1 // SPDX-License-Identifier: GPL-2.0-only
3 * 3-axis accelerometer driver supporting many Bosch-Sensortec chips
4 * Copyright (c) 2014, Intel Corporation.
7 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/acpi.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/property.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/consumer.h>
26 #include "bmc150-accel.h"
28 #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
29 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
31 #define BMC150_ACCEL_REG_CHIP_ID 0x00
33 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
34 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
35 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
36 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
37 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
38 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
40 #define BMC150_ACCEL_REG_PMU_LPW 0x11
41 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
42 #define BMC150_ACCEL_PMU_MODE_SHIFT 5
43 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
44 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
46 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
48 #define BMC150_ACCEL_DEF_RANGE_2G 0x03
49 #define BMC150_ACCEL_DEF_RANGE_4G 0x05
50 #define BMC150_ACCEL_DEF_RANGE_8G 0x08
51 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
53 /* Default BW: 125Hz */
54 #define BMC150_ACCEL_REG_PMU_BW 0x10
55 #define BMC150_ACCEL_DEF_BW 125
57 #define BMC150_ACCEL_REG_RESET 0x14
58 #define BMC150_ACCEL_RESET_VAL 0xB6
60 #define BMC150_ACCEL_REG_INT_MAP_0 0x19
61 #define BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE BIT(2)
63 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
64 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA BIT(0)
65 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM BIT(1)
66 #define BMC150_ACCEL_INT_MAP_1_BIT_INT1_FFULL BIT(2)
67 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FFULL BIT(5)
68 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM BIT(6)
69 #define BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA BIT(7)
71 #define BMC150_ACCEL_REG_INT_MAP_2 0x1B
72 #define BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE BIT(2)
74 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
75 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
76 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
77 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
79 #define BMC150_ACCEL_REG_INT_EN_0 0x16
80 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
81 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
82 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
84 #define BMC150_ACCEL_REG_INT_EN_1 0x17
85 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
86 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
87 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
89 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
90 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
91 #define BMC150_ACCEL_INT_OUT_CTRL_INT2_LVL BIT(2)
93 #define BMC150_ACCEL_REG_INT_5 0x27
94 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
96 #define BMC150_ACCEL_REG_INT_6 0x28
97 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
99 /* Slope duration in terms of number of samples */
100 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
101 /* in terms of multiples of g's/LSB, based on range */
102 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
104 #define BMC150_ACCEL_REG_XOUT_L 0x02
106 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
108 /* Sleep Duration values */
109 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
110 #define BMC150_ACCEL_SLEEP_1_MS 0x06
111 #define BMC150_ACCEL_SLEEP_2_MS 0x07
112 #define BMC150_ACCEL_SLEEP_4_MS 0x08
113 #define BMC150_ACCEL_SLEEP_6_MS 0x09
114 #define BMC150_ACCEL_SLEEP_10_MS 0x0A
115 #define BMC150_ACCEL_SLEEP_25_MS 0x0B
116 #define BMC150_ACCEL_SLEEP_50_MS 0x0C
117 #define BMC150_ACCEL_SLEEP_100_MS 0x0D
118 #define BMC150_ACCEL_SLEEP_500_MS 0x0E
119 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
121 #define BMC150_ACCEL_REG_TEMP 0x08
122 #define BMC150_ACCEL_TEMP_CENTER_VAL 23
124 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
125 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
127 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
128 #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
129 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
130 #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
131 #define BMC150_ACCEL_FIFO_LENGTH 32
133 enum bmc150_accel_axis
{
140 enum bmc150_power_modes
{
141 BMC150_ACCEL_SLEEP_MODE_NORMAL
,
142 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND
,
143 BMC150_ACCEL_SLEEP_MODE_LPM
,
144 BMC150_ACCEL_SLEEP_MODE_SUSPEND
= 0x04,
147 struct bmc150_scale_info
{
152 struct bmc150_accel_chip_info
{
155 const struct iio_chan_spec
*channels
;
157 const struct bmc150_scale_info scale_table
[4];
160 static const struct {
164 } bmc150_accel_samp_freq_table
[] = { {15, 620000, 0x08},
173 static __maybe_unused
const struct {
176 } bmc150_accel_sample_upd_time
[] = { {0x08, 64},
185 static const struct {
188 } bmc150_accel_sleep_value_table
[] = { {0, 0},
189 {500, BMC150_ACCEL_SLEEP_500_MICRO
},
190 {1000, BMC150_ACCEL_SLEEP_1_MS
},
191 {2000, BMC150_ACCEL_SLEEP_2_MS
},
192 {4000, BMC150_ACCEL_SLEEP_4_MS
},
193 {6000, BMC150_ACCEL_SLEEP_6_MS
},
194 {10000, BMC150_ACCEL_SLEEP_10_MS
},
195 {25000, BMC150_ACCEL_SLEEP_25_MS
},
196 {50000, BMC150_ACCEL_SLEEP_50_MS
},
197 {100000, BMC150_ACCEL_SLEEP_100_MS
},
198 {500000, BMC150_ACCEL_SLEEP_500_MS
},
199 {1000000, BMC150_ACCEL_SLEEP_1_SEC
} };
201 const struct regmap_config bmc150_regmap_conf
= {
204 .max_register
= 0x3f,
206 EXPORT_SYMBOL_NS_GPL(bmc150_regmap_conf
, IIO_BMC150
);
208 static int bmc150_accel_set_mode(struct bmc150_accel_data
*data
,
209 enum bmc150_power_modes mode
,
212 struct device
*dev
= regmap_get_device(data
->regmap
);
219 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_sleep_value_table
);
221 if (bmc150_accel_sleep_value_table
[i
].sleep_dur
==
224 bmc150_accel_sleep_value_table
[i
].reg_value
;
233 lpw_bits
= mode
<< BMC150_ACCEL_PMU_MODE_SHIFT
;
234 lpw_bits
|= (dur_val
<< BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT
);
236 dev_dbg(dev
, "Set Mode bits %x\n", lpw_bits
);
238 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_PMU_LPW
, lpw_bits
);
240 dev_err(dev
, "Error writing reg_pmu_lpw\n");
247 static int bmc150_accel_set_bw(struct bmc150_accel_data
*data
, int val
,
253 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_samp_freq_table
