drm/connector: hdmi: Fix memory leak in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / kernel / resource.c
blobb730bd28b422a484bb4fc5e2591d2457c1088b38
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
8 * Arbitrary resource management.
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
35 struct resource ioport_resource = {
36 .name = "PCI IO",
37 .start = 0,
38 .end = IO_SPACE_LIMIT,
39 .flags = IORESOURCE_IO,
41 EXPORT_SYMBOL(ioport_resource);
43 struct resource iomem_resource = {
44 .name = "PCI mem",
45 .start = 0,
46 .end = -1,
47 .flags = IORESOURCE_MEM,
49 EXPORT_SYMBOL(iomem_resource);
51 static DEFINE_RWLOCK(resource_lock);
53 static struct resource *next_resource(struct resource *p, bool skip_children)
55 if (!skip_children && p->child)
56 return p->child;
57 while (!p->sibling && p->parent)
58 p = p->parent;
59 return p->sibling;
62 #define for_each_resource(_root, _p, _skip_children) \
63 for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
65 #ifdef CONFIG_PROC_FS
67 enum { MAX_IORES_LEVEL = 5 };
69 static void *r_start(struct seq_file *m, loff_t *pos)
70 __acquires(resource_lock)
72 struct resource *root = pde_data(file_inode(m->file));
73 struct resource *p;
74 loff_t l = *pos;
76 read_lock(&resource_lock);
77 for_each_resource(root, p, false) {
78 if (l-- == 0)
79 break;
82 return p;
85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
87 struct resource *p = v;
89 (*pos)++;
91 return (void *)next_resource(p, false);
94 static void r_stop(struct seq_file *m, void *v)
95 __releases(resource_lock)
97 read_unlock(&resource_lock);
100 static int r_show(struct seq_file *m, void *v)
102 struct resource *root = pde_data(file_inode(m->file));
103 struct resource *r = v, *p;
104 unsigned long long start, end;
105 int width = root->end < 0x10000 ? 4 : 8;
106 int depth;
108 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 if (p->parent == root)
110 break;
112 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 start = r->start;
114 end = r->end;
115 } else {
116 start = end = 0;
119 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 depth * 2, "",
121 width, start,
122 width, end,
123 r->name ? r->name : "<BAD>");
124 return 0;
127 static const struct seq_operations resource_op = {
128 .start = r_start,
129 .next = r_next,
130 .stop = r_stop,
131 .show = r_show,
134 static int __init ioresources_init(void)
136 proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 &ioport_resource);
138 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 return 0;
141 __initcall(ioresources_init);
143 #endif /* CONFIG_PROC_FS */
145 static void free_resource(struct resource *res)
148 * If the resource was allocated using memblock early during boot
149 * we'll leak it here: we can only return full pages back to the
150 * buddy and trying to be smart and reusing them eventually in
151 * alloc_resource() overcomplicates resource handling.
153 if (res && PageSlab(virt_to_head_page(res)))
154 kfree(res);
157 static struct resource *alloc_resource(gfp_t flags)
159 return kzalloc(sizeof(struct resource), flags);
162 /* Return the conflict entry if you can't request it */
163 static struct resource * __request_resource(struct resource *root, struct resource *new)
165 resource_size_t start = new->start;
166 resource_size_t end = new->end;
167 struct resource *tmp, **p;
169 if (end < start)
170 return root;
171 if (start < root->start)
172 return root;
173 if (end > root->end)
174 return root;
175 p = &root->child;
176 for (;;) {
177 tmp = *p;
178 if (!tmp || tmp->start > end) {
179 new->sibling = tmp;
180 *p = new;
181 new->parent = root;
182 return NULL;
184 p = &tmp->sibling;
185 if (tmp->end < start)
186 continue;
187 return tmp;
191 static int __release_resource(struct resource *old, bool release_child)
193 struct resource *tmp, **p, *chd;
195 p = &old->parent->child;
196 for (;;) {
197 tmp = *p;
198 if (!tmp)
199 break;
200 if (tmp == old) {
201 if (release_child || !(tmp->child)) {
202 *p = tmp->sibling;
203 } else {
204 for (chd = tmp->child;; chd = chd->sibling) {
205 chd->parent = tmp->parent;
206 if (!(chd->sibling))
207 break;
209 *p = tmp->child;
210 chd->sibling = tmp->sibling;
212 old->parent = NULL;
213 return 0;
215 p = &tmp->sibling;
217 return -EINVAL;
220 static void __release_child_resources(struct resource *r)
222 struct resource *tmp, *p;
223 resource_size_t size;
225 p = r->child;
226 r->child = NULL;
227 while (p) {
228 tmp = p;
229 p = p->sibling;
231 tmp->parent = NULL;
232 tmp->sibling = NULL;
233 __release_child_resources(tmp);
235 printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 /* need to restore size, and keep flags */
237 size = resource_size(tmp);
238 tmp->start = 0;
239 tmp->end = size - 1;
243 void release_child_resources(struct resource *r)
245 write_lock(&resource_lock);
246 __release_child_resources(r);
247 write_unlock(&resource_lock);
251 * request_resource_conflict - request and reserve an I/O or memory resource
252 * @root: root resource descriptor
253 * @new: resource descriptor desired by caller
255 * Returns 0 for success, conflict resource on error.
257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
259 struct resource *conflict;
261 write_lock(&resource_lock);
262 conflict = __request_resource(root, new);
263 write_unlock(&resource_lock);
264 return conflict;
268 * request_resource - request and reserve an I/O or memory resource
269 * @root: root resource descriptor
270 * @new: resource descriptor desired by caller
272 * Returns 0 for success, negative error code on error.
274 int request_resource(struct resource *root, struct resource *new)
276 struct resource *conflict;
278 conflict = request_resource_conflict(root, new);
279 return conflict ? -EBUSY : 0;
282 EXPORT_SYMBOL(request_resource);
285 * release_resource - release a previously reserved resource
286 * @old: resource pointer
288 int release_resource(struct resource *old)
290 int retval;
292 write_lock(&resource_lock);
293 retval = __release_resource(old, true);
294 write_unlock(&resource_lock);
295 return retval;
298 EXPORT_SYMBOL(release_resource);
301 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302 * [@start..@end].
304 * If a resource is found, returns 0 and @*res is overwritten with the part
305 * of the resource that's within [@start..@end]; if none is found, returns
306 * -ENODEV. Returns -EINVAL for invalid parameters.
308 * @start: start address of the resource searched for
309 * @end: end address of same resource
310 * @flags: flags which the resource must have
311 * @desc: descriptor the resource must have
312 * @res: return ptr, if resource found
314 * The caller must specify @start, @end, @flags, and @desc
315 * (which may be IORES_DESC_NONE).
