Merge tag 'trace-printf-v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[drm/drm-misc.git] / kernel / time / timekeeping.c
blob0ca85ff4fbb4aeff74b310d188dc78426fc5004d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
32 #define TK_CLEAR_NTP (1 << 0)
33 #define TK_CLOCK_WAS_SET (1 << 1)
35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
37 enum timekeeping_adv_mode {
38 /* Update timekeeper when a tick has passed */
39 TK_ADV_TICK,
41 /* Update timekeeper on a direct frequency change */
42 TK_ADV_FREQ
46 * The most important data for readout fits into a single 64 byte
47 * cache line.
49 struct tk_data {
50 seqcount_raw_spinlock_t seq;
51 struct timekeeper timekeeper;
52 struct timekeeper shadow_timekeeper;
53 raw_spinlock_t lock;
54 } ____cacheline_aligned;
56 static struct tk_data tk_core;
58 /* flag for if timekeeping is suspended */
59 int __read_mostly timekeeping_suspended;
61 /**
62 * struct tk_fast - NMI safe timekeeper
63 * @seq: Sequence counter for protecting updates. The lowest bit
64 * is the index for the tk_read_base array
65 * @base: tk_read_base array. Access is indexed by the lowest bit of
66 * @seq.
68 * See @update_fast_timekeeper() below.
70 struct tk_fast {
71 seqcount_latch_t seq;
72 struct tk_read_base base[2];
75 /* Suspend-time cycles value for halted fast timekeeper. */
76 static u64 cycles_at_suspend;
78 static u64 dummy_clock_read(struct clocksource *cs)
80 if (timekeeping_suspended)
81 return cycles_at_suspend;
82 return local_clock();
85 static struct clocksource dummy_clock = {
86 .read = dummy_clock_read,
90 * Boot time initialization which allows local_clock() to be utilized
91 * during early boot when clocksources are not available. local_clock()
92 * returns nanoseconds already so no conversion is required, hence mult=1
93 * and shift=0. When the first proper clocksource is installed then
94 * the fast time keepers are updated with the correct values.
96 #define FAST_TK_INIT \
97 { \
98 .clock = &dummy_clock, \
99 .mask = CLOCKSOURCE_MASK(64), \
100 .mult = 1, \
101 .shift = 0, \
104 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
105 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
106 .base[0] = FAST_TK_INIT,
107 .base[1] = FAST_TK_INIT,
110 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
111 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
112 .base[0] = FAST_TK_INIT,
113 .base[1] = FAST_TK_INIT,
116 unsigned long timekeeper_lock_irqsave(void)
118 unsigned long flags;
120 raw_spin_lock_irqsave(&tk_core.lock, flags);
121 return flags;
124 void timekeeper_unlock_irqrestore(unsigned long flags)
126 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
130 * Multigrain timestamps require tracking the latest fine-grained timestamp
131 * that has been issued, and never returning a coarse-grained timestamp that is
132 * earlier than that value.
134 * mg_floor represents the latest fine-grained time that has been handed out as
135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
136 * converted to a realtime clock value on an as-needed basis.
138 * Maintaining mg_floor ensures the multigrain interfaces never issue a
139 * timestamp earlier than one that has been previously issued.
141 * The exception to this rule is when there is a backward realtime clock jump. If
142 * such an event occurs, a timestamp can appear to be earlier than a previous one.
144 static __cacheline_aligned_in_smp atomic64_t mg_floor;
146 static inline void tk_normalize_xtime(struct timekeeper *tk)
148 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
149 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
150 tk->xtime_sec++;
152 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
153 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
154 tk->raw_sec++;
158 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
160 struct timespec64 ts;
162 ts.tv_sec = tk->xtime_sec;
163 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
164 return ts;
167 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
169 tk->xtime_sec = ts->tv_sec;
170 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
173 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
175 tk->xtime_sec += ts->tv_sec;
176 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
177 tk_normalize_xtime(tk);
180 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
182 struct timespec64 tmp;
185 * Verify consistency of: offset_real = -wall_to_monotonic
186 * before modifying anything
188 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
189 -tk->wall_to_monotonic.tv_nsec);
190 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
191 tk->wall_to_monotonic = wtm;
192 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
193 /* Paired with READ_ONCE() in ktime_mono_to_any() */
194 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
195 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
198 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
200 /* Paired with READ_ONCE() in ktime_mono_to_any() */
201 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
203 * Timespec representation for VDSO update to avoid 64bit division
204 * on every update.
206 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
210 * tk_clock_read - atomic clocksource read() helper
212 * This helper is necessary to use in the read paths because, while the
213 * seqcount ensures we don't return a bad value while structures are updated,
214 * it doesn't protect from potential crashes. There is the possibility that
215 * the tkr's clocksource may change between the read reference, and the
216 * clock reference passed to the read function. This can cause crashes if
217 * the wrong clocksource is passed to the wrong read function.
218 * This isn't necessary to use when holding the tk_core.lock or doing
219 * a read of the fast-timekeeper tkrs (which is protected by its own locking
220 * and update logic).
222 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
224 struct clocksource *clock = READ_ONCE(tkr->clock);
226 return clock->read(clock);
230 * tk_setup_internals - Set up internals to use clocksource clock.
232 * @tk: The target timekeeper to setup.
233 * @clock: Pointer to clocksource.
235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
236 * pair and interval request.
238 * Unless you're the timekeeping code, you should not be using this!
240 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
242 u64 interval;
243 u64 tmp, ntpinterval;
244 struct clocksource *old_clock;
246 ++tk->cs_was_changed_seq;
247 old_clock = tk->tkr_mono.clock;
248 tk->tkr_mono.clock = clock;
249 tk->tkr_mono.mask = clock->mask;
250 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
252 tk->tkr_raw.clock = clock;
253 tk->tkr_raw.mask = clock->mask;
254 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
256 /* Do the ns -> cycle conversion first, using original mult */
257 tmp = NTP_INTERVAL_LENGTH;
258 tmp <<= clock->shift;
259 ntpinterval = tmp;
260 tmp += clock->mult/2;
261 do_div(tmp, clock->mult);
262 if (tmp == 0)
263 tmp = 1;
265 interval = (u64) tmp;
266 tk->cycle_interval = interval;
268 /* Go back from cycles -> shifted ns */
269 tk->xtime_interval = interval * clock->mult;
270 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
271 tk->raw_interval = interval * clock->mult;
273 /* if changing clocks, convert xtime_nsec shift units */
274 if (old_clock) {
275 int shift_change = clock->shift - old_clock->shift;
276 if (shift_change < 0) {
277 tk->tkr_mono.xtime_nsec >>= -shift_change;
278 tk->tkr_raw.xtime_nsec >>= -shift_change;
279 } else {
280 tk->tkr_mono.xtime_nsec <<= shift_change;
281 tk->tkr_raw.xtime_nsec <<= shift_change;
285 tk->tkr_mono.shift = clock->shift;
286 tk->tkr_raw.shift = clock->shift;
288 tk->ntp_error = 0;
289 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
290 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
293 * The timekeeper keeps its own mult values for the currently
294 * active clocksource. These value will be adjusted via NTP
295 * to counteract clock drifting.
297 tk->tkr_mono.mult = clock->mult;
298 tk->tkr_raw.mult = clock->mult;
299 tk->ntp_err_mult = 0;
300 tk->skip_second_overflow = 0;
303 /* Timekeeper helper functions. */
304 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta)
306 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift);
309 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
311 /* Calculate the delta since the last update_wall_time() */
312 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask;
315 * This detects both negative motion and the case where the delta
316 * overflows the multiplication with tkr->mult.
318 if (unlikely(delta > tkr->clock->max_cycles)) {
320 * Handle clocksource inconsistency between CPUs to prevent
321 * time from going backwards by checking for the MSB of the
322 * mask being set in the delta.
324 if (delta & ~(mask >> 1))
325 return tkr->xtime_nsec >> tkr->shift;
327 return delta_to_ns_safe(tkr, delta);
330 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
333 static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
335 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
340 * @tkr: Timekeeping readout base from which we take the update
341 * @tkf: Pointer to NMI safe timekeeper
343 * We want to use this from any context including NMI and tracing /
344 * instrumenting the timekeeping code itself.
346 * Employ the latch technique; see @write_seqcount_latch.
348 * So if a NMI hits the update of base[0] then it will use base[1]
349 * which is still consistent. In the worst case this can result is a
350 * slightly wrong timestamp (a few nanoseconds). See
351 * @ktime_get_mono_fast_ns.
353 static void update_fast_timekeeper(const struct tk_read_base *tkr,
354 struct tk_fast *tkf)
356 struct tk_read_base *base = tkf->base;
358 /* Force readers off to base[1] */
359 write_seqcount_latch_begin(&tkf->seq);
361 /* Update base[0] */
362 memcpy(base, tkr, sizeof(*base));
364 /* Force readers back to base[0] */
365 write_seqcount_latch(&tkf->seq);
367 /* Update base[1] */
368 memcpy(base + 1, base, sizeof(*base));
370 write_seqcount_latch_end(&tkf->seq);
373 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
375 struct tk_read_base *tkr;
376 unsigned int seq;
377 u64 now;
379 do {
380 seq = read_seqcount_latch(&tkf->seq);
381 tkr = tkf->base + (seq & 0x01);
382 now = ktime_to_ns(tkr->base);
383 now += timekeeping_get_ns(tkr);
384 } while (read_seqcount_latch_retry(&tkf->seq, seq));
386 return now;
390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
392 * This timestamp is not guaranteed to be monotonic across an update.
