struct perf_event *event,
8834 void *data)
8836 struct perf_mmap_event *mmap_event = data;
8837 struct vm_area_struct *vma = mmap_event->vma;
8838 int executable = vma->vm_flags & VM_EXEC;
8840 return (!executable && event->attr.mmap_data) ||
8841 (executable && (event->attr.mmap || event->attr.mmap2));
8844 static void perf_event_mmap_output(struct perf_event *event,
8845 void *data)
8847 struct perf_mmap_event *mmap_event = data;
8848 struct perf_output_handle handle;
8849 struct perf_sample_data sample;
8850 int size = mmap_event->event_id.header.size;
8851 u32 type = mmap_event->event_id.header.type;
8852 bool use_build_id;
8853 int ret;
8855 if (!perf_event_mmap_match(event, data))
8856 return;
8858 if (event->attr.mmap2) {
8859 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8860 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8861 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8862 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8863 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8864 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8865 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8868 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8869 ret = perf_output_begin(&handle, &sample, event,
8870 mmap_event->event_id.header.size);
8871 if (ret)
8872 goto out;
8874 mmap_event->event_id.pid = perf_event_pid(event, current);
8875 mmap_event->event_id.tid = perf_event_tid(event, current);
8877 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8879 if (event->attr.mmap2 && use_build_id)
8880 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8882 perf_output_put(&handle, mmap_event->event_id);
8884 if (event->attr.mmap2) {
8885 if (use_build_id) {
8886 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8888 __output_copy(&handle, size, 4);
8889 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8890 } else {
8891 perf_output_put(&handle, mmap_event->maj);
8892 perf_output_put(&handle, mmap_event->min);
8893 perf_output_put(&handle, mmap_event->ino);
8894 perf_output_put(&handle, mmap_event->ino_generation);
8896 perf_output_put(&handle, mmap_event->prot);
8897 perf_output_put(&handle, mmap_event->flags);
8900 __output_copy(&handle, mmap_event->file_name,
8901 mmap_event->file_size);
8903 perf_event__output_id_sample(event, &handle, &sample);
8905 perf_output_end(&handle);
8906 out:
8907 mmap_event->event_id.header.size = size;
8908 mmap_event->event_id.header.type = type;
8911 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8913 struct vm_area_struct *vma = mmap_event->vma;
8914 struct file *file = vma->vm_file;
8915 int maj = 0, min = 0;
8916 u64 ino = 0, gen = 0;
8917 u32 prot = 0, flags = 0;
8918 unsigned int size;
8919 char tmp[16];
8920 char *buf = NULL;
8921 char *name = NULL;
8923 if (vma->vm_flags & VM_READ)
8924 prot |= PROT_READ;
8925 if (vma->vm_flags & VM_WRITE)
8926 prot |= PROT_WRITE;
8927 if (vma->vm_flags & VM_EXEC)
8928 prot |= PROT_EXEC;
8930 if (vma->vm_flags & VM_MAYSHARE)
8931 flags = MAP_SHARED;
8932 else
8933 flags = MAP_PRIVATE;
8935 if (vma->vm_flags & VM_LOCKED)
8936 flags |= MAP_LOCKED;
8937 if (is_vm_hugetlb_page(vma))
8938 flags |= MAP_HUGETLB;
8940 if (file) {
8941 struct inode *inode;
8942 dev_t dev;
8944 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8945 if (!buf) {
8946 name = "//enomem";
8947 goto cpy_name;
8950 * d_path() works from the end of the rb backwards, so we
8951 * need to add enough zero bytes after the string to handle
8952 * the 64bit alignment we do later.
8954 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8955 if (IS_ERR(name)) {
8956 name = "//toolong";
8957 goto cpy_name;
8959 inode = file_inode(vma->vm_file);
8960 dev = inode->i_sb->s_dev;
8961 ino = inode->i_ino;
8962 gen = inode->i_generation;
8963 maj = MAJOR(dev);
8964 min = MINOR(dev);
8966 goto got_name;
8967 } else {
8968 if (vma->vm_ops && vma->vm_ops->name)
8969 name = (char *) vma->vm_ops->name(vma);
8970 if (!name)
8971 name = (char *)arch_vma_name(vma);
8972 if (!name) {
8973 if (vma_is_initial_heap(vma))
8974 name = "[heap]";
8975 else if (vma_is_initial_stack(vma))
8976 name = "[stack]";
8977 else
8978 name = "//anon";
8982 cpy_name:
8983 strscpy(tmp, name, sizeof(tmp));
8984 name = tmp;
8985 got_name:
8987 * Since our buffer works in 8 byte units we need to align our string
8988 * size to a multiple of 8. However, we must guarantee the tail end is
8989 * zero'd out to avoid leaking random bits to userspace.
8991 size = strlen(name)+1;
8992 while (!IS_ALIGNED(size, sizeof(u64)))
8993 name[size++] = '\0';
8995 mmap_event->file_name = name;
8996 mmap_event->file_size = size;
8997 mmap_event->maj = maj;
8998 mmap_event->min = min;
8999 mmap_event->ino = ino;
9000 mmap_event->ino_generation = gen;
9001 mmap_event->prot = prot;
9002 mmap_event->flags = flags;
9004 if (!(vma->vm_flags & VM_EXEC))
9005 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
9007 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
9009 if (atomic_read(&nr_build_id_events))
9010 build_id_parse_nofault(vma, mmap_event->build_id, &mmap_event->build_id_size);
9012 perf_iterate_sb(perf_event_mmap_output,
9013 mmap_event,
9014 NULL);
9016 kfree(buf);
9020 * Check whether inode and address range match filter criteria.
9022 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
9023 struct file *file, unsigned long offset,
9024 unsigned long size)
9026 /* d_inode(NULL) won't be equal to any mapped user-space file */
9027 if (!filter->path.dentry)
9028 return false;
9030 if (d_inode(filter->path.dentry) != file_inode(file))
9031 return false;
9033 if (filter->offset > offset + size)
9034 return false;
9036 if (filter->offset + filter->size < offset)
9037 return false;
9039 return true;
9042 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
9043 struct vm_area_struct *vma,
9044 struct perf_addr_filter_range *fr)
9046 unsigned long vma_size = vma->vm_end - vma->vm_start;
9047 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
9048 struct file *file = vma->vm_file;
9050 if (!perf_addr_filter_match(filter, file, off, vma_size))
9051 return false;
9053 if (filter->offset < off) {
9054 fr->start = vma->vm_start;
9055 fr->size = min(vma_size, filter->size - (off - filter->offset));
9056 } else {
9057 fr->start = vma->vm_start + filter->offset - off;
9058 fr->size = min(vma->vm_end - fr->start, filter->size);
9061 return true;
9064 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
9066 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9067 struct vm_area_struct *vma = data;
9068 struct perf_addr_filter *filter;
9069 unsigned int restart = 0, count = 0;
9070 unsigned long flags;
9072 if (!has_addr_filter(event))
9073 return;
9075 if (!vma->vm_file)
9076 return;
9078 raw_spin_lock_irqsave(&ifh->lock, flags);
9079 list_for_each_entry(filter, &ifh->list, entry) {
9080 if (perf_addr_filter_vma_adjust(filter, vma,
9081 &event->addr_filter_ranges[count]))
9082 restart++;
9084 count++;
9087 if (restart)
9088 event->addr_filters_gen++;
9089 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9091 if (restart)
9092 perf_event_stop(event, 1);
9096 * Adjust all task's events' filters to the new vma
9098 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
9100 struct perf_event_context *ctx;
9103 * Data tracing isn't supported yet and as such there is no need
9104 * to keep track of anything that isn't related to executable code:
9106 if (!(vma->vm_flags & VM_EXEC))
9107 return;
9109 rcu_read_lock();
9110 ctx = rcu_dereference(current->perf_event_ctxp);
9111 if (ctx)
9112 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
9113 rcu_read_unlock();
9116 void perf_event_mmap(struct vm_area_struct *vma)
9118 struct perf_mmap_event mmap_event;
9120 if (!atomic_read(&nr_mmap_events))
9121 return;
9123 mmap_event = (struct perf_mmap_event){
9124 .vma = vma,
9125 /* .file_name */
9126 /* .file_size */
9127 .event_id = {
9128 .header = {
9129 .type = PERF_RECORD_MMAP,
9130 .misc = PERF_RECORD_MISC_USER,
9131 /* .size */
9133 /* .pid */
9134 /* .tid */
9135 .start = vma->vm_start,
9136 .len = vma->vm_end - vma->vm_start,
9137 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
9139 /* .maj (attr_mmap2 only) */
9140 /* .min (attr_mmap2 only) */
9141 /* .ino (attr_mmap2 only) */
9142 /* .ino_generation (attr_mmap2 only) */
9143 /* .prot (attr_mmap2 only) */
9144 /* .flags (attr_mmap2 only) */
9147 perf_addr_filters_adjust(vma);
9148 perf_event_mmap_event(&mmap_event);
9151 void perf_event_aux_event(struct perf_event *event, unsigned long head,
9152 unsigned long size, u64 flags)
9154 struct perf_output_handle handle;
9155 struct perf_sample_data sample;
9156 struct perf_aux_event {
9157 struct perf_event_header header;
9158 u64 offset;
9159 u64 size;
9160 u64 flags;
9161 } rec = {
9162 .header = {
9163 .type = PERF_RECORD_AUX,
9164 .misc = 0,
9165 .size = sizeof(rec),
9167 .offset = head,
9168 .size = size,
9169 .flags = flags,
9171 int ret;
9173 perf_event_header__init_id(&rec.header, &sample, event);
9174 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9176 if (ret)
9177 return;
9179 perf_output_put(&handle, rec);
9180 perf_event__output_id_sample(event, &handle, &sample);
9182 perf_output_end(&handle);
9186 * Lost/dropped samples logging
9188 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9190 struct perf_output_handle handle;
9191 struct perf_sample_data sample;
9192 int ret;
9194 struct {
9195 struct perf_event_header header;
9196 u64 lost;
9197 } lost_samples_event = {
9198 .header = {
9199 .type = PERF_RECORD_LOST_SAMPLES,
9200 .misc = 0,
9201 .size = sizeof(lost_samples_event),
9203 .lost = lost,
9206 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9208 ret = perf_output_begin(&handle, &sample, event,
9209 lost_samples_event.header.size);
9210 if (ret)
9211 return;
9213 perf_output_put(&handle, lost_samples_event);
9214 perf_event__output_id_sample(event, &handle, &sample);
9215 perf_output_end(&handle);
9219 * context_switch tracking
9222 struct perf_switch_event {
9223 struct task_struct *task;
9224 struct task_struct *next_prev;
9226 struct {
9227 struct perf_event_header header;
9228 u32 next_prev_pid;
9229 u32 next_prev_tid;
9230 } event_id;
9233 static int perf_event_switch_match(struct perf_event *event)
9235 return event->attr.context_switch;
9238 static void perf_event_switch_output(struct perf_event *event, void *data)
9240 struct perf_switch_event *se = data;
9241 struct perf_output_handle handle;
9242 struct perf_sample_data sample;
9243 int ret;
9245 if (!perf_event_switch_match(event))
9246 return;
9248 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9249 if (event->ctx->task) {
9250 se->event_id.header.type = PERF_RECORD_SWITCH;
9251 se->event_id.header.size = sizeof(se->event_id.header);
9252 } else {
9253 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9254 se->event_id.header.size = sizeof(se->event_id);
9255 se->event_id.next_prev_pid =
9256 perf_event_pid(event, se->next_prev);
9257 se->event_id.next_prev_tid =
9258 perf_event_tid(event, se->next_prev);
9261 perf_event_header__init_id(&se->event_id.header, &sample, event);
9263 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9264 if (ret)
9265 return;
9267 if (event->ctx->task)
9268 perf_output_put(&handle, se->event_id.header);
9269 else
9270 perf_output_put(&handle, se->event_id);
9272 perf_event__output_id_sample(event, &handle, &sample);
9274 perf_output_end(&handle);
9277 static void perf_event_switch(struct task_struct *task,
9278 struct task_struct *next_prev, bool sched_in)
9280 struct perf_switch_event switch_event;
9282 /* N.B. caller checks nr_switch_events != 0 */
9284 switch_event = (struct perf_switch_event){
9285 .task = task,
9286 .next_prev = next_prev,
9287 .event_id = {
9288 .header = {
9289 /* .type */
9290 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9291 /* .size */
9293 /* .next_prev_pid */
9294 /* .next_prev_tid */
9298 if (!sched_in && task_is_runnable(task)) {
9299 switch_event.event_id.header.misc |=
9300 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9303 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9307 * IRQ throttle logging
9310 static void perf_log_throttle(struct perf_event *event, int enable)
9312 struct perf_output_handle handle;
9313 struct perf_sample_data sample;
9314 int ret;
9316 struct {
9317 struct perf_event_header header;
9318 u64 time;
9319 u64 id;
9320 u64 stream_id;
9321 } throttle_event = {
9322 .header = {
9323 .type = PERF_RECORD_THROTTLE,
9324 .misc = 0,
9325 .size = sizeof(throttle_event),
9327 .time = perf_event_clock(event),
9328 .id = primary_event_id(event),
9329 .stream_id = event->id,
9332 if (enable)
9333 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9335 perf_event_header__init_id(&throttle_event.header, &sample, event);
9337 ret = perf_output_begin(&handle, &sample, event,
9338 throttle_event.header.size);
9339 if (ret)
9340 return;
9342 perf_output_put(&handle, throttle_event);
9343 perf_event__output_id_sample(event, &handle, &sample);
9344 perf_output_end(&handle);
9348 * ksymbol register/unregister tracking
9351 struct perf_ksymbol_event {
9352 const char *name;
9353 int name_len;
9354 struct {
9355 struct perf_event_header header;
9356 u64 addr;
9357 u32 len;
9358 u16 ksym_type;
9359 u16 flags;
9360 } event_id;
9363 static int perf_event_ksymbol_match(struct perf_event *event)
9365 return event->attr.ksymbol;
9368 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9370 struct perf_ksymbol_event *ksymbol_event = data;
9371 struct perf_output_handle handle;
9372 struct perf_sample_data sample;
9373 int ret;
9375 if (!perf_event_ksymbol_match(event))
9376 return;
9378 perf_event_header__init_id(&ksymbol_event->event_id.header,
9379 &sample, event);
9380 ret = perf_output_begin(&handle, &sample, event,
9381 ksymbol_event->event_id.header.size);
9382 if (ret)
9383 return;
9385 perf_output_put(&handle, ksymbol_event->event_id);
9386 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9387 perf_event__output_id_sample(event, &handle, &sample);
9389 perf_output_end(&handle);
9392 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9393 const char *sym)
9395 struct perf_ksymbol_event ksymbol_event;
9396 char name[KSYM_NAME_LEN];
9397 u16 flags = 0;
9398 int name_len;
9400 if (!atomic_read(&nr_ksymbol_events))
9401 return;
9403 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9404 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9405 goto err;
9407 strscpy(name, sym, KSYM_NAME_LEN);
9408 name_len = strlen(name) + 1;
9409 while (!IS_ALIGNED(name_len, sizeof(u64)))
9410 name[name_len++] = '\0';
9411 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9413 if (unregister)
9414 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9416 ksymbol_event = (struct perf_ksymbol_event){
9417 .name = name,
9418 .name_len = name_len,
9419 .event_id = {
9420 .header = {
9421 .type = PERF_RECORD_KSYMBOL,
9422 .size = sizeof(ksymbol_event.event_id) +
9423 name_len,
9425 .addr = addr,
9426 .len = len,
9427 .ksym_type = ksym_type,
9428 .flags = flags,
9432 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9433 return;
9434 err:
9435 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9439 * bpf program load/unload tracking
9442 struct perf_bpf_event {
9443 struct bpf_prog *prog;
9444 struct {
9445 struct perf_event_header header;
9446 u16 type;
9447 u16 flags;
9448 u32 id;
9449 u8 tag[BPF_TAG_SIZE];
9450 } event_id;
9453 static int perf_event_bpf_match(struct perf_event *event)
9455 return event->attr.bpf_event;
9458 static void perf_event_bpf_output(struct perf_event *event, void *data)
9460 struct perf_bpf_event *bpf_event = data;
9461 struct perf_output_handle handle;
9462 struct perf_sample_data sample;
9463 int ret;
9465 if (!perf_event_bpf_match(event))
9466 return;
9468 perf_event_header__init_id(&bpf_event->event_id.header,
9469 &sample, event);
9470 ret = perf_output_begin(&handle, &sample, event,
9471 bpf_event->event_id.header.size);
9472 if (ret)