317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 unsigned long flags, unsigned long desc,
319 struct resource *res)
321 struct resource *p;
323 if (!res)
324 return -EINVAL;
326 if (start >= end)
327 return -EINVAL;
329 read_lock(&resource_lock);
331 for_each_resource(&iomem_resource, p, false) {
332 /* If we passed the resource we are looking for, stop */
333 if (p->start > end) {
334 p = NULL;
335 break;
338 /* Skip until we find a range that matches what we look for */
339 if (p->end < start)
340 continue;
342 if ((p->flags & flags) != flags)
343 continue;
344 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 continue;
347 /* Found a match, break */
348 break;
351 if (p) {
352 /* copy data */
353 *res = (struct resource) {
354 .start = max(start, p->start),
355 .end = min(end, p->end),
356 .flags = p->flags,
357 .desc = p->desc,
358 .parent = p->parent,
362 read_unlock(&resource_lock);
363 return p ? 0 : -ENODEV;
366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 unsigned long flags, unsigned long desc,
368 void *arg,
369 int (*func)(struct resource *, void *))
371 struct resource res;
372 int ret = -EINVAL;
374 while (start < end &&
375 !find_next_iomem_res(start, end, flags, desc, &res)) {
376 ret = (*func)(&res, arg);
377 if (ret)
378 break;
380 start = res.end + 1;
383 return ret;
387 * walk_iomem_res_desc - Walks through iomem resources and calls func()
388 * with matching resource ranges.
390 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391 * @flags: I/O resource flags
392 * @start: start addr
393 * @end: end addr
394 * @arg: function argument for the callback @func
395 * @func: callback function that is called for each qualifying resource area
397 * All the memory ranges which overlap start,end and also match flags and
398 * desc are valid candidates.
400 * NOTE: For a new descriptor search, define a new IORES_DESC in
401 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 u64 end, void *arg, int (*func)(struct resource *, void *))
406 return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
411 * This function calls the @func callback against all memory ranges of type
412 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413 * Now, this function is only for System RAM, it deals with full ranges and
414 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415 * ranges.
417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 int (*func)(struct resource *, void *))
420 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
422 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 func);
427 * This function, being a variant of walk_system_ram_res(), calls the @func
428 * callback against all memory ranges of type System RAM which are marked as
429 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430 * higher to lower.
432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 int (*func)(struct resource *, void *))
435 struct resource res, *rams;
436 int rams_size = 16, i;
437 unsigned long flags;
438 int ret = -1;
440 /* create a list */
441 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 if (!rams)
443 return ret;
445 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 i = 0;
447 while ((start < end) &&
448 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 if (i >= rams_size) {
450 /* re-alloc */
451 struct resource *rams_new;
453 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
454 GFP_KERNEL);
455 if (!rams_new)
456 goto out;
458 rams = rams_new;
459 rams_size += 16;
462 rams[i].start = res.start;
463 rams[i++].end = res.end;
465 start = res.end + 1;
468 /* go reverse */
469 for (i--; i >= 0; i--) {
470 ret = (*func)(&rams[i], arg);
471 if (ret)
472 break;
475 out:
476 kvfree(rams);
477 return ret;
481 * This function calls the @func callback against all memory ranges, which
482 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
484 int walk_mem_res(u64 start, u64 end, void *arg,
485 int (*func)(struct resource *, void *))
487 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
489 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
490 func);
494 * This function calls the @func callback against all memory ranges of type
495 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
496 * It is to be used only for System RAM.
498 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
499 void *arg, int (*func)(unsigned long, unsigned long, void *))
501 resource_size_t start, end;
502 unsigned long flags;
503 struct resource res;
504 unsigned long pfn, end_pfn;
505 int ret = -EINVAL;
507 start = (u64) start_pfn << PAGE_SHIFT;
508 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
509 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
510 while (start < end &&
511 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
512 pfn = PFN_UP(res.start);
513 end_pfn = PFN_DOWN(res.end + 1);
514 if (end_pfn > pfn)
515 ret = (*func)(pfn, end_pfn - pfn, arg);
516 if (ret)
517 break;
518 start = res.end + 1;
520 return ret;
523 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
525 return 1;
529 * This generic page_is_ram() returns true if specified address is
530 * registered as System RAM in iomem_resource list.
532 int __weak page_is_ram(unsigned long pfn)
534 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
536 EXPORT_SYMBOL_GPL(page_is_ram);
538 static int __region_intersects(struct resource *parent, resource_size_t start,
539 size_t size, unsigned long flags,
540 unsigned long desc)
542 resource_size_t ostart, oend;
543 int type = 0; int other = 0;
544 struct resource *p, *dp;
545 bool is_type, covered;
546 struct resource res;
548 res.start = start;
549 res.end = start + size - 1;
551 for (p = parent->child; p ; p = p->sibling) {
552 if (!resource_overlaps(p, &res))
553 continue;
554 is_type = (p->flags & flags) == flags &&
555 (desc == IORES_DESC_NONE || desc == p->desc);
556 if (is_type) {
557 type++;
558 continue;
561 * Continue to search in descendant resources as if the
562 * matched descendant resources cover some ranges of 'p'.
564 * |------------- "CXL Window 0" ------------|
565 * |-- "System RAM" --|
567 * will behave similar as the following fake resource
568 * tree when searching "System RAM".
570 * |-- "System RAM" --||-- "CXL Window 0a" --|
572 covered = false;
573 ostart = max(res.start, p->start);
574 oend = min(res.end, p->end);
575 for_each_resource(p, dp, false) {
576 if (!resource_overlaps(dp, &res))
577 continue;
578 is_type = (dp->flags & flags) == flags &&
579 (desc == IORES_DESC_NONE || desc == dp->desc);
580 if (is_type) {
581 type++;
583 * Range from 'ostart' to 'dp->start'
584 * isn't covered by matched resource.
586 if (dp->start > ostart)
587 break;
588 if (dp->end >= oend) {
589 covered = true;
590 break;
592 /* Remove covered range */
593 ostart = max(ostart, dp->end + 1);
596 if (!covered)
597 other++;
600 if (type == 0)
601 return REGION_DISJOINT;
603 if (other == 0)
604 return REGION_INTERSECTS;
606 return REGION_MIXED;
610 * region_intersects() - determine intersection of region with known resources
611 * @start: region start address
612 * @size: size of region
613 * @flags: flags of resource (in iomem_resource)
614 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
616 * Check if the specified region partially overlaps or fully eclipses a
617 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
618 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
619 * return REGION_MIXED if the region overlaps @flags/@desc and another
620 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
621 * and no other defined resource. Note that REGION_INTERSECTS is also
622 * returned in the case when the specified region overlaps RAM and undefined
623 * memory holes.