393 * The timestamp is calculated by:
395 * now = base_mono + clock_delta * slope
397 * So if the update lowers the slope, readers who are forced to the
398 * not yet updated second array are still using the old steeper slope.
400 * tmono
402 * | o n
403 * | o n
404 * | u
405 * | o
406 * |o
407 * |12345678---> reader order
409 * o = old slope
410 * u = update
411 * n = new slope
413 * So reader 6 will observe time going backwards versus reader 5.
415 * While other CPUs are likely to be able to observe that, the only way
416 * for a CPU local observation is when an NMI hits in the middle of
417 * the update. Timestamps taken from that NMI context might be ahead
418 * of the following timestamps. Callers need to be aware of that and
419 * deal with it.
421 u64 notrace ktime_get_mono_fast_ns(void)
423 return __ktime_get_fast_ns(&tk_fast_mono);
425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
431 * conversion factor is not affected by NTP/PTP correction.
433 u64 notrace ktime_get_raw_fast_ns(void)
435 return __ktime_get_fast_ns(&tk_fast_raw);
437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
442 * To keep it NMI safe since we're accessing from tracing, we're not using a
443 * separate timekeeper with updates to monotonic clock and boot offset
444 * protected with seqcounts. This has the following minor side effects:
446 * (1) Its possible that a timestamp be taken after the boot offset is updated
447 * but before the timekeeper is updated. If this happens, the new boot offset
448 * is added to the old timekeeping making the clock appear to update slightly
449 * earlier:
450 * CPU 0 CPU 1
451 * timekeeping_inject_sleeptime64()
452 * __timekeeping_inject_sleeptime(tk, delta);
453 * timestamp();
454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
457 * partially updated. Since the tk->offs_boot update is a rare event, this
458 * should be a rare occurrence which postprocessing should be able to handle.
460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
461 * apply as well.
463 u64 notrace ktime_get_boot_fast_ns(void)
465 struct timekeeper *tk = &tk_core.timekeeper;
467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
475 * mono time and the TAI offset are not read atomically which may yield wrong
476 * readouts. However, an update of the TAI offset is an rare event e.g., caused
477 * by settime or adjtimex with an offset. The user of this function has to deal
478 * with the possibility of wrong timestamps in post processing.
480 u64 notrace ktime_get_tai_fast_ns(void)
482 struct timekeeper *tk = &tk_core.timekeeper;
484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
488 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
490 struct tk_read_base *tkr;
491 u64 basem, baser, delta;
492 unsigned int seq;
494 do {
495 seq = raw_read_seqcount_latch(&tkf->seq);
496 tkr = tkf->base + (seq & 0x01);
497 basem = ktime_to_ns(tkr->base);
498 baser = ktime_to_ns(tkr->base_real);
499 delta = timekeeping_get_ns(tkr);
500 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
502 if (mono)
503 *mono = basem + delta;
504 return baser + delta;
508 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
510 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
512 u64 ktime_get_real_fast_ns(void)
514 return __ktime_get_real_fast(&tk_fast_mono, NULL);
516 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
519 * ktime_get_fast_timestamps: - NMI safe timestamps
520 * @snapshot: Pointer to timestamp storage
522 * Stores clock monotonic, boottime and realtime timestamps.
524 * Boot time is a racy access on 32bit systems if the sleep time injection
525 * happens late during resume and not in timekeeping_resume(). That could
526 * be avoided by expanding struct tk_read_base with boot offset for 32bit
527 * and adding more overhead to the update. As this is a hard to observe
528 * once per resume event which can be filtered with reasonable effort using
529 * the accurate mono/real timestamps, it's probably not worth the trouble.
531 * Aside of that it might be possible on 32 and 64 bit to observe the
532 * following when the sleep time injection happens late:
534 * CPU 0 CPU 1
535 * timekeeping_resume()
536 * ktime_get_fast_timestamps()
537 * mono, real = __ktime_get_real_fast()
538 * inject_sleep_time()
539 * update boot offset
540 * boot = mono + bootoffset;
542 * That means that boot time already has the sleep time adjustment, but
543 * real time does not. On the next readout both are in sync again.
545 * Preventing this for 64bit is not really feasible without destroying the
546 * careful cache layout of the timekeeper because the sequence count and
547 * struct tk_read_base would then need two cache lines instead of one.
549 * Access to the time keeper clock source is disabled across the innermost
550 * steps of suspend/resume. The accessors still work, but the timestamps
551 * are frozen until time keeping is resumed which happens very early.
553 * For regular suspend/resume there is no observable difference vs. sched
554 * clock, but it might affect some of the nasty low level debug printks.
556 * OTOH, access to sched clock is not guaranteed across suspend/resume on
557 * all systems either so it depends on the hardware in use.
559 * If that turns out to be a real problem then this could be mitigated by
560 * using sched clock in a similar way as during early boot. But it's not as
561 * trivial as on early boot because it needs some careful protection
562 * against the clock monotonic timestamp jumping backwards on resume.
564 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
566 struct timekeeper *tk = &tk_core.timekeeper;
568 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
569 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
573 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
574 * @tk: Timekeeper to snapshot.
576 * It generally is unsafe to access the clocksource after timekeeping has been
577 * suspended, so take a snapshot of the readout base of @tk and use it as the
578 * fast timekeeper's readout base while suspended. It will return the same
579 * number of cycles every time until timekeeping is resumed at which time the
580 * proper readout base for the fast timekeeper will be restored automatically.
582 static void halt_fast_timekeeper(const struct timekeeper *tk)
584 static struct tk_read_base tkr_dummy;
585 const struct tk_read_base *tkr = &tk->tkr_mono;
587 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
588 cycles_at_suspend = tk_clock_read(tkr);
589 tkr_dummy.clock = &dummy_clock;
590 tkr_dummy.base_real = tkr->base + tk->offs_real;
591 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
593 tkr = &tk->tkr_raw;
594 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
595 tkr_dummy.clock = &dummy_clock;
596 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
599 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
601 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
603 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
607 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
608 * @nb: Pointer to the notifier block to register
610 int pvclock_gtod_register_notifier(struct notifier_block *nb)
612 struct timekeeper *tk = &tk_core.timekeeper;
613 int ret;
615 guard(raw_spinlock_irqsave)(&tk_core.lock);
616 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
617 update_pvclock_gtod(tk, true);
619 return ret;
621 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
624 * pvclock_gtod_unregister_notifier - unregister a pvclock
625 * timedata update listener
626 * @nb: Pointer to the notifier block to unregister
628 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
630 guard(raw_spinlock_irqsave)(&tk_core.lock);
631 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
633 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
636 * tk_update_leap_state - helper to update the next_leap_ktime
638 static inline void tk_update_leap_state(struct timekeeper *tk)
640 tk->next_leap_ktime = ntp_get_next_leap();
641 if (tk->next_leap_ktime != KTIME_MAX)
642 /* Convert to monotonic time */
643 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
647 * Leap state update for both shadow and the real timekeeper
648 * Separate to spare a full memcpy() of the timekeeper.
650 static void tk_update_leap_state_all(struct tk_data *tkd)
652 write_seqcount_begin(&tkd->seq);
653 tk_update_leap_state(&tkd->shadow_timekeeper);
654 tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
655 write_seqcount_end(&tkd->seq);
659 * Update the ktime_t based scalar nsec members of the timekeeper
661 static inline void tk_update_ktime_data(struct timekeeper *tk)
663 u64 seconds;
664 u32 nsec;
667 * The xtime based monotonic readout is:
668 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
669 * The ktime based monotonic readout is:
670 * nsec = base_mono + now();
671 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
673 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
674 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
675 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
678 * The sum of the nanoseconds portions of xtime and
679 * wall_to_monotonic can be greater/equal one second. Take
680 * this into account before updating tk->ktime_sec.
682 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
683 if (nsec >= NSEC_PER_SEC)
684 seconds++;
685 tk->ktime_sec = seconds;
687 /* Update the monotonic raw base */
688 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
692 * Restore the shadow timekeeper from the real timekeeper.
694 static void timekeeping_restore_shadow(struct tk_data *tkd)
696 lockdep_assert_held(&tkd->lock);
697 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
700 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
702 struct timekeeper *tk = &tk_core.shadow_timekeeper;
704 lockdep_assert_held(&tkd->lock);
707 * Block out readers before running the updates below because that
708 * updates VDSO and other time related infrastructure. Not blocking
709 * the readers might let a reader see time going backwards when
710 * reading from the VDSO after the VDSO update and then reading in
711 * the kernel from the timekeeper before that got updated.