); ++i
) {
254 if (bmc150_accel_samp_freq_table
[i
].val
== val
&&
255 bmc150_accel_samp_freq_table
[i
].val2
== val2
) {
256 ret
= regmap_write(data
->regmap
,
257 BMC150_ACCEL_REG_PMU_BW
,
258 bmc150_accel_samp_freq_table
[i
].bw_bits
);
263 bmc150_accel_samp_freq_table
[i
].bw_bits
;
271 static int bmc150_accel_update_slope(struct bmc150_accel_data
*data
)
273 struct device
*dev
= regmap_get_device(data
->regmap
);
276 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_6
,
279 dev_err(dev
, "Error writing reg_int_6\n");
283 ret
= regmap_update_bits(data
->regmap
, BMC150_ACCEL_REG_INT_5
,
284 BMC150_ACCEL_SLOPE_DUR_MASK
, data
->slope_dur
);
286 dev_err(dev
, "Error updating reg_int_5\n");
290 dev_dbg(dev
, "%x %x\n", data
->slope_thres
, data
->slope_dur
);
295 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger
*t
,
299 return bmc150_accel_update_slope(t
->data
);
304 static int bmc150_accel_get_bw(struct bmc150_accel_data
*data
, int *val
,
309 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_samp_freq_table
); ++i
) {
310 if (bmc150_accel_samp_freq_table
[i
].bw_bits
== data
->bw_bits
) {
311 *val
= bmc150_accel_samp_freq_table
[i
].val
;
312 *val2
= bmc150_accel_samp_freq_table
[i
].val2
;
313 return IIO_VAL_INT_PLUS_MICRO
;
321 static int bmc150_accel_get_startup_times(struct bmc150_accel_data
*data
)
325 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_sample_upd_time
); ++i
) {
326 if (bmc150_accel_sample_upd_time
[i
].bw_bits
== data
->bw_bits
)
327 return bmc150_accel_sample_upd_time
[i
].msec
;
330 return BMC150_ACCEL_MAX_STARTUP_TIME_MS
;
333 static int bmc150_accel_set_power_state(struct bmc150_accel_data
*data
, bool on
)
335 struct device
*dev
= regmap_get_device(data
->regmap
);
339 ret
= pm_runtime_resume_and_get(dev
);
341 pm_runtime_mark_last_busy(dev
);
342 ret
= pm_runtime_put_autosuspend(dev
);
347 "Failed: %s for %d\n", __func__
, on
);
354 static int bmc150_accel_set_power_state(struct bmc150_accel_data
*data
, bool on
)
362 * Support for getting accelerometer information from BOSC0200 ACPI nodes.
364 * There are 2 variants of the BOSC0200 ACPI node. Some 2-in-1s with 360 degree
365 * hinges declare 2 I2C ACPI-resources for 2 accelerometers, 1 in the display
366 * and 1 in the base of the 2-in-1. On these 2-in-1s the ROMS ACPI object
367 * contains the mount-matrix for the sensor in the display and ROMK contains
368 * the mount-matrix for the sensor in the base. On devices using a single
369 * sensor there is a ROTM ACPI object which contains the mount-matrix.
371 * Here is an incomplete list of devices known to use 1 of these setups:
373 * Yoga devices with 2 accelerometers using ROMS + ROMK for the mount-matrices:
374 * Lenovo Thinkpad Yoga 11e 3th gen
375 * Lenovo Thinkpad Yoga 11e 4th gen
377 * Tablets using a single accelerometer using ROTM for the mount-matrix:
378 * Chuwi Hi8 Pro (CWI513)
379 * Chuwi Vi8 Plus (CWI519)
382 * Jumper EZpad mini 3
384 * Predia Basic Tablet
386 static bool bmc150_apply_bosc0200_acpi_orientation(struct device
*dev
,
387 struct iio_mount_matrix
*orientation
)
389 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
390 acpi_handle handle
= ACPI_HANDLE(dev
);
391 char *name
, *alt_name
, *label
;
393 if (strcmp(dev_name(dev
), "i2c-BOSC0200:base") == 0) {
395 label
= "accel-base";
398 label
= "accel-display";
401 if (acpi_has_method(handle
, "ROTM")) {
403 } else if (acpi_has_method(handle
, alt_name
)) {
405 indio_dev
->label
= label
;
410 return iio_read_acpi_mount_matrix(dev
, orientation
, name
);
413 static bool bmc150_apply_dual250e_acpi_orientation(struct device
*dev
,
414 struct iio_mount_matrix
*orientation
)
416 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
418 if (strcmp(dev_name(dev
), "i2c-DUAL250E:base") == 0)
419 indio_dev
->label
= "accel-base";
421 indio_dev
->label
= "accel-display";
423 return false; /* DUAL250E fwnodes have no mount matrix info */
426 static bool bmc150_apply_acpi_orientation(struct device
*dev
,
427 struct iio_mount_matrix
*orientation
)
429 struct acpi_device
*adev
= ACPI_COMPANION(dev
);
431 if (adev
&& acpi_dev_hid_uid_match(adev
, "BOSC0200", NULL
))
432 return bmc150_apply_bosc0200_acpi_orientation(dev
, orientation
);
434 if (adev
&& acpi_dev_hid_uid_match(adev
, "DUAL250E", NULL
))
435 return bmc150_apply_dual250e_acpi_orientation(dev
, orientation
);
440 static bool bmc150_apply_acpi_orientation(struct device
*dev
,
441 struct iio_mount_matrix
*orientation
)
447 struct bmc150_accel_interrupt_info
{
454 static const struct bmc150_accel_interrupt_info
455 bmc150_accel_interrupts_int1
[BMC150_ACCEL_INTERRUPTS
] = {
456 { /* data ready interrupt */
457 .map_reg
= BMC150_ACCEL_REG_INT_MAP_1
,
458 .map_bitmask
= BMC150_ACCEL_INT_MAP_1_BIT_INT1_DATA
,
459 .en_reg
= BMC150_ACCEL_REG_INT_EN_1
,
460 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_DATA_EN
,
462 { /* motion interrupt */
463 .map_reg
= BMC150_ACCEL_REG_INT_MAP_0
,
464 .map_bitmask
= BMC150_ACCEL_INT_MAP_0_BIT_INT1_SLOPE
,
465 .en_reg
= BMC150_ACCEL_REG_INT_EN_0
,
466 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_SLP_X
|
467 BMC150_ACCEL_INT_EN_BIT_SLP_Y
|
468 BMC150_ACCEL_INT_EN_BIT_SLP_Z
470 { /* fifo watermark interrupt */
471 .map_reg
= BMC150_ACCEL_REG_INT_MAP_1
,
472 .map_bitmask
= BMC150_ACCEL_INT_MAP_1_BIT_INT1_FWM
,
473 .en_reg
= BMC150_ACCEL_REG_INT_EN_1
,
474 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_FWM_EN
,
478 static const struct bmc150_accel_interrupt_info
479 bmc150_accel_interrupts_int2
[BMC150_ACCEL_INTERRUPTS
] = {
480 { /* data ready interrupt */
481 .map_reg
= BMC150_ACCEL_REG_INT_MAP_1
,
482 .map_bitmask
= BMC150_ACCEL_INT_MAP_1_BIT_INT2_DATA
,
483 .en_reg
= BMC150_ACCEL_REG_INT_EN_1
,
484 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_DATA_EN
,
486 { /* motion interrupt */
487 .map_reg
= BMC150_ACCEL_REG_INT_MAP_2
,
488 .map_bitmask
= BMC150_ACCEL_INT_MAP_2_BIT_INT2_SLOPE
,
489 .en_reg
= BMC150_ACCEL_REG_INT_EN_0
,
490 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_SLP_X
|
491 BMC150_ACCEL_INT_EN_BIT_SLP_Y
|
492 BMC150_ACCEL_INT_EN_BIT_SLP_Z
494 { /* fifo watermark interrupt */
495 .map_reg
= BMC150_ACCEL_REG_INT_MAP_1
,
496 .map_bitmask
= BMC150_ACCEL_INT_MAP_1_BIT_INT2_FWM
,
497 .en_reg
= BMC150_ACCEL_REG_INT_EN_1
,
498 .en_bitmask
= BMC150_ACCEL_INT_EN_BIT_FWM_EN
,
502 static void bmc150_accel_interrupts_setup(struct iio_dev
*indio_dev
,
503 struct bmc150_accel_data
*data
, int irq
)
505 const struct bmc150_accel_interrupt_info
*irq_info
= NULL
;
506 struct device
*dev
= regmap_get_device(data
->regmap
);
510 * For now we map all interrupts to the same output pin.