625 * region_intersect() is used by memory remapping functions to ensure
626 * the user is not remapping RAM and is a vast speed up over walking
627 * through the resource table page by page.
629 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
630 unsigned long desc)
632 int ret;
634 read_lock(&resource_lock);
635 ret = __region_intersects(&iomem_resource, start, size, flags, desc);
636 read_unlock(&resource_lock);
638 return ret;
640 EXPORT_SYMBOL_GPL(region_intersects);
642 void __weak arch_remove_reservations(struct resource *avail)
646 static void resource_clip(struct resource *res, resource_size_t min,
647 resource_size_t max)
649 if (res->start < min)
650 res->start = min;
651 if (res->end > max)
652 res->end = max;
656 * Find empty space in the resource tree with the given range and
657 * alignment constraints
659 static int __find_resource_space(struct resource *root, struct resource *old,
660 struct resource *new, resource_size_t size,
661 struct resource_constraint *constraint)
663 struct resource *this = root->child;
664 struct resource tmp = *new, avail, alloc;
665 resource_alignf alignf = constraint->alignf;
667 tmp.start = root->start;
669 * Skip past an allocated resource that starts at 0, since the assignment
670 * of this->start - 1 to tmp->end below would cause an underflow.
672 if (this && this->start == root->start) {
673 tmp.start = (this == old) ? old->start : this->end + 1;
674 this = this->sibling;
676 for(;;) {
677 if (this)
678 tmp.end = (this == old) ? this->end : this->start - 1;
679 else
680 tmp.end = root->end;
682 if (tmp.end < tmp.start)
683 goto next;
685 resource_clip(&tmp, constraint->min, constraint->max);
686 arch_remove_reservations(&tmp);
688 /* Check for overflow after ALIGN() */
689 avail.start = ALIGN(tmp.start, constraint->align);
690 avail.end = tmp.end;
691 avail.flags = new->flags & ~IORESOURCE_UNSET;
692 if (avail.start >= tmp.start) {
693 alloc.flags = avail.flags;
694 if (alignf) {
695 alloc.start = alignf(constraint->alignf_data,
696 &avail, size, constraint->align);
697 } else {
698 alloc.start = avail.start;
700 alloc.end = alloc.start + size - 1;
701 if (alloc.start <= alloc.end &&
702 resource_contains(&avail, &alloc)) {
703 new->start = alloc.start;
704 new->end = alloc.end;
705 return 0;
709 next: if (!this || this->end == root->end)
710 break;
712 if (this != old)
713 tmp.start = this->end + 1;
714 this = this->sibling;
716 return -EBUSY;
720 * find_resource_space - Find empty space in the resource tree
721 * @root: Root resource descriptor
722 * @new: Resource descriptor awaiting an empty resource space
723 * @size: The minimum size of the empty space
724 * @constraint: The range and alignment constraints to be met
726 * Finds an empty space under @root in the resource tree satisfying range and
727 * alignment @constraints.
729 * Return:
730 * * %0 - if successful, @new members start, end, and flags are altered.
731 * * %-EBUSY - if no empty space was found.
733 int find_resource_space(struct resource *root, struct resource *new,
734 resource_size_t size,
735 struct resource_constraint *constraint)
737 return __find_resource_space(root, NULL, new, size, constraint);
739 EXPORT_SYMBOL_GPL(find_resource_space);
742 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
743 * The resource will be relocated if the new size cannot be reallocated in the
744 * current location.
746 * @root: root resource descriptor
747 * @old: resource descriptor desired by caller
748 * @newsize: new size of the resource descriptor
749 * @constraint: the size and alignment constraints to be met.
751 static int reallocate_resource(struct resource *root, struct resource *old,
752 resource_size_t newsize,
753 struct resource_constraint *constraint)
755 int err=0;
756 struct resource new = *old;
757 struct resource *conflict;
759 write_lock(&resource_lock);
761 if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
762 goto out;
764 if (resource_contains(&new, old)) {
765 old->start = new.start;
766 old->end = new.end;
767 goto out;
770 if (old->child) {
771 err = -EBUSY;
772 goto out;
775 if (resource_contains(old, &new)) {
776 old->start = new.start;
777 old->end = new.end;
778 } else {
779 __release_resource(old, true);
780 *old = new;
781 conflict = __request_resource(root, old);
782 BUG_ON(conflict);
784 out:
785 write_unlock(&resource_lock);
786 return err;
791 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
792 * The resource will be reallocated with a new size if it was already allocated
793 * @root: root resource descriptor
794 * @new: resource descriptor desired by caller
795 * @size: requested resource region size
796 * @min: minimum boundary to allocate
797 * @max: maximum boundary to allocate
798 * @align: alignment requested, in bytes
799 * @alignf: alignment function, optional, called if not NULL
800 * @alignf_data: arbitrary data to pass to the @alignf function
802 int allocate_resource(struct resource *root, struct resource *new,
803 resource_size_t size, resource_size_t min,
804 resource_size_t max, resource_size_t align,
805 resource_alignf alignf,
806 void *alignf_data)
808 int err;
809 struct resource_constraint constraint;
811 constraint.min = min;
812 constraint.max = max;
813 constraint.align = align;
814 constraint.alignf = alignf;
815 constraint.alignf_data = alignf_data;
817 if ( new->parent ) {
818 /* resource is already allocated, try reallocating with
819 the new constraints */
820 return reallocate_resource(root, new, size, &constraint);
823 write_lock(&resource_lock);
824 err = find_resource_space(root, new, size, &constraint);
825 if (err >= 0 && __request_resource(root, new))
826 err = -EBUSY;
827 write_unlock(&resource_lock);
828 return err;
831 EXPORT_SYMBOL(allocate_resource);
834 * lookup_resource - find an existing resource by a resource start address
835 * @root: root resource descriptor
836 * @start: resource start address
838 * Returns a pointer to the resource if found, NULL otherwise
840 struct resource *lookup_resource(struct resource *root, resource_size_t start)
842 struct resource *res;
844 read_lock(&resource_lock);
845 for (res = root->child; res; res = res->sibling) {
846 if (res->start == start)
847 break;
849 read_unlock(&resource_lock);
851 return res;
855 * Insert a resource into the resource tree. If successful, return NULL,
856 * otherwise return the conflicting resource (compare to __request_resource())
858 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
860 struct resource *first, *next;
862 for (;; parent = first) {
863 first = __request_resource(parent, new);
864 if (!first)
865 return first;
867 if (first == parent)
868 return first;
869 if (WARN_ON(first == new)) /* duplicated insertion */
870 return first;
872 if ((first->start > new->start) || (first->end < new->end))
873 break;
874 if ((first->start == new->start) && (first->end == new->end))
875 break;
878 for (next = first; ; next = next->sibling) {
879 /* Partial overlap? Bad, and unfixable */
880 if (next->start < new->start || next->end > new->end)
881 return next;
882 if (!next->sibling)
883 break;
884 if (next->sibling->start > new->end)
885 break;
888 new->parent = parent;
889 new->sibling = next->sibling;
890 new->child = first;
892 next->sibling = NULL;
893 for (next = first; next; next = next->sibling)
894 next->parent = new;
896 if (parent->child == first) {
897 parent->child = new;
898 } else {
899 next = parent->child;
900 while (next->sibling != first)
901 next = next->sibling;
902 next->sibling = new;
904 return NULL;
908 * insert_resource_conflict - Inserts resource in the resource tree
909 * @parent: parent of the new resource
910 * @new: new resource to insert
912 * Returns 0 on success, conflict resource if the resource can't be inserted.