713 write_seqcount_begin(&tkd->seq);
715 if (action & TK_CLEAR_NTP) {
716 tk->ntp_error = 0;
717 ntp_clear();
720 tk_update_leap_state(tk);
721 tk_update_ktime_data(tk);
723 update_vsyscall(tk);
724 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
726 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
727 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
728 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
730 if (action & TK_CLOCK_WAS_SET)
731 tk->clock_was_set_seq++;
734 * Update the real timekeeper.
736 * We could avoid this memcpy() by switching pointers, but that has
737 * the downside that the reader side does not longer benefit from
738 * the cacheline optimized data layout of the timekeeper and requires
739 * another indirection.
741 memcpy(&tkd->timekeeper, tk, sizeof(*tk));
742 write_seqcount_end(&tkd->seq);
746 * timekeeping_forward_now - update clock to the current time
747 * @tk: Pointer to the timekeeper to update
749 * Forward the current clock to update its state since the last call to
750 * update_wall_time(). This is useful before significant clock changes,
751 * as it avoids having to deal with this time offset explicitly.
753 static void timekeeping_forward_now(struct timekeeper *tk)
755 u64 cycle_now, delta;
757 cycle_now = tk_clock_read(&tk->tkr_mono);
758 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
759 tk->tkr_mono.cycle_last = cycle_now;
760 tk->tkr_raw.cycle_last = cycle_now;
762 while (delta > 0) {
763 u64 max = tk->tkr_mono.clock->max_cycles;
764 u64 incr = delta < max ? delta : max;
766 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult;
767 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult;
768 tk_normalize_xtime(tk);
769 delta -= incr;
774 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
775 * @ts: pointer to the timespec to be set
777 * Returns the time of day in a timespec64 (WARN if suspended).
779 void ktime_get_real_ts64(struct timespec64 *ts)
781 struct timekeeper *tk = &tk_core.timekeeper;
782 unsigned int seq;
783 u64 nsecs;
785 WARN_ON(timekeeping_suspended);
787 do {
788 seq = read_seqcount_begin(&tk_core.seq);
790 ts->tv_sec = tk->xtime_sec;
791 nsecs = timekeeping_get_ns(&tk->tkr_mono);
793 } while (read_seqcount_retry(&tk_core.seq, seq));
795 ts->tv_nsec = 0;
796 timespec64_add_ns(ts, nsecs);
798 EXPORT_SYMBOL(ktime_get_real_ts64);
800 ktime_t ktime_get(void)
802 struct timekeeper *tk = &tk_core.timekeeper;
803 unsigned int seq;
804 ktime_t base;
805 u64 nsecs;
807 WARN_ON(timekeeping_suspended);
809 do {
810 seq = read_seqcount_begin(&tk_core.seq);
811 base = tk->tkr_mono.base;
812 nsecs = timekeeping_get_ns(&tk->tkr_mono);
814 } while (read_seqcount_retry(&tk_core.seq, seq));
816 return ktime_add_ns(base, nsecs);
818 EXPORT_SYMBOL_GPL(ktime_get);
820 u32 ktime_get_resolution_ns(void)
822 struct timekeeper *tk = &tk_core.timekeeper;
823 unsigned int seq;
824 u32 nsecs;
826 WARN_ON(timekeeping_suspended);
828 do {
829 seq = read_seqcount_begin(&tk_core.seq);
830 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
831 } while (read_seqcount_retry(&tk_core.seq, seq));
833 return nsecs;
835 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
837 static ktime_t *offsets[TK_OFFS_MAX] = {
838 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
839 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
840 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
843 ktime_t ktime_get_with_offset(enum tk_offsets offs)
845 struct timekeeper *tk = &tk_core.timekeeper;
846 unsigned int seq;
847 ktime_t base, *offset = offsets[offs];
848 u64 nsecs;
850 WARN_ON(timekeeping_suspended);
852 do {
853 seq = read_seqcount_begin(&tk_core.seq);
854 base = ktime_add(tk->tkr_mono.base, *offset);
855 nsecs = timekeeping_get_ns(&tk->tkr_mono);
857 } while (read_seqcount_retry(&tk_core.seq, seq));
859 return ktime_add_ns(base, nsecs);
862 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
864 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
866 struct timekeeper *tk = &tk_core.timekeeper;
867 unsigned int seq;
868 ktime_t base, *offset = offsets[offs];
869 u64 nsecs;
871 WARN_ON(timekeeping_suspended);
873 do {
874 seq = read_seqcount_begin(&tk_core.seq);
875 base = ktime_add(tk->tkr_mono.base, *offset);
876 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
878 } while (read_seqcount_retry(&tk_core.seq, seq));
880 return ktime_add_ns(base, nsecs);
882 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
885 * ktime_mono_to_any() - convert monotonic time to any other time
886 * @tmono: time to convert.
887 * @offs: which offset to use
889 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
891 ktime_t *offset = offsets[offs];
892 unsigned int seq;
893 ktime_t tconv;
895 if (IS_ENABLED(CONFIG_64BIT)) {
897 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
898 * tk_update_sleep_time().
900 return ktime_add(tmono, READ_ONCE(*offset));
903 do {
904 seq = read_seqcount_begin(&tk_core.seq);
905 tconv = ktime_add(tmono, *offset);
906 } while (read_seqcount_retry(&tk_core.seq, seq));
908 return tconv;
910 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
913 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
915 ktime_t ktime_get_raw(void)
917 struct timekeeper *tk = &tk_core.timekeeper;
918 unsigned int seq;
919 ktime_t base;
920 u64 nsecs;
922 do {
923 seq = read_seqcount_begin(&tk_core.seq);
924 base = tk->tkr_raw.base;
925 nsecs = timekeeping_get_ns(&tk->tkr_raw);
927 } while (read_seqcount_retry(&tk_core.seq, seq));
929 return ktime_add_ns(base, nsecs);
931 EXPORT_SYMBOL_GPL(ktime_get_raw);
934 * ktime_get_ts64 - get the monotonic clock in timespec64 format
935 * @ts: pointer to timespec variable
937 * The function calculates the monotonic clock from the realtime
938 * clock and the wall_to_monotonic offset and stores the result
939 * in normalized timespec64 format in the variable pointed to by @ts.
941 void ktime_get_ts64(struct timespec64 *ts)
943 struct timekeeper *tk = &tk_core.timekeeper;
944 struct timespec64 tomono;
945 unsigned int seq;
946 u64 nsec;
948 WARN_ON(timekeeping_suspended);
950 do {
951 seq = read_seqcount_begin(&tk_core.seq);
952 ts->tv_sec = tk->xtime_sec;
953 nsec = timekeeping_get_ns(&tk->tkr_mono);
954 tomono = tk->wall_to_monotonic;
956 } while (read_seqcount_retry(&tk_core.seq, seq));
958 ts->tv_sec += tomono.tv_sec;
959 ts->tv_nsec = 0;
960 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
962 EXPORT_SYMBOL_GPL(ktime_get_ts64);
965 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
967 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
968 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
969 * works on both 32 and 64 bit systems. On 32 bit systems the readout
970 * covers ~136 years of uptime which should be enough to prevent
971 * premature wrap arounds.
973 time64_t ktime_get_seconds(void)
975 struct timekeeper *tk = &tk_core.timekeeper;
977 WARN_ON(timekeeping_suspended);
978 return tk->ktime_sec;
980 EXPORT_SYMBOL_GPL(ktime_get_seconds);
983 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
985 * Returns the wall clock seconds since 1970.
987 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
988 * 32bit systems the access must be protected with the sequence
989 * counter to provide "atomic" access to the 64bit tk->xtime_sec
990 * value.
992 time64_t ktime_get_real_seconds(void)
994 struct timekeeper *tk = &tk_core.timekeeper;
995 time64_t seconds;
996 unsigned int seq;
998 if (IS_ENABLED(CONFIG_64BIT))
999 return tk->xtime_sec;
1001 do {
1002 seq = read_seqcount_begin(&tk_core.seq);
1003 seconds = tk->xtime_sec;
1005 } while (read_seqcount_retry(&tk_core.seq, seq));
1007 return seconds;
1009 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1012 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1013 * but without the sequence counter protect. This internal function
1014 * is called just when timekeeping lock is already held.