511 * However, some boards may have just INT2 (and not INT1) connected,
512 * so we try to detect which IRQ it is based on the interrupt-names.
513 * Without interrupt-names, we assume the irq belongs to INT1.
515 irq_info
= bmc150_accel_interrupts_int1
;
516 if (data
->type
== BOSCH_BMC156
||
517 irq
== fwnode_irq_get_byname(dev_fwnode(dev
), "INT2"))
518 irq_info
= bmc150_accel_interrupts_int2
;
520 for (i
= 0; i
< BMC150_ACCEL_INTERRUPTS
; i
++)
521 data
->interrupts
[i
].info
= &irq_info
[i
];
524 static int bmc150_accel_set_interrupt(struct bmc150_accel_data
*data
, int i
,
527 struct device
*dev
= regmap_get_device(data
->regmap
);
528 struct bmc150_accel_interrupt
*intr
= &data
->interrupts
[i
];
529 const struct bmc150_accel_interrupt_info
*info
= intr
->info
;
533 if (atomic_inc_return(&intr
->users
) > 1)
536 if (atomic_dec_return(&intr
->users
) > 0)
541 * We will expect the enable and disable to do operation in reverse
542 * order. This will happen here anyway, as our resume operation uses
543 * sync mode runtime pm calls. The suspend operation will be delayed
544 * by autosuspend delay.
545 * So the disable operation will still happen in reverse order of
546 * enable operation. When runtime pm is disabled the mode is always on,
547 * so sequence doesn't matter.
549 ret
= bmc150_accel_set_power_state(data
, state
);
553 /* map the interrupt to the appropriate pins */
554 ret
= regmap_update_bits(data
->regmap
, info
->map_reg
, info
->map_bitmask
,
555 (state
? info
->map_bitmask
: 0));
557 dev_err(dev
, "Error updating reg_int_map\n");
558 goto out_fix_power_state
;
561 /* enable/disable the interrupt */
562 ret
= regmap_update_bits(data
->regmap
, info
->en_reg
, info
->en_bitmask
,
563 (state
? info
->en_bitmask
: 0));
565 dev_err(dev
, "Error updating reg_int_en\n");
566 goto out_fix_power_state
;
572 bmc150_accel_set_power_state(data
, false);
576 static int bmc150_accel_set_scale(struct bmc150_accel_data
*data
, int val
)
578 struct device
*dev
= regmap_get_device(data
->regmap
);
581 for (i
= 0; i
< ARRAY_SIZE(data
->chip_info
->scale_table
); ++i
) {
582 if (data
->chip_info
->scale_table
[i
].scale
== val
) {
583 ret
= regmap_write(data
->regmap
,
584 BMC150_ACCEL_REG_PMU_RANGE
,
585 data
->chip_info
->scale_table
[i
].reg_range
);
587 dev_err(dev
, "Error writing pmu_range\n");
591 data
->range
= data
->chip_info
->scale_table
[i
].reg_range
;
599 static int bmc150_accel_get_temp(struct bmc150_accel_data
*data
, int *val
)
601 struct device
*dev
= regmap_get_device(data
->regmap
);
605 mutex_lock(&data
->mutex
);
607 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_TEMP
, &value
);
609 dev_err(dev
, "Error reading reg_temp\n");
610 mutex_unlock(&data
->mutex
);
613 *val
= sign_extend32(value
, 7);
615 mutex_unlock(&data
->mutex
);
620 static int bmc150_accel_get_axis(struct bmc150_accel_data
*data
,
621 struct iio_chan_spec
const *chan
,
624 struct device
*dev
= regmap_get_device(data
->regmap
);
626 int axis
= chan
->scan_index
;
629 mutex_lock(&data
->mutex
);
630 ret
= bmc150_accel_set_power_state(data
, true);
632 mutex_unlock(&data
->mutex
);
636 ret
= regmap_bulk_read(data
->regmap
, BMC150_ACCEL_AXIS_TO_REG(axis
),
637 &raw_val
, sizeof(raw_val
));
639 dev_err(dev
, "Error reading axis %d\n", axis
);
640 bmc150_accel_set_power_state(data
, false);
641 mutex_unlock(&data
->mutex
);
644 *val
= sign_extend32(le16_to_cpu(raw_val
) >> chan
->scan_type
.shift
,
645 chan
->scan_type
.realbits
- 1);
646 ret
= bmc150_accel_set_power_state(data
, false);
647 mutex_unlock(&data
->mutex
);
654 static int bmc150_accel_read_raw(struct iio_dev
*indio_dev
,
655 struct iio_chan_spec
const *chan
,
656 int *val
, int *val2
, long mask
)
658 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
662 case IIO_CHAN_INFO_RAW
:
663 switch (chan
->type
) {
665 return bmc150_accel_get_temp(data
, val
);
667 if (iio_buffer_enabled(indio_dev
))
670 return bmc150_accel_get_axis(data
, chan
, val
);
674 case IIO_CHAN_INFO_OFFSET
:
675 if (chan
->type
== IIO_TEMP
) {
676 *val
= BMC150_ACCEL_TEMP_CENTER_VAL
;
681 case IIO_CHAN_INFO_SCALE
:
683 switch (chan
->type
) {
686 return IIO_VAL_INT_PLUS_MICRO
;
690 const struct bmc150_scale_info
*si
;
691 int st_size
= ARRAY_SIZE(data
->chip_info
->scale_table
);
693 for (i
= 0; i
< st_size
; ++i
) {
694 si
= &data
->chip_info
->scale_table
[i
];
695 if (si
->reg_range
== data
->range
) {
697 return IIO_VAL_INT_PLUS_MICRO
;
705 case IIO_CHAN_INFO_SAMP_FREQ
:
706 mutex_lock(&data
->mutex
);
707 ret
= bmc150_accel_get_bw(data
, val
, val2
);
708 mutex_unlock(&data
->mutex
);
715 static int bmc150_accel_write_raw(struct iio_dev
*indio_dev
,
716 struct iio_chan_spec
const *chan
,
717 int val
, int val2
, long mask
)
719 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
723 case IIO_CHAN_INFO_SAMP_FREQ
:
724 mutex_lock(&data
->mutex
);
725 ret
= bmc150_accel_set_bw(data
, val
, val2
);
726 mutex_unlock(&data
->mutex
);
728 case IIO_CHAN_INFO_SCALE
:
732 mutex_lock(&data
->mutex
);
733 ret
= bmc150_accel_set_scale(data
, val2
);
734 mutex_unlock(&data
->mutex
);
743 static int bmc150_accel_read_event(struct iio_dev
*indio_dev
,
744 const struct iio_chan_spec