914 * This function is equivalent to request_resource_conflict when no conflict
915 * happens. If a conflict happens, and the conflicting resources
916 * entirely fit within the range of the new resource, then the new
917 * resource is inserted and the conflicting resources become children of
918 * the new resource.
920 * This function is intended for producers of resources, such as FW modules
921 * and bus drivers.
923 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
925 struct resource *conflict;
927 write_lock(&resource_lock);
928 conflict = __insert_resource(parent, new);
929 write_unlock(&resource_lock);
930 return conflict;
934 * insert_resource - Inserts a resource in the resource tree
935 * @parent: parent of the new resource
936 * @new: new resource to insert
938 * Returns 0 on success, -EBUSY if the resource can't be inserted.
940 * This function is intended for producers of resources, such as FW modules
941 * and bus drivers.
943 int insert_resource(struct resource *parent, struct resource *new)
945 struct resource *conflict;
947 conflict = insert_resource_conflict(parent, new);
948 return conflict ? -EBUSY : 0;
950 EXPORT_SYMBOL_GPL(insert_resource);
953 * insert_resource_expand_to_fit - Insert a resource into the resource tree
954 * @root: root resource descriptor
955 * @new: new resource to insert
957 * Insert a resource into the resource tree, possibly expanding it in order
958 * to make it encompass any conflicting resources.
960 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
962 if (new->parent)
963 return;
965 write_lock(&resource_lock);
966 for (;;) {
967 struct resource *conflict;
969 conflict = __insert_resource(root, new);
970 if (!conflict)
971 break;
972 if (conflict == root)
973 break;
975 /* Ok, expand resource to cover the conflict, then try again .. */
976 if (conflict->start < new->start)
977 new->start = conflict->start;
978 if (conflict->end > new->end)
979 new->end = conflict->end;
981 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
983 write_unlock(&resource_lock);
986 * Not for general consumption, only early boot memory map parsing, PCI
987 * resource discovery, and late discovery of CXL resources are expected
988 * to use this interface. The former are built-in and only the latter,
989 * CXL, is a module.
991 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
994 * remove_resource - Remove a resource in the resource tree
995 * @old: resource to remove
997 * Returns 0 on success, -EINVAL if the resource is not valid.
999 * This function removes a resource previously inserted by insert_resource()
1000 * or insert_resource_conflict(), and moves the children (if any) up to
1001 * where they were before. insert_resource() and insert_resource_conflict()
1002 * insert a new resource, and move any conflicting resources down to the
1003 * children of the new resource.
1005 * insert_resource(), insert_resource_conflict() and remove_resource() are
1006 * intended for producers of resources, such as FW modules and bus drivers.
1008 int remove_resource(struct resource *old)
1010 int retval;
1012 write_lock(&resource_lock);
1013 retval = __release_resource(old, false);
1014 write_unlock(&resource_lock);
1015 return retval;
1017 EXPORT_SYMBOL_GPL(remove_resource);
1019 static int __adjust_resource(struct resource *res, resource_size_t start,
1020 resource_size_t size)
1022 struct resource *tmp, *parent = res->parent;
1023 resource_size_t end = start + size - 1;
1024 int result = -EBUSY;
1026 if (!parent)
1027 goto skip;
1029 if ((start < parent->start) || (end > parent->end))
1030 goto out;
1032 if (res->sibling && (res->sibling->start <= end))
1033 goto out;
1035 tmp = parent->child;
1036 if (tmp != res) {
1037 while (tmp->sibling != res)
1038 tmp = tmp->sibling;
1039 if (start <= tmp->end)
1040 goto out;
1043 skip:
1044 for (tmp = res->child; tmp; tmp = tmp->sibling)
1045 if ((tmp->start < start) || (tmp->end > end))
1046 goto out;
1048 res->start = start;
1049 res->end = end;
1050 result = 0;
1052 out:
1053 return result;
1057 * adjust_resource - modify a resource's start and size
1058 * @res: resource to modify
1059 * @start: new start value
1060 * @size: new size
1062 * Given an existing resource, change its start and size to match the
1063 * arguments. Returns 0 on success, -EBUSY if it can't fit.
1064 * Existing children of the resource are assumed to be immutable.