1016 noinstr time64_t __ktime_get_real_seconds(void)
1018 struct timekeeper *tk = &tk_core.timekeeper;
1020 return tk->xtime_sec;
1024 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1025 * @systime_snapshot: pointer to struct receiving the system time snapshot
1027 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1029 struct timekeeper *tk = &tk_core.timekeeper;
1030 unsigned int seq;
1031 ktime_t base_raw;
1032 ktime_t base_real;
1033 ktime_t base_boot;
1034 u64 nsec_raw;
1035 u64 nsec_real;
1036 u64 now;
1038 WARN_ON_ONCE(timekeeping_suspended);
1040 do {
1041 seq = read_seqcount_begin(&tk_core.seq);
1042 now = tk_clock_read(&tk->tkr_mono);
1043 systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1044 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1045 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1046 base_real = ktime_add(tk->tkr_mono.base,
1047 tk_core.timekeeper.offs_real);
1048 base_boot = ktime_add(tk->tkr_mono.base,
1049 tk_core.timekeeper.offs_boot);
1050 base_raw = tk->tkr_raw.base;
1051 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1052 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1053 } while (read_seqcount_retry(&tk_core.seq, seq));
1055 systime_snapshot->cycles = now;
1056 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1057 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
1058 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1060 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1062 /* Scale base by mult/div checking for overflow */
1063 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1065 u64 tmp, rem;
1067 tmp = div64_u64_rem(*base, div, &rem);
1069 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1070 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1071 return -EOVERFLOW;
1072 tmp *= mult;
1074 rem = div64_u64(rem * mult, div);
1075 *base = tmp + rem;
1076 return 0;
1080 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1081 * @history: Snapshot representing start of history
1082 * @partial_history_cycles: Cycle offset into history (fractional part)
1083 * @total_history_cycles: Total history length in cycles
1084 * @discontinuity: True indicates clock was set on history period
1085 * @ts: Cross timestamp that should be adjusted using
1086 * partial/total ratio
1088 * Helper function used by get_device_system_crosststamp() to correct the
1089 * crosstimestamp corresponding to the start of the current interval to the
1090 * system counter value (timestamp point) provided by the driver. The
1091 * total_history_* quantities are the total history starting at the provided
1092 * reference point and ending at the start of the current interval. The cycle
1093 * count between the driver timestamp point and the start of the current
1094 * interval is partial_history_cycles.
1096 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1097 u64 partial_history_cycles,
1098 u64 total_history_cycles,
1099 bool discontinuity,
1100 struct system_device_crosststamp *ts)
1102 struct timekeeper *tk = &tk_core.timekeeper;
1103 u64 corr_raw, corr_real;
1104 bool interp_forward;
1105 int ret;
1107 if (total_history_cycles == 0 || partial_history_cycles == 0)
1108 return 0;
1110 /* Interpolate shortest distance from beginning or end of history */
1111 interp_forward = partial_history_cycles > total_history_cycles / 2;
1112 partial_history_cycles = interp_forward ?
1113 total_history_cycles - partial_history_cycles :
1114 partial_history_cycles;
1117 * Scale the monotonic raw time delta by:
1118 * partial_history_cycles / total_history_cycles
1120 corr_raw = (u64)ktime_to_ns(
1121 ktime_sub(ts->sys_monoraw, history->raw));
1122 ret = scale64_check_overflow(partial_history_cycles,
1123 total_history_cycles, &corr_raw);
1124 if (ret)
1125 return ret;
1128 * If there is a discontinuity in the history, scale monotonic raw
1129 * correction by:
1130 * mult(real)/mult(raw) yielding the realtime correction
1131 * Otherwise, calculate the realtime correction similar to monotonic
1132 * raw calculation
1134 if (discontinuity) {
1135 corr_real = mul_u64_u32_div
1136 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1137 } else {
1138 corr_real = (u64)ktime_to_ns(
1139 ktime_sub(ts->sys_realtime, history->real));
1140 ret = scale64_check_overflow(partial_history_cycles,
1141 total_history_cycles, &corr_real);
1142 if (ret)
1143 return ret;
1146 /* Fixup monotonic raw and real time time values */
1147 if (interp_forward) {
1148 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1149 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1150 } else {
1151 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1152 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1155 return 0;
1159 * timestamp_in_interval - true if ts is chronologically in [start, end]
1161 * True if ts occurs chronologically at or after start, and before or at end.
1163 static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1165 if (ts >= start && ts <= end)
1166 return true;
1167 if (start > end && (ts >= start || ts <= end))
1168 return true;
1169 return false;
1172 static bool convert_clock(u64 *val, u32 numerator, u32 denominator)
1174 u64 rem, res;
1176 if (!numerator || !denominator)
1177 return false;
1179 res = div64_u64_rem(*val, denominator, &rem) * numerator;
1180 *val = res + div_u64(rem * numerator, denominator);
1181 return true;
1184 static bool convert_base_to_cs(struct system_counterval_t *scv)
1186 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1187 struct clocksource_base *base;
1188 u32 num, den;
1190 /* The timestamp was taken from the time keeper clock source */
1191 if (cs->id == scv->cs_id)
1192 return true;
1195 * Check whether cs_id matches the base clock. Prevent the compiler from
1196 * re-evaluating @base as the clocksource might change concurrently.
1198 base = READ_ONCE(cs->base);
1199 if (!base || base->id != scv->cs_id)
1200 return false;
1202 num = scv->use_nsecs ? cs->freq_khz : base->numerator;
1203 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator;
1205 if (!convert_clock(&scv->cycles, num, den))
1206 return false;
1208 scv->cycles += base->offset;
1209 return true;
1212 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id)
1214 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock;
1215 struct clocksource_base *base;
1218 * Check whether base_id matches the base clock. Prevent the compiler from
1219 * re-evaluating @base as the clocksource might change concurrently.
1221 base = READ_ONCE(cs->base);
1222 if (!base || base->id != base_id)
1223 return false;
1225 *cycles -= base->offset;
1226 if (!convert_clock(cycles, base->denominator, base->numerator))
1227 return false;
1228 return true;
1231 static bool convert_ns_to_cs(u64 *delta)
1233 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
1235 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta))
1236 return false;
1238 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult);
1239 return true;
1243 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1244 * @treal: CLOCK_REALTIME timestamp to convert
1245 * @base_id: base clocksource id
1246 * @cycles: pointer to store the converted base clock timestamp
1248 * Converts a supplied, future realtime clock value to the corresponding base clock value.
1250 * Return: true if the conversion is successful, false otherwise.
1252 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles)
1254 struct timekeeper *tk = &tk_core.timekeeper;
1255 unsigned int seq;
1256 u64 delta;
1258 do {
1259 seq = read_seqcount_begin(&tk_core.seq);
1260 if ((u64)treal < tk->tkr_mono.base_real)
1261 return false;
1262 delta = (u64)treal - tk->tkr_mono.base_real;
1263 if (!convert_ns_to_cs(&delta))
1264 return false;
1265 *cycles = tk->tkr_mono.cycle_last + delta;
1266 if (!convert_cs_to_base(cycles, base_id))
1267 return false;
1268 } while (read_seqcount_retry(&tk_core.seq, seq));
1270 return true;
1272 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock);
1275 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1276 * @get_time_fn: Callback to get simultaneous device time and
1277 * system counter from the device driver
1278 * @ctx: Context passed to get_time_fn()
1279 * @history_begin: Historical reference point used to interpolate system
1280 * time when counter provided by the driver is before the current interval
1281 * @xtstamp: Receives simultaneously captured system and device time
1283 * Reads a timestamp from a device and correlates it to system time
1285 int get_device_system_crosststamp(int (*get_time_fn)
1286 (ktime_t *device_time,
1287 struct system_counterval_t *sys_counterval,
1288 void *ctx),
1289 void *ctx,
1290 struct system_time_snapshot *history_begin,
1291 struct system_device_crosststamp *xtstamp)
1293 struct system_counterval_t system_counterval;
1294 struct timekeeper *tk = &tk_core.timekeeper;
1295 u64 cycles, now, interval_start;
1296 unsigned int clock_was_set_seq = 0;
1297 ktime_t base_real, base_raw;
1298 u64 nsec_real, nsec_raw;
1299 u8 cs_was_changed_seq;
1300 unsigned int seq;
1301 bool do_interp;
1302 int ret;
1304 do {
1305 seq = read_seqcount_begin(&tk_core.seq);
1307 * Try to synchronously capture device time and a system
1308 * counter value calling back into the device driver
1310 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1311 if (ret)
1312 return ret;
1315 * Verify that the clocksource ID associated with the captured
1316 * system counter value is the same as for the currently
1317 * installed timekeeper clocksource
1319 if (system_counterval.cs_id == CSID_GENERIC ||
1320 !convert_base_to_cs(&system_counterval))
1321 return -ENODEV;
1322 cycles = system_counterval.cycles;
1325 * Check whether the system counter value provided by the
1326 * device driver is on the current timekeeping interval.
1328 now = tk_clock_read(&tk->tkr_mono);
1329 interval_start = tk->tkr_mono.cycle_last;
1330 if (!timestamp_in_interval(interval_start, now, cycles)) {
1331 clock_was_set_seq = tk->clock_was_set_seq;
1332 cs_was_changed_seq = tk->cs_was_changed_seq;
1333 cycles = interval_start;
1334 do_interp = true;
1335 } else {
1336 do_interp = false;
1339 base_real = ktime_add(tk->tkr_mono.base,
1340 tk_core.timekeeper.offs_real);
1341 base_raw = tk->tkr_raw.base;
1343 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1344 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1345 } while (read_seqcount_retry(&tk_core.seq, seq));
1347 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1348 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1351 * Interpolate if necessary, adjusting back from the start of the
1352 * current interval
1354 if (do_interp) {
1355 u64 partial_history_cycles, total_history_cycles;
1356 bool discontinuity;
1359 * Check that the counter value is not before the provided
1360 * history reference and that the history doesn't cross a
1361 * clocksource change
1363 if (!history_begin ||
1364 !timestamp_in_interval(history_begin->cycles,
1365 cycles, system_counterval.cycles) ||
1366 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1367 return -EINVAL;
1368 partial_history_cycles = cycles - system_counterval.cycles;
1369 total_history_cycles = cycles - history_begin->cycles;
1370 discontinuity =
1371 history_begin->clock_was_set_seq != clock_was_set_seq;
1373 ret = adjust_historical_crosststamp(history_begin,
1374 partial_history_cycles,
1375 total_history_cycles,
1376 discontinuity, xtstamp);
1377 if (ret)
1378 return ret;
1381 return 0;
1383 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1386 * timekeeping_clocksource_has_base - Check whether the current clocksource
1387 * is based on given a base clock
1388 * @id: base clocksource ID
1390 * Note: The return value is a snapshot which can become invalid right
1391 * after the function returns.