*chan
,
745 enum iio_event_type type
,
746 enum iio_event_direction dir
,
747 enum iio_event_info info
,
750 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
754 case IIO_EV_INFO_VALUE
:
755 *val
= data
->slope_thres
;
757 case IIO_EV_INFO_PERIOD
:
758 *val
= data
->slope_dur
;
767 static int bmc150_accel_write_event(struct iio_dev
*indio_dev
,
768 const struct iio_chan_spec
*chan
,
769 enum iio_event_type type
,
770 enum iio_event_direction dir
,
771 enum iio_event_info info
,
774 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
776 if (data
->ev_enable_state
)
780 case IIO_EV_INFO_VALUE
:
781 data
->slope_thres
= val
& BMC150_ACCEL_SLOPE_THRES_MASK
;
783 case IIO_EV_INFO_PERIOD
:
784 data
->slope_dur
= val
& BMC150_ACCEL_SLOPE_DUR_MASK
;
793 static int bmc150_accel_read_event_config(struct iio_dev
*indio_dev
,
794 const struct iio_chan_spec
*chan
,
795 enum iio_event_type type
,
796 enum iio_event_direction dir
)
798 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
800 return data
->ev_enable_state
;
803 static int bmc150_accel_write_event_config(struct iio_dev
*indio_dev
,
804 const struct iio_chan_spec
*chan
,
805 enum iio_event_type type
,
806 enum iio_event_direction dir
,
809 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
812 if (state
== data
->ev_enable_state
)
815 mutex_lock(&data
->mutex
);
817 ret
= bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_ANY_MOTION
,
820 mutex_unlock(&data
->mutex
);
824 data
->ev_enable_state
= state
;
825 mutex_unlock(&data
->mutex
);
830 static int bmc150_accel_validate_trigger(struct iio_dev
*indio_dev
,
831 struct iio_trigger
*trig
)
833 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
836 for (i
= 0; i
< BMC150_ACCEL_TRIGGERS
; i
++) {
837 if (data
->triggers
[i
].indio_trig
== trig
)
844 static ssize_t
bmc150_accel_get_fifo_watermark(struct device
*dev
,
845 struct device_attribute
*attr
,
848 struct iio_dev
*indio_dev
= dev_to_iio_dev(dev
);
849 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
852 mutex_lock(&data
->mutex
);
853 wm
= data
->watermark
;
854 mutex_unlock(&data
->mutex
);
856 return sprintf(buf
, "%d\n", wm
);
859 static ssize_t
bmc150_accel_get_fifo_state(struct device
*dev
,
860 struct device_attribute
*attr
,
863 struct iio_dev
*indio_dev
= dev_to_iio_dev(dev
);
864 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
867 mutex_lock(&data
->mutex
);
868 state
= data
->fifo_mode
;
869 mutex_unlock(&data
->mutex
);
871 return sprintf(buf
, "%d\n", state
);
874 static const struct iio_mount_matrix
*
875 bmc150_accel_get_mount_matrix(const struct iio_dev
*indio_dev
,
876 const struct iio_chan_spec
*chan
)
878 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
880 return &data
->orientation
;
883 static const struct iio_chan_spec_ext_info bmc150_accel_ext_info
[] = {
884 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR
, bmc150_accel_get_mount_matrix
),
888 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min
, "1");
889 IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max
,
890 __stringify(BMC150_ACCEL_FIFO_LENGTH
));
891 static IIO_DEVICE_ATTR(hwfifo_enabled
, S_IRUGO
,
892 bmc150_accel_get_fifo_state
, NULL
, 0);
893 static IIO_DEVICE_ATTR(hwfifo_watermark
, S_IRUGO
,
894 bmc150_accel_get_fifo_watermark
, NULL
, 0);
896 static const struct iio_dev_attr
*bmc150_accel_fifo_attributes
[] = {
897 &iio_dev_attr_hwfifo_watermark_min
,
898 &iio_dev_attr_hwfifo_watermark_max
,
899 &iio_dev_attr_hwfifo_watermark
,
900 &iio_dev_attr_hwfifo_enabled
,
904 static int bmc150_accel_set_watermark(struct iio_dev
*indio_dev
, unsigned val
)
906 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
908 if (val
> BMC150_ACCEL_FIFO_LENGTH
)
909 val
= BMC150_ACCEL_FIFO_LENGTH
;
911 mutex_lock(&data
->mutex
);
912 data
->watermark
= val
;
913 mutex_unlock(&data
->mutex
);
919 * We must read at least one full frame in one burst, otherwise the rest of the
920 * frame data is discarded.
922 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data
*data
,
923 char *buffer
, int samples
)
925 struct device
*dev
= regmap_get_device(data
->regmap
);
926 int sample_length
= 3 * 2;
928 int total_length
= samples
* sample_length
;
930 ret
= regmap_raw_read(data
->regmap
, BMC150_ACCEL_REG_FIFO_DATA
,
931 buffer
, total_length
);
934 "Error transferring data from fifo: %d\n", ret
);
939 static int __bmc150_accel_fifo_flush(struct iio_dev
*indio_dev
,
940 unsigned samples
, bool irq
)
942 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
943 struct device
*dev
= regmap_get_device(data
->regmap
);
946 u16 buffer
[BMC150_ACCEL_FIFO_LENGTH
* 3];
948 uint64_t sample_period
;
951 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_FIFO_STATUS
, &val
);
953 dev_err(dev
, "Error reading reg_fifo_status\n");
963 * If we getting called from IRQ handler we know the stored timestamp is
964 * fairly accurate for the last stored sample. Otherwise, if we are
965 * called as a result of a read operation from userspace and hence
966 * before the watermark interrupt was triggered, take a timestamp
967 * now. We can fall anywhere in between two samples so the error in this
968 * case is at most one sample period.