9473 return;
9475 perf_output_put(&handle, bpf_event->event_id);
9476 perf_event__output_id_sample(event, &handle, &sample);
9478 perf_output_end(&handle);
9481 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9482 enum perf_bpf_event_type type)
9484 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9485 int i;
9487 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9488 (u64)(unsigned long)prog->bpf_func,
9489 prog->jited_len, unregister,
9490 prog->aux->ksym.name);
9492 for (i = 1; i < prog->aux->func_cnt; i++) {
9493 struct bpf_prog *subprog = prog->aux->func[i];
9495 perf_event_ksymbol(
9496 PERF_RECORD_KSYMBOL_TYPE_BPF,
9497 (u64)(unsigned long)subprog->bpf_func,
9498 subprog->jited_len, unregister,
9499 subprog->aux->ksym.name);
9503 void perf_event_bpf_event(struct bpf_prog *prog,
9504 enum perf_bpf_event_type type,
9505 u16 flags)
9507 struct perf_bpf_event bpf_event;
9509 switch (type) {
9510 case PERF_BPF_EVENT_PROG_LOAD:
9511 case PERF_BPF_EVENT_PROG_UNLOAD:
9512 if (atomic_read(&nr_ksymbol_events))
9513 perf_event_bpf_emit_ksymbols(prog, type);
9514 break;
9515 default:
9516 return;
9519 if (!atomic_read(&nr_bpf_events))
9520 return;
9522 bpf_event = (struct perf_bpf_event){
9523 .prog = prog,
9524 .event_id = {
9525 .header = {
9526 .type = PERF_RECORD_BPF_EVENT,
9527 .size = sizeof(bpf_event.event_id),
9529 .type = type,
9530 .flags = flags,
9531 .id = prog->aux->id,
9535 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9537 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9538 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9541 struct perf_text_poke_event {
9542 const void *old_bytes;
9543 const void *new_bytes;
9544 size_t pad;
9545 u16 old_len;
9546 u16 new_len;
9548 struct {
9549 struct perf_event_header header;
9551 u64 addr;
9552 } event_id;
9555 static int perf_event_text_poke_match(struct perf_event *event)
9557 return event->attr.text_poke;
9560 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9562 struct perf_text_poke_event *text_poke_event = data;
9563 struct perf_output_handle handle;
9564 struct perf_sample_data sample;
9565 u64 padding = 0;
9566 int ret;
9568 if (!perf_event_text_poke_match(event))
9569 return;
9571 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9573 ret = perf_output_begin(&handle, &sample, event,
9574 text_poke_event->event_id.header.size);
9575 if (ret)
9576 return;
9578 perf_output_put(&handle, text_poke_event->event_id);
9579 perf_output_put(&handle, text_poke_event->old_len);
9580 perf_output_put(&handle, text_poke_event->new_len);
9582 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9583 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9585 if (text_poke_event->pad)
9586 __output_copy(&handle, &padding, text_poke_event->pad);
9588 perf_event__output_id_sample(event, &handle, &sample);
9590 perf_output_end(&handle);
9593 void perf_event_text_poke(const void *addr, const void *old_bytes,
9594 size_t old_len, const void *new_bytes, size_t new_len)
9596 struct perf_text_poke_event text_poke_event;
9597 size_t tot, pad;
9599 if (!atomic_read(&nr_text_poke_events))
9600 return;
9602 tot = sizeof(text_poke_event.old_len) + old_len;
9603 tot += sizeof(text_poke_event.new_len) + new_len;
9604 pad = ALIGN(tot, sizeof(u64)) - tot;
9606 text_poke_event = (struct perf_text_poke_event){
9607 .old_bytes = old_bytes,
9608 .new_bytes = new_bytes,
9609 .pad = pad,
9610 .old_len = old_len,
9611 .new_len = new_len,
9612 .event_id = {
9613 .header = {
9614 .type = PERF_RECORD_TEXT_POKE,
9615 .misc = PERF_RECORD_MISC_KERNEL,
9616 .size = sizeof(text_poke_event.event_id) + tot + pad,
9618 .addr = (unsigned long)addr,
9622 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9625 void perf_event_itrace_started(struct perf_event *event)
9627 event->attach_state |= PERF_ATTACH_ITRACE;
9630 static void perf_log_itrace_start(struct perf_event *event)
9632 struct perf_output_handle handle;
9633 struct perf_sample_data sample;
9634 struct perf_aux_event {
9635 struct perf_event_header header;
9636 u32 pid;
9637 u32 tid;
9638 } rec;
9639 int ret;
9641 if (event->parent)
9642 event = event->parent;
9644 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9645 event->attach_state & PERF_ATTACH_ITRACE)
9646 return;
9648 rec.header.type = PERF_RECORD_ITRACE_START;
9649 rec.header.misc = 0;
9650 rec.header.size = sizeof(rec);
9651 rec.pid = perf_event_pid(event, current);
9652 rec.tid = perf_event_tid(event, current);
9654 perf_event_header__init_id(&rec.header, &sample, event);
9655 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9657 if (ret)
9658 return;
9660 perf_output_put(&handle, rec);
9661 perf_event__output_id_sample(event, &handle, &sample);
9663 perf_output_end(&handle);
9666 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9668 struct perf_output_handle handle;
9669 struct perf_sample_data sample;
9670 struct perf_aux_event {
9671 struct perf_event_header header;
9672 u64 hw_id;
9673 } rec;
9674 int ret;
9676 if (event->parent)
9677 event = event->parent;
9679 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9680 rec.header.misc = 0;
9681 rec.header.size = sizeof(rec);
9682 rec.hw_id = hw_id;
9684 perf_event_header__init_id(&rec.header, &sample, event);
9685 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9687 if (ret)
9688 return;
9690 perf_output_put(&handle, rec);
9691 perf_event__output_id_sample(event, &handle, &sample);
9693 perf_output_end(&handle);
9695 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9697 static int
9698 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9700 struct hw_perf_event *hwc = &event->hw;
9701 int ret = 0;
9702 u64 seq;
9704 seq = __this_cpu_read(perf_throttled_seq);
9705 if (seq != hwc->interrupts_seq) {
9706 hwc->interrupts_seq = seq;
9707 hwc->interrupts = 1;
9708 } else {
9709 hwc->interrupts++;
9710 if (unlikely(throttle &&
9711 hwc->interrupts > max_samples_per_tick)) {
9712 __this_cpu_inc(perf_throttled_count);
9713 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9714 hwc->interrupts = MAX_INTERRUPTS;
9715 perf_log_throttle(event, 0);
9716 ret = 1;
9720 if (event->attr.freq) {
9721 u64 now = perf_clock();
9722 s64 delta = now - hwc->freq_time_stamp;
9724 hwc->freq_time_stamp = now;
9726 if (delta > 0 && delta < 2*TICK_NSEC)
9727 perf_adjust_period(event, delta, hwc->last_period, true);
9730 return ret;
9733 int perf_event_account_interrupt(struct perf_event *event)
9735 return __perf_event_account_interrupt(event, 1);
9738 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9741 * Due to interrupt latency (AKA "skid"), we may enter the
9742 * kernel before taking an overflow, even if the PMU is only
9743 * counting user events.
9745 if (event->attr.exclude_kernel && !user_mode(regs))
9746 return false;
9748 return true;
9751 #ifdef CONFIG_BPF_SYSCALL
9752 static int bpf_overflow_handler(struct perf_event *event,
9753 struct perf_sample_data *data,
9754 struct pt_regs *regs)
9756 struct bpf_perf_event_data_kern ctx = {
9757 .data = data,
9758 .event = event,
9760 struct bpf_prog *prog;
9761 int ret = 0;
9763 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9764 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9765 goto out;
9766 rcu_read_lock();
9767 prog = READ_ONCE(event->prog);
9768 if (prog) {
9769 perf_prepare_sample(data, event, regs);
9770 ret = bpf_prog_run(prog, &ctx);
9772 rcu_read_unlock();
9773 out:
9774 __this_cpu_dec(bpf_prog_active);
9776 return ret;
9779 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9780 struct bpf_prog *prog,
9781 u64 bpf_cookie)
9783 if (event->overflow_handler_context)
9784 /* hw breakpoint or kernel counter */
9785 return -EINVAL;
9787 if (event->prog)
9788 return -EEXIST;
9790 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9791 return -EINVAL;
9793 if (event->attr.precise_ip &&
9794 prog->call_get_stack &&
9795 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9796 event->attr.exclude_callchain_kernel ||
9797 event->attr.exclude_callchain_user)) {
9799 * On perf_event with precise_ip, calling bpf_get_stack()
9800 * may trigger unwinder warnings and occasional crashes.
9801 * bpf_get_[stack|stackid] works around this issue by using
9802 * callchain attached to perf_sample_data. If the
9803 * perf_event does not full (kernel and user) callchain
9804 * attached to perf_sample_data, do not allow attaching BPF
9805 * program that calls bpf_get_[stack|stackid].
9807 return -EPROTO;
9810 event->prog = prog;
9811 event->bpf_cookie = bpf_cookie;
9812 return 0;
9815 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9817 struct bpf_prog *prog = event->prog;
9819 if (!prog)
9820 return;
9822 event->prog = NULL;
9823 bpf_prog_put(prog);
9825 #else
9826 static inline int bpf_overflow_handler(struct perf_event *event,
9827 struct perf_sample_data *data,
9828 struct pt_regs *regs)
9830 return 1;
9833 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9834 struct bpf_prog *prog,
9835 u64 bpf_cookie)
9837 return -EOPNOTSUPP;
9840 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9843 #endif
9846 * Generic event overflow handling, sampling.
9849 static int __perf_event_overflow(struct perf_event *event,
9850 int throttle, struct perf_sample_data *data,
9851 struct pt_regs *regs)
9853 int events = atomic_read(&event->event_limit);
9854 int ret = 0;
9857 * Non-sampling counters might still use the PMI to fold short
9858 * hardware counters, ignore those.
9860 if (unlikely(!is_sampling_event(event)))
9861 return 0;
9863 ret = __perf_event_account_interrupt(event, throttle);
9865 if (event->attr.aux_pause)
9866 perf_event_aux_pause(event->aux_event, true);
9868 if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
9869 !bpf_overflow_handler(event, data, regs))
9870 goto out;
9873 * XXX event_limit might not quite work as expected on inherited
9874 * events
9877 event->pending_kill = POLL_IN;
9878 if (events && atomic_dec_and_test(&event->event_limit)) {
9879 ret = 1;
9880 event->pending_kill = POLL_HUP;
9881 perf_event_disable_inatomic(event);
9884 if (event->attr.sigtrap) {
9886 * The desired behaviour of sigtrap vs invalid samples is a bit
9887 * tricky; on the one hand, one should not loose the SIGTRAP if
9888 * it is the first event, on the other hand, we should also not
9889 * trigger the WARN or override the data address.
9891 bool valid_sample = sample_is_allowed(event, regs);
9892 unsigned int pending_id = 1;
9893 enum task_work_notify_mode notify_mode;
9895 if (regs)
9896 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9898 notify_mode = in_nmi() ? TWA_NMI_CURRENT : TWA_RESUME;
9900 if (!event->pending_work &&
9901 !task_work_add(current, &event->pending_task, notify_mode)) {
9902 event->pending_work = pending_id;
9903 local_inc(&event->ctx->nr_no_switch_fast);
9905 event->pending_addr = 0;
9906 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9907 event->pending_addr = data->addr;
9909 } else if (event->attr.exclude_kernel && valid_sample) {
9911 * Should not be able to return to user space without
9912 * consuming pending_work; with exceptions:
9914 * 1. Where !exclude_kernel, events can overflow again
9915 * in the kernel without returning to user space.
9917 * 2. Events that can overflow again before the IRQ-
9918 * work without user space progress (e.g. hrtimer).
9919 * To approximate progress (with false negatives),
9920 * check 32-bit hash of the current IP.
9922 WARN_ON_ONCE(event->pending_work != pending_id);
9926 READ_ONCE(event->overflow_handler)(event, data, regs);
9928 if (*perf_event_fasync(event) && event->pending_kill) {
9929 event->pending_wakeup = 1;
9930 irq_work_queue(&event->pending_irq);
9932 out:
9933 if (event->attr.aux_resume)
9934 perf_event_aux_pause(event->aux_event, false);
9936 return ret;
9939 int perf_event_overflow(struct perf_event *event,
9940 struct perf_sample_data *data,
9941 struct pt_regs *regs)
9943 return __perf_event_overflow(event, 1, data, regs);
9947 * Generic software event infrastructure
9950 struct swevent_htable {
9951 struct swevent_hlist *swevent_hlist;
9952 struct mutex hlist_mutex;
9953 int hlist_refcount;
9955 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9958 * We directly increment event->count and keep a second value in
9959 * event->hw.period_left to count intervals. This period event
9960 * is kept in the range [-sample_period, 0] so that we can use the
9961 * sign as trigger.
9964 u64 perf_swevent_set_period(struct perf_event *event)
9966 struct hw_perf_event *hwc = &event->hw;
9967 u64 period = hwc->last_period;
9968 u64 nr, offset;
9969 s64 old, val;
9971 hwc->last_period = hwc->sample_period;
9973 old = local64_read(&hwc->period_left);
9974 do {
9975 val = old;
9976 if (val < 0)
9977 return 0;
9979 nr = div64_u64(period + val, period);
9980 offset = nr * period;
9981 val -= offset;
9982 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9984 return nr;
9987 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9988 struct perf_sample_data *data,
9989 struct pt_regs *regs)
9991 struct hw_perf_event *hwc = &event->hw;
9992 int throttle = 0;
9994 if (!overflow)
9995 overflow = perf_swevent_set_period(event);
9997 if (hwc->interrupts == MAX_INTERRUPTS)
9998 return;
10000 for (; overflow; overflow--) {
10001 if (__perf_event_overflow(event, throttle,
10002 data, regs)) {
10004 * We inhibit the overflow from happening when
10005 * hwc->interrupts == MAX_INTERRUPTS.
10007 break;
10009 throttle = 1;
10013 static void perf_swevent_event(struct perf_event *event, u64 nr,
10014 struct perf_sample_data *data,
10015 struct pt_regs *regs)
10017 struct hw_perf_event *hwc = &event->hw;
10019 local64_add(nr, &event->count);
10021 if (!regs)
10022 return;
10024 if (!is_sampling_event(event))
10025 return;
10027 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
10028 data->period = nr;
10029 return perf_swevent_overflow(event, 1, data, regs);
10030 } else
10031 data->period = event->hw.last_period;
10033 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
10034 return perf_swevent_overflow(event, 1, data, regs);
10036 if (local64_add_negative(nr, &hwc->period_left))
10037 return;
10039 perf_swevent_overflow(event, 0, data, regs);
10042 static int perf_exclude_event(struct perf_event *event,
10043 struct pt_regs *regs)
10045 if (event->hw.state & PERF_HES_STOPPED)
10046 return 1;
10048 if (regs) {
10049 if (event->attr.exclude_user && user_mode(regs))
10050 return 1;
10052 if (event->attr.exclude_kernel && !user_mode(regs))
10053 return 1;
10056 return 0;
10059 static int perf_swevent_match(struct perf_event *event,
10060 enum perf_type_id type,
10061 u32 event_id,
10062 struct perf_sample_data *data,
10063 struct pt_regs *regs)
10065 if (event->attr.type != type)
10066 return 0;
10068 if (event->attr.config != event_id)
10069 return 0;
10071 if (perf_exclude_event(event, regs))
10072 return 0;
10074 return 1;
10077 static inline u64 swevent_hash(u64 type, u32 event_id)
10079 u64 val = event_id | (type << 32);
10081 return hash_64(val, SWEVENT_HLIST_BITS);
10084 static inline struct hlist_head *
10085 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
10087 u64 hash = swevent_hash(type, event_id);
10089 return &hlist->heads[hash];
10092 /* For the read side: events when they trigger */
10093 static inline struct hlist_head *
10094 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
10096 struct swevent_hlist *hlist;
10098 hlist = rcu_dereference(swhash->swevent_hlist);
10099 if (!hlist)
10100 return NULL;
10102 return __find_swevent_head(hlist, type, event_id);
10105 /* For the event head insertion and removal in the hlist */
10106 static inline struct hlist_head *
10107 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
10109 struct swevent_hlist *hlist;
10110 u32 event_id = event->attr.config;
10111 u64 type = event->attr.type;
10114 * Event scheduling is always serialized against hlist allocation
10115 * and release. Which makes the protected version suitable here.
10116 * The context lock guarantees that.