1066 int adjust_resource(struct resource *res, resource_size_t start,
1067 resource_size_t size)
1069 int result;
1071 write_lock(&resource_lock);
1072 result = __adjust_resource(res, start, size);
1073 write_unlock(&resource_lock);
1074 return result;
1076 EXPORT_SYMBOL(adjust_resource);
1078 static void __init
1079 __reserve_region_with_split(struct resource *root, resource_size_t start,
1080 resource_size_t end, const char *name)
1082 struct resource *parent = root;
1083 struct resource *conflict;
1084 struct resource *res = alloc_resource(GFP_ATOMIC);
1085 struct resource *next_res = NULL;
1086 int type = resource_type(root);
1088 if (!res)
1089 return;
1091 res->name = name;
1092 res->start = start;
1093 res->end = end;
1094 res->flags = type | IORESOURCE_BUSY;
1095 res->desc = IORES_DESC_NONE;
1097 while (1) {
1099 conflict = __request_resource(parent, res);
1100 if (!conflict) {
1101 if (!next_res)
1102 break;
1103 res = next_res;
1104 next_res = NULL;
1105 continue;
1108 /* conflict covered whole area */
1109 if (conflict->start <= res->start &&
1110 conflict->end >= res->end) {
1111 free_resource(res);
1112 WARN_ON(next_res);
1113 break;
1116 /* failed, split and try again */
1117 if (conflict->start > res->start) {
1118 end = res->end;
1119 res->end = conflict->start - 1;
1120 if (conflict->end < end) {
1121 next_res = alloc_resource(GFP_ATOMIC);
1122 if (!next_res) {
1123 free_resource(res);
1124 break;
1126 next_res->name = name;
1127 next_res->start = conflict->end + 1;
1128 next_res->end = end;
1129 next_res->flags = type | IORESOURCE_BUSY;
1130 next_res->desc = IORES_DESC_NONE;
1132 } else {
1133 res->start = conflict->end + 1;
1139 void __init
1140 reserve_region_with_split(struct resource *root, resource_size_t start,
1141 resource_size_t end, const char *name)
1143 int abort = 0;
1145 write_lock(&resource_lock);
1146 if (root->start > start || root->end < end) {
1147 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1148 (unsigned long long)start, (unsigned long long)end,
1149 root);
1150 if (start > root->end || end < root->start)
1151 abort = 1;
1152 else {
1153 if (end > root->end)
1154 end = root->end;
1155 if (start < root->start)
1156 start = root->start;
1157 pr_err("fixing request to [0x%llx-0x%llx]\n",
1158 (unsigned long long)start,
1159 (unsigned long long)end);
1161 dump_stack();
1163 if (!abort)
1164 __reserve_region_with_split(root, start, end, name);
1165 write_unlock(&resource_lock);
1169 * resource_alignment - calculate resource's alignment
1170 * @res: resource pointer
1172 * Returns alignment on success, 0 (invalid alignment) on failure.
1174 resource_size_t resource_alignment(struct resource *res)
1176 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1177 case IORESOURCE_SIZEALIGN:
1178 return resource_size(res);
1179 case IORESOURCE_STARTALIGN:
1180 return res->start;
1181 default:
1182 return 0;
1187 * This is compatibility stuff for IO resources.
1189 * Note how this, unlike the above, knows about
1190 * the IO flag meanings (busy etc).
1192 * request_region creates a new busy region.
1194 * release_region releases a matching busy region.
1197 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1199 static struct inode *iomem_inode;
1201 #ifdef CONFIG_IO_STRICT_DEVMEM
1202 static void revoke_iomem(struct resource *res)
1204 /* pairs with smp_store_release() in iomem_init_inode() */
1205 struct inode *inode = smp_load_acquire(&iomem_inode);
1208 * Check that the initialization has completed. Losing the race
1209 * is ok because it means drivers are claiming resources before
1210 * the fs_initcall level of init and prevent iomem_get_mapping users
1211 * from establishing mappings.
1213 if (!inode)
1214 return;
1217 * The expectation is that the driver has successfully marked
1218 * the resource busy by this point, so devmem_is_allowed()
1219 * should start returning false, however for performance this
1220 * does not iterate the entire resource range.
1222 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1223 devmem_is_allowed(PHYS_PFN(res->end))) {
1225 * *cringe* iomem=relaxed says "go ahead, what's the
1226 * worst that can happen?"
1228 return;
1231 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1233 #else
1234 static void revoke_iomem(struct resource *res) {}
1235 #endif
1237 struct address_space *iomem_get_mapping(void)
1240 * This function is only called from file open paths, hence guaranteed
1241 * that fs_initcalls have completed and no need to check for NULL. But
1242 * since revoke_iomem can be called before the initcall we still need
1243 * the barrier to appease checkers.
1245 return smp_load_acquire(&iomem_inode)->i_mapping;
1248 static int __request_region_locked(struct resource *res, struct resource *parent,
1249 resource_size_t start, resource_size_t n,
1250 const char *name, int flags)
1252 DECLARE_WAITQUEUE(wait, current);
1254 res->name = name;
1255 res->start = start;
1256 res->end = start + n - 1;
1258 for (;;) {
1259 struct resource *conflict;
1261 res->flags = resource_type(parent) | resource_ext_type(parent);
1262 res->flags |= IORESOURCE_BUSY | flags;
1263 res->desc = parent->desc;
1265 conflict = __request_resource(parent, res);
1266 if (!conflict)
1267 break;
1269 * mm/hmm.c reserves physical addresses which then
1270 * become unavailable to other users. Conflicts are
1271 * not expected. Warn to aid debugging if encountered.
1273 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1274 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1275 conflict->name, conflict, res);
1277 if (conflict != parent) {
1278 if (!(conflict->flags & IORESOURCE_BUSY)) {
1279 parent = conflict;
1280 continue;
1283 if (conflict->flags & flags & IORESOURCE_MUXED) {
1284 add_wait_queue(&muxed_resource_wait, &wait);
1285 write_unlock(&resource_lock);
1286 set_current_state(TASK_UNINTERRUPTIBLE);
1287 schedule();
1288 remove_wait_queue(&muxed_resource_wait, &wait);
1289 write_lock(&resource_lock);
1290 continue;
1292 /* Uhhuh, that didn't work out.. */
1293 return -EBUSY;
1296 return 0;
1300 * __request_region - create a new busy resource region
1301 * @parent: parent resource descriptor
1302 * @start: resource start address
1303 * @n: resource region size
1304 * @name: reserving caller's ID string
1305 * @flags: IO resource flags
1307 struct resource *__request_region(struct resource *parent,
1308 resource_size_t start, resource_size_t n,
1309 const char *name, int flags)
1311 struct resource *res = alloc_resource(GFP_KERNEL);
1312 int ret;
1314 if (!res)
1315 return NULL;
1317 write_lock(&resource_lock);
1318 ret = __request_region_locked(res, parent, start, n, name, flags);
1319 write_unlock(&resource_lock);
1321 if (ret) {
1322 free_resource(res);
1323 return NULL;
1326 if (parent == &iomem_resource)
1327 revoke_iomem(res);
1329 return res;
1331 EXPORT_SYMBOL(__request_region);
1334 * __release_region - release a previously reserved resource region
1335 * @parent: parent resource descriptor
1336 * @start: resource start address
1337 * @n: resource region size
1339 * The described resource region must match a currently busy region.