971 data
->old_timestamp
= data
->timestamp
;
972 data
->timestamp
= iio_get_time_ns(indio_dev
);
976 * Approximate timestamps for each of the sample based on the sampling
977 * frequency, timestamp for last sample and number of samples.
979 * Note that we can't use the current bandwidth settings to compute the
980 * sample period because the sample rate varies with the device
981 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
982 * small variation adds when we store a large number of samples and
983 * creates significant jitter between the last and first samples in
984 * different batches (e.g. 32ms vs 21ms).
986 * To avoid this issue we compute the actual sample period ourselves
987 * based on the timestamp delta between the last two flush operations.
989 sample_period
= (data
->timestamp
- data
->old_timestamp
);
990 do_div(sample_period
, count
);
991 tstamp
= data
->timestamp
- (count
- 1) * sample_period
;
993 if (samples
&& count
> samples
)
996 ret
= bmc150_accel_fifo_transfer(data
, (u8
*)buffer
, count
);
1001 * Ideally we want the IIO core to handle the demux when running in fifo
1002 * mode but not when running in triggered buffer mode. Unfortunately
1003 * this does not seem to be possible, so stick with driver demux for
1006 for (i
= 0; i
< count
; i
++) {
1010 iio_for_each_active_channel(indio_dev
, bit
)
1011 memcpy(&data
->scan
.channels
[j
++], &buffer
[i
* 3 + bit
],
1012 sizeof(data
->scan
.channels
[0]));
1014 iio_push_to_buffers_with_timestamp(indio_dev
, &data
->scan
,
1017 tstamp
+= sample_period
;
1023 static int bmc150_accel_fifo_flush(struct iio_dev
*indio_dev
, unsigned samples
)
1025 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1028 mutex_lock(&data
->mutex
);
1029 ret
= __bmc150_accel_fifo_flush(indio_dev
, samples
, false);
1030 mutex_unlock(&data
->mutex
);
1035 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
1036 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
1038 static struct attribute
*bmc150_accel_attributes
[] = {
1039 &iio_const_attr_sampling_frequency_available
.dev_attr
.attr
,
1043 static const struct attribute_group bmc150_accel_attrs_group
= {
1044 .attrs
= bmc150_accel_attributes
,
1047 static const struct iio_event_spec bmc150_accel_event
= {
1048 .type
= IIO_EV_TYPE_ROC
,
1049 .dir
= IIO_EV_DIR_EITHER
,
1050 .mask_separate
= BIT(IIO_EV_INFO_VALUE
) |
1051 BIT(IIO_EV_INFO_ENABLE
) |
1052 BIT(IIO_EV_INFO_PERIOD
)
1055 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
1056 .type = IIO_ACCEL, \
1058 .channel2 = IIO_MOD_##_axis, \
1059 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1060 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
1061 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1062 .scan_index = AXIS_##_axis, \
1065 .realbits = (bits), \
1066 .storagebits = 16, \
1067 .shift = 16 - (bits), \
1068 .endianness = IIO_LE, \
1070 .ext_info = bmc150_accel_ext_info, \
1071 .event_spec = &bmc150_accel_event, \
1072 .num_event_specs = 1 \
1075 #define BMC150_ACCEL_CHANNELS(bits) { \
1078 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1079 BIT(IIO_CHAN_INFO_SCALE) | \
1080 BIT(IIO_CHAN_INFO_OFFSET), \
1083 BMC150_ACCEL_CHANNEL(X, bits), \
1084 BMC150_ACCEL_CHANNEL(Y, bits), \
1085 BMC150_ACCEL_CHANNEL(Z, bits), \
1086 IIO_CHAN_SOFT_TIMESTAMP(3), \
1089 static const struct iio_chan_spec bma222e_accel_channels
[] =
1090 BMC150_ACCEL_CHANNELS(8);
1091 static const struct iio_chan_spec bma250e_accel_channels
[] =
1092 BMC150_ACCEL_CHANNELS(10);
1093 static const struct iio_chan_spec bmc150_accel_channels
[] =
1094 BMC150_ACCEL_CHANNELS(12);
1095 static const struct iio_chan_spec bma280_accel_channels
[] =
1096 BMC150_ACCEL_CHANNELS(14);
1099 * The range for the Bosch sensors is typically +-2g/4g/8g/16g, distributed
1100 * over the amount of bits (see above). The scale table can be calculated using
1101 * (range / 2^bits) * g = (range / 2^bits) * 9.80665 m/s^2
1102 * e.g. for +-2g and 12 bits: (4 / 2^12) * 9.80665 m/s^2 = 0.0095768... m/s^2
1103 * Multiply 10^6 and round to get the values listed below.