10118 hlist = rcu_dereference_protected(swhash->swevent_hlist,
10119 lockdep_is_held(&event->ctx->lock));
10120 if (!hlist)
10121 return NULL;
10123 return __find_swevent_head(hlist, type, event_id);
10126 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
10127 u64 nr,
10128 struct perf_sample_data *data,
10129 struct pt_regs *regs)
10131 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10132 struct perf_event *event;
10133 struct hlist_head *head;
10135 rcu_read_lock();
10136 head = find_swevent_head_rcu(swhash, type, event_id);
10137 if (!head)
10138 goto end;
10140 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10141 if (perf_swevent_match(event, type, event_id, data, regs))
10142 perf_swevent_event(event, nr, data, regs);
10144 end:
10145 rcu_read_unlock();
10148 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
10150 int perf_swevent_get_recursion_context(void)
10152 return get_recursion_context(current->perf_recursion);
10154 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
10156 void perf_swevent_put_recursion_context(int rctx)
10158 put_recursion_context(current->perf_recursion, rctx);
10161 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10163 struct perf_sample_data data;
10165 if (WARN_ON_ONCE(!regs))
10166 return;
10168 perf_sample_data_init(&data, addr, 0);
10169 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
10172 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
10174 int rctx;
10176 preempt_disable_notrace();
10177 rctx = perf_swevent_get_recursion_context();
10178 if (unlikely(rctx < 0))
10179 goto fail;
10181 ___perf_sw_event(event_id, nr, regs, addr);
10183 perf_swevent_put_recursion_context(rctx);
10184 fail:
10185 preempt_enable_notrace();
10188 static void perf_swevent_read(struct perf_event *event)
10192 static int perf_swevent_add(struct perf_event *event, int flags)
10194 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
10195 struct hw_perf_event *hwc = &event->hw;
10196 struct hlist_head *head;
10198 if (is_sampling_event(event)) {
10199 hwc->last_period = hwc->sample_period;
10200 perf_swevent_set_period(event);
10203 hwc->state = !(flags & PERF_EF_START);
10205 head = find_swevent_head(swhash, event);
10206 if (WARN_ON_ONCE(!head))
10207 return -EINVAL;
10209 hlist_add_head_rcu(&event->hlist_entry, head);
10210 perf_event_update_userpage(event);
10212 return 0;
10215 static void perf_swevent_del(struct perf_event *event, int flags)
10217 hlist_del_rcu(&event->hlist_entry);
10220 static void perf_swevent_start(struct perf_event *event, int flags)
10222 event->hw.state = 0;
10225 static void perf_swevent_stop(struct perf_event *event, int flags)
10227 event->hw.state = PERF_HES_STOPPED;
10230 /* Deref the hlist from the update side */
10231 static inline struct swevent_hlist *
10232 swevent_hlist_deref(struct swevent_htable *swhash)
10234 return rcu_dereference_protected(swhash->swevent_hlist,
10235 lockdep_is_held(&swhash->hlist_mutex));
10238 static void swevent_hlist_release(struct swevent_htable *swhash)
10240 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10242 if (!hlist)
10243 return;
10245 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10246 kfree_rcu(hlist, rcu_head);
10249 static void swevent_hlist_put_cpu(int cpu)
10251 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10253 mutex_lock(&swhash->hlist_mutex);
10255 if (!--swhash->hlist_refcount)
10256 swevent_hlist_release(swhash);
10258 mutex_unlock(&swhash->hlist_mutex);
10261 static void swevent_hlist_put(void)
10263 int cpu;
10265 for_each_possible_cpu(cpu)
10266 swevent_hlist_put_cpu(cpu);
10269 static int swevent_hlist_get_cpu(int cpu)
10271 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10272 int err = 0;
10274 mutex_lock(&swhash->hlist_mutex);
10275 if (!swevent_hlist_deref(swhash) &&
10276 cpumask_test_cpu(cpu, perf_online_mask)) {
10277 struct swevent_hlist *hlist;
10279 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10280 if (!hlist) {
10281 err = -ENOMEM;
10282 goto exit;
10284 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10286 swhash->hlist_refcount++;
10287 exit:
10288 mutex_unlock(&swhash->hlist_mutex);
10290 return err;
10293 static int swevent_hlist_get(void)
10295 int err, cpu, failed_cpu;
10297 mutex_lock(&pmus_lock);
10298 for_each_possible_cpu(cpu) {
10299 err = swevent_hlist_get_cpu(cpu);
10300 if (err) {
10301 failed_cpu = cpu;
10302 goto fail;
10305 mutex_unlock(&pmus_lock);
10306 return 0;
10307 fail:
10308 for_each_possible_cpu(cpu) {
10309 if (cpu == failed_cpu)
10310 break;
10311 swevent_hlist_put_cpu(cpu);
10313 mutex_unlock(&pmus_lock);
10314 return err;
10317 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10319 static void sw_perf_event_destroy(struct perf_event *event)
10321 u64 event_id = event->attr.config;
10323 WARN_ON(event->parent);
10325 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10326 swevent_hlist_put();
10329 static struct pmu perf_cpu_clock; /* fwd declaration */
10330 static struct pmu perf_task_clock;
10332 static int perf_swevent_init(struct perf_event *event)
10334 u64 event_id = event->attr.config;
10336 if (event->attr.type != PERF_TYPE_SOFTWARE)
10337 return -ENOENT;
10340 * no branch sampling for software events
10342 if (has_branch_stack(event))
10343 return -EOPNOTSUPP;
10345 switch (event_id) {
10346 case PERF_COUNT_SW_CPU_CLOCK:
10347 event->attr.type = perf_cpu_clock.type;
10348 return -ENOENT;
10349 case PERF_COUNT_SW_TASK_CLOCK:
10350 event->attr.type = perf_task_clock.type;
10351 return -ENOENT;
10353 default:
10354 break;
10357 if (event_id >= PERF_COUNT_SW_MAX)
10358 return -ENOENT;
10360 if (!event->parent) {
10361 int err;
10363 err = swevent_hlist_get();
10364 if (err)
10365 return err;
10367 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10368 event->destroy = sw_perf_event_destroy;
10371 return 0;
10374 static struct pmu perf_swevent = {
10375 .task_ctx_nr = perf_sw_context,
10377 .capabilities = PERF_PMU_CAP_NO_NMI,
10379 .event_init = perf_swevent_init,
10380 .add = perf_swevent_add,
10381 .del = perf_swevent_del,
10382 .start = perf_swevent_start,
10383 .stop = perf_swevent_stop,
10384 .read = perf_swevent_read,
10387 #ifdef CONFIG_EVENT_TRACING
10389 static void tp_perf_event_destroy(struct perf_event *event)
10391 perf_trace_destroy(event);
10394 static int perf_tp_event_init(struct perf_event *event)
10396 int err;
10398 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10399 return -ENOENT;
10402 * no branch sampling for tracepoint events
10404 if (has_branch_stack(event))
10405 return -EOPNOTSUPP;
10407 err = perf_trace_init(event);
10408 if (err)
10409 return err;
10411 event->destroy = tp_perf_event_destroy;
10413 return 0;
10416 static struct pmu perf_tracepoint = {
10417 .task_ctx_nr = perf_sw_context,
10419 .event_init = perf_tp_event_init,
10420 .add = perf_trace_add,
10421 .del = perf_trace_del,
10422 .start = perf_swevent_start,
10423 .stop = perf_swevent_stop,
10424 .read = perf_swevent_read,
10427 static int perf_tp_filter_match(struct perf_event *event,
10428 struct perf_sample_data *data)
10430 void *record = data->raw->frag.data;
10432 /* only top level events have filters set */
10433 if (event->parent)
10434 event = event->parent;
10436 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10437 return 1;
10438 return 0;
10441 static int perf_tp_event_match(struct perf_event *event,
10442 struct perf_sample_data *data,
10443 struct pt_regs *regs)
10445 if (event->hw.state & PERF_HES_STOPPED)
10446 return 0;
10448 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10450 if (event->attr.exclude_kernel && !user_mode(regs))
10451 return 0;
10453 if (!perf_tp_filter_match(event, data))
10454 return 0;
10456 return 1;
10459 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10460 struct trace_event_call *call, u64 count,
10461 struct pt_regs *regs, struct hlist_head *head,
10462 struct task_struct *task)
10464 if (bpf_prog_array_valid(call)) {
10465 *(struct pt_regs **)raw_data = regs;
10466 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10467 perf_swevent_put_recursion_context(rctx);
10468 return;
10471 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10472 rctx, task);
10474 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10476 static void __perf_tp_event_target_task(u64 count, void *record,
10477 struct pt_regs *regs,
10478 struct perf_sample_data *data,
10479 struct perf_event *event)
10481 struct trace_entry *entry = record;
10483 if (event->attr.config != entry->type)
10484 return;
10485 /* Cannot deliver synchronous signal to other task. */
10486 if (event->attr.sigtrap)
10487 return;
10488 if (perf_tp_event_match(event, data, regs))
10489 perf_swevent_event(event, count, data, regs);
10492 static void perf_tp_event_target_task(u64 count, void *record,
10493 struct pt_regs *regs,
10494 struct perf_sample_data *data,
10495 struct perf_event_context *ctx)
10497 unsigned int cpu = smp_processor_id();
10498 struct pmu *pmu = &perf_tracepoint;
10499 struct perf_event *event, *sibling;
10501 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10502 __perf_tp_event_target_task(count, record, regs, data, event);
10503 for_each_sibling_event(sibling, event)
10504 __perf_tp_event_target_task(count, record, regs, data, sibling);
10507 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10508 __perf_tp_event_target_task(count, record, regs, data, event);
10509 for_each_sibling_event(sibling, event)
10510 __perf_tp_event_target_task(count, record, regs, data, sibling);
10514 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10515 struct pt_regs *regs, struct hlist_head *head, int rctx,
10516 struct task_struct *task)
10518 struct perf_sample_data data;
10519 struct perf_event *event;
10521 struct perf_raw_record raw = {
10522 .frag = {
10523 .size = entry_size,
10524 .data = record,
10528 perf_sample_data_init(&data, 0, 0);
10529 perf_sample_save_raw_data(&data, &raw);
10531 perf_trace_buf_update(record, event_type);
10533 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10534 if (perf_tp_event_match(event, &data, regs)) {
10535 perf_swevent_event(event, count, &data, regs);
10538 * Here use the same on-stack perf_sample_data,
10539 * some members in data are event-specific and
10540 * need to be re-computed for different sweveents.
10541 * Re-initialize data->sample_flags safely to avoid
10542 * the problem that next event skips preparing data
10543 * because data->sample_flags is set.
10545 perf_sample_data_init(&data, 0, 0);
10546 perf_sample_save_raw_data(&data, &raw);
10551 * If we got specified a target task, also iterate its context and
10552 * deliver this event there too.
10554 if (task && task != current) {
10555 struct perf_event_context *ctx;
10557 rcu_read_lock();
10558 ctx = rcu_dereference(task->perf_event_ctxp);
10559 if (!ctx)
10560 goto unlock;
10562 raw_spin_lock(&ctx->lock);
10563 perf_tp_event_target_task(count, record, regs, &data, ctx);
10564 raw_spin_unlock(&ctx->lock);
10565 unlock:
10566 rcu_read_unlock();
10569 perf_swevent_put_recursion_context(rctx);
10571 EXPORT_SYMBOL_GPL(perf_tp_event);
10573 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10575 * Flags in config, used by dynamic PMU kprobe and uprobe
10576 * The flags should match following PMU_FORMAT_ATTR().
10578 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10579 * if not set, create kprobe/uprobe
10581 * The following values specify a reference counter (or semaphore in the
10582 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10583 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10585 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10586 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10588 enum perf_probe_config {
10589 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10590 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10591 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10594 PMU_FORMAT_ATTR(retprobe, "config:0");
10595 #endif
10597 #ifdef CONFIG_KPROBE_EVENTS
10598 static struct attribute *kprobe_attrs[] = {
10599 &format_attr_retprobe.attr,
10600 NULL,
10603 static struct attribute_group kprobe_format_group = {
10604 .name = "format",
10605 .attrs = kprobe_attrs,
10608 static const struct attribute_group *kprobe_attr_groups[] = {
10609 &kprobe_format_group,
10610 NULL,
10613 static int perf_kprobe_event_init(struct perf_event *event);
10614 static struct pmu perf_kprobe = {
10615 .task_ctx_nr = perf_sw_context,
10616 .event_init = perf_kprobe_event_init,
10617 .add = perf_trace_add,
10618 .del = perf_trace_del,
10619 .start = perf_swevent_start,
10620 .stop = perf_swevent_stop,
10621 .read = perf_swevent_read,
10622 .attr_groups = kprobe_attr_groups,
10625 static int perf_kprobe_event_init(struct perf_event *event)
10627 int err;
10628 bool is_retprobe;
10630 if (event->attr.type != perf_kprobe.type)
10631 return -ENOENT;
10633 if (!perfmon_capable())
10634 return -EACCES;
10637 * no branch sampling for probe events
10639 if (has_branch_stack(event))
10640 return -EOPNOTSUPP;
10642 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10643 err = perf_kprobe_init(event, is_retprobe);
10644 if (err)
10645 return err;
10647 event->destroy = perf_kprobe_destroy;
10649 return 0;
10651 #endif /* CONFIG_KPROBE_EVENTS */
10653 #ifdef CONFIG_UPROBE_EVENTS
10654 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10656 static struct attribute *uprobe_attrs[] = {
10657 &format_attr_retprobe.attr,
10658 &format_attr_ref_ctr_offset.attr,
10659 NULL,
10662 static struct attribute_group uprobe_format_group = {
10663 .name = "format",
10664 .attrs = uprobe_attrs,
10667 static const struct attribute_group *uprobe_attr_groups[] = {
10668 &uprobe_format_group,
10669 NULL,
10672 static int perf_uprobe_event_init(struct perf_event *event);
10673 static struct pmu perf_uprobe = {
10674 .task_ctx_nr = perf_sw_context,
10675 .event_init = perf_uprobe_event_init,
10676 .add = perf_trace_add,
10677 .del = perf_trace_del,
10678 .start = perf_swevent_start,
10679 .stop = perf_swevent_stop,
10680 .read = perf_swevent_read,
10681 .attr_groups = uprobe_attr_groups,
10684 static int perf_uprobe_event_init(struct perf_event *event)
10686 int err;
10687 unsigned long ref_ctr_offset;
10688 bool is_retprobe;
10690 if (event->attr.type != perf_uprobe.type)
10691 return -ENOENT;
10693 if (!perfmon_capable())
10694 return -EACCES;
10697 * no branch sampling for probe events
10699 if (has_branch_stack(event))
10700 return -EOPNOTSUPP;
10702 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10703 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10704 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10705 if (err)
10706 return err;
10708 event->destroy = perf_uprobe_destroy;
10710 return 0;
10712 #endif /* CONFIG_UPROBE_EVENTS */
10714 static inline void perf_tp_register(void)
10716 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10717 #ifdef CONFIG_KPROBE_EVENTS
10718 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10719 #endif
10720 #ifdef CONFIG_UPROBE_EVENTS
10721 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10722 #endif
10725 static void perf_event_free_filter(struct perf_event *event)
10727 ftrace_profile_free_filter(event);
10731 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10732 * with perf_event_open()
10734 static inline bool perf_event_is_tracing(struct perf_event *event)
10736 if (event->pmu == &perf_tracepoint)
10737 return true;
10738 #ifdef CONFIG_KPROBE_EVENTS
10739 if (event->pmu == &perf_kprobe)
10740 return true;
10741 #endif
10742 #ifdef CONFIG_UPROBE_EVENTS
10743 if (event->pmu == &perf_uprobe)
10744 return true;
10745 #endif
10746 return false;
10749 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10750 u64 bpf_cookie)
10752 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10754 if (!perf_event_is_tracing(event))
10755 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10757 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10758 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10759 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10760 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10761 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10762 /* bpf programs can only be attached to u/kprobe or tracepoint */
10763 return -EINVAL;
10765 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10766 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10767 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10768 return -EINVAL;
10770 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10771 /* only uprobe programs are allowed to be sleepable */
10772 return -EINVAL;
10774 /* Kprobe override only works for kprobes, not uprobes. */
10775 if (prog->kprobe_override && !is_kprobe)
10776 return -EINVAL;
10778 if (is_tracepoint || is_syscall_tp) {
10779 int off = trace_event_get_offsets(event->tp_event);
10781 if (prog->aux->max_ctx_offset > off)
10782 return -EACCES;
10785 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10788 void perf_event_free_bpf_prog(struct perf_event *event)
10790 if (!perf_event_is_tracing(event)) {
10791 perf_event_free_bpf_handler(event);
10792 return;
10794 perf_event_detach_bpf_prog(event);
10797 #else
10799 static inline void perf_tp_register(void)
10803 static void perf_event_free_filter(struct perf_event *event)
10807 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10808 u64 bpf_cookie)
10810 return -ENOENT;
10813 void perf_event_free_bpf_prog(struct perf_event *event)
10816 #endif /* CONFIG_EVENT_TRACING */
10818 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10819 void perf_bp_event(struct perf_event *bp, void *data)
10821 struct perf_sample_data sample;
10822 struct pt_regs *regs = data;
10824 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10826 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10827 perf_swevent_event(bp, 1, &sample, regs);
10829 #endif
10832 * Allocate a new address filter
10834 static struct perf_addr_filter *
10835 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10837 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10838 struct perf_addr_filter *filter;
10840 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10841 if (!filter)
10842 return NULL;
10844 INIT_LIST_HEAD(&filter->entry);
10845 list_add_tail(&filter->entry, filters);
10847 return filter;
10850 static void free_filters_list(struct list_head *filters)
10852 struct perf_addr_filter *filter, *iter;
10854 list_for_each_entry_safe(filter, iter, filters, entry) {
10855 path_put(&filter->path);
10856 list_del(&filter->entry);
10857 kfree(filter);
10862 * Free existing address filters and optionally install new ones
10864 static void perf_addr_filters_splice(struct perf_event *event,
10865 struct list_head *head)
10867 unsigned long flags;
10868 LIST_HEAD(list);
10870 if (!has_addr_filter(event))
10871 return;
10873 /* don't bother with children, they don't have their own filters */
10874 if (event->parent)
10875 return;
10877 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10879 list_splice_init(&event->addr_filters.list, &list);
10880 if (head)
10881 list_splice(head, &event->addr_filters.list);
10883 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10885 free_filters_list(&list);
10889 * Scan through mm's vmas and see if one of them matches the
10890 * @filter; if so, adjust filter's address range.
10891 * Called with mm::mmap_lock down for reading.
10893 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10894 struct mm_struct *mm,
10895 struct perf_addr_filter_range *fr)
10897 struct vm_area_struct *vma;
10898 VMA_ITERATOR(vmi, mm, 0);
10900 for_each_vma(vmi, vma) {
10901 if (!vma->vm_file)
10902 continue;
10904 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10905 return;
10910 * Update event's address range filters based on the
10911 * task's existing mappings, if any.
10913 static void perf_event_addr_filters_apply(struct perf_event *event)
10915 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10916 struct task_struct *task = READ_ONCE(event->ctx->task);
10917 struct perf_addr_filter *filter;
10918 struct mm_struct *mm = NULL;
10919 unsigned int count = 0;
10920 unsigned long flags;
10923 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10924 * will stop on the parent's child_mutex that our caller is also holding
10926 if (task == TASK_TOMBSTONE)
10927 return;
10929 if (ifh->nr_file_filters) {
10930 mm = get_task_mm(task);
10931 if (!mm)
10932 goto restart;
10934 mmap_read_lock(mm);
10937 raw_spin_lock_irqsave(&ifh->lock, flags);
10938 list_for_each_entry(filter, &ifh->list, entry) {
10939 if (filter->path.dentry) {
10941 * Adjust base offset if the filter is associated to a
10942 * binary that needs to be mapped:
10944 event->addr_filter_ranges[count].start = 0;
10945 event->addr_filter_ranges[count].size = 0;
10947 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10948 } else {
10949 event->addr_filter_ranges[count].start = filter->offset;
10950 event->addr_filter_ranges[count].size = filter->size;
10953 count++;
10956 event->addr_filters_gen++;
10957 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10959 if (ifh->nr_file_filters) {
10960 mmap_read_unlock(mm);
10962 mmput(mm);
10965 restart:
10966 perf_event_stop(event, 1);
10970 * Address range filtering: limiting the data to certain
10971 * instruction address ranges. Filters are ioctl()ed to us from
10972 * userspace as ascii strings.