1341 void __release_region(struct resource *parent, resource_size_t start,
1342 resource_size_t n)
1344 struct resource **p;
1345 resource_size_t end;
1347 p = &parent->child;
1348 end = start + n - 1;
1350 write_lock(&resource_lock);
1352 for (;;) {
1353 struct resource *res = *p;
1355 if (!res)
1356 break;
1357 if (res->start <= start && res->end >= end) {
1358 if (!(res->flags & IORESOURCE_BUSY)) {
1359 p = &res->child;
1360 continue;
1362 if (res->start != start || res->end != end)
1363 break;
1364 *p = res->sibling;
1365 write_unlock(&resource_lock);
1366 if (res->flags & IORESOURCE_MUXED)
1367 wake_up(&muxed_resource_wait);
1368 free_resource(res);
1369 return;
1371 p = &res->sibling;
1374 write_unlock(&resource_lock);
1376 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1378 EXPORT_SYMBOL(__release_region);
1380 #ifdef CONFIG_MEMORY_HOTREMOVE
1382 * release_mem_region_adjustable - release a previously reserved memory region
1383 * @start: resource start address
1384 * @size: resource region size
1386 * This interface is intended for memory hot-delete. The requested region
1387 * is released from a currently busy memory resource. The requested region
1388 * must either match exactly or fit into a single busy resource entry. In
1389 * the latter case, the remaining resource is adjusted accordingly.
1390 * Existing children of the busy memory resource must be immutable in the
1391 * request.
1393 * Note:
1394 * - Additional release conditions, such as overlapping region, can be
1395 * supported after they are confirmed as valid cases.
1396 * - When a busy memory resource gets split into two entries, the code
1397 * assumes that all children remain in the lower address entry for
1398 * simplicity. Enhance this logic when necessary.
1400 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1402 struct resource *parent = &iomem_resource;
1403 struct resource *new_res = NULL;
1404 bool alloc_nofail = false;
1405 struct resource **p;
1406 struct resource *res;
1407 resource_size_t end;
1409 end = start + size - 1;
1410 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1411 return;
1414 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1415 * just before releasing the region. This is highly unlikely to
1416 * fail - let's play save and make it never fail as the caller cannot
1417 * perform any error handling (e.g., trying to re-add memory will fail
1418 * similarly).
1420 retry:
1421 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1423 p = &parent->child;
1424 write_lock(&resource_lock);
1426 while ((res = *p)) {
1427 if (res->start >= end)
1428 break;
1430 /* look for the next resource if it does not fit into */
1431 if (res->start > start || res->end < end) {
1432 p = &res->sibling;
1433 continue;
1436 if (!(res->flags & IORESOURCE_MEM))
1437 break;
1439 if (!(res->flags & IORESOURCE_BUSY)) {
1440 p = &res->child;
1441 continue;
1444 /* found the target resource; let's adjust accordingly */
1445 if (res->start == start && res->end == end) {
1446 /* free the whole entry */
1447 *p = res->sibling;
1448 free_resource(res);
1449 } else if (res->start == start && res->end != end) {
1450 /* adjust the start */
1451 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1452 res->end - end));
1453 } else if (res->start != start && res->end == end) {
1454 /* adjust the end */
1455 WARN_ON_ONCE(__adjust_resource(res, res->start,
1456 start - res->start));
1457 } else {
1458 /* split into two entries - we need a new resource */
1459 if (!new_res) {
1460 new_res = alloc_resource(GFP_ATOMIC);
1461 if (!new_res) {
1462 alloc_nofail = true;
1463 write_unlock(&resource_lock);
1464 goto retry;
1467 new_res->name = res->name;
1468 new_res->start = end + 1;
1469 new_res->end = res->end;
1470 new_res->flags = res->flags;
1471 new_res->desc = res->desc;
1472 new_res->parent = res->parent;
1473 new_res->sibling = res->sibling;
1474 new_res->child = NULL;
1476 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1477 start - res->start)))
1478 break;
1479 res->sibling = new_res;
1480 new_res = NULL;
1483 break;
1486 write_unlock(&resource_lock);
1487 free_resource(new_res);
1489 #endif /* CONFIG_MEMORY_HOTREMOVE */
1491 #ifdef CONFIG_MEMORY_HOTPLUG
1492 static bool system_ram_resources_mergeable(struct resource *r1,
1493 struct resource *r2)
1495 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1496 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1497 r1->name == r2->name && r1->desc == r2->desc &&
1498 !r1->child && !r2->child;
1502 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1503 * merge it with adjacent, mergeable resources
1504 * @res: resource descriptor
1506 * This interface is intended for memory hotplug, whereby lots of contiguous
1507 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1508 * the actual resource boundaries are not of interest (e.g., it might be
1509 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1510 * same parent, and that don't have any children are considered. All mergeable
1511 * resources must be immutable during the request.
1513 * Note:
1514 * - The caller has to make sure that no pointers to resources that are
1515 * marked mergeable are used anymore after this call - the resource might
1516 * be freed and the pointer might be stale!
1517 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1519 void merge_system_ram_resource(struct resource *res)
1521 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1522 struct resource *cur;
1524 if (WARN_ON_ONCE((res->flags & flags) != flags))
1525 return;
1527 write_lock(&resource_lock);
1528 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1530 /* Try to merge with next item in the list. */
1531 cur = res->sibling;
1532 if (cur && system_ram_resources_mergeable(res, cur)) {
1533 res->end = cur->end;
1534 res->sibling = cur->sibling;
1535 free_resource(cur);
1538 /* Try to merge with previous item in the list. */
1539 cur = res->parent->child;
1540 while (cur && cur->sibling != res)
1541 cur = cur->sibling;
1542 if (cur && system_ram_resources_mergeable(cur, res)) {
1543 cur->end = res->end;
1544 cur->sibling = res->sibling;
1545 free_resource(res);
1547 write_unlock(&resource_lock);
1549 #endif /* CONFIG_MEMORY_HOTPLUG */
1552 * Managed region resource
1554 static void devm_resource_release(struct device *dev, void *ptr)
1556 struct resource **r = ptr;
1558 release_resource(*r);
1562 * devm_request_resource() - request and reserve an I/O or memory resource
1563 * @dev: device for which to request the resource
1564 * @root: root of the resource tree from which to request the resource
1565 * @new: descriptor of the resource to request
1567 * This is a device-managed version of request_resource(). There is usually
1568 * no need to release resources requested by this function explicitly since
1569 * that will be taken care of when the device is unbound from its driver.
1570 * If for some reason the resource needs to be released explicitly, because
1571 * of ordering issues for example, drivers must call devm_release_resource()
1572 * rather than the regular release_resource().
1574 * When a conflict is detected between any existing resources and the newly
1575 * requested resource, an error message will be printed.
1577 * Returns 0 on success or a negative error code on failure.