1105 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl
[] = {
1109 .channels
= bma222e_accel_channels
,
1110 .num_channels
= ARRAY_SIZE(bma222e_accel_channels
),
1111 .scale_table
= { {153229, BMC150_ACCEL_DEF_RANGE_2G
},
1112 {306458, BMC150_ACCEL_DEF_RANGE_4G
},
1113 {612916, BMC150_ACCEL_DEF_RANGE_8G
},
1114 {1225831, BMC150_ACCEL_DEF_RANGE_16G
} },
1119 .channels
= bma222e_accel_channels
,
1120 .num_channels
= ARRAY_SIZE(bma222e_accel_channels
),
1121 .scale_table
= { {153229, BMC150_ACCEL_DEF_RANGE_2G
},
1122 {306458, BMC150_ACCEL_DEF_RANGE_4G
},
1123 {612916, BMC150_ACCEL_DEF_RANGE_8G
},
1124 {1225831, BMC150_ACCEL_DEF_RANGE_16G
} },
1129 .channels
= bma250e_accel_channels
,
1130 .num_channels
= ARRAY_SIZE(bma250e_accel_channels
),
1131 .scale_table
= { {38307, BMC150_ACCEL_DEF_RANGE_2G
},
1132 {76614, BMC150_ACCEL_DEF_RANGE_4G
},
1133 {153229, BMC150_ACCEL_DEF_RANGE_8G
},
1134 {306458, BMC150_ACCEL_DEF_RANGE_16G
} },
1137 .name
= "BMA253/BMA254/BMA255/BMC150/BMC156/BMI055",
1139 .channels
= bmc150_accel_channels
,
1140 .num_channels
= ARRAY_SIZE(bmc150_accel_channels
),
1141 .scale_table
= { {9577, BMC150_ACCEL_DEF_RANGE_2G
},
1142 {19154, BMC150_ACCEL_DEF_RANGE_4G
},
1143 {38307, BMC150_ACCEL_DEF_RANGE_8G
},
1144 {76614, BMC150_ACCEL_DEF_RANGE_16G
} },
1149 .channels
= bma280_accel_channels
,
1150 .num_channels
= ARRAY_SIZE(bma280_accel_channels
),
1151 .scale_table
= { {2394, BMC150_ACCEL_DEF_RANGE_2G
},
1152 {4788, BMC150_ACCEL_DEF_RANGE_4G
},
1153 {9577, BMC150_ACCEL_DEF_RANGE_8G
},
1154 {19154, BMC150_ACCEL_DEF_RANGE_16G
} },
1158 static const struct iio_info bmc150_accel_info
= {
1159 .attrs
= &bmc150_accel_attrs_group
,
1160 .read_raw
= bmc150_accel_read_raw
,
1161 .write_raw
= bmc150_accel_write_raw
,
1162 .read_event_value
= bmc150_accel_read_event
,
1163 .write_event_value
= bmc150_accel_write_event
,
1164 .write_event_config
= bmc150_accel_write_event_config
,
1165 .read_event_config
= bmc150_accel_read_event_config
,
1168 static const struct iio_info bmc150_accel_info_fifo
= {
1169 .attrs
= &bmc150_accel_attrs_group
,
1170 .read_raw
= bmc150_accel_read_raw
,
1171 .write_raw
= bmc150_accel_write_raw
,
1172 .read_event_value
= bmc150_accel_read_event
,
1173 .write_event_value
= bmc150_accel_write_event
,
1174 .write_event_config
= bmc150_accel_write_event_config
,
1175 .read_event_config
= bmc150_accel_read_event_config
,
1176 .validate_trigger
= bmc150_accel_validate_trigger
,
1177 .hwfifo_set_watermark
= bmc150_accel_set_watermark
,
1178 .hwfifo_flush_to_buffer
= bmc150_accel_fifo_flush
,
1181 static const unsigned long bmc150_accel_scan_masks
[] = {
1182 BIT(AXIS_X
) | BIT(AXIS_Y
) | BIT(AXIS_Z
),
1185 static irqreturn_t
bmc150_accel_trigger_handler(int irq
, void *p
)
1187 struct iio_poll_func
*pf
= p
;
1188 struct iio_dev
*indio_dev
= pf
->indio_dev
;
1189 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1192 mutex_lock(&data
->mutex
);
1193 ret
= regmap_bulk_read(data
->regmap
, BMC150_ACCEL_REG_XOUT_L
,
1194 data
->buffer
, AXIS_MAX
* 2);
1195 mutex_unlock(&data
->mutex
);
1199 iio_push_to_buffers_with_timestamp(indio_dev
, data
->buffer
,
1202 iio_trigger_notify_done(indio_dev
->trig
);
1207 static void bmc150_accel_trig_reen(struct iio_trigger
*trig
)
1209 struct bmc150_accel_trigger
*t
= iio_trigger_get_drvdata(trig
);
1210 struct bmc150_accel_data
*data
= t
->data
;
1211 struct device
*dev
= regmap_get_device(data
->regmap
);
1214 /* new data interrupts don't need ack */
1215 if (t
== &t
->data
->triggers
[BMC150_ACCEL_TRIGGER_DATA_READY
])
1218 mutex_lock(&data
->mutex
);
1219 /* clear any latched interrupt */
1220 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1221 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1222 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1223 mutex_unlock(&data
->mutex
);
1225 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1228 static int bmc150_accel_trigger_set_state(struct iio_trigger
*trig
,
1231 struct bmc150_accel_trigger
*t
= iio_trigger_get_drvdata(trig
);
1232 struct bmc150_accel_data
*data
= t
->data
;
1235 mutex_lock(&data
->mutex
);
1237 if (t
->enabled
== state
) {
1238 mutex_unlock(&data
->mutex
);
1243 ret
= t
->setup(t
, state
);
1245 mutex_unlock(&data
->mutex
);
1250 ret
= bmc150_accel_set_interrupt(data
, t
->intr
, state
);
1252 mutex_unlock(&data
->mutex
);
1258 mutex_unlock(&data
->mutex
);
1263 static const struct iio_trigger_ops bmc150_accel_trigger_ops
= {
1264 .set_trigger_state
= bmc150_accel_trigger_set_state
,
1265 .reenable
= bmc150_accel_trig_reen
,
1268 static int bmc150_accel_handle_roc_event(struct iio_dev
*indio_dev
)
1270 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1271 struct device
*dev
= regmap_get_device(data
->regmap
);
1276 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_INT_STATUS_2
, &val
);
1278 dev_err(dev
, "Error reading reg_int_status_2\n");
1282 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_SIGN
)
1283 dir
= IIO_EV_DIR_FALLING
;
1285 dir
= IIO_EV_DIR_RISING
;
1287 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_X
)
1288 iio_push_event(indio_dev
,
1289 IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1296 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_Y
)
1297 iio_push_event(indio_dev
,
1298 IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1305 if (val
& BMC150_ACCEL_ANY_MOTION_BIT_Z
)
1306 iio_push_event(indio_dev
,
1307 IIO_MOD_EVENT_CODE(IIO_ACCEL
,
1317 static irqreturn_t
bmc150_accel_irq_thread_handler(int irq
, void *private)
1319 struct iio_dev
*indio_dev
= private;
1320 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1321 struct device
*dev
= regmap_get_device(data
->regmap
);
1325 mutex_lock(&data
->mutex
);
1327 if (data
->fifo_mode
) {
1328 ret
= __bmc150_accel_fifo_flush(indio_dev
,
1329 BMC150_ACCEL_FIFO_LENGTH
, true);
1334 if (data
->ev_enable_state
) {
1335 ret
= bmc150_accel_handle_roc_event(indio_dev
);
1341 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1342 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1343 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1345 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1352 mutex_unlock(&data
->mutex
);
1357 static irqreturn_t
bmc150_accel_irq_handler(int irq
, void *private)
1359 struct iio_dev
*indio_dev
= private;
1360 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1364 data
->old_timestamp
= data
->timestamp
;
1365 data
->timestamp
= iio_get_time_ns(indio_dev
);
1367 for (i
= 0; i
< BMC150_ACCEL_TRIGGERS
; i
++) {
1368 if (data
->triggers
[i
].enabled
) {
1369 iio_trigger_poll(data
->triggers