10974 * Filter string format:
10976 * ACTION RANGE_SPEC
10977 * where ACTION is one of the
10978 * * "filter": limit the trace to this region
10979 * * "start": start tracing from this address
10980 * * "stop": stop tracing at this address/region;
10981 * RANGE_SPEC is
10982 * * for kernel addresses: <start address>[/<size>]
10983 * * for object files: <start address>[/<size>]@</path/to/object/file>
10985 * if <size> is not specified or is zero, the range is treated as a single
10986 * address; not valid for ACTION=="filter".
10988 enum {
10989 IF_ACT_NONE = -1,
10990 IF_ACT_FILTER,
10991 IF_ACT_START,
10992 IF_ACT_STOP,
10993 IF_SRC_FILE,
10994 IF_SRC_KERNEL,
10995 IF_SRC_FILEADDR,
10996 IF_SRC_KERNELADDR,
10999 enum {
11000 IF_STATE_ACTION = 0,
11001 IF_STATE_SOURCE,
11002 IF_STATE_END,
11005 static const match_table_t if_tokens = {
11006 { IF_ACT_FILTER, "filter" },
11007 { IF_ACT_START, "start" },
11008 { IF_ACT_STOP, "stop" },
11009 { IF_SRC_FILE, "%u/%u@%s" },
11010 { IF_SRC_KERNEL, "%u/%u" },
11011 { IF_SRC_FILEADDR, "%u@%s" },
11012 { IF_SRC_KERNELADDR, "%u" },
11013 { IF_ACT_NONE, NULL },
11017 * Address filter string parser
11019 static int
11020 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
11021 struct list_head *filters)
11023 struct perf_addr_filter *filter = NULL;
11024 char *start, *orig, *filename = NULL;
11025 substring_t args[MAX_OPT_ARGS];
11026 int state = IF_STATE_ACTION, token;
11027 unsigned int kernel = 0;
11028 int ret = -EINVAL;
11030 orig = fstr = kstrdup(fstr, GFP_KERNEL);
11031 if (!fstr)
11032 return -ENOMEM;
11034 while ((start = strsep(&fstr, " ,\n")) != NULL) {
11035 static const enum perf_addr_filter_action_t actions[] = {
11036 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
11037 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
11038 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
11040 ret = -EINVAL;
11042 if (!*start)
11043 continue;
11045 /* filter definition begins */
11046 if (state == IF_STATE_ACTION) {
11047 filter = perf_addr_filter_new(event, filters);
11048 if (!filter)
11049 goto fail;
11052 token = match_token(start, if_tokens, args);
11053 switch (token) {
11054 case IF_ACT_FILTER:
11055 case IF_ACT_START:
11056 case IF_ACT_STOP:
11057 if (state != IF_STATE_ACTION)
11058 goto fail;
11060 filter->action = actions[token];
11061 state = IF_STATE_SOURCE;
11062 break;
11064 case IF_SRC_KERNELADDR:
11065 case IF_SRC_KERNEL:
11066 kernel = 1;
11067 fallthrough;
11069 case IF_SRC_FILEADDR:
11070 case IF_SRC_FILE:
11071 if (state != IF_STATE_SOURCE)
11072 goto fail;
11074 *args[0].to = 0;
11075 ret = kstrtoul(args[0].from, 0, &filter->offset);
11076 if (ret)
11077 goto fail;
11079 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
11080 *args[1].to = 0;
11081 ret = kstrtoul(args[1].from, 0, &filter->size);
11082 if (ret)
11083 goto fail;
11086 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
11087 int fpos = token == IF_SRC_FILE ? 2 : 1;
11089 kfree(filename);
11090 filename = match_strdup(&args[fpos]);
11091 if (!filename) {
11092 ret = -ENOMEM;
11093 goto fail;
11097 state = IF_STATE_END;
11098 break;
11100 default:
11101 goto fail;
11105 * Filter definition is fully parsed, validate and install it.
11106 * Make sure that it doesn't contradict itself or the event's
11107 * attribute.
11109 if (state == IF_STATE_END) {
11110 ret = -EINVAL;
11113 * ACTION "filter" must have a non-zero length region
11114 * specified.
11116 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
11117 !filter->size)
11118 goto fail;
11120 if (!kernel) {
11121 if (!filename)
11122 goto fail;
11125 * For now, we only support file-based filters
11126 * in per-task events; doing so for CPU-wide
11127 * events requires additional context switching
11128 * trickery, since same object code will be
11129 * mapped at different virtual addresses in
11130 * different processes.
11132 ret = -EOPNOTSUPP;
11133 if (!event->ctx->task)
11134 goto fail;
11136 /* look up the path and grab its inode */
11137 ret = kern_path(filename, LOOKUP_FOLLOW,
11138 &filter->path);
11139 if (ret)
11140 goto fail;
11142 ret = -EINVAL;
11143 if (!filter->path.dentry ||
11144 !S_ISREG(d_inode(filter->path.dentry)
11145 ->i_mode))
11146 goto fail;
11148 event->addr_filters.nr_file_filters++;
11151 /* ready to consume more filters */
11152 kfree(filename);
11153 filename = NULL;
11154 state = IF_STATE_ACTION;
11155 filter = NULL;
11156 kernel = 0;
11160 if (state != IF_STATE_ACTION)
11161 goto fail;
11163 kfree(filename);
11164 kfree(orig);
11166 return 0;
11168 fail:
11169 kfree(filename);
11170 free_filters_list(filters);
11171 kfree(orig);
11173 return ret;
11176 static int
11177 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11179 LIST_HEAD(filters);
11180 int ret;
11183 * Since this is called in perf_ioctl() path, we're already holding
11184 * ctx::mutex.
11186 lockdep_assert_held(&event->ctx->mutex);
11188 if (WARN_ON_ONCE(event->parent))
11189 return -EINVAL;
11191 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11192 if (ret)
11193 goto fail_clear_files;
11195 ret = event->pmu->addr_filters_validate(&filters);
11196 if (ret)
11197 goto fail_free_filters;
11199 /* remove existing filters, if any */
11200 perf_addr_filters_splice(event, &filters);
11202 /* install new filters */
11203 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11205 return ret;
11207 fail_free_filters:
11208 free_filters_list(&filters);
11210 fail_clear_files:
11211 event->addr_filters.nr_file_filters = 0;
11213 return ret;
11216 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11218 int ret = -EINVAL;
11219 char *filter_str;
11221 filter_str = strndup_user(arg, PAGE_SIZE);
11222 if (IS_ERR(filter_str))
11223 return PTR_ERR(filter_str);
11225 #ifdef CONFIG_EVENT_TRACING
11226 if (perf_event_is_tracing(event)) {
11227 struct perf_event_context *ctx = event->ctx;
11230 * Beware, here be dragons!!
11232 * the tracepoint muck will deadlock against ctx->mutex, but
11233 * the tracepoint stuff does not actually need it. So
11234 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11235 * already have a reference on ctx.
11237 * This can result in event getting moved to a different ctx,
11238 * but that does not affect the tracepoint state.
11240 mutex_unlock(&ctx->mutex);
11241 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11242 mutex_lock(&ctx->mutex);
11243 } else
11244 #endif
11245 if (has_addr_filter(event))
11246 ret = perf_event_set_addr_filter(event, filter_str);
11248 kfree(filter_str);
11249 return ret;
11253 * hrtimer based swevent callback
11256 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11258 enum hrtimer_restart ret = HRTIMER_RESTART;
11259 struct perf_sample_data data;
11260 struct pt_regs *regs;
11261 struct perf_event *event;
11262 u64 period;
11264 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11266 if (event->state != PERF_EVENT_STATE_ACTIVE)
11267 return HRTIMER_NORESTART;
11269 event->pmu->read(event);
11271 perf_sample_data_init(&data, 0, event->hw.last_period);
11272 regs = get_irq_regs();
11274 if (regs && !perf_exclude_event(event, regs)) {
11275 if (!(event->attr.exclude_idle && is_idle_task(current)))
11276 if (__perf_event_overflow(event, 1, &data, regs))
11277 ret = HRTIMER_NORESTART;
11280 period = max_t(u64, 10000, event->hw.sample_period);
11281 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11283 return ret;
11286 static void perf_swevent_start_hrtimer(struct perf_event *event)
11288 struct hw_perf_event *hwc = &event->hw;
11289 s64 period;
11291 if (!is_sampling_event(event))
11292 return;
11294 period = local64_read(&hwc->period_left);
11295 if (period) {
11296 if (period < 0)
11297 period = 10000;
11299 local64_set(&hwc->period_left, 0);
11300 } else {
11301 period = max_t(u64, 10000, hwc->sample_period);
11303 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11304 HRTIMER_MODE_REL_PINNED_HARD);
11307 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11309 struct hw_perf_event *hwc = &event->hw;
11311 if (is_sampling_event(event)) {
11312 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11313 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11315 hrtimer_cancel(&hwc->hrtimer);
11319 static void perf_swevent_init_hrtimer(struct perf_event *event)
11321 struct hw_perf_event *hwc = &event->hw;
11323 if (!is_sampling_event(event))
11324 return;
11326 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11327 hwc->hrtimer.function = perf_swevent_hrtimer;
11330 * Since hrtimers have a fixed rate, we can do a static freq->period
11331 * mapping and avoid the whole period adjust feedback stuff.
11333 if (event->attr.freq) {
11334 long freq = event->attr.sample_freq;
11336 event->attr.sample_period = NSEC_PER_SEC / freq;
11337 hwc->sample_period = event->attr.sample_period;
11338 local64_set(&hwc->period_left, hwc->sample_period);
11339 hwc->last_period = hwc->sample_period;
11340 event->attr.freq = 0;
11345 * Software event: cpu wall time clock
11348 static void cpu_clock_event_update(struct perf_event *event)
11350 s64 prev;
11351 u64 now;
11353 now = local_clock();
11354 prev = local64_xchg(&event->hw.prev_count, now);
11355 local64_add(now - prev, &event->count);
11358 static void cpu_clock_event_start(struct perf_event *event, int flags)
11360 local64_set(&event->hw.prev_count, local_clock());
11361 perf_swevent_start_hrtimer(event);
11364 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11366 perf_swevent_cancel_hrtimer(event);
11367 cpu_clock_event_update(event);
11370 static int cpu_clock_event_add(struct perf_event *event, int flags)
11372 if (flags & PERF_EF_START)
11373 cpu_clock_event_start(event, flags);
11374 perf_event_update_userpage(event);
11376 return 0;
11379 static void cpu_clock_event_del(struct perf_event *event, int flags)
11381 cpu_clock_event_stop(event, flags);
11384 static void cpu_clock_event_read(struct perf_event *event)
11386 cpu_clock_event_update(event);
11389 static int cpu_clock_event_init(struct perf_event *event)
11391 if (event->attr.type != perf_cpu_clock.type)
11392 return -ENOENT;
11394 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11395 return -ENOENT;
11398 * no branch sampling for software events
11400 if (has_branch_stack(event))
11401 return -EOPNOTSUPP;
11403 perf_swevent_init_hrtimer(event);
11405 return 0;
11408 static struct pmu perf_cpu_clock = {
11409 .task_ctx_nr = perf_sw_context,
11411 .capabilities = PERF_PMU_CAP_NO_NMI,
11412 .dev = PMU_NULL_DEV,
11414 .event_init = cpu_clock_event_init,
11415 .add = cpu_clock_event_add,
11416 .del = cpu_clock_event_del,
11417 .start = cpu_clock_event_start,
11418 .stop = cpu_clock_event_stop,
11419 .read = cpu_clock_event_read,
11423 * Software event: task time clock
11426 static void task_clock_event_update(struct perf_event *event, u64 now)
11428 u64 prev;
11429 s64 delta;
11431 prev = local64_xchg(&event->hw.prev_count, now);
11432 delta = now - prev;
11433 local64_add(delta, &event->count);
11436 static void task_clock_event_start(struct perf_event *event, int flags)
11438 local64_set(&event->hw.prev_count, event->ctx->time);
11439 perf_swevent_start_hrtimer(event);
11442 static void task_clock_event_stop(struct perf_event *event, int flags)
11444 perf_swevent_cancel_hrtimer(event);
11445 task_clock_event_update(event, event->ctx->time);
11448 static int task_clock_event_add(struct perf_event *event, int flags)
11450 if (flags & PERF_EF_START)
11451 task_clock_event_start(event, flags);
11452 perf_event_update_userpage(event);
11454 return 0;
11457 static void task_clock_event_del(struct perf_event *event, int flags)
11459 task_clock_event_stop(event, PERF_EF_UPDATE);
11462 static void task_clock_event_read(struct perf_event *event)
11464 u64 now = perf_clock();
11465 u64 delta = now - event->ctx->timestamp;
11466 u64 time = event->ctx->time + delta;
11468 task_clock_event_update(event, time);
11471 static int task_clock_event_init(struct perf_event *event)
11473 if (event->attr.type != perf_task_clock.type)
11474 return -ENOENT;
11476 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11477 return -ENOENT;
11480 * no branch sampling for software events
11482 if (has_branch_stack(event))
11483 return -EOPNOTSUPP;
11485 perf_swevent_init_hrtimer(event);
11487 return 0;
11490 static struct pmu perf_task_clock = {
11491 .task_ctx_nr = perf_sw_context,
11493 .capabilities = PERF_PMU_CAP_NO_NMI,
11494 .dev = PMU_NULL_DEV,
11496 .event_init = task_clock_event_init,
11497 .add = task_clock_event_add,
11498 .del = task_clock_event_del,
11499 .start = task_clock_event_start,
11500 .stop = task_clock_event_stop,
11501 .read = task_clock_event_read,
11504 static void perf_pmu_nop_void(struct pmu *pmu)
11508 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11512 static int perf_pmu_nop_int(struct pmu *pmu)
11514 return 0;
11517 static int perf_event_nop_int(struct perf_event *event, u64 value)
11519 return 0;
11522 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11524 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11526 __this_cpu_write(nop_txn_flags, flags);
11528 if (flags & ~PERF_PMU_TXN_ADD)
11529 return;
11531 perf_pmu_disable(pmu);
11534 static int perf_pmu_commit_txn(struct pmu *pmu)
11536 unsigned int flags = __this_cpu_read(nop_txn_flags);
11538 __this_cpu_write(nop_txn_flags, 0);
11540 if (flags & ~PERF_PMU_TXN_ADD)
11541 return 0;
11543 perf_pmu_enable(pmu);
11544 return 0;
11547 static void perf_pmu_cancel_txn(struct pmu *pmu)
11549 unsigned int flags = __this_cpu_read(nop_txn_flags);
11551 __this_cpu_write(nop_txn_flags, 0);
11553 if (flags & ~PERF_PMU_TXN_ADD)
11554 return;
11556 perf_pmu_enable(pmu);
11559 static int perf_event_idx_default(struct perf_event *event)
11561 return 0;
11564 static void free_pmu_context(struct pmu *pmu)
11566 free_percpu(pmu->cpu_pmu_context);
11570 * Let userspace know that this PMU supports address range filtering:
11572 static ssize_t nr_addr_filters_show(struct device *dev,
11573 struct device_attribute *attr,
11574 char *page)
11576 struct pmu *pmu = dev_get_drvdata(dev);
11578 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11580 DEVICE_ATTR_RO(nr_addr_filters);
11582 static struct idr pmu_idr;
11584 static ssize_t
11585 type_show(struct device *dev, struct device_attribute *attr, char *page)
11587 struct pmu *pmu = dev_get_drvdata(dev);
11589 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11591 static DEVICE_ATTR_RO(type);
11593 static ssize_t
11594 perf_event_mux_interval_ms_show(struct device *dev,
11595 struct device_attribute *attr,
11596 char *page)
11598 struct pmu *pmu = dev_get_drvdata(dev);
11600 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11603 static DEFINE_MUTEX(mux_interval_mutex);
11605 static ssize_t
11606 perf_event_mux_interval_ms_store(struct device *dev,
11607 struct device_attribute *attr,
11608 const char *buf, size_t count)
11610 struct pmu *pmu = dev_get_drvdata(dev);
11611 int timer, cpu, ret;
11613 ret = kstrtoint(buf, 0, &timer);
11614 if (ret)
11615 return ret;
11617 if (timer < 1)
11618 return -EINVAL;
11620 /* same value, noting to do */
11621 if (timer == pmu->hrtimer_interval_ms)
11622 return count;
11624 mutex_lock(&mux_interval_mutex);
11625 pmu->hrtimer_interval_ms = timer;
11627 /* update all cpuctx for this PMU */
11628 cpus_read_lock();
11629 for_each_online_cpu(cpu) {
11630 struct perf_cpu_pmu_context *cpc;
11631 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11632 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11634 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11636 cpus_read_unlock();
11637 mutex_unlock(&mux_interval_mutex);
11639 return count;
11641 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11643 static inline const struct cpumask *perf_scope_cpu_topology_cpumask(unsigned int scope, int cpu)
11645 switch (scope) {
11646 case PERF_PMU_SCOPE_CORE:
11647 return topology_sibling_cpumask(cpu);
11648 case PERF_PMU_SCOPE_DIE:
11649 return topology_die_cpumask(cpu);
11650 case PERF_PMU_SCOPE_CLUSTER:
11651 return topology_cluster_cpumask(cpu);
11652 case PERF_PMU_SCOPE_PKG:
11653 return topology_core_cpumask(cpu);
11654 case PERF_PMU_SCOPE_SYS_WIDE:
11655 return cpu_online_mask;
11658 return NULL;
11661 static inline struct cpumask *perf_scope_cpumask(unsigned int scope)
11663 switch (scope) {
11664 case PERF_PMU_SCOPE_CORE:
11665 return perf_online_core_mask;
11666 case PERF_PMU_SCOPE_DIE:
11667 return perf_online_die_mask;
11668 case PERF_PMU_SCOPE_CLUSTER:
11669 return perf_online_cluster_mask;
11670 case PERF_PMU_SCOPE_PKG:
11671 return perf_online_pkg_mask;
11672 case PERF_PMU_SCOPE_SYS_WIDE:
11673 return perf_online_sys_mask;
11676 return NULL;
11679 static ssize_t cpumask_show(struct device *dev, struct device_attribute *attr,
11680 char *buf)
11682 struct pmu *pmu = dev_get_drvdata(dev);
11683 struct cpumask *mask = perf_scope_cpumask(pmu->scope);
11685 if (mask)
11686 return cpumap_print_to_pagebuf(true, buf, mask);
11687 return 0;
11690 static DEVICE_ATTR_RO(cpumask);
11692 static struct attribute *pmu_dev_attrs[] = {
11693 &dev_attr_type.attr,
11694 &dev_attr_perf_event_mux_interval_ms.attr,
11695 &dev_attr_nr_addr_filters.attr,
11696 &dev_attr_cpumask.attr,
11697 NULL,
11700 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11702 struct device *dev = kobj_to_dev(kobj);
11703 struct pmu *pmu = dev_get_drvdata(dev);
11705 if (n == 2 && !pmu->nr_addr_filters)
11706 return 0;
11708 /* cpumask */
11709 if (n == 3 && pmu->scope == PERF_PMU_SCOPE_NONE)
11710 return 0;
11712 return a->mode;
11715 static struct attribute_group pmu_dev_attr_group = {
11716 .is_visible = pmu_dev_is_visible,
11717 .attrs = pmu_dev_attrs,
11720 static const struct attribute_group *pmu_dev_groups[] = {
11721 &pmu_dev_attr_group,
11722 NULL,
11725 static int pmu_bus_running;
11726 static struct bus_type pmu_bus = {
11727 .name = "event_source",
11728 .dev_groups = pmu_dev_groups,
11731 static void pmu_dev_release(struct device *dev)
11733 kfree(dev);
11736 static int pmu_dev_alloc(struct pmu *pmu)
11738 int ret = -ENOMEM;
11740 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11741 if (!pmu->dev)
11742 goto out;
11744 pmu->dev->groups = pmu->attr_groups;
11745 device_initialize(pmu->dev);
11747 dev_set_drvdata(pmu->dev, pmu);
11748 pmu->dev->bus = &pmu_bus;
11749 pmu->dev->parent = pmu->parent;
11750 pmu->dev->release = pmu_dev_release;
11752 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11753 if (ret)
11754 goto free_dev;
11756 ret = device_add(pmu->dev);
11757 if (ret)
11758 goto free_dev;
11760 if (pmu->attr_update) {
11761 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11762 if (ret)
11763 goto del_dev;
11766 out:
11767 return ret;
11769 del_dev:
11770 device_del(pmu->dev);
11772 free_dev:
11773 put_device(pmu->dev);
11774 goto out;
11777 static struct lock_class_key cpuctx_mutex;
11778 static struct lock_class_key cpuctx_lock;
11780 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11782 int cpu, ret, max = PERF_TYPE_MAX;
11784 mutex_lock(&pmus_lock);
11785 ret = -ENOMEM;
11786 pmu->pmu_disable_count = alloc_percpu(int);
11787 if (!pmu->pmu_disable_count)
11788 goto unlock;
11790 pmu->type = -1;
11791 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11792 ret = -EINVAL;
11793 goto free_pdc;
11796 if (WARN_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE, "Can not register a pmu with an invalid scope.\n")) {
11797 ret = -EINVAL;
11798 goto free_pdc;
11801 pmu->name = name;
11803 if (type >= 0)
11804 max = type;
11806 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11807 if (ret < 0)
11808 goto free_pdc;
11810 WARN_ON(type >= 0 && ret != type);
11812 type = ret;
11813 pmu->type = type;
11815 if (pmu_bus_running && !pmu->dev) {
11816 ret = pmu_dev_alloc(pmu);
11817 if (ret)
11818 goto free_idr;
11821 ret = -ENOMEM;
11822 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11823 if (!pmu->cpu_pmu_context)
11824 goto free_dev;
11826 for_each_possible_cpu(cpu) {
11827 struct perf_cpu_pmu_context *cpc;
11829 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11830 __perf_init_event_pmu_context(&cpc->epc, pmu);
11831 __perf_mux_hrtimer_init(cpc, cpu);
11834 if (!pmu->start_txn) {
11835 if (pmu->pmu_enable) {
11837 * If we have pmu_enable/pmu_disable calls, install
11838 * transaction stubs that use that to try and batch
11839 * hardware accesses.