1393 * Return: true if the timekeeper clocksource has a base clock with @id,
1394 * false otherwise
1396 bool timekeeping_clocksource_has_base(enum clocksource_ids id)
1399 * This is a snapshot, so no point in using the sequence
1400 * count. Just prevent the compiler from re-evaluating @base as the
1401 * clocksource might change concurrently.
1403 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base);
1405 return base ? base->id == id : false;
1407 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
1410 * do_settimeofday64 - Sets the time of day.
1411 * @ts: pointer to the timespec64 variable containing the new time
1413 * Sets the time of day to the new time and update NTP and notify hrtimers
1415 int do_settimeofday64(const struct timespec64 *ts)
1417 struct timespec64 ts_delta, xt;
1419 if (!timespec64_valid_settod(ts))
1420 return -EINVAL;
1422 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1423 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1425 timekeeping_forward_now(tks);
1427 xt = tk_xtime(tks);
1428 ts_delta = timespec64_sub(*ts, xt);
1430 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
1431 timekeeping_restore_shadow(&tk_core);
1432 return -EINVAL;
1435 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
1436 tk_set_xtime(tks, ts);
1437 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1440 /* Signal hrtimers about time change */
1441 clock_was_set(CLOCK_SET_WALL);
1443 audit_tk_injoffset(ts_delta);
1444 add_device_randomness(ts, sizeof(*ts));
1445 return 0;
1447 EXPORT_SYMBOL(do_settimeofday64);
1450 * timekeeping_inject_offset - Adds or subtracts from the current time.
1451 * @ts: Pointer to the timespec variable containing the offset
1453 * Adds or subtracts an offset value from the current time.
1455 static int timekeeping_inject_offset(const struct timespec64 *ts)
1457 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1458 return -EINVAL;
1460 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1461 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1462 struct timespec64 tmp;
1464 timekeeping_forward_now(tks);
1466 /* Make sure the proposed value is valid */
1467 tmp = timespec64_add(tk_xtime(tks), *ts);
1468 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
1469 !timespec64_valid_settod(&tmp)) {
1470 timekeeping_restore_shadow(&tk_core);
1471 return -EINVAL;
1474 tk_xtime_add(tks, ts);
1475 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
1476 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1479 /* Signal hrtimers about time change */
1480 clock_was_set(CLOCK_SET_WALL);
1481 return 0;
1485 * Indicates if there is an offset between the system clock and the hardware
1486 * clock/persistent clock/rtc.
1488 int persistent_clock_is_local;
1491 * Adjust the time obtained from the CMOS to be UTC time instead of
1492 * local time.
1494 * This is ugly, but preferable to the alternatives. Otherwise we
1495 * would either need to write a program to do it in /etc/rc (and risk
1496 * confusion if the program gets run more than once; it would also be
1497 * hard to make the program warp the clock precisely n hours) or
1498 * compile in the timezone information into the kernel. Bad, bad....
1500 * - TYT, 1992-01-01
1502 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1503 * as real UNIX machines always do it. This avoids all headaches about
1504 * daylight saving times and warping kernel clocks.
1506 void timekeeping_warp_clock(void)
1508 if (sys_tz.tz_minuteswest != 0) {
1509 struct timespec64 adjust;
1511 persistent_clock_is_local = 1;
1512 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1513 adjust.tv_nsec = 0;
1514 timekeeping_inject_offset(&adjust);
1519 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1521 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1523 tk->tai_offset = tai_offset;
1524 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1528 * change_clocksource - Swaps clocksources if a new one is available
1530 * Accumulates current time interval and initializes new clocksource
1532 static int change_clocksource(void *data)
1534 struct clocksource *new = data, *old = NULL;
1537 * If the clocksource is in a module, get a module reference.
1538 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1539 * reference can't be acquired.
1541 if (!try_module_get(new->owner))
1542 return 0;
1544 /* Abort if the device can't be enabled */
1545 if (new->enable && new->enable(new) != 0) {
1546 module_put(new->owner);
1547 return 0;
1550 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
1551 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1553 timekeeping_forward_now(tks);
1554 old = tks->tkr_mono.clock;
1555 tk_setup_internals(tks, new);
1556 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1559 if (old) {
1560 if (old->disable)
1561 old->disable(old);
1562 module_put(old->owner);
1565 return 0;
1569 * timekeeping_notify - Install a new clock source
1570 * @clock: pointer to the clock source
1572 * This function is called from clocksource.c after a new, better clock
1573 * source has been registered. The caller holds the clocksource_mutex.
1575 int timekeeping_notify(struct clocksource *clock)
1577 struct timekeeper *tk = &tk_core.timekeeper;
1579 if (tk->tkr_mono.clock == clock)
1580 return 0;
1581 stop_machine(change_clocksource, clock, NULL);
1582 tick_clock_notify();
1583 return tk->tkr_mono.clock == clock ? 0 : -1;
1587 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1588 * @ts: pointer to the timespec64 to be set
1590 * Returns the raw monotonic time (completely un-modified by ntp)
1592 void ktime_get_raw_ts64(struct timespec64 *ts)
1594 struct timekeeper *tk = &tk_core.timekeeper;
1595 unsigned int seq;
1596 u64 nsecs;
1598 do {
1599 seq = read_seqcount_begin(&tk_core.seq);
1600 ts->tv_sec = tk->raw_sec;
1601 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1603 } while (read_seqcount_retry(&tk_core.seq, seq));
1605 ts->tv_nsec = 0;
1606 timespec64_add_ns(ts, nsecs);
1608 EXPORT_SYMBOL(ktime_get_raw_ts64);
1612 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1614 int timekeeping_valid_for_hres(void)
1616 struct timekeeper *tk = &tk_core.timekeeper;
1617 unsigned int seq;
1618 int ret;
1620 do {
1621 seq = read_seqcount_begin(&tk_core.seq);
1623 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1625 } while (read_seqcount_retry(&tk_core.seq, seq));
1627 return ret;
1631 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1633 u64 timekeeping_max_deferment(void)
1635 struct timekeeper *tk = &tk_core.timekeeper;
1636 unsigned int seq;
1637 u64 ret;
1639 do {
1640 seq = read_seqcount_begin(&tk_core.seq);
1642 ret = tk->tkr_mono.clock->max_idle_ns;
1644 } while (read_seqcount_retry(&tk_core.seq, seq));
1646 return ret;
1650 * read_persistent_clock64 - Return time from the persistent clock.
1651 * @ts: Pointer to the storage for the readout value
1653 * Weak dummy function for arches that do not yet support it.
1654 * Reads the time from the battery backed persistent clock.
1655 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1657 * XXX - Do be sure to remove it once all arches implement it.
1659 void __weak read_persistent_clock64(struct timespec64 *ts)
1661 ts->tv_sec = 0;
1662 ts->tv_nsec = 0;
1666 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1667 * from the boot.
1668 * @wall_time: current time as returned by persistent clock
1669 * @boot_offset: offset that is defined as wall_time - boot_time
1671 * Weak dummy function for arches that do not yet support it.
1673 * The default function calculates offset based on the current value of
1674 * local_clock(). This way architectures that support sched_clock() but don't
1675 * support dedicated boot time clock will provide the best estimate of the
1676 * boot time.
1678 void __weak __init
1679 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1680 struct timespec64 *boot_offset)
1682 read_persistent_clock64(wall_time);
1683 *boot_offset = ns_to_timespec64(local_clock());
1686 static __init void tkd_basic_setup(struct tk_data *tkd)
1688 raw_spin_lock_init(&tkd->lock);
1689 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
1693 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1695 * The flag starts of false and is only set when a suspend reaches
1696 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1697 * timekeeper clocksource is not stopping across suspend and has been
1698 * used to update sleep time. If the timekeeper clocksource has stopped
1699 * then the flag stays true and is used by the RTC resume code to decide
1700 * whether sleeptime must be injected and if so the flag gets false then.
1702 * If a suspend fails before reaching timekeeping_resume() then the flag
1703 * stays false and prevents erroneous sleeptime injection.