[i
].indio_trig
);
1375 if (data
->ev_enable_state
|| data
->fifo_mode
)
1376 return IRQ_WAKE_THREAD
;
1384 static const struct {
1387 int (*setup
)(struct bmc150_accel_trigger
*t
, bool state
);
1388 } bmc150_accel_triggers
[BMC150_ACCEL_TRIGGERS
] = {
1395 .name
= "%s-any-motion-dev%d",
1396 .setup
= bmc150_accel_any_motion_setup
,
1400 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data
*data
,
1405 for (i
= from
; i
>= 0; i
--) {
1406 if (data
->triggers
[i
].indio_trig
) {
1407 iio_trigger_unregister(data
->triggers
[i
].indio_trig
);
1408 data
->triggers
[i
].indio_trig
= NULL
;
1413 static int bmc150_accel_triggers_setup(struct iio_dev
*indio_dev
,
1414 struct bmc150_accel_data
*data
)
1416 struct device
*dev
= regmap_get_device(data
->regmap
);
1419 for (i
= 0; i
< BMC150_ACCEL_TRIGGERS
; i
++) {
1420 struct bmc150_accel_trigger
*t
= &data
->triggers
[i
];
1422 t
->indio_trig
= devm_iio_trigger_alloc(dev
,
1423 bmc150_accel_triggers
[i
].name
,
1425 iio_device_id(indio_dev
));
1426 if (!t
->indio_trig
) {
1431 t
->indio_trig
->ops
= &bmc150_accel_trigger_ops
;
1432 t
->intr
= bmc150_accel_triggers
[i
].intr
;
1434 t
->setup
= bmc150_accel_triggers
[i
].setup
;
1435 iio_trigger_set_drvdata(t
->indio_trig
, t
);
1437 ret
= iio_trigger_register(t
->indio_trig
);
1443 bmc150_accel_unregister_triggers(data
, i
- 1);
1448 #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
1449 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
1450 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
1452 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data
*data
)
1454 struct device
*dev
= regmap_get_device(data
->regmap
);
1455 u8 reg
= BMC150_ACCEL_REG_FIFO_CONFIG1
;
1458 ret
= regmap_write(data
->regmap
, reg
, data
->fifo_mode
);
1460 dev_err(dev
, "Error writing reg_fifo_config1\n");
1464 if (!data
->fifo_mode
)
1467 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_FIFO_CONFIG0
,
1470 dev_err(dev
, "Error writing reg_fifo_config0\n");
1475 static int bmc150_accel_buffer_preenable(struct iio_dev
*indio_dev
)
1477 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1479 return bmc150_accel_set_power_state(data
, true);
1482 static int bmc150_accel_buffer_postenable(struct iio_dev
*indio_dev
)
1484 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1487 if (iio_device_get_current_mode(indio_dev
) == INDIO_BUFFER_TRIGGERED
)
1490 mutex_lock(&data
->mutex
);
1492 if (!data
->watermark
)
1495 ret
= bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_WATERMARK
,
1500 data
->fifo_mode
= BMC150_ACCEL_FIFO_MODE_FIFO
;
1502 ret
= bmc150_accel_fifo_set_mode(data
);
1504 data
->fifo_mode
= 0;
1505 bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_WATERMARK
,
1510 mutex_unlock(&data
->mutex
);
1515 static int bmc150_accel_buffer_predisable(struct iio_dev
*indio_dev
)
1517 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1519 if (iio_device_get_current_mode(indio_dev
) == INDIO_BUFFER_TRIGGERED
)
1522 mutex_lock(&data
->mutex
);
1524 if (!data
->fifo_mode
)
1527 bmc150_accel_set_interrupt(data
, BMC150_ACCEL_INT_WATERMARK
, false);
1528 __bmc150_accel_fifo_flush(indio_dev
, BMC150_ACCEL_FIFO_LENGTH
, false);
1529 data
->fifo_mode
= 0;
1530 bmc150_accel_fifo_set_mode(data
);
1533 mutex_unlock(&data
->mutex
);
1538 static int bmc150_accel_buffer_postdisable(struct iio_dev
*indio_dev
)
1540 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1542 return bmc150_accel_set_power_state(data
, false);
1545 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops
= {
1546 .preenable
= bmc150_accel_buffer_preenable
,
1547 .postenable
= bmc150_accel_buffer_postenable
,
1548 .predisable
= bmc150_accel_buffer_predisable
,
1549 .postdisable
= bmc150_accel_buffer_postdisable
,
1552 static int bmc150_accel_chip_init(struct bmc150_accel_data
*data
)
1554 struct device
*dev
= regmap_get_device(data
->regmap
);
1559 * Reset chip to get it in a known good state. A delay of 1.8ms after
1560 * reset is required according to the data sheets of supported chips.
1562 regmap_write(data
->regmap
, BMC150_ACCEL_REG_RESET
,
1563 BMC150_ACCEL_RESET_VAL
);
1564 usleep_range(1800, 2500);
1566 ret
= regmap_read(data
->regmap
, BMC150_ACCEL_REG_CHIP_ID
, &val
);
1568 dev_err(dev
, "Error: Reading chip id\n");
1572 dev_dbg(dev
, "Chip Id %x\n", val
);
1573 for (i
= 0; i
< ARRAY_SIZE(bmc150_accel_chip_info_tbl
); i
++) {
1574 if (bmc150_accel_chip_info_tbl
[i
].chip_id
== val
) {
1575 data
->chip_info
= &bmc150_accel_chip_info_tbl
[i
];
1580 if (!data
->chip_info
) {
1581 dev_err(dev
, "Invalid chip %x\n", val
);
1585 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1590 ret
= bmc150_accel_set_bw(data
, BMC150_ACCEL_DEF_BW
, 0);
1594 /* Set Default Range */
1595 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_PMU_RANGE
,
1596 BMC150_ACCEL_DEF_RANGE_4G
);
1598 dev_err(dev
, "Error writing reg_pmu_range\n");
1602 data
->range
= BMC150_ACCEL_DEF_RANGE_4G
;
1604 /* Set default slope duration and thresholds */
1605 data
->slope_thres
= BMC150_ACCEL_DEF_SLOPE_THRESHOLD
;
1606 data
->slope_dur
= BMC150_ACCEL_DEF_SLOPE_DURATION
;
1607 ret
= bmc150_accel_update_slope(data
);
1611 /* Set default as latched interrupts */
1612 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1613 BMC150_ACCEL_INT_MODE_LATCH_INT
|
1614 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1616 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1623 int bmc150_accel_core_probe(struct device
*dev
, struct regmap
*regmap
, int irq
,
1624 enum bmc150_type type
, const char *name
,
1625 bool block_supported
)
1627 const struct iio_dev_attr
**fifo_attrs
;
1628 struct bmc150_accel_data
*data
;
1629 struct iio_dev
*indio_dev
;
1632 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*data
));
1636 data
= iio_priv(indio_dev
);
1637 dev_set_drvdata(dev
, indio_dev
);
1639 data
->regmap
= regmap
;
1642 if (!bmc150_apply_acpi_orientation(dev
, &data
->orientation
)) {
1643 ret
= iio_read_mount_matrix(dev
, &data
->orientation
);
1649 * VDD is the analog and digital domain voltage supply
1650 * VDDIO is the digital I/O voltage supply
1652 data
->regulators
[0].supply
= "vdd";
1653 data
->regulators
[1].supply
= "vddio";
1654 ret
= devm_regulator_bulk_get(dev
,
1655 ARRAY_SIZE(data
->regulators
),
1658 return dev_err_probe(dev
, ret
, "failed to get regulators\n");
1660 ret
= regulator_bulk_enable(ARRAY_SIZE(data
->regulators
),
1663 dev_err(dev
, "failed to enable regulators: %d\n", ret
);
1667 * 2ms or 3ms power-on time according to datasheets, let's better
1668 * be safe than sorry and set this delay to 5ms.