1579 int devm_request_resource(struct device *dev, struct resource *root,
1580 struct resource *new)
1582 struct resource *conflict, **ptr;
1584 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1585 if (!ptr)
1586 return -ENOMEM;
1588 *ptr = new;
1590 conflict = request_resource_conflict(root, new);
1591 if (conflict) {
1592 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1593 new, conflict->name, conflict);
1594 devres_free(ptr);
1595 return -EBUSY;
1598 devres_add(dev, ptr);
1599 return 0;
1601 EXPORT_SYMBOL(devm_request_resource);
1603 static int devm_resource_match(struct device *dev, void *res, void *data)
1605 struct resource **ptr = res;
1607 return *ptr == data;
1611 * devm_release_resource() - release a previously requested resource
1612 * @dev: device for which to release the resource
1613 * @new: descriptor of the resource to release
1615 * Releases a resource previously requested using devm_request_resource().
1617 void devm_release_resource(struct device *dev, struct resource *new)
1619 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1620 new));
1622 EXPORT_SYMBOL(devm_release_resource);
1624 struct region_devres {
1625 struct resource *parent;
1626 resource_size_t start;
1627 resource_size_t n;
1630 static void devm_region_release(struct device *dev, void *res)
1632 struct region_devres *this = res;
1634 __release_region(this->parent, this->start, this->n);
1637 static int devm_region_match(struct device *dev, void *res, void *match_data)
1639 struct region_devres *this = res, *match = match_data;
1641 return this->parent == match->parent &&
1642 this->start == match->start && this->n == match->n;
1645 struct resource *
1646 __devm_request_region(struct device *dev, struct resource *parent,
1647 resource_size_t start, resource_size_t n, const char *name)
1649 struct region_devres *dr = NULL;
1650 struct resource *res;
1652 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1653 GFP_KERNEL);
1654 if (!dr)
1655 return NULL;
1657 dr->parent = parent;
1658 dr->start = start;
1659 dr->n = n;
1661 res = __request_region(parent, start, n, name, 0);
1662 if (res)
1663 devres_add(dev, dr);
1664 else
1665 devres_free(dr);
1667 return res;
1669 EXPORT_SYMBOL(__devm_request_region);
1671 void __devm_release_region(struct device *dev, struct resource *parent,
1672 resource_size_t start, resource_size_t n)
1674 struct region_devres match_data = { parent, start, n };
1676 __release_region(parent, start, n);
1677 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1678 &match_data));
1680 EXPORT_SYMBOL(__devm_release_region);
1683 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1685 #define MAXRESERVE 4
1686 static int __init reserve_setup(char *str)
1688 static int reserved;
1689 static struct resource reserve[MAXRESERVE];
1691 for (;;) {
1692 unsigned int io_start, io_num;
1693 int x = reserved;
1694 struct resource *parent;
1696 if (get_option(&str, &io_start) != 2)
1697 break;
1698 if (get_option(&str, &io_num) == 0)
1699 break;
1700 if (x < MAXRESERVE) {
1701 struct resource *res = reserve + x;
1704 * If the region starts below 0x10000, we assume it's
1705 * I/O port space; otherwise assume it's memory.
1707 if (io_start < 0x10000) {
1708 res->flags = IORESOURCE_IO;
1709 parent = &ioport_resource;
1710 } else {
1711 res->flags = IORESOURCE_MEM;
1712 parent = &iomem_resource;
1714 res->name = "reserved";
1715 res->start = io_start;
1716 res->end = io_start + io_num - 1;
1717 res->flags |= IORESOURCE_BUSY;
1718 res->desc = IORES_DESC_NONE;
1719 res->child = NULL;
1720 if (request_resource(parent, res) == 0)
1721 reserved = x+1;
1724 return 1;
1726 __setup("reserve=", reserve_setup);
1729 * Check if the requested addr and size spans more than any slot in the
1730 * iomem resource tree.
1732 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1734 resource_size_t end = addr + size - 1;
1735 struct resource *p;
1736 int err = 0;
1738 read_lock(&resource_lock);
1739 for_each_resource(&iomem_resource, p, false) {
1741 * We can probably skip the resources without
1742 * IORESOURCE_IO attribute?
1744 if (p->start > end)
1745 continue;
1746 if (p->end < addr)
1747 continue;
1748 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1749 PFN_DOWN(p->end) >= PFN_DOWN(end))
1750 continue;
1752 * if a resource is "BUSY", it's not a hardware resource
1753 * but a driver mapping of such a resource; we don't want
1754 * to warn for those; some drivers legitimately map only
1755 * partial hardware resources. (example: vesafb)
1757 if (p->flags & IORESOURCE_BUSY)
1758 continue;
1760 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1761 &addr, &end, p->name, p);
1762 err = -1;
1763 break;
1765 read_unlock(&resource_lock);
1767 return err;
1770 #ifdef CONFIG_STRICT_DEVMEM
1771 static int strict_iomem_checks = 1;
1772 #else
1773 static int strict_iomem_checks;
1774 #endif
1777 * Check if an address is exclusive to the kernel and must not be mapped to
1778 * user space, for example, via /dev/mem.
1780 * Returns true if exclusive to the kernel, otherwise returns false.
1782 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1784 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1785 IORESOURCE_EXCLUSIVE;
1786 bool skip_children = false, err = false;
1787 struct resource *p;
1789 read_lock(&resource_lock);
1790 for_each_resource(root, p, skip_children) {
1791 if (p->start >= addr + size)
1792 break;
1793 if (p->end < addr) {
1794 skip_children = true;
1795 continue;
1797 skip_children = false;
1800 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1801 * IORESOURCE_EXCLUSIVE is set, even if they
1802 * are not busy and even if "iomem=relaxed" is set. The
1803 * responsible driver dynamically adds/removes system RAM within
1804 * such an area and uncontrolled access is dangerous.
1806 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1807 err = true;
1808 break;
1812 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1813 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1814 * resource is busy.
1816 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1817 continue;
1818 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1819 || p->flags & IORESOURCE_EXCLUSIVE) {
1820 err = true;
1821 break;
1824 read_unlock(&resource_lock);
1826 return err;
1829 bool iomem_is_exclusive(u64 addr)
1831 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1832 PAGE_SIZE);
1835 struct resource_entry *resource_list_create_entry(struct resource *res,
1836 size_t extra_size)
1838 struct resource_entry *entry;
1840 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1841 if (entry) {
1842 INIT_LIST_HEAD(&entry->node);
1843 entry->res = res ? res : &entry->__res;
1846 return entry;
1848 EXPORT_SYMBOL(resource_list_create_entry);
1850 void resource_list_free(struct list_head *head)
1852 struct resource_entry *entry, *tmp;
1854 list_for_each_entry_safe(entry, tmp, head, node)
1855 resource_list_destroy_entry(entry);
1857 EXPORT_SYMBOL(resource_list_free);
1859 #ifdef CONFIG_GET_FREE_REGION
1860 #define GFR_DESCENDING (1UL << 0)
1861 #define GFR_REQUEST_REGION (1UL << 1)
1862 #ifdef PA_SECTION_SHIFT
1863 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1864 #else
1865 #define GFR_DEFAULT_ALIGN PAGE_SIZE
1866 #endif
1868 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1869 resource_size_t align, unsigned long flags)
1871 if (flags & GFR_DESCENDING) {
1872 resource_size_t end;
1874 end = min_t(resource_size_t, base->end, PHYSMEM_END);
1875 return end - size + 1;
1878 return ALIGN(max(base->start, align), align);
1881 static bool gfr_continue(struct resource *base, resource_size_t addr,
1882 resource_size_t size, unsigned long flags)
1884 if (flags & GFR_DESCENDING)
1885 return addr > size && addr >= base->start;
1887 * In the ascend case be careful that the last increment by
1888 * @size did not wrap 0.