1705 static bool suspend_timing_needed;
1707 /* Flag for if there is a persistent clock on this platform */
1708 static bool persistent_clock_exists;
1711 * timekeeping_init - Initializes the clocksource and common timekeeping values
1713 void __init timekeeping_init(void)
1715 struct timespec64 wall_time, boot_offset, wall_to_mono;
1716 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1717 struct clocksource *clock;
1719 tkd_basic_setup(&tk_core);
1721 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1722 if (timespec64_valid_settod(&wall_time) &&
1723 timespec64_to_ns(&wall_time) > 0) {
1724 persistent_clock_exists = true;
1725 } else if (timespec64_to_ns(&wall_time) != 0) {
1726 pr_warn("Persistent clock returned invalid value");
1727 wall_time = (struct timespec64){0};
1730 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1731 boot_offset = (struct timespec64){0};
1734 * We want set wall_to_mono, so the following is true:
1735 * wall time + wall_to_mono = boot time
1737 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1739 guard(raw_spinlock_irqsave)(&tk_core.lock);
1741 ntp_init();
1743 clock = clocksource_default_clock();
1744 if (clock->enable)
1745 clock->enable(clock);
1746 tk_setup_internals(tks, clock);
1748 tk_set_xtime(tks, &wall_time);
1749 tks->raw_sec = 0;
1751 tk_set_wall_to_mono(tks, wall_to_mono);
1753 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1756 /* time in seconds when suspend began for persistent clock */
1757 static struct timespec64 timekeeping_suspend_time;
1760 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1761 * @tk: Pointer to the timekeeper to be updated
1762 * @delta: Pointer to the delta value in timespec64 format
1764 * Takes a timespec offset measuring a suspend interval and properly
1765 * adds the sleep offset to the timekeeping variables.
1767 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1768 const struct timespec64 *delta)
1770 if (!timespec64_valid_strict(delta)) {
1771 printk_deferred(KERN_WARNING
1772 "__timekeeping_inject_sleeptime: Invalid "
1773 "sleep delta value!\n");
1774 return;
1776 tk_xtime_add(tk, delta);
1777 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1778 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1779 tk_debug_account_sleep_time(delta);
1782 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1784 * We have three kinds of time sources to use for sleep time
1785 * injection, the preference order is:
1786 * 1) non-stop clocksource
1787 * 2) persistent clock (ie: RTC accessible when irqs are off)
1788 * 3) RTC
1790 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1791 * If system has neither 1) nor 2), 3) will be used finally.
1794 * If timekeeping has injected sleeptime via either 1) or 2),
1795 * 3) becomes needless, so in this case we don't need to call
1796 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1797 * means.
1799 bool timekeeping_rtc_skipresume(void)
1801 return !suspend_timing_needed;
1805 * 1) can be determined whether to use or not only when doing
1806 * timekeeping_resume() which is invoked after rtc_suspend(),
1807 * so we can't skip rtc_suspend() surely if system has 1).
1809 * But if system has 2), 2) will definitely be used, so in this
1810 * case we don't need to call rtc_suspend(), and this is what
1811 * timekeeping_rtc_skipsuspend() means.
1813 bool timekeeping_rtc_skipsuspend(void)
1815 return persistent_clock_exists;
1819 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1820 * @delta: pointer to a timespec64 delta value
1822 * This hook is for architectures that cannot support read_persistent_clock64
1823 * because their RTC/persistent clock is only accessible when irqs are enabled.
1824 * and also don't have an effective nonstop clocksource.
1826 * This function should only be called by rtc_resume(), and allows
1827 * a suspend offset to be injected into the timekeeping values.
1829 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1831 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
1832 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1834 suspend_timing_needed = false;
1835 timekeeping_forward_now(tks);
1836 __timekeeping_inject_sleeptime(tks, delta);
1837 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
1840 /* Signal hrtimers about time change */
1841 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1843 #endif
1846 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1848 void timekeeping_resume(void)
1850 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1851 struct clocksource *clock = tks->tkr_mono.clock;
1852 struct timespec64 ts_new, ts_delta;
1853 bool inject_sleeptime = false;
1854 u64 cycle_now, nsec;
1855 unsigned long flags;
1857 read_persistent_clock64(&ts_new);
1859 clockevents_resume();
1860 clocksource_resume();
1862 raw_spin_lock_irqsave(&tk_core.lock, flags);
1865 * After system resumes, we need to calculate the suspended time and
1866 * compensate it for the OS time. There are 3 sources that could be
1867 * used: Nonstop clocksource during suspend, persistent clock and rtc
1868 * device.
1870 * One specific platform may have 1 or 2 or all of them, and the
1871 * preference will be:
1872 * suspend-nonstop clocksource -> persistent clock -> rtc
1873 * The less preferred source will only be tried if there is no better
1874 * usable source. The rtc part is handled separately in rtc core code.
1876 cycle_now = tk_clock_read(&tks->tkr_mono);
1877 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1878 if (nsec > 0) {
1879 ts_delta = ns_to_timespec64(nsec);
1880 inject_sleeptime = true;
1881 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1882 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1883 inject_sleeptime = true;
1886 if (inject_sleeptime) {
1887 suspend_timing_needed = false;
1888 __timekeeping_inject_sleeptime(tks, &ts_delta);
1891 /* Re-base the last cycle value */
1892 tks->tkr_mono.cycle_last = cycle_now;
1893 tks->tkr_raw.cycle_last = cycle_now;
1895 tks->ntp_error = 0;
1896 timekeeping_suspended = 0;
1897 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
1898 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1900 touch_softlockup_watchdog();
1902 /* Resume the clockevent device(s) and hrtimers */
1903 tick_resume();
1904 /* Notify timerfd as resume is equivalent to clock_was_set() */
1905 timerfd_resume();
1908 int timekeeping_suspend(void)
1910 struct timekeeper *tks = &tk_core.shadow_timekeeper;
1911 struct timespec64 delta, delta_delta;
1912 static struct timespec64 old_delta;
1913 struct clocksource *curr_clock;
1914 unsigned long flags;
1915 u64 cycle_now;
1917 read_persistent_clock64(&timekeeping_suspend_time);
1920 * On some systems the persistent_clock can not be detected at
1921 * timekeeping_init by its return value, so if we see a valid
1922 * value returned, update the persistent_clock_exists flag.
1924 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1925 persistent_clock_exists = true;
1927 suspend_timing_needed = true;
1929 raw_spin_lock_irqsave(&tk_core.lock, flags);
1930 timekeeping_forward_now(tks);
1931 timekeeping_suspended = 1;
1934 * Since we've called forward_now, cycle_last stores the value
1935 * just read from the current clocksource. Save this to potentially
1936 * use in suspend timing.
1938 curr_clock = tks->tkr_mono.clock;
1939 cycle_now = tks->tkr_mono.cycle_last;
1940 clocksource_start_suspend_timing(curr_clock, cycle_now);
1942 if (persistent_clock_exists) {
1944 * To avoid drift caused by repeated suspend/resumes,
1945 * which each can add ~1 second drift error,
1946 * try to compensate so the difference in system time
1947 * and persistent_clock time stays close to constant.
1949 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
1950 delta_delta = timespec64_sub(delta, old_delta);
1951 if (abs(delta_delta.tv_sec) >= 2) {
1953 * if delta_delta is too large, assume time correction
1954 * has occurred and set old_delta to the current delta.
1956 old_delta = delta;
1957 } else {
1958 /* Otherwise try to adjust old_system to compensate */
1959 timekeeping_suspend_time =
1960 timespec64_add(timekeeping_suspend_time, delta_delta);
1964 timekeeping_update_from_shadow(&tk_core, 0);
1965 halt_fast_timekeeper(tks);
1966 raw_spin_unlock_irqrestore(&tk_core.lock, flags);
1968 tick_suspend();
1969 clocksource_suspend();
1970 clockevents_suspend();
1972 return 0;
1975 /* sysfs resume/suspend bits for timekeeping */
1976 static struct syscore_ops timekeeping_syscore_ops = {
1977 .resume = timekeeping_resume,
1978 .suspend = timekeeping_suspend,
1981 static int __init timekeeping_init_ops(void)
1983 register_syscore_ops(&timekeeping_syscore_ops);
1984 return 0;
1986 device_initcall(timekeeping_init_ops);
1989 * Apply a multiplier adjustment to the timekeeper
1991 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1992 s64 offset,
1993 s32 mult_adj)
1995 s64 interval = tk->cycle_interval;
1997 if (mult_adj == 0) {
1998 return;
1999 } else if (mult_adj == -1) {
2000 interval = -interval;
2001 offset = -offset;
2002 } else if (mult_adj != 1) {
2003 interval *= mult_adj;
2004 offset *= mult_adj;
2008 * So the following can be confusing.
2010 * To keep things simple, lets assume mult_adj == 1 for now.
2012 * When mult_adj != 1, remember that the interval and offset values
2013 * have been appropriately scaled so the math is the same.
2015 * The basic idea here is that we're increasing the multiplier
2016 * by one, this causes the xtime_interval to be incremented by
2017 * one cycle_interval. This is because:
2018 * xtime_interval = cycle_interval * mult
2019 * So if mult is being incremented by one:
2020 * xtime_interval = cycle_interval * (mult + 1)
2021 * Its the same as:
2022 * xtime_interval = (cycle_interval * mult) + cycle_interval
2023 * Which can be shortened to:
2024 * xtime_interval += cycle_interval
2026 * So offset stores the non-accumulated cycles. Thus the current
2027 * time (in shifted nanoseconds) is:
2028 * now = (offset * adj) + xtime_nsec
2029 * Now, even though we're adjusting the clock frequency, we have
2030 * to keep time consistent. In other words, we can't jump back
2031 * in time, and we also want to avoid jumping forward in time.