11841 pmu->start_txn = perf_pmu_start_txn;
11842 pmu->commit_txn = perf_pmu_commit_txn;
11843 pmu->cancel_txn = perf_pmu_cancel_txn;
11844 } else {
11845 pmu->start_txn = perf_pmu_nop_txn;
11846 pmu->commit_txn = perf_pmu_nop_int;
11847 pmu->cancel_txn = perf_pmu_nop_void;
11851 if (!pmu->pmu_enable) {
11852 pmu->pmu_enable = perf_pmu_nop_void;
11853 pmu->pmu_disable = perf_pmu_nop_void;
11856 if (!pmu->check_period)
11857 pmu->check_period = perf_event_nop_int;
11859 if (!pmu->event_idx)
11860 pmu->event_idx = perf_event_idx_default;
11862 list_add_rcu(&pmu->entry, &pmus);
11863 atomic_set(&pmu->exclusive_cnt, 0);
11864 ret = 0;
11865 unlock:
11866 mutex_unlock(&pmus_lock);
11868 return ret;
11870 free_dev:
11871 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11872 device_del(pmu->dev);
11873 put_device(pmu->dev);
11876 free_idr:
11877 idr_remove(&pmu_idr, pmu->type);
11879 free_pdc:
11880 free_percpu(pmu->pmu_disable_count);
11881 goto unlock;
11883 EXPORT_SYMBOL_GPL(perf_pmu_register);
11885 void perf_pmu_unregister(struct pmu *pmu)
11887 mutex_lock(&pmus_lock);
11888 list_del_rcu(&pmu->entry);
11891 * We dereference the pmu list under both SRCU and regular RCU, so
11892 * synchronize against both of those.
11894 synchronize_srcu(&pmus_srcu);
11895 synchronize_rcu();
11897 free_percpu(pmu->pmu_disable_count);
11898 idr_remove(&pmu_idr, pmu->type);
11899 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11900 if (pmu->nr_addr_filters)
11901 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11902 device_del(pmu->dev);
11903 put_device(pmu->dev);
11905 free_pmu_context(pmu);
11906 mutex_unlock(&pmus_lock);
11908 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11910 static inline bool has_extended_regs(struct perf_event *event)
11912 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11913 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11916 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11918 struct perf_event_context *ctx = NULL;
11919 int ret;
11921 if (!try_module_get(pmu->module))
11922 return -ENODEV;
11925 * A number of pmu->event_init() methods iterate the sibling_list to,
11926 * for example, validate if the group fits on the PMU. Therefore,
11927 * if this is a sibling event, acquire the ctx->mutex to protect
11928 * the sibling_list.
11930 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11932 * This ctx->mutex can nest when we're called through
11933 * inheritance. See the perf_event_ctx_lock_nested() comment.
11935 ctx = perf_event_ctx_lock_nested(event->group_leader,
11936 SINGLE_DEPTH_NESTING);
11937 BUG_ON(!ctx);
11940 event->pmu = pmu;
11941 ret = pmu->event_init(event);
11943 if (ctx)
11944 perf_event_ctx_unlock(event->group_leader, ctx);
11946 if (!ret) {
11947 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11948 has_extended_regs(event))
11949 ret = -EOPNOTSUPP;
11951 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11952 event_has_any_exclude_flag(event))
11953 ret = -EINVAL;
11955 if (pmu->scope != PERF_PMU_SCOPE_NONE && event->cpu >= 0) {
11956 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(pmu->scope, event->cpu);
11957 struct cpumask *pmu_cpumask = perf_scope_cpumask(pmu->scope);
11958 int cpu;
11960 if (pmu_cpumask && cpumask) {
11961 cpu = cpumask_any_and(pmu_cpumask, cpumask);
11962 if (cpu >= nr_cpu_ids)
11963 ret = -ENODEV;
11964 else
11965 event->event_caps |= PERF_EV_CAP_READ_SCOPE;
11966 } else {
11967 ret = -ENODEV;
11971 if (ret && event->destroy)
11972 event->destroy(event);
11975 if (ret)
11976 module_put(pmu->module);
11978 return ret;
11981 static struct pmu *perf_init_event(struct perf_event *event)
11983 bool extended_type = false;
11984 int idx, type, ret;
11985 struct pmu *pmu;
11987 idx = srcu_read_lock(&pmus_srcu);
11990 * Save original type before calling pmu->event_init() since certain
11991 * pmus overwrites event->attr.type to forward event to another pmu.
11993 event->orig_type = event->attr.type;
11995 /* Try parent's PMU first: */
11996 if (event->parent && event->parent->pmu) {
11997 pmu = event->parent->pmu;
11998 ret = perf_try_init_event(pmu, event);
11999 if (!ret)
12000 goto unlock;
12004 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
12005 * are often aliases for PERF_TYPE_RAW.
12007 type = event->attr.type;
12008 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
12009 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
12010 if (!type) {
12011 type = PERF_TYPE_RAW;
12012 } else {
12013 extended_type = true;
12014 event->attr.config &= PERF_HW_EVENT_MASK;
12018 again:
12019 rcu_read_lock();
12020 pmu = idr_find(&pmu_idr, type);
12021 rcu_read_unlock();
12022 if (pmu) {
12023 if (event->attr.type != type && type != PERF_TYPE_RAW &&
12024 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
12025 goto fail;
12027 ret = perf_try_init_event(pmu, event);
12028 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
12029 type = event->attr.type;
12030 goto again;
12033 if (ret)
12034 pmu = ERR_PTR(ret);
12036 goto unlock;
12039 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
12040 ret = perf_try_init_event(pmu, event);
12041 if (!ret)
12042 goto unlock;
12044 if (ret != -ENOENT) {
12045 pmu = ERR_PTR(ret);
12046 goto unlock;
12049 fail:
12050 pmu = ERR_PTR(-ENOENT);
12051 unlock:
12052 srcu_read_unlock(&pmus_srcu, idx);
12054 return pmu;
12057 static void attach_sb_event(struct perf_event *event)
12059 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
12061 raw_spin_lock(&pel->lock);
12062 list_add_rcu(&event->sb_list, &pel->list);
12063 raw_spin_unlock(&pel->lock);
12067 * We keep a list of all !task (and therefore per-cpu) events
12068 * that need to receive side-band records.
12070 * This avoids having to scan all the various PMU per-cpu contexts
12071 * looking for them.
12073 static void account_pmu_sb_event(struct perf_event *event)
12075 if (is_sb_event(event))
12076 attach_sb_event(event);
12079 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
12080 static void account_freq_event_nohz(void)
12082 #ifdef CONFIG_NO_HZ_FULL
12083 /* Lock so we don't race with concurrent unaccount */
12084 spin_lock(&nr_freq_lock);
12085 if (atomic_inc_return(&nr_freq_events) == 1)
12086 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
12087 spin_unlock(&nr_freq_lock);
12088 #endif
12091 static void account_freq_event(void)
12093 if (tick_nohz_full_enabled())
12094 account_freq_event_nohz();
12095 else
12096 atomic_inc(&nr_freq_events);
12100 static void account_event(struct perf_event *event)
12102 bool inc = false;
12104 if (event->parent)
12105 return;
12107 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
12108 inc = true;
12109 if (event->attr.mmap || event->attr.mmap_data)
12110 atomic_inc(&nr_mmap_events);
12111 if (event->attr.build_id)
12112 atomic_inc(&nr_build_id_events);
12113 if (event->attr.comm)
12114 atomic_inc(&nr_comm_events);
12115 if (event->attr.namespaces)
12116 atomic_inc(&nr_namespaces_events);
12117 if (event->attr.cgroup)
12118 atomic_inc(&nr_cgroup_events);
12119 if (event->attr.task)
12120 atomic_inc(&nr_task_events);
12121 if (event->attr.freq)
12122 account_freq_event();
12123 if (event->attr.context_switch) {
12124 atomic_inc(&nr_switch_events);
12125 inc = true;
12127 if (has_branch_stack(event))
12128 inc = true;
12129 if (is_cgroup_event(event))
12130 inc = true;
12131 if (event->attr.ksymbol)
12132 atomic_inc(&nr_ksymbol_events);
12133 if (event->attr.bpf_event)
12134 atomic_inc(&nr_bpf_events);
12135 if (event->attr.text_poke)
12136 atomic_inc(&nr_text_poke_events);
12138 if (inc) {
12140 * We need the mutex here because static_branch_enable()
12141 * must complete *before* the perf_sched_count increment
12142 * becomes visible.
12144 if (atomic_inc_not_zero(&perf_sched_count))
12145 goto enabled;
12147 mutex_lock(&perf_sched_mutex);
12148 if (!atomic_read(&perf_sched_count)) {
12149 static_branch_enable(&perf_sched_events);
12151 * Guarantee that all CPUs observe they key change and
12152 * call the perf scheduling hooks before proceeding to
12153 * install events that need them.
12155 synchronize_rcu();
12158 * Now that we have waited for the sync_sched(), allow further
12159 * increments to by-pass the mutex.
12161 atomic_inc(&perf_sched_count);
12162 mutex_unlock(&perf_sched_mutex);
12164 enabled:
12166 account_pmu_sb_event(event);
12170 * Allocate and initialize an event structure
12172 static struct perf_event *
12173 perf_event_alloc(struct perf_event_attr *attr, int cpu,
12174 struct task_struct *task,
12175 struct perf_event *group_leader,
12176 struct perf_event *parent_event,
12177 perf_overflow_handler_t overflow_handler,
12178 void *context, int cgroup_fd)
12180 struct pmu *pmu;
12181 struct perf_event *event;
12182 struct hw_perf_event *hwc;
12183 long err = -EINVAL;
12184 int node;
12186 if ((unsigned)cpu >= nr_cpu_ids) {
12187 if (!task || cpu != -1)
12188 return ERR_PTR(-EINVAL);
12190 if (attr->sigtrap && !task) {
12191 /* Requires a task: avoid signalling random tasks. */
12192 return ERR_PTR(-EINVAL);
12195 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
12196 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
12197 node);
12198 if (!event)
12199 return ERR_PTR(-ENOMEM);
12202 * Single events are their own group leaders, with an
12203 * empty sibling list:
12205 if (!group_leader)
12206 group_leader = event;
12208 mutex_init(&event->child_mutex);
12209 INIT_LIST_HEAD(&event->child_list);
12211 INIT_LIST_HEAD(&event->event_entry);
12212 INIT_LIST_HEAD(&event->sibling_list);
12213 INIT_LIST_HEAD(&event->active_list);
12214 init_event_group(event);
12215 INIT_LIST_HEAD(&event->rb_entry);
12216 INIT_LIST_HEAD(&event->active_entry);
12217 INIT_LIST_HEAD(&event->addr_filters.list);
12218 INIT_HLIST_NODE(&event->hlist_entry);
12221 init_waitqueue_head(&event->waitq);
12222 init_irq_work(&event->pending_irq, perf_pending_irq);
12223 event->pending_disable_irq = IRQ_WORK_INIT_HARD(perf_pending_disable);
12224 init_task_work(&event->pending_task, perf_pending_task);
12225 rcuwait_init(&event->pending_work_wait);
12227 mutex_init(&event->mmap_mutex);
12228 raw_spin_lock_init(&event->addr_filters.lock);
12230 atomic_long_set(&event->refcount, 1);
12231 event->cpu = cpu;
12232 event->attr = *attr;
12233 event->group_leader = group_leader;
12234 event->pmu = NULL;
12235 event->oncpu = -1;
12237 event->parent = parent_event;
12239 event->ns = get_pid_ns(task_active_pid_ns(current));
12240 event->id = atomic64_inc_return(&perf_event_id);
12242 event->state = PERF_EVENT_STATE_INACTIVE;
12244 if (parent_event)
12245 event->event_caps = parent_event->event_caps;
12247 if (task) {
12248 event->attach_state = PERF_ATTACH_TASK;
12250 * XXX pmu::event_init needs to know what task to account to
12251 * and we cannot use the ctx information because we need the
12252 * pmu before we get a ctx.