1890 return addr > addr - size &&
1891 addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1894 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1895 unsigned long flags)
1897 if (flags & GFR_DESCENDING)
1898 return addr - size;
1899 return addr + size;
1902 static void remove_free_mem_region(void *_res)
1904 struct resource *res = _res;
1906 if (res->parent)
1907 remove_resource(res);
1908 free_resource(res);
1911 static struct resource *
1912 get_free_mem_region(struct device *dev, struct resource *base,
1913 resource_size_t size, const unsigned long align,
1914 const char *name, const unsigned long desc,
1915 const unsigned long flags)
1917 resource_size_t addr;
1918 struct resource *res;
1919 struct region_devres *dr = NULL;
1921 size = ALIGN(size, align);
1923 res = alloc_resource(GFP_KERNEL);
1924 if (!res)
1925 return ERR_PTR(-ENOMEM);
1927 if (dev && (flags & GFR_REQUEST_REGION)) {
1928 dr = devres_alloc(devm_region_release,
1929 sizeof(struct region_devres), GFP_KERNEL);
1930 if (!dr) {
1931 free_resource(res);
1932 return ERR_PTR(-ENOMEM);
1934 } else if (dev) {
1935 if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1936 return ERR_PTR(-ENOMEM);
1939 write_lock(&resource_lock);
1940 for (addr = gfr_start(base, size, align, flags);
1941 gfr_continue(base, addr, align, flags);
1942 addr = gfr_next(addr, align, flags)) {
1943 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1944 REGION_DISJOINT)
1945 continue;
1947 if (flags & GFR_REQUEST_REGION) {
1948 if (__request_region_locked(res, &iomem_resource, addr,
1949 size, name, 0))
1950 break;
1952 if (dev) {
1953 dr->parent = &iomem_resource;
1954 dr->start = addr;
1955 dr->n = size;
1956 devres_add(dev, dr);
1959 res->desc = desc;
1960 write_unlock(&resource_lock);
1964 * A driver is claiming this region so revoke any
1965 * mappings.
1967 revoke_iomem(res);
1968 } else {
1969 res->start = addr;
1970 res->end = addr + size - 1;
1971 res->name = name;
1972 res->desc = desc;
1973 res->flags = IORESOURCE_MEM;
1976 * Only succeed if the resource hosts an exclusive
1977 * range after the insert
1979 if (__insert_resource(base, res) || res->child)
1980 break;
1982 write_unlock(&resource_lock);
1985 return res;
1987 write_unlock(&resource_lock);
1989 if (flags & GFR_REQUEST_REGION) {
1990 free_resource(res);
1991 devres_free(dr);
1992 } else if (dev)
1993 devm_release_action(dev, remove_free_mem_region, res);
1995 return ERR_PTR(-ERANGE);
1999 * devm_request_free_mem_region - find free region for device private memory
2001 * @dev: device struct to bind the resource to
2002 * @size: size in bytes of the device memory to add
2003 * @base: resource tree to look in
2005 * This function tries to find an empty range of physical address big enough to
2006 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2007 * memory, which in turn allocates struct pages.
2009 struct resource *devm_request_free_mem_region(struct device *dev,
2010 struct resource *base, unsigned long size)
2012 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2014 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2015 dev_name(dev),
2016 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2018 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2020 struct resource *request_free_mem_region(struct resource *base,
2021 unsigned long size, const char *name)
2023 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2025 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2026 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2028 EXPORT_SYMBOL_GPL(request_free_mem_region);
2031 * alloc_free_mem_region - find a free region relative to @base
2032 * @base: resource that will parent the new resource
2033 * @size: size in bytes of memory to allocate from @base
2034 * @align: alignment requirements for the allocation
2035 * @name: resource name
2037 * Buses like CXL, that can dynamically instantiate new memory regions,
2038 * need a method to allocate physical address space for those regions.
2039 * Allocate and insert a new resource to cover a free, unclaimed by a
2040 * descendant of @base, range in the span of @base.
2042 struct resource *alloc_free_mem_region(struct resource *base,
2043 unsigned long size, unsigned long align,
2044 const char *name)
2046 /* Default of ascending direction and insert resource */
2047 unsigned long flags = 0;
2049 return get_free_mem_region(NULL, base, size, align, name,
2050 IORES_DESC_NONE, flags);
2052 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2053 #endif /* CONFIG_GET_FREE_REGION */
2055 static int __init strict_iomem(char *str)
2057 if (strstr(str, "relaxed"))
2058 strict_iomem_checks = 0;
2059 if (strstr(str, "strict"))
2060 strict_iomem_checks = 1;
2061 return 1;
2064 static int iomem_fs_init_fs_context(struct fs_context *fc)
2066 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2069 static struct file_system_type iomem_fs_type = {
2070 .name = "iomem",
2071 .owner = THIS_MODULE,
2072 .init_fs_context = iomem_fs_init_fs_context,
2073 .kill_sb = kill_anon_super,
2076 static int __init iomem_init_inode(void)
2078 static struct vfsmount *iomem_vfs_mount;
2079 static int iomem_fs_cnt;
2080 struct inode *inode;
2081 int rc;
2083 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2084 if (rc < 0) {
2085 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2086 return rc;
2089 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2090 if (IS_ERR(inode)) {
2091 rc = PTR_ERR(inode);
2092 pr_err("Cannot allocate inode for iomem: %d\n", rc);
2093 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2094 return rc;
2098 * Publish iomem revocation inode initialized.
2099 * Pairs with smp_load_acquire() in revoke_iomem().
2101 smp_store_release(&iomem_inode, inode);
2103 return 0;
2106 fs_initcall(iomem_init_inode);
2108 __setup("iomem=", strict_iomem);