1672 ret
= bmc150_accel_chip_init(data
);
1674 goto err_disable_regulators
;
1676 mutex_init(&data
->mutex
);
1678 indio_dev
->channels
= data
->chip_info
->channels
;
1679 indio_dev
->num_channels
= data
->chip_info
->num_channels
;
1680 indio_dev
->name
= name
? name
: data
->chip_info
->name
;
1681 indio_dev
->available_scan_masks
= bmc150_accel_scan_masks
;
1682 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1683 indio_dev
->info
= &bmc150_accel_info
;
1685 if (block_supported
) {
1686 indio_dev
->modes
|= INDIO_BUFFER_SOFTWARE
;
1687 indio_dev
->info
= &bmc150_accel_info_fifo
;
1688 fifo_attrs
= bmc150_accel_fifo_attributes
;
1693 ret
= iio_triggered_buffer_setup_ext(indio_dev
,
1694 &iio_pollfunc_store_time
,
1695 bmc150_accel_trigger_handler
,
1696 IIO_BUFFER_DIRECTION_IN
,
1697 &bmc150_accel_buffer_ops
,
1700 dev_err(dev
, "Failed: iio triggered buffer setup\n");
1701 goto err_disable_regulators
;
1705 ret
= devm_request_threaded_irq(dev
, irq
,
1706 bmc150_accel_irq_handler
,
1707 bmc150_accel_irq_thread_handler
,
1708 IRQF_TRIGGER_RISING
,
1709 BMC150_ACCEL_IRQ_NAME
,
1712 goto err_buffer_cleanup
;
1715 * Set latched mode interrupt. While certain interrupts are
1716 * non-latched regardless of this settings (e.g. new data) we
1717 * want to use latch mode when we can to prevent interrupt
1720 ret
= regmap_write(data
->regmap
, BMC150_ACCEL_REG_INT_RST_LATCH
,
1721 BMC150_ACCEL_INT_MODE_LATCH_RESET
);
1723 dev_err(dev
, "Error writing reg_int_rst_latch\n");
1724 goto err_buffer_cleanup
;
1727 bmc150_accel_interrupts_setup(indio_dev
, data
, irq
);
1729 ret
= bmc150_accel_triggers_setup(indio_dev
, data
);
1731 goto err_buffer_cleanup
;
1734 ret
= pm_runtime_set_active(dev
);
1736 goto err_trigger_unregister
;
1738 pm_runtime_enable(dev
);
1739 pm_runtime_set_autosuspend_delay(dev
, BMC150_AUTO_SUSPEND_DELAY_MS
);
1740 pm_runtime_use_autosuspend(dev
);
1742 ret
= iio_device_register(indio_dev
);
1744 dev_err(dev
, "Unable to register iio device\n");
1745 goto err_pm_cleanup
;
1751 pm_runtime_dont_use_autosuspend(dev
);
1752 pm_runtime_disable(dev
);
1753 err_trigger_unregister
:
1754 bmc150_accel_unregister_triggers(data
, BMC150_ACCEL_TRIGGERS
- 1);
1756 iio_triggered_buffer_cleanup(indio_dev
);
1757 err_disable_regulators
:
1758 regulator_bulk_disable(ARRAY_SIZE(data
->regulators
),
1763 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_probe
, IIO_BMC150
);
1765 void bmc150_accel_core_remove(struct device
*dev
)
1767 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1768 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1770 iio_device_unregister(indio_dev
);
1772 pm_runtime_disable(dev
);
1773 pm_runtime_set_suspended(dev
);
1775 bmc150_accel_unregister_triggers(data
, BMC150_ACCEL_TRIGGERS
- 1);
1777 iio_triggered_buffer_cleanup(indio_dev
);
1779 mutex_lock(&data
->mutex
);
1780 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND
, 0);
1781 mutex_unlock(&data
->mutex
);
1783 regulator_bulk_disable(ARRAY_SIZE(data
->regulators
),
1786 EXPORT_SYMBOL_NS_GPL(bmc150_accel_core_remove
, IIO_BMC150
);
1788 #ifdef CONFIG_PM_SLEEP
1789 static int bmc150_accel_suspend(struct device
*dev
)
1791 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1792 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1794 mutex_lock(&data
->mutex
);
1795 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_SUSPEND
, 0);
1796 mutex_unlock(&data
->mutex
);
1801 static int bmc150_accel_resume(struct device
*dev
)
1803 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1804 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1806 mutex_lock(&data
->mutex
);
1807 bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1808 bmc150_accel_fifo_set_mode(data
);
1809 mutex_unlock(&data
->mutex
);
1811 if (data
->resume_callback
)
1812 data
->resume_callback(dev
);
1819 static int bmc150_accel_runtime_suspend(struct device
*dev
)
1821 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1822 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1825 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_SUSPEND
, 0);
1832 static int bmc150_accel_runtime_resume(struct device
*dev
)
1834 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1835 struct bmc150_accel_data
*data
= iio_priv(indio_dev
);
1839 ret
= bmc150_accel_set_mode(data
, BMC150_ACCEL_SLEEP_MODE_NORMAL
, 0);
1842 ret
= bmc150_accel_fifo_set_mode(data
);
1846 sleep_val
= bmc150_accel_get_startup_times(data
);
1848 usleep_range(sleep_val
* 1000, 20000);
1850 msleep_interruptible(sleep_val
);
1856 const struct dev_pm_ops bmc150_accel_pm_ops
= {
1857 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend
, bmc150_accel_resume
)
1858 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend
,
1859 bmc150_accel_runtime_resume
, NULL
)
1861 EXPORT_SYMBOL_NS_GPL(bmc150_accel_pm_ops
, IIO_BMC150
);
1863 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1864 MODULE_LICENSE("GPL v2");
1865 MODULE_DESCRIPTION("BMC150 accelerometer driver");