12254 event->hw.target = get_task_struct(task);
12257 event->clock = &local_clock;
12258 if (parent_event)
12259 event->clock = parent_event->clock;
12261 if (!overflow_handler && parent_event) {
12262 overflow_handler = parent_event->overflow_handler;
12263 context = parent_event->overflow_handler_context;
12264 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12265 if (parent_event->prog) {
12266 struct bpf_prog *prog = parent_event->prog;
12268 bpf_prog_inc(prog);
12269 event->prog = prog;
12271 #endif
12274 if (overflow_handler) {
12275 event->overflow_handler = overflow_handler;
12276 event->overflow_handler_context = context;
12277 } else if (is_write_backward(event)){
12278 event->overflow_handler = perf_event_output_backward;
12279 event->overflow_handler_context = NULL;
12280 } else {
12281 event->overflow_handler = perf_event_output_forward;
12282 event->overflow_handler_context = NULL;
12285 perf_event__state_init(event);
12287 pmu = NULL;
12289 hwc = &event->hw;
12290 hwc->sample_period = attr->sample_period;
12291 if (attr->freq && attr->sample_freq)
12292 hwc->sample_period = 1;
12293 hwc->last_period = hwc->sample_period;
12295 local64_set(&hwc->period_left, hwc->sample_period);
12298 * We do not support PERF_SAMPLE_READ on inherited events unless
12299 * PERF_SAMPLE_TID is also selected, which allows inherited events to
12300 * collect per-thread samples.
12301 * See perf_output_read().
12303 if (has_inherit_and_sample_read(attr) && !(attr->sample_type & PERF_SAMPLE_TID))
12304 goto err_ns;
12306 if (!has_branch_stack(event))
12307 event->attr.branch_sample_type = 0;
12309 pmu = perf_init_event(event);
12310 if (IS_ERR(pmu)) {
12311 err = PTR_ERR(pmu);
12312 goto err_ns;
12316 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12317 * events (they don't make sense as the cgroup will be different
12318 * on other CPUs in the uncore mask).
12320 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12321 err = -EINVAL;
12322 goto err_pmu;
12325 if (event->attr.aux_output &&
12326 (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
12327 event->attr.aux_pause || event->attr.aux_resume)) {
12328 err = -EOPNOTSUPP;
12329 goto err_pmu;
12332 if (event->attr.aux_pause && event->attr.aux_resume) {
12333 err = -EINVAL;
12334 goto err_pmu;
12337 if (event->attr.aux_start_paused) {
12338 if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
12339 err = -EOPNOTSUPP;
12340 goto err_pmu;
12342 event->hw.aux_paused = 1;
12345 if (cgroup_fd != -1) {
12346 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12347 if (err)
12348 goto err_pmu;
12351 err = exclusive_event_init(event);
12352 if (err)
12353 goto err_pmu;
12355 if (has_addr_filter(event)) {
12356 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12357 sizeof(struct perf_addr_filter_range),
12358 GFP_KERNEL);
12359 if (!event->addr_filter_ranges) {
12360 err = -ENOMEM;
12361 goto err_per_task;
12365 * Clone the parent's vma offsets: they are valid until exec()
12366 * even if the mm is not shared with the parent.
12368 if (event->parent) {
12369 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12371 raw_spin_lock_irq(&ifh->lock);
12372 memcpy(event->addr_filter_ranges,
12373 event->parent->addr_filter_ranges,
12374 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12375 raw_spin_unlock_irq(&ifh->lock);
12378 /* force hw sync on the address filters */
12379 event->addr_filters_gen = 1;
12382 if (!event->parent) {
12383 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12384 err = get_callchain_buffers(attr->sample_max_stack);
12385 if (err)
12386 goto err_addr_filters;
12390 err = security_perf_event_alloc(event);
12391 if (err)
12392 goto err_callchain_buffer;
12394 /* symmetric to unaccount_event() in _free_event() */
12395 account_event(event);
12397 return event;
12399 err_callchain_buffer:
12400 if (!event->parent) {
12401 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12402 put_callchain_buffers();
12404 err_addr_filters:
12405 kfree(event->addr_filter_ranges);
12407 err_per_task:
12408 exclusive_event_destroy(event);
12410 err_pmu:
12411 if (is_cgroup_event(event))
12412 perf_detach_cgroup(event);
12413 if (event->destroy)
12414 event->destroy(event);
12415 module_put(pmu->module);
12416 err_ns:
12417 if (event->hw.target)
12418 put_task_struct(event->hw.target);
12419 call_rcu(&event->rcu_head, free_event_rcu);
12421 return ERR_PTR(err);
12424 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12425 struct perf_event_attr *attr)
12427 u32 size;
12428 int ret;
12430 /* Zero the full structure, so that a short copy will be nice. */
12431 memset(attr, 0, sizeof(*attr));
12433 ret = get_user(size, &uattr->size);
12434 if (ret)
12435 return ret;
12437 /* ABI compatibility quirk: */
12438 if (!size)
12439 size = PERF_ATTR_SIZE_VER0;
12440 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12441 goto err_size;
12443 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12444 if (ret) {
12445 if (ret == -E2BIG)
12446 goto err_size;
12447 return ret;
12450 attr->size = size;
12452 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12453 return -EINVAL;
12455 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12456 return -EINVAL;
12458 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12459 return -EINVAL;
12461 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12462 u64 mask = attr->branch_sample_type;
12464 /* only using defined bits */
12465 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12466 return -EINVAL;
12468 /* at least one branch bit must be set */
12469 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12470 return -EINVAL;
12472 /* propagate priv level, when not set for branch */
12473 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12475 /* exclude_kernel checked on syscall entry */
12476 if (!attr->exclude_kernel)
12477 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12479 if (!attr->exclude_user)
12480 mask |= PERF_SAMPLE_BRANCH_USER;
12482 if (!attr->exclude_hv)
12483 mask |= PERF_SAMPLE_BRANCH_HV;
12485 * adjust user setting (for HW filter setup)
12487 attr->branch_sample_type = mask;
12489 /* privileged levels capture (kernel, hv): check permissions */
12490 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12491 ret = perf_allow_kernel(attr);
12492 if (ret)
12493 return ret;
12497 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12498 ret = perf_reg_validate(attr->sample_regs_user);
12499 if (ret)
12500 return ret;
12503 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12504 if (!arch_perf_have_user_stack_dump())
12505 return -ENOSYS;
12508 * We have __u32 type for the size, but so far
12509 * we can only use __u16 as maximum due to the
12510 * __u16 sample size limit.
12512 if (attr->sample_stack_user >= USHRT_MAX)
12513 return -EINVAL;
12514 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12515 return -EINVAL;
12518 if (!attr->sample_max_stack)
12519 attr->sample_max_stack = sysctl_perf_event_max_stack;
12521 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12522 ret = perf_reg_validate(attr->sample_regs_intr);
12524 #ifndef CONFIG_CGROUP_PERF
12525 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12526 return -EINVAL;
12527 #endif
12528 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12529 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12530 return -EINVAL;
12532 if (!attr->inherit && attr->inherit_thread)
12533 return -EINVAL;
12535 if (attr->remove_on_exec && attr->enable_on_exec)
12536 return -EINVAL;
12538 if (attr->sigtrap && !attr->remove_on_exec)
12539 return -EINVAL;
12541 out:
12542 return ret;
12544 err_size:
12545 put_user(sizeof(*attr), &uattr->size);
12546 ret = -E2BIG;
12547 goto out;
12550 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12552 if (b < a)
12553 swap(a, b);
12555 mutex_lock(a);
12556 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12559 static int
12560 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12562 struct perf_buffer *rb = NULL;
12563 int ret = -EINVAL;
12565 if (!output_event) {
12566 mutex_lock(&event->mmap_mutex);
12567 goto set;
12570 /* don't allow circular references */
12571 if (event == output_event)
12572 goto out;
12575 * Don't allow cross-cpu buffers
12577 if (output_event->cpu != event->cpu)
12578 goto out;
12581 * If its not a per-cpu rb, it must be the same task.
12583 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12584 goto out;
12587 * Mixing clocks in the same buffer is trouble you don't need.
12589 if (output_event->clock != event->clock)
12590 goto out;
12593 * Either writing ring buffer from beginning or from end.
12594 * Mixing is not allowed.
12596 if (is_write_backward(output_event) != is_write_backward(event))
12597 goto out;
12600 * If both events generate aux data, they must be on the same PMU
12602 if (has_aux(event) && has_aux(output_event) &&
12603 event->pmu != output_event->pmu)
12604 goto out;
12607 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12608 * output_event is already on rb->event_list, and the list iteration
12609 * restarts after every removal, it is guaranteed this new event is
12610 * observed *OR* if output_event is already removed, it's guaranteed we
12611 * observe !rb->mmap_count.
12613 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12614 set:
12615 /* Can't redirect output if we've got an active mmap() */
12616 if (atomic_read(&event->mmap_count))
12617 goto unlock;
12619 if (output_event) {
12620 /* get the rb we want to redirect to */
12621 rb = ring_buffer_get(output_event);
12622 if (!rb)
12623 goto unlock;
12625 /* did we race against perf_mmap_close() */
12626 if (!atomic_read(&rb->mmap_count)) {
12627 ring_buffer_put(rb);
12628 goto unlock;
12632 ring_buffer_attach(event, rb);
12634 ret = 0;
12635 unlock:
12636 mutex_unlock(&event->mmap_mutex);
12637 if (output_event)
12638 mutex_unlock(&output_event->mmap_mutex);
12640 out:
12641 return ret;
12644 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12646 bool nmi_safe = false;
12648 switch (clk_id) {
12649 case CLOCK_MONOTONIC:
12650 event->clock = &ktime_get_mono_fast_ns;
12651 nmi_safe = true;
12652 break;
12654 case CLOCK_MONOTONIC_RAW:
12655 event->clock = &ktime_get_raw_fast_ns;
12656 nmi_safe = true;
12657 break;
12659 case CLOCK_REALTIME:
12660 event->clock = &ktime_get_real_ns;
12661 break;
12663 case CLOCK_BOOTTIME:
12664 event->clock = &ktime_get_boottime_ns;
12665 break;
12667 case CLOCK_TAI:
12668 event->clock = &ktime_get_clocktai_ns;
12669 break;
12671 default:
12672 return -EINVAL;
12675 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12676 return -EINVAL;
12678 return 0;
12681 static bool
12682 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12684 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12685 bool is_capable = perfmon_capable();
12687 if (attr->sigtrap) {
12689 * perf_event_attr::sigtrap sends signals to the other task.
12690 * Require the current task to also have CAP_KILL.
12692 rcu_read_lock();
12693 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12694 rcu_read_unlock();
12697 * If the required capabilities aren't available, checks for
12698 * ptrace permissions: upgrade to ATTACH, since sending signals
12699 * can effectively change the target task.
12701 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12705 * Preserve ptrace permission check for backwards compatibility. The
12706 * ptrace check also includes checks that the current task and other
12707 * task have matching uids, and is therefore not done here explicitly.
12709 return is_capable || ptrace_may_access(task, ptrace_mode);
12713 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12715 * @attr_uptr: event_id type attributes for monitoring/sampling
12716 * @pid: target pid
12717 * @cpu: target cpu
12718 * @group_fd: group leader event fd
12719 * @flags: perf event open flags
12721 SYSCALL_DEFINE5(perf_event_open,
12722 struct perf_event_attr __user *, attr_uptr,
12723 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12725 struct perf_event *group_leader = NULL, *output_event = NULL;
12726 struct perf_event_pmu_context *pmu_ctx;
12727 struct perf_event *event, *sibling;
12728 struct perf_event_attr attr;
12729 struct perf_event_context *ctx;
12730 struct file *event_file = NULL;
12731 struct task_struct *task = NULL;
12732 struct pmu *pmu;
12733 int event_fd;
12734 int move_group = 0;
12735 int err;
12736 int f_flags = O_RDWR;
12737 int cgroup_fd = -1;
12739 /* for future expandability... */
12740 if (flags & ~PERF_FLAG_ALL)
12741 return -EINVAL;
12743 err = perf_copy_attr(attr_uptr, &attr);
12744 if (err)
12745 return err;
12747 /* Do we allow access to perf_event_open(2) ? */
12748 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12749 if (err)
12750 return err;
12752 if (!attr.exclude_kernel) {
12753 err = perf_allow_kernel(&attr);
12754 if (err)
12755 return err;
12758 if (attr.namespaces) {
12759 if (!perfmon_capable())
12760 return -EACCES;
12763 if (attr.freq) {
12764 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12765 return -EINVAL;
12766 } else {
12767 if (attr.sample_period & (1ULL << 63))
12768 return -EINVAL;
12771 /* Only privileged users can get physical addresses */
12772 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12773 err = perf_allow_kernel(&attr);
12774 if (err)
12775 return err;
12778 /* REGS_INTR can leak data, lockdown must prevent this */
12779 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12780 err = security_locked_down(LOCKDOWN_PERF);
12781 if (err)
12782 return err;
12786 * In cgroup mode, the pid argument is used to pass the fd
12787 * opened to the cgroup directory in cgroupfs. The cpu argument
12788 * designates the cpu on which to monitor threads from that
12789 * cgroup.
12791 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12792 return -EINVAL;
12794 if (flags & PERF_FLAG_FD_CLOEXEC)
12795 f_flags |= O_CLOEXEC;
12797 event_fd = get_unused_fd_flags(f_flags);
12798 if (event_fd < 0)
12799 return event_fd;
12801 CLASS(fd, group)(group_fd); // group_fd == -1 => empty
12802 if (group_fd != -1) {
12803 if (!is_perf_file(group)) {
12804 err = -EBADF;
12805 goto err_fd;
12807 group_leader = fd_file(group)->private_data;
12808 if (flags & PERF_FLAG_FD_OUTPUT)
12809 output_event = group_leader;
12810 if (flags & PERF_FLAG_FD_NO_GROUP)
12811 group_leader = NULL;
12814 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12815 task = find_lively_task_by_vpid(pid);
12816 if (IS_ERR(task)) {
12817 err = PTR_ERR(task);
12818 goto err_fd;
12822 if (task && group_leader &&
12823 group_leader->attr.inherit != attr.inherit) {
12824 err = -EINVAL;
12825 goto err_task;
12828 if (flags & PERF_FLAG_PID_CGROUP)
12829 cgroup_fd = pid;
12831 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12832 NULL, NULL, cgroup_fd);
12833 if (IS_ERR(event)) {
12834 err = PTR_ERR(event);
12835 goto err_task;
12838 if (is_sampling_event(event)) {
12839 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12840 err = -EOPNOTSUPP;
12841 goto err_alloc;
12846 * Special case software events and allow them to be part of
12847 * any hardware group.
12849 pmu = event->pmu;
12851 if (attr.use_clockid) {
12852 err = perf_event_set_clock(event, attr.clockid);
12853 if (err)
12854 goto err_alloc;
12857 if (pmu->task_ctx_nr == perf_sw_context)
12858 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12860 if (task) {
12861 err = down_read_interruptible(&task->signal->exec_update_lock);
12862 if (err)
12863 goto err_alloc;
12866 * We must hold exec_update_lock across this and any potential
12867 * perf_install_in_context() call for this new event to
12868 * serialize against exec() altering our credentials (and the
12869 * perf_event_exit_task() that could imply).
12871 err = -EACCES;
12872 if (!perf_check_permission(&attr, task))
12873 goto err_cred;
12877 * Get the target context (task or percpu):
12879 ctx = find_get_context(task, event);
12880 if (IS_ERR(ctx)) {
12881 err = PTR_ERR(ctx);
12882 goto err_cred;
12885 mutex_lock(&ctx->mutex);
12887 if (ctx->task == TASK_TOMBSTONE) {
12888 err = -ESRCH;
12889 goto err_locked;
12892 if (!task) {
12894 * Check if the @cpu we're creating an event for is online.
12896 * We use the perf_cpu_context::ctx::mutex to serialize against
12897 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12899 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12901 if (!cpuctx->online) {
12902 err = -ENODEV;
12903 goto err_locked;
12907 if (group_leader) {
12908 err = -EINVAL;
12911 * Do not allow a recursive hierarchy (this new sibling
12912 * becoming part of another group-sibling):
12914 if (group_leader->group_leader != group_leader)
12915 goto err_locked;
12917 /* All events in a group should have the same clock */
12918 if (group_leader->clock != event->clock)
12919 goto err_locked;
12922 * Make sure we're both events for the same CPU;
12923 * grouping events for different CPUs is broken; since
12924 * you can never concurrently schedule them anyhow.
12926 if (group_leader->cpu != event->cpu)
12927 goto err_locked;
12930 * Make sure we're both on the same context; either task or cpu.
12932 if (group_leader->ctx != ctx)
12933 goto err_locked;
12936 * Only a group leader can be exclusive or pinned
12938 if (attr.exclusive || attr.pinned)
12939 goto err_locked;
12941 if (is_software_event(event) &&
12942 !in_software_context(group_leader)) {
12944 * If the event is a sw event, but the group_leader
12945 * is on hw context.
12947 * Allow the addition of software events to hw
12948 * groups, this is safe because software events
12949 * never fail to schedule.
12951 * Note the comment that goes with struct
12952 * perf_event_pmu_context.
12954 pmu = group_leader->pmu_ctx->pmu;
12955 } else if (!is_software_event(event)) {
12956 if (is_software_event(group_leader) &&
12957 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12959 * In case the group is a pure software group, and we
12960 * try to add a hardware event, move the whole group to
12961 * the hardware context.
12963 move_group = 1;
12966 /* Don't allow group of multiple hw events from different pmus */
12967 if (!in_software_context(group_leader) &&
12968 group_leader->pmu_ctx->pmu != pmu)
12969 goto err_locked;
12974 * Now that we're certain of the pmu; find the pmu_ctx.
12976 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12977 if (IS_ERR(pmu_ctx)) {
12978 err = PTR_ERR(pmu_ctx);
12979 goto err_locked;
12981 event->pmu_ctx = pmu_ctx;
12983 if (output_event) {
12984 err = perf_event_set_output(event, output_event);
12985 if (err)
12986 goto err_context;
12989 if (!perf_event_validate_size(event)) {
12990 err = -E2BIG;
12991 goto err_context;
12994 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12995 err = -EINVAL;
12996 goto err_context;
13000 * Must be under the same ctx::mutex as perf_install_in_context(),
13001 * because we need to serialize with concurrent event creation.