2033 * So given the same offset value, we need the time to be the same
2034 * both before and after the freq adjustment.
2035 * now = (offset * adj_1) + xtime_nsec_1
2036 * now = (offset * adj_2) + xtime_nsec_2
2037 * So:
2038 * (offset * adj_1) + xtime_nsec_1 =
2039 * (offset * adj_2) + xtime_nsec_2
2040 * And we know:
2041 * adj_2 = adj_1 + 1
2042 * So:
2043 * (offset * adj_1) + xtime_nsec_1 =
2044 * (offset * (adj_1+1)) + xtime_nsec_2
2045 * (offset * adj_1) + xtime_nsec_1 =
2046 * (offset * adj_1) + offset + xtime_nsec_2
2047 * Canceling the sides:
2048 * xtime_nsec_1 = offset + xtime_nsec_2
2049 * Which gives us:
2050 * xtime_nsec_2 = xtime_nsec_1 - offset
2051 * Which simplifies to:
2052 * xtime_nsec -= offset
2054 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
2055 /* NTP adjustment caused clocksource mult overflow */
2056 WARN_ON_ONCE(1);
2057 return;
2060 tk->tkr_mono.mult += mult_adj;
2061 tk->xtime_interval += interval;
2062 tk->tkr_mono.xtime_nsec -= offset;
2066 * Adjust the timekeeper's multiplier to the correct frequency
2067 * and also to reduce the accumulated error value.
2069 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2071 u64 ntp_tl = ntp_tick_length();
2072 u32 mult;
2075 * Determine the multiplier from the current NTP tick length.
2076 * Avoid expensive division when the tick length doesn't change.
2078 if (likely(tk->ntp_tick == ntp_tl)) {
2079 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2080 } else {
2081 tk->ntp_tick = ntp_tl;
2082 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2083 tk->xtime_remainder, tk->cycle_interval);
2087 * If the clock is behind the NTP time, increase the multiplier by 1
2088 * to catch up with it. If it's ahead and there was a remainder in the
2089 * tick division, the clock will slow down. Otherwise it will stay
2090 * ahead until the tick length changes to a non-divisible value.
2092 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2093 mult += tk->ntp_err_mult;
2095 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2097 if (unlikely(tk->tkr_mono.clock->maxadj &&
2098 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2099 > tk->tkr_mono.clock->maxadj))) {
2100 printk_once(KERN_WARNING
2101 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2102 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2103 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2107 * It may be possible that when we entered this function, xtime_nsec
2108 * was very small. Further, if we're slightly speeding the clocksource
2109 * in the code above, its possible the required corrective factor to
2110 * xtime_nsec could cause it to underflow.
2112 * Now, since we have already accumulated the second and the NTP
2113 * subsystem has been notified via second_overflow(), we need to skip
2114 * the next update.
2116 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2117 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2118 tk->tkr_mono.shift;
2119 tk->xtime_sec--;
2120 tk->skip_second_overflow = 1;
2125 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2127 * Helper function that accumulates the nsecs greater than a second
2128 * from the xtime_nsec field to the xtime_secs field.
2129 * It also calls into the NTP code to handle leapsecond processing.
2131 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2133 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2134 unsigned int clock_set = 0;
2136 while (tk->tkr_mono.xtime_nsec >= nsecps) {
2137 int leap;
2139 tk->tkr_mono.xtime_nsec -= nsecps;
2140 tk->xtime_sec++;
2143 * Skip NTP update if this second was accumulated before,
2144 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2146 if (unlikely(tk->skip_second_overflow)) {
2147 tk->skip_second_overflow = 0;
2148 continue;
2151 /* Figure out if its a leap sec and apply if needed */
2152 leap = second_overflow(tk->xtime_sec);
2153 if (unlikely(leap)) {
2154 struct timespec64 ts;
2156 tk->xtime_sec += leap;
2158 ts.tv_sec = leap;
2159 ts.tv_nsec = 0;
2160 tk_set_wall_to_mono(tk,
2161 timespec64_sub(tk->wall_to_monotonic, ts));
2163 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2165 clock_set = TK_CLOCK_WAS_SET;
2168 return clock_set;
2172 * logarithmic_accumulation - shifted accumulation of cycles
2174 * This functions accumulates a shifted interval of cycles into
2175 * a shifted interval nanoseconds. Allows for O(log) accumulation
2176 * loop.
2178 * Returns the unconsumed cycles.
2180 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2181 u32 shift, unsigned int *clock_set)
2183 u64 interval = tk->cycle_interval << shift;
2184 u64 snsec_per_sec;
2186 /* If the offset is smaller than a shifted interval, do nothing */
2187 if (offset < interval)
2188 return offset;
2190 /* Accumulate one shifted interval */
2191 offset -= interval;
2192 tk->tkr_mono.cycle_last += interval;
2193 tk->tkr_raw.cycle_last += interval;
2195 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2196 *clock_set |= accumulate_nsecs_to_secs(tk);
2198 /* Accumulate raw time */
2199 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2200 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2201 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2202 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2203 tk->raw_sec++;
2206 /* Accumulate error between NTP and clock interval */
2207 tk->ntp_error += tk->ntp_tick << shift;
2208 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2209 (tk->ntp_error_shift + shift);
2211 return offset;
2215 * timekeeping_advance - Updates the timekeeper to the current time and
2216 * current NTP tick length
2218 static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2220 struct timekeeper *tk = &tk_core.shadow_timekeeper;
2221 struct timekeeper *real_tk = &tk_core.timekeeper;
2222 unsigned int clock_set = 0;
2223 int shift = 0, maxshift;
2224 u64 offset;
2226 guard(raw_spinlock_irqsave)(&tk_core.lock);
2228 /* Make sure we're fully resumed: */
2229 if (unlikely(timekeeping_suspended))
2230 return false;
2232 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2233 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2235 /* Check if there's really nothing to do */
2236 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2237 return false;
2240 * With NO_HZ we may have to accumulate many cycle_intervals
2241 * (think "ticks") worth of time at once. To do this efficiently,
2242 * we calculate the largest doubling multiple of cycle_intervals
2243 * that is smaller than the offset. We then accumulate that
2244 * chunk in one go, and then try to consume the next smaller
2245 * doubled multiple.
2247 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2248 shift = max(0, shift);
2249 /* Bound shift to one less than what overflows tick_length */
2250 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2251 shift = min(shift, maxshift);
2252 while (offset >= tk->cycle_interval) {
2253 offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
2254 if (offset < tk->cycle_interval<<shift)
2255 shift--;
2258 /* Adjust the multiplier to correct NTP error */
2259 timekeeping_adjust(tk, offset);
2262 * Finally, make sure that after the rounding
2263 * xtime_nsec isn't larger than NSEC_PER_SEC
2265 clock_set |= accumulate_nsecs_to_secs(tk);
2267 timekeeping_update_from_shadow(&tk_core, clock_set);
2269 return !!clock_set;
2273 * update_wall_time - Uses the current clocksource to increment the wall time
2276 void update_wall_time(void)
2278 if (timekeeping_advance(TK_ADV_TICK))
2279 clock_was_set_delayed();
2283 * getboottime64 - Return the real time of system boot.
2284 * @ts: pointer to the timespec64 to be set
2286 * Returns the wall-time of boot in a timespec64.
2288 * This is based on the wall_to_monotonic offset and the total suspend
2289 * time. Calls to settimeofday will affect the value returned (which
2290 * basically means that however wrong your real time clock is at boot time,
2291 * you get the right time here).
2293 void getboottime64(struct timespec64 *ts)
2295 struct timekeeper *tk = &tk_core.timekeeper;
2296 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2298 *ts = ktime_to_timespec64(t);
2300 EXPORT_SYMBOL_GPL(getboottime64);
2302 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2304 struct timekeeper *tk = &tk_core.timekeeper;
2305 unsigned int seq;
2307 do {
2308 seq = read_seqcount_begin(&tk_core.seq);
2310 *ts = tk_xtime(tk);
2311 } while (read_seqcount_retry(&tk_core.seq, seq));
2313 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2316 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2317 * @ts: timespec64 to be filled
2319 * Fetch the global mg_floor value, convert it to realtime and compare it
2320 * to the current coarse-grained time. Fill @ts with whichever is
2321 * latest. Note that this is a filesystem-specific interface and should be
2322 * avoided outside of that context.
2324 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
2326 struct timekeeper *tk = &tk_core.timekeeper;
2327 u64 floor = atomic64_read(&mg_floor);
2328 ktime_t f_real, offset, coarse;
2329 unsigned int seq;
2331 do {
2332 seq = read_seqcount_begin(&tk_core.seq);
2333 *ts = tk_xtime(tk);
2334 offset = tk_core.timekeeper.offs_real;
2335 } while (read_seqcount_retry(&tk_core.seq, seq));
2337 coarse = timespec64_to_ktime(*ts);
2338 f_real = ktime_add(floor, offset);
2339 if (ktime_after(f_real, coarse))
2340 *ts = ktime_to_timespec64(f_real);
2344 * ktime_get_real_ts64_mg - attempt to update floor value and return result
2345 * @ts: pointer to the timespec to be set
2347 * Get a monotonic fine-grained time value and attempt to swap it into
2348 * mg_floor. If that succeeds then accept the new floor value. If it fails
2349 * then another task raced in during the interim time and updated the
2350 * floor. Since any update to the floor must be later than the previous
2351 * floor, either outcome is acceptable.