13003 if (!exclusive_event_installable(event, ctx)) {
13004 err = -EBUSY;
13005 goto err_context;
13008 WARN_ON_ONCE(ctx->parent_ctx);
13010 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
13011 if (IS_ERR(event_file)) {
13012 err = PTR_ERR(event_file);
13013 event_file = NULL;
13014 goto err_context;
13018 * This is the point on no return; we cannot fail hereafter. This is
13019 * where we start modifying current state.
13022 if (move_group) {
13023 perf_remove_from_context(group_leader, 0);
13024 put_pmu_ctx(group_leader->pmu_ctx);
13026 for_each_sibling_event(sibling, group_leader) {
13027 perf_remove_from_context(sibling, 0);
13028 put_pmu_ctx(sibling->pmu_ctx);
13032 * Install the group siblings before the group leader.
13034 * Because a group leader will try and install the entire group
13035 * (through the sibling list, which is still in-tact), we can
13036 * end up with siblings installed in the wrong context.
13038 * By installing siblings first we NO-OP because they're not
13039 * reachable through the group lists.
13041 for_each_sibling_event(sibling, group_leader) {
13042 sibling->pmu_ctx = pmu_ctx;
13043 get_pmu_ctx(pmu_ctx);
13044 perf_event__state_init(sibling);
13045 perf_install_in_context(ctx, sibling, sibling->cpu);
13049 * Removing from the context ends up with disabled
13050 * event. What we want here is event in the initial
13051 * startup state, ready to be add into new context.
13053 group_leader->pmu_ctx = pmu_ctx;
13054 get_pmu_ctx(pmu_ctx);
13055 perf_event__state_init(group_leader);
13056 perf_install_in_context(ctx, group_leader, group_leader->cpu);
13060 * Precalculate sample_data sizes; do while holding ctx::mutex such
13061 * that we're serialized against further additions and before
13062 * perf_install_in_context() which is the point the event is active and
13063 * can use these values.
13065 perf_event__header_size(event);
13066 perf_event__id_header_size(event);
13068 event->owner = current;
13070 perf_install_in_context(ctx, event, event->cpu);
13071 perf_unpin_context(ctx);
13073 mutex_unlock(&ctx->mutex);
13075 if (task) {
13076 up_read(&task->signal->exec_update_lock);
13077 put_task_struct(task);
13080 mutex_lock(&current->perf_event_mutex);
13081 list_add_tail(&event->owner_entry, &current->perf_event_list);
13082 mutex_unlock(&current->perf_event_mutex);
13085 * File reference in group guarantees that group_leader has been
13086 * kept alive until we place the new event on the sibling_list.
13087 * This ensures destruction of the group leader will find
13088 * the pointer to itself in perf_group_detach().
13090 fd_install(event_fd, event_file);
13091 return event_fd;
13093 err_context:
13094 put_pmu_ctx(event->pmu_ctx);
13095 event->pmu_ctx = NULL; /* _free_event() */
13096 err_locked:
13097 mutex_unlock(&ctx->mutex);
13098 perf_unpin_context(ctx);
13099 put_ctx(ctx);
13100 err_cred:
13101 if (task)
13102 up_read(&task->signal->exec_update_lock);
13103 err_alloc:
13104 free_event(event);
13105 err_task:
13106 if (task)
13107 put_task_struct(task);
13108 err_fd:
13109 put_unused_fd(event_fd);
13110 return err;
13114 * perf_event_create_kernel_counter
13116 * @attr: attributes of the counter to create
13117 * @cpu: cpu in which the counter is bound
13118 * @task: task to profile (NULL for percpu)
13119 * @overflow_handler: callback to trigger when we hit the event
13120 * @context: context data could be used in overflow_handler callback
13122 struct perf_event *
13123 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
13124 struct task_struct *task,
13125 perf_overflow_handler_t overflow_handler,
13126 void *context)
13128 struct perf_event_pmu_context *pmu_ctx;
13129 struct perf_event_context *ctx;
13130 struct perf_event *event;
13131 struct pmu *pmu;
13132 int err;
13135 * Grouping is not supported for kernel events, neither is 'AUX',
13136 * make sure the caller's intentions are adjusted.
13138 if (attr->aux_output || attr->aux_action)
13139 return ERR_PTR(-EINVAL);
13141 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
13142 overflow_handler, context, -1);
13143 if (IS_ERR(event)) {
13144 err = PTR_ERR(event);
13145 goto err;
13148 /* Mark owner so we could distinguish it from user events. */
13149 event->owner = TASK_TOMBSTONE;
13150 pmu = event->pmu;
13152 if (pmu->task_ctx_nr == perf_sw_context)
13153 event->event_caps |= PERF_EV_CAP_SOFTWARE;
13156 * Get the target context (task or percpu):
13158 ctx = find_get_context(task, event);
13159 if (IS_ERR(ctx)) {
13160 err = PTR_ERR(ctx);
13161 goto err_alloc;
13164 WARN_ON_ONCE(ctx->parent_ctx);
13165 mutex_lock(&ctx->mutex);
13166 if (ctx->task == TASK_TOMBSTONE) {
13167 err = -ESRCH;
13168 goto err_unlock;
13171 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
13172 if (IS_ERR(pmu_ctx)) {
13173 err = PTR_ERR(pmu_ctx);
13174 goto err_unlock;
13176 event->pmu_ctx = pmu_ctx;
13178 if (!task) {
13180 * Check if the @cpu we're creating an event for is online.
13182 * We use the perf_cpu_context::ctx::mutex to serialize against
13183 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
13185 struct perf_cpu_context *cpuctx =
13186 container_of(ctx, struct perf_cpu_context, ctx);
13187 if (!cpuctx->online) {
13188 err = -ENODEV;
13189 goto err_pmu_ctx;
13193 if (!exclusive_event_installable(event, ctx)) {
13194 err = -EBUSY;
13195 goto err_pmu_ctx;
13198 perf_install_in_context(ctx, event, event->cpu);
13199 perf_unpin_context(ctx);
13200 mutex_unlock(&ctx->mutex);
13202 return event;
13204 err_pmu_ctx:
13205 put_pmu_ctx(pmu_ctx);
13206 event->pmu_ctx = NULL; /* _free_event() */
13207 err_unlock:
13208 mutex_unlock(&ctx->mutex);
13209 perf_unpin_context(ctx);
13210 put_ctx(ctx);
13211 err_alloc:
13212 free_event(event);
13213 err:
13214 return ERR_PTR(err);
13216 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
13218 static void __perf_pmu_remove(struct perf_event_context *ctx,
13219 int cpu, struct pmu *pmu,
13220 struct perf_event_groups *groups,
13221 struct list_head *events)
13223 struct perf_event *event, *sibling;
13225 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
13226 perf_remove_from_context(event, 0);
13227 put_pmu_ctx(event->pmu_ctx);
13228 list_add(&event->migrate_entry, events);
13230 for_each_sibling_event(sibling, event) {
13231 perf_remove_from_context(sibling, 0);
13232 put_pmu_ctx(sibling->pmu_ctx);
13233 list_add(&sibling->migrate_entry, events);
13238 static void __perf_pmu_install_event(struct pmu *pmu,
13239 struct perf_event_context *ctx,
13240 int cpu, struct perf_event *event)
13242 struct perf_event_pmu_context *epc;
13243 struct perf_event_context *old_ctx = event->ctx;
13245 get_ctx(ctx); /* normally find_get_context() */
13247 event->cpu = cpu;
13248 epc = find_get_pmu_context(pmu, ctx, event);
13249 event->pmu_ctx = epc;
13251 if (event->state >= PERF_EVENT_STATE_OFF)
13252 event->state = PERF_EVENT_STATE_INACTIVE;
13253 perf_install_in_context(ctx, event, cpu);
13256 * Now that event->ctx is updated and visible, put the old ctx.
13258 put_ctx(old_ctx);
13261 static void __perf_pmu_install(struct perf_event_context *ctx,
13262 int cpu, struct pmu *pmu, struct list_head *events)
13264 struct perf_event *event, *tmp;
13267 * Re-instate events in 2 passes.
13269 * Skip over group leaders and only install siblings on this first
13270 * pass, siblings will not get enabled without a leader, however a
13271 * leader will enable its siblings, even if those are still on the old
13272 * context.
13274 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13275 if (event->group_leader == event)
13276 continue;
13278 list_del(&event->migrate_entry);
13279 __perf_pmu_install_event(pmu, ctx, cpu, event);
13283 * Once all the siblings are setup properly, install the group leaders
13284 * to make it go.
13286 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13287 list_del(&event->migrate_entry);
13288 __perf_pmu_install_event(pmu, ctx, cpu, event);
13292 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13294 struct perf_event_context *src_ctx, *dst_ctx;
13295 LIST_HEAD(events);
13298 * Since per-cpu context is persistent, no need to grab an extra
13299 * reference.
13301 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13302 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13305 * See perf_event_ctx_lock() for comments on the details
13306 * of swizzling perf_event::ctx.
13308 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13310 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13311 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13313 if (!list_empty(&events)) {
13315 * Wait for the events to quiesce before re-instating them.
13317 synchronize_rcu();
13319 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13322 mutex_unlock(&dst_ctx->mutex);
13323 mutex_unlock(&src_ctx->mutex);
13325 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13327 static void sync_child_event(struct perf_event *child_event)
13329 struct perf_event *parent_event = child_event->parent;
13330 u64 child_val;
13332 if (child_event->attr.inherit_stat) {
13333 struct task_struct *task = child_event->ctx->task;
13335 if (task && task != TASK_TOMBSTONE)
13336 perf_event_read_event(child_event, task);
13339 child_val = perf_event_count(child_event, false);
13342 * Add back the child's count to the parent's count:
13344 atomic64_add(child_val, &parent_event->child_count);
13345 atomic64_add(child_event->total_time_enabled,
13346 &parent_event->child_total_time_enabled);
13347 atomic64_add(child_event->total_time_running,
13348 &parent_event->child_total_time_running);
13351 static void
13352 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13354 struct perf_event *parent_event = event->parent;
13355 unsigned long detach_flags = 0;
13357 if (parent_event) {
13359 * Do not destroy the 'original' grouping; because of the
13360 * context switch optimization the original events could've
13361 * ended up in a random child task.
13363 * If we were to destroy the original group, all group related
13364 * operations would cease to function properly after this
13365 * random child dies.
13367 * Do destroy all inherited groups, we don't care about those
13368 * and being thorough is better.
13370 detach_flags = DETACH_GROUP | DETACH_CHILD;
13371 mutex_lock(&parent_event->child_mutex);
13374 perf_remove_from_context(event, detach_flags);
13376 raw_spin_lock_irq(&ctx->lock);
13377 if (event->state > PERF_EVENT_STATE_EXIT)
13378 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13379 raw_spin_unlock_irq(&ctx->lock);
13382 * Child events can be freed.
13384 if (parent_event) {
13385 mutex_unlock(&parent_event->child_mutex);
13387 * Kick perf_poll() for is_event_hup();
13389 perf_event_wakeup(parent_event);
13390 free_event(event);
13391 put_event(parent_event);
13392 return;
13396 * Parent events are governed by their filedesc, retain them.
13398 perf_event_wakeup(event);
13401 static void perf_event_exit_task_context(struct task_struct *child)
13403 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13404 struct perf_event *child_event, *next;
13406 WARN_ON_ONCE(child != current);
13408 child_ctx = perf_pin_task_context(child);
13409 if (!child_ctx)
13410 return;
13413 * In order to reduce the amount of tricky in ctx tear-down, we hold
13414 * ctx::mutex over the entire thing. This serializes against almost
13415 * everything that wants to access the ctx.
13417 * The exception is sys_perf_event_open() /
13418 * perf_event_create_kernel_count() which does find_get_context()
13419 * without ctx::mutex (it cannot because of the move_group double mutex
13420 * lock thing). See the comments in perf_install_in_context().
13422 mutex_lock(&child_ctx->mutex);
13425 * In a single ctx::lock section, de-schedule the events and detach the
13426 * context from the task such that we cannot ever get it scheduled back
13427 * in.
13429 raw_spin_lock_irq(&child_ctx->lock);
13430 task_ctx_sched_out(child_ctx, NULL, EVENT_ALL);
13433 * Now that the context is inactive, destroy the task <-> ctx relation
13434 * and mark the context dead.
13436 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13437 put_ctx(child_ctx); /* cannot be last */
13438 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13439 put_task_struct(current); /* cannot be last */
13441 clone_ctx = unclone_ctx(child_ctx);
13442 raw_spin_unlock_irq(&child_ctx->lock);
13444 if (clone_ctx)
13445 put_ctx(clone_ctx);
13448 * Report the task dead after unscheduling the events so that we
13449 * won't get any samples after PERF_RECORD_EXIT. We can however still
13450 * get a few PERF_RECORD_READ events.
13452 perf_event_task(child, child_ctx, 0);
13454 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13455 perf_event_exit_event(child_event, child_ctx);
13457 mutex_unlock(&child_ctx->mutex);
13459 put_ctx(child_ctx);
13463 * When a child task exits, feed back event values to parent events.
13465 * Can be called with exec_update_lock held when called from
13466 * setup_new_exec().
13468 void perf_event_exit_task(struct task_struct *child)
13470 struct perf_event *event, *tmp;
13472 mutex_lock(&child->perf_event_mutex);
13473 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13474 owner_entry) {
13475 list_del_init(&event->owner_entry);
13478 * Ensure the list deletion is visible before we clear
13479 * the owner, closes a race against perf_release() where
13480 * we need to serialize on the owner->perf_event_mutex.
13482 smp_store_release(&event->owner, NULL);
13484 mutex_unlock(&child->perf_event_mutex);
13486 perf_event_exit_task_context(child);
13489 * The perf_event_exit_task_context calls perf_event_task
13490 * with child's task_ctx, which generates EXIT events for
13491 * child contexts and sets child->perf_event_ctxp[] to NULL.
13492 * At this point we need to send EXIT events to cpu contexts.
13494 perf_event_task(child, NULL, 0);
13497 static void perf_free_event(struct perf_event *event,
13498 struct perf_event_context *ctx)
13500 struct perf_event *parent = event->parent;
13502 if (WARN_ON_ONCE(!parent))
13503 return;
13505 mutex_lock(&parent->child_mutex);
13506 list_del_init(&event->child_list);
13507 mutex_unlock(&parent->child_mutex);
13509 put_event(parent);
13511 raw_spin_lock_irq(&ctx->lock);
13512 perf_group_detach(event);
13513 list_del_event(event, ctx);
13514 raw_spin_unlock_irq(&ctx->lock);
13515 free_event(event);
13519 * Free a context as created by inheritance by perf_event_init_task() below,
13520 * used by fork() in case of fail.
13522 * Even though the task has never lived, the context and events have been
13523 * exposed through the child_list, so we must take care tearing it all down.
13525 void perf_event_free_task(struct task_struct *task)
13527 struct perf_event_context *ctx;
13528 struct perf_event *event, *tmp;
13530 ctx = rcu_access_pointer(task->perf_event_ctxp);
13531 if (!ctx)
13532 return;
13534 mutex_lock(&ctx->mutex);
13535 raw_spin_lock_irq(&ctx->lock);
13537 * Destroy the task <-> ctx relation and mark the context dead.
13539 * This is important because even though the task hasn't been
13540 * exposed yet the context has been (through child_list).
13542 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13543 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13544 put_task_struct(task); /* cannot be last */
13545 raw_spin_unlock_irq(&ctx->lock);
13548 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13549 perf_free_event(event, ctx);
13551 mutex_unlock(&ctx->mutex);
13554 * perf_event_release_kernel() could've stolen some of our
13555 * child events and still have them on its free_list. In that
13556 * case we must wait for these events to have been freed (in
13557 * particular all their references to this task must've been
13558 * dropped).
13560 * Without this copy_process() will unconditionally free this
13561 * task (irrespective of its reference count) and
13562 * _free_event()'s put_task_struct(event->hw.target) will be a
13563 * use-after-free.
13565 * Wait for all events to drop their context reference.
13567 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13568 put_ctx(ctx); /* must be last */
13571 void perf_event_delayed_put(struct task_struct *task)
13573 WARN_ON_ONCE(task->perf_event_ctxp);
13576 struct file *perf_event_get(unsigned int fd)
13578 struct file *file = fget(fd);
13579 if (!file)
13580 return ERR_PTR(-EBADF);
13582 if (file->f_op != &perf_fops) {
13583 fput(file);
13584 return ERR_PTR(-EBADF);
13587 return file;
13590 const struct perf_event *perf_get_event(struct file *file)
13592 if (file->f_op != &perf_fops)
13593 return ERR_PTR(-EINVAL);
13595 return file->private_data;
13598 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13600 if (!event)
13601 return ERR_PTR(-EINVAL);
13603 return &event->attr;
13606 int perf_allow_kernel(struct perf_event_attr *attr)
13608 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13609 return -EACCES;
13611 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13613 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13616 * Inherit an event from parent task to child task.