2353 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2354 * and determining that the resulting coarse-grained timestamp did not effect
2355 * a change in ctime. Any more recent floor value would effect a change to
2356 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2358 * @ts will be filled with the latest floor value, regardless of the outcome of
2359 * the cmpxchg. Note that this is a filesystem specific interface and should be
2360 * avoided outside of that context.
2362 void ktime_get_real_ts64_mg(struct timespec64 *ts)
2364 struct timekeeper *tk = &tk_core.timekeeper;
2365 ktime_t old = atomic64_read(&mg_floor);
2366 ktime_t offset, mono;
2367 unsigned int seq;
2368 u64 nsecs;
2370 do {
2371 seq = read_seqcount_begin(&tk_core.seq);
2373 ts->tv_sec = tk->xtime_sec;
2374 mono = tk->tkr_mono.base;
2375 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2376 offset = tk_core.timekeeper.offs_real;
2377 } while (read_seqcount_retry(&tk_core.seq, seq));
2379 mono = ktime_add_ns(mono, nsecs);
2382 * Attempt to update the floor with the new time value. As any
2383 * update must be later then the existing floor, and would effect
2384 * a change to ctime from the perspective of the current task,
2385 * accept the resulting floor value regardless of the outcome of
2386 * the swap.
2388 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
2389 ts->tv_nsec = 0;
2390 timespec64_add_ns(ts, nsecs);
2391 timekeeping_inc_mg_floor_swaps();
2392 } else {
2394 * Another task changed mg_floor since "old" was fetched.
2395 * "old" has been updated with the latest value of "mg_floor".
2396 * That value is newer than the previous floor value, which
2397 * is enough to effect a change to ctime. Accept it.
2399 *ts = ktime_to_timespec64(ktime_add(old, offset));
2403 void ktime_get_coarse_ts64(struct timespec64 *ts)
2405 struct timekeeper *tk = &tk_core.timekeeper;
2406 struct timespec64 now, mono;
2407 unsigned int seq;
2409 do {
2410 seq = read_seqcount_begin(&tk_core.seq);
2412 now = tk_xtime(tk);
2413 mono = tk->wall_to_monotonic;
2414 } while (read_seqcount_retry(&tk_core.seq, seq));
2416 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2417 now.tv_nsec + mono.tv_nsec);
2419 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2422 * Must hold jiffies_lock
2424 void do_timer(unsigned long ticks)
2426 jiffies_64 += ticks;
2427 calc_global_load();
2431 * ktime_get_update_offsets_now - hrtimer helper
2432 * @cwsseq: pointer to check and store the clock was set sequence number
2433 * @offs_real: pointer to storage for monotonic -> realtime offset
2434 * @offs_boot: pointer to storage for monotonic -> boottime offset
2435 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2437 * Returns current monotonic time and updates the offsets if the
2438 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2439 * different.
2441 * Called from hrtimer_interrupt() or retrigger_next_event()
2443 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2444 ktime_t *offs_boot, ktime_t *offs_tai)
2446 struct timekeeper *tk = &tk_core.timekeeper;
2447 unsigned int seq;
2448 ktime_t base;
2449 u64 nsecs;
2451 do {
2452 seq = read_seqcount_begin(&tk_core.seq);
2454 base = tk->tkr_mono.base;
2455 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2456 base = ktime_add_ns(base, nsecs);
2458 if (*cwsseq != tk->clock_was_set_seq) {
2459 *cwsseq = tk->clock_was_set_seq;
2460 *offs_real = tk->offs_real;
2461 *offs_boot = tk->offs_boot;
2462 *offs_tai = tk->offs_tai;
2465 /* Handle leapsecond insertion adjustments */
2466 if (unlikely(base >= tk->next_leap_ktime))
2467 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2469 } while (read_seqcount_retry(&tk_core.seq, seq));
2471 return base;
2475 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2477 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2479 if (txc->modes & ADJ_ADJTIME) {
2480 /* singleshot must not be used with any other mode bits */
2481 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2482 return -EINVAL;
2483 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2484 !capable(CAP_SYS_TIME))
2485 return -EPERM;
2486 } else {
2487 /* In order to modify anything, you gotta be super-user! */
2488 if (txc->modes && !capable(CAP_SYS_TIME))
2489 return -EPERM;
2491 * if the quartz is off by more than 10% then
2492 * something is VERY wrong!
2494 if (txc->modes & ADJ_TICK &&
2495 (txc->tick < 900000/USER_HZ ||
2496 txc->tick > 1100000/USER_HZ))
2497 return -EINVAL;
2500 if (txc->modes & ADJ_SETOFFSET) {
2501 /* In order to inject time, you gotta be super-user! */
2502 if (!capable(CAP_SYS_TIME))
2503 return -EPERM;
2506 * Validate if a timespec/timeval used to inject a time
2507 * offset is valid. Offsets can be positive or negative, so
2508 * we don't check tv_sec. The value of the timeval/timespec
2509 * is the sum of its fields,but *NOTE*:
2510 * The field tv_usec/tv_nsec must always be non-negative and
2511 * we can't have more nanoseconds/microseconds than a second.
2513 if (txc->time.tv_usec < 0)
2514 return -EINVAL;
2516 if (txc->modes & ADJ_NANO) {
2517 if (txc->time.tv_usec >= NSEC_PER_SEC)
2518 return -EINVAL;
2519 } else {
2520 if (txc->time.tv_usec >= USEC_PER_SEC)
2521 return -EINVAL;
2526 * Check for potential multiplication overflows that can
2527 * only happen on 64-bit systems:
2529 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2530 if (LLONG_MIN / PPM_SCALE > txc->freq)
2531 return -EINVAL;
2532 if (LLONG_MAX / PPM_SCALE < txc->freq)
2533 return -EINVAL;
2536 return 0;
2540 * random_get_entropy_fallback - Returns the raw clock source value,
2541 * used by random.c for platforms with no valid random_get_entropy().
2543 unsigned long random_get_entropy_fallback(void)
2545 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2546 struct clocksource *clock = READ_ONCE(tkr->clock);
2548 if (unlikely(timekeeping_suspended || !clock))
2549 return 0;
2550 return clock->read(clock);
2552 EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2555 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2556 * @txc: Pointer to kernel_timex structure containing NTP parameters
2558 int do_adjtimex(struct __kernel_timex *txc)
2560 struct audit_ntp_data ad;
2561 bool offset_set = false;
2562 bool clock_set = false;
2563 struct timespec64 ts;
2564 int ret;
2566 /* Validate the data before disabling interrupts */
2567 ret = timekeeping_validate_timex(txc);
2568 if (ret)
2569 return ret;
2570 add_device_randomness(txc, sizeof(*txc));
2572 if (txc->modes & ADJ_SETOFFSET) {
2573 struct timespec64 delta;
2575 delta.tv_sec = txc->time.tv_sec;
2576 delta.tv_nsec = txc->time.tv_usec;
2577 if (!(txc->modes & ADJ_NANO))
2578 delta.tv_nsec *= 1000;
2579 ret = timekeeping_inject_offset(&delta);
2580 if (ret)
2581 return ret;
2583 offset_set = delta.tv_sec != 0;
2584 audit_tk_injoffset(delta);
2587 audit_ntp_init(&ad);
2589 ktime_get_real_ts64(&ts);
2590 add_device_randomness(&ts, sizeof(ts));
2592 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
2593 struct timekeeper *tks = &tk_core.shadow_timekeeper;
2594 s32 orig_tai, tai;
2596 orig_tai = tai = tks->tai_offset;
2597 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2599 if (tai != orig_tai) {
2600 __timekeeping_set_tai_offset(tks, tai);
2601 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
2602 clock_set = true;
2603 } else {
2604 tk_update_leap_state_all(&tk_core);
2608 audit_ntp_log(&ad);
2610 /* Update the multiplier immediately if frequency was set directly */
2611 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2612 clock_set |= timekeeping_advance(TK_ADV_FREQ);
2614 if (clock_set)
2615 clock_was_set(CLOCK_SET_WALL);
2617 ntp_notify_cmos_timer(offset_set);
2619 return ret;
2622 #ifdef CONFIG_NTP_PPS
2624 * hardpps() - Accessor function to NTP __hardpps function
2625 * @phase_ts: Pointer to timespec64 structure representing phase timestamp
2626 * @raw_ts: Pointer to timespec64 structure representing raw timestamp
2628 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2630 guard(raw_spinlock_irqsave)(&tk_core.lock);
2631 __hardpps(phase_ts, raw_ts);
2633 EXPORT_SYMBOL(hardpps);
2634 #endif /* CONFIG_NTP_PPS */