13618 * Returns:
13619 * - valid pointer on success
13620 * - NULL for orphaned events
13621 * - IS_ERR() on error
13623 static struct perf_event *
13624 inherit_event(struct perf_event *parent_event,
13625 struct task_struct *parent,
13626 struct perf_event_context *parent_ctx,
13627 struct task_struct *child,
13628 struct perf_event *group_leader,
13629 struct perf_event_context *child_ctx)
13631 enum perf_event_state parent_state = parent_event->state;
13632 struct perf_event_pmu_context *pmu_ctx;
13633 struct perf_event *child_event;
13634 unsigned long flags;
13637 * Instead of creating recursive hierarchies of events,
13638 * we link inherited events back to the original parent,
13639 * which has a filp for sure, which we use as the reference
13640 * count:
13642 if (parent_event->parent)
13643 parent_event = parent_event->parent;
13645 child_event = perf_event_alloc(&parent_event->attr,
13646 parent_event->cpu,
13647 child,
13648 group_leader, parent_event,
13649 NULL, NULL, -1);
13650 if (IS_ERR(child_event))
13651 return child_event;
13653 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13654 if (IS_ERR(pmu_ctx)) {
13655 free_event(child_event);
13656 return ERR_CAST(pmu_ctx);
13658 child_event->pmu_ctx = pmu_ctx;
13661 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13662 * must be under the same lock in order to serialize against
13663 * perf_event_release_kernel(), such that either we must observe
13664 * is_orphaned_event() or they will observe us on the child_list.
13666 mutex_lock(&parent_event->child_mutex);
13667 if (is_orphaned_event(parent_event) ||
13668 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13669 mutex_unlock(&parent_event->child_mutex);
13670 /* task_ctx_data is freed with child_ctx */
13671 free_event(child_event);
13672 return NULL;
13675 get_ctx(child_ctx);
13678 * Make the child state follow the state of the parent event,
13679 * not its attr.disabled bit. We hold the parent's mutex,
13680 * so we won't race with perf_event_{en, dis}able_family.
13682 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13683 child_event->state = PERF_EVENT_STATE_INACTIVE;
13684 else
13685 child_event->state = PERF_EVENT_STATE_OFF;
13687 if (parent_event->attr.freq) {
13688 u64 sample_period = parent_event->hw.sample_period;
13689 struct hw_perf_event *hwc = &child_event->hw;
13691 hwc->sample_period = sample_period;
13692 hwc->last_period = sample_period;
13694 local64_set(&hwc->period_left, sample_period);
13697 child_event->ctx = child_ctx;
13698 child_event->overflow_handler = parent_event->overflow_handler;
13699 child_event->overflow_handler_context
13700 = parent_event->overflow_handler_context;
13703 * Precalculate sample_data sizes
13705 perf_event__header_size(child_event);
13706 perf_event__id_header_size(child_event);
13709 * Link it up in the child's context:
13711 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13712 add_event_to_ctx(child_event, child_ctx);
13713 child_event->attach_state |= PERF_ATTACH_CHILD;
13714 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13717 * Link this into the parent event's child list
13719 list_add_tail(&child_event->child_list, &parent_event->child_list);
13720 mutex_unlock(&parent_event->child_mutex);
13722 return child_event;
13726 * Inherits an event group.
13728 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13729 * This matches with perf_event_release_kernel() removing all child events.
13731 * Returns:
13732 * - 0 on success
13733 * - <0 on error
13735 static int inherit_group(struct perf_event *parent_event,
13736 struct task_struct *parent,
13737 struct perf_event_context *parent_ctx,
13738 struct task_struct *child,
13739 struct perf_event_context *child_ctx)
13741 struct perf_event *leader;
13742 struct perf_event *sub;
13743 struct perf_event *child_ctr;
13745 leader = inherit_event(parent_event, parent, parent_ctx,
13746 child, NULL, child_ctx);
13747 if (IS_ERR(leader))
13748 return PTR_ERR(leader);
13750 * @leader can be NULL here because of is_orphaned_event(). In this
13751 * case inherit_event() will create individual events, similar to what
13752 * perf_group_detach() would do anyway.
13754 for_each_sibling_event(sub, parent_event) {
13755 child_ctr = inherit_event(sub, parent, parent_ctx,
13756 child, leader, child_ctx);
13757 if (IS_ERR(child_ctr))
13758 return PTR_ERR(child_ctr);
13760 if (sub->aux_event == parent_event && child_ctr &&
13761 !perf_get_aux_event(child_ctr, leader))
13762 return -EINVAL;
13764 if (leader)
13765 leader->group_generation = parent_event->group_generation;
13766 return 0;
13770 * Creates the child task context and tries to inherit the event-group.
13772 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13773 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13774 * consistent with perf_event_release_kernel() removing all child events.
13776 * Returns:
13777 * - 0 on success
13778 * - <0 on error
13780 static int
13781 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13782 struct perf_event_context *parent_ctx,
13783 struct task_struct *child,
13784 u64 clone_flags, int *inherited_all)
13786 struct perf_event_context *child_ctx;
13787 int ret;
13789 if (!event->attr.inherit ||
13790 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13791 /* Do not inherit if sigtrap and signal handlers were cleared. */
13792 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13793 *inherited_all = 0;
13794 return 0;
13797 child_ctx = child->perf_event_ctxp;
13798 if (!child_ctx) {
13800 * This is executed from the parent task context, so
13801 * inherit events that have been marked for cloning.
13802 * First allocate and initialize a context for the
13803 * child.
13805 child_ctx = alloc_perf_context(child);
13806 if (!child_ctx)
13807 return -ENOMEM;
13809 child->perf_event_ctxp = child_ctx;
13812 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13813 if (ret)
13814 *inherited_all = 0;
13816 return ret;
13820 * Initialize the perf_event context in task_struct
13822 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13824 struct perf_event_context *child_ctx, *parent_ctx;
13825 struct perf_event_context *cloned_ctx;
13826 struct perf_event *event;
13827 struct task_struct *parent = current;
13828 int inherited_all = 1;
13829 unsigned long flags;
13830 int ret = 0;
13832 if (likely(!parent->perf_event_ctxp))
13833 return 0;
13836 * If the parent's context is a clone, pin it so it won't get
13837 * swapped under us.
13839 parent_ctx = perf_pin_task_context(parent);
13840 if (!parent_ctx)
13841 return 0;
13844 * No need to check if parent_ctx != NULL here; since we saw
13845 * it non-NULL earlier, the only reason for it to become NULL
13846 * is if we exit, and since we're currently in the middle of
13847 * a fork we can't be exiting at the same time.
13851 * Lock the parent list. No need to lock the child - not PID
13852 * hashed yet and not running, so nobody can access it.
13854 mutex_lock(&parent_ctx->mutex);
13857 * We dont have to disable NMIs - we are only looking at
13858 * the list, not manipulating it:
13860 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13861 ret = inherit_task_group(event, parent, parent_ctx,
13862 child, clone_flags, &inherited_all);
13863 if (ret)
13864 goto out_unlock;
13868 * We can't hold ctx->lock when iterating the ->flexible_group list due
13869 * to allocations, but we need to prevent rotation because
13870 * rotate_ctx() will change the list from interrupt context.
13872 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13873 parent_ctx->rotate_disable = 1;
13874 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13876 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13877 ret = inherit_task_group(event, parent, parent_ctx,
13878 child, clone_flags, &inherited_all);
13879 if (ret)
13880 goto out_unlock;
13883 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13884 parent_ctx->rotate_disable = 0;
13886 child_ctx = child->perf_event_ctxp;
13888 if (child_ctx && inherited_all) {
13890 * Mark the child context as a clone of the parent
13891 * context, or of whatever the parent is a clone of.
13893 * Note that if the parent is a clone, the holding of
13894 * parent_ctx->lock avoids it from being uncloned.
13896 cloned_ctx = parent_ctx->parent_ctx;
13897 if (cloned_ctx) {
13898 child_ctx->parent_ctx = cloned_ctx;
13899 child_ctx->parent_gen = parent_ctx->parent_gen;
13900 } else {
13901 child_ctx->parent_ctx = parent_ctx;
13902 child_ctx->parent_gen = parent_ctx->generation;
13904 get_ctx(child_ctx->parent_ctx);
13907 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13908 out_unlock:
13909 mutex_unlock(&parent_ctx->mutex);
13911 perf_unpin_context(parent_ctx);
13912 put_ctx(parent_ctx);
13914 return ret;
13918 * Initialize the perf_event context in task_struct
13920 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13922 int ret;
13924 memset(child->perf_recursion, 0, sizeof(child->perf_recursion));
13925 child->perf_event_ctxp = NULL;
13926 mutex_init(&child->perf_event_mutex);
13927 INIT_LIST_HEAD(&child->perf_event_list);
13929 ret = perf_event_init_context(child, clone_flags);
13930 if (ret) {
13931 perf_event_free_task(child);
13932 return ret;
13935 return 0;
13938 static void __init perf_event_init_all_cpus(void)
13940 struct swevent_htable *swhash;
13941 struct perf_cpu_context *cpuctx;
13942 int cpu;
13944 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13945 zalloc_cpumask_var(&perf_online_core_mask, GFP_KERNEL);
13946 zalloc_cpumask_var(&perf_online_die_mask, GFP_KERNEL);
13947 zalloc_cpumask_var(&perf_online_cluster_mask, GFP_KERNEL);
13948 zalloc_cpumask_var(&perf_online_pkg_mask, GFP_KERNEL);
13949 zalloc_cpumask_var(&perf_online_sys_mask, GFP_KERNEL);
13952 for_each_possible_cpu(cpu) {
13953 swhash = &per_cpu(swevent_htable, cpu);
13954 mutex_init(&swhash->hlist_mutex);
13956 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13957 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13959 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13961 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13962 __perf_event_init_context(&cpuctx->ctx);
13963 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13964 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13965 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13966 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13967 cpuctx->heap = cpuctx->heap_default;
13971 static void perf_swevent_init_cpu(unsigned int cpu)
13973 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13975 mutex_lock(&swhash->hlist_mutex);
13976 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13977 struct swevent_hlist *hlist;
13979 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13980 WARN_ON(!hlist);
13981 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13983 mutex_unlock(&swhash->hlist_mutex);
13986 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13987 static void __perf_event_exit_context(void *__info)
13989 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13990 struct perf_event_context *ctx = __info;
13991 struct perf_event *event;
13993 raw_spin_lock(&ctx->lock);
13994 ctx_sched_out(ctx, NULL, EVENT_TIME);
13995 list_for_each_entry(event, &ctx->event_list, event_entry)
13996 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13997 raw_spin_unlock(&ctx->lock);
14000 static void perf_event_clear_cpumask(unsigned int cpu)
14002 int target[PERF_PMU_MAX_SCOPE];
14003 unsigned int scope;
14004 struct pmu *pmu;
14006 cpumask_clear_cpu(cpu, perf_online_mask);
14008 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14009 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14010 struct cpumask *pmu_cpumask = perf_scope_cpumask(scope);
14012 target[scope] = -1;
14013 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14014 continue;
14016 if (!cpumask_test_and_clear_cpu(cpu, pmu_cpumask))
14017 continue;
14018 target[scope] = cpumask_any_but(cpumask, cpu);
14019 if (target[scope] < nr_cpu_ids)
14020 cpumask_set_cpu(target[scope], pmu_cpumask);
14023 /* migrate */
14024 list_for_each_entry(pmu, &pmus, entry) {
14025 if (pmu->scope == PERF_PMU_SCOPE_NONE ||
14026 WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
14027 continue;
14029 if (target[pmu->scope] >= 0 && target[pmu->scope] < nr_cpu_ids)
14030 perf_pmu_migrate_context(pmu, cpu, target[pmu->scope]);
14034 static void perf_event_exit_cpu_context(int cpu)
14036 struct perf_cpu_context *cpuctx;
14037 struct perf_event_context *ctx;
14039 // XXX simplify cpuctx->online
14040 mutex_lock(&pmus_lock);
14042 * Clear the cpumasks, and migrate to other CPUs if possible.
14043 * Must be invoked before the __perf_event_exit_context.
14045 perf_event_clear_cpumask(cpu);
14046 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14047 ctx = &cpuctx->ctx;
14049 mutex_lock(&ctx->mutex);
14050 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
14051 cpuctx->online = 0;
14052 mutex_unlock(&ctx->mutex);
14053 mutex_unlock(&pmus_lock);
14055 #else
14057 static void perf_event_exit_cpu_context(int cpu) { }
14059 #endif
14061 static void perf_event_setup_cpumask(unsigned int cpu)
14063 struct cpumask *pmu_cpumask;
14064 unsigned int scope;
14067 * Early boot stage, the cpumask hasn't been set yet.
14068 * The perf_online_<domain>_masks includes the first CPU of each domain.
14069 * Always unconditionally set the boot CPU for the perf_online_<domain>_masks.
14071 if (cpumask_empty(perf_online_mask)) {
14072 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14073 pmu_cpumask = perf_scope_cpumask(scope);
14074 if (WARN_ON_ONCE(!pmu_cpumask))
14075 continue;
14076 cpumask_set_cpu(cpu, pmu_cpumask);
14078 goto end;
14081 for (scope = PERF_PMU_SCOPE_NONE + 1; scope < PERF_PMU_MAX_SCOPE; scope++) {
14082 const struct cpumask *cpumask = perf_scope_cpu_topology_cpumask(scope, cpu);
14084 pmu_cpumask = perf_scope_cpumask(scope);
14086 if (WARN_ON_ONCE(!pmu_cpumask || !cpumask))
14087 continue;
14089 if (!cpumask_empty(cpumask) &&
14090 cpumask_any_and(pmu_cpumask, cpumask) >= nr_cpu_ids)
14091 cpumask_set_cpu(cpu, pmu_cpumask);
14093 end:
14094 cpumask_set_cpu(cpu, perf_online_mask);
14097 int perf_event_init_cpu(unsigned int cpu)
14099 struct perf_cpu_context *cpuctx;
14100 struct perf_event_context *ctx;
14102 perf_swevent_init_cpu(cpu);
14104 mutex_lock(&pmus_lock);
14105 perf_event_setup_cpumask(cpu);
14106 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
14107 ctx = &cpuctx->ctx;
14109 mutex_lock(&ctx->mutex);
14110 cpuctx->online = 1;
14111 mutex_unlock(&ctx->mutex);
14112 mutex_unlock(&pmus_lock);
14114 return 0;
14117 int perf_event_exit_cpu(unsigned int cpu)
14119 perf_event_exit_cpu_context(cpu);
14120 return 0;
14123 static int
14124 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
14126 int cpu;
14128 for_each_online_cpu(cpu)
14129 perf_event_exit_cpu(cpu);
14131 return NOTIFY_OK;
14135 * Run the perf reboot notifier at the very last possible moment so that
14136 * the generic watchdog code runs as long as possible.
14138 static struct notifier_block perf_reboot_notifier = {
14139 .notifier_call = perf_reboot,
14140 .priority = INT_MIN,
14143 void __init perf_event_init(void)
14145 int ret;
14147 idr_init(&pmu_idr);
14149 perf_event_init_all_cpus();
14150 init_srcu_struct(&pmus_srcu);
14151 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
14152 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
14153 perf_pmu_register(&perf_task_clock, "task_clock", -1);
14154 perf_tp_register();
14155 perf_event_init_cpu(smp_processor_id());
14156 register_reboot_notifier(&perf_reboot_notifier);
14158 ret = init_hw_breakpoint();
14159 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
14161 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
14164 * Build time assertion that we keep the data_head at the intended
14165 * location. IOW, validation we got the __reserved[] size right.
14167 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
14168 != 1024);
14171 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
14172 char *page)
14174 struct perf_pmu_events_attr *pmu_attr =
14175 container_of(attr, struct perf_pmu_events_attr, attr);
14177 if (pmu_attr->event_str)
14178 return sprintf(page, "%s\n", pmu_attr->event_str);
14180 return 0;
14182 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
14184 static int __init perf_event_sysfs_init(void)
14186 struct pmu *pmu;
14187 int ret;
14189 mutex_lock(&pmus_lock);
14191 ret = bus_register(&pmu_bus);
14192 if (ret)
14193 goto unlock;
14195 list_for_each_entry(pmu, &pmus, entry) {
14196 if (pmu->dev)
14197 continue;
14199 ret = pmu_dev_alloc(pmu);
14200 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
14202 pmu_bus_running = 1;
14203 ret = 0;
14205 unlock:
14206 mutex_unlock(&pmus_lock);
14208 return ret;
14210 device_initcall(perf_event_sysfs_init);
14212 #ifdef CONFIG_CGROUP_PERF
14213 static struct cgroup_subsys_state *
14214 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
14216 struct perf_cgroup *jc;
14218 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
14219 if (!jc)
14220 return ERR_PTR(-ENOMEM);
14222 jc->info = alloc_percpu(struct perf_cgroup_info);
14223 if (!jc->info) {
14224 kfree(jc);
14225 return ERR_PTR(-ENOMEM);
14228 return &jc->css;
14231 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
14233 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
14235 free_percpu(jc->info);
14236 kfree(jc);
14239 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
14241 perf_event_cgroup(css->cgroup);
14242 return 0;
14245 static int __perf_cgroup_move(void *info)
14247 struct task_struct *task = info;
14249 preempt_disable();
14250 perf_cgroup_switch(task);
14251 preempt_enable();
14253 return 0;
14256 static void perf_cgroup_attach(struct cgroup_taskset *tset)
14258 struct task_struct *task;
14259 struct cgroup_subsys_state *css;
14261 cgroup_taskset_for_each(task, css, tset)
14262 task_function_call(task, __perf_cgroup_move, task);
14265 struct cgroup_subsys perf_event_cgrp_subsys = {
14266 .css_alloc = perf_cgroup_css_alloc,
14267 .css_free = perf_cgroup_css_free,
14268 .css_online = perf_cgroup_css_online,
14269 .attach = perf_cgroup_attach,
14271 * Implicitly enable on dfl hierarchy so that perf events can
14272 * always be filtered by cgroup2 path as long as perf_event
14273 * controller is not mounted on a legacy hierarchy.
14275 .implicit_on_dfl = true,
14276 .threaded = true,
14278 #endif /* CONFIG_CGROUP_PERF */
14280 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);