drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / iio / accel / msa311.c
blob57025354c7cd585b792f21ad6a45c72b092a7d52
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MEMSensing digital 3-Axis accelerometer
5 * MSA311 is a tri-axial, low-g accelerometer with I2C digital output for
6 * sensitivity consumer applications. It has dynamic user-selectable full
7 * scales range of +-2g/+-4g/+-8g/+-16g and allows acceleration measurements
8 * with output data rates from 1Hz to 1000Hz.
10 * MSA311 is available in an ultra small (2mm x 2mm, height 0.95mm) LGA package
11 * and is guaranteed to operate over -40C to +85C.
13 * This driver supports following MSA311 features:
14 * - IIO interface
15 * - Different power modes: NORMAL, SUSPEND
16 * - ODR (Output Data Rate) selection
17 * - Scale selection
18 * - IIO triggered buffer
19 * - NEW_DATA interrupt + trigger
21 * Below features to be done:
22 * - Motion Events: ACTIVE, TAP, ORIENT, FREEFALL
23 * - Low Power mode
25 * Copyright (c) 2022, SberDevices. All Rights Reserved.
27 * Author: Dmitry Rokosov <ddrokosov@sberdevices.ru>
30 #include <linux/i2c.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/pm.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/regmap.h>
36 #include <linux/string_choices.h>
37 #include <linux/units.h>
39 #include <linux/iio/buffer.h>
40 #include <linux/iio/iio.h>
41 #include <linux/iio/sysfs.h>
42 #include <linux/iio/trigger.h>
43 #include <linux/iio/trigger_consumer.h>
44 #include <linux/iio/triggered_buffer.h>
46 #define MSA311_SOFT_RESET_REG 0x00
47 #define MSA311_PARTID_REG 0x01
48 #define MSA311_ACC_X_REG 0x02
49 #define MSA311_ACC_Y_REG 0x04
50 #define MSA311_ACC_Z_REG 0x06
51 #define MSA311_MOTION_INT_REG 0x09
52 #define MSA311_DATA_INT_REG 0x0A
53 #define MSA311_TAP_ACTIVE_STS_REG 0x0B
54 #define MSA311_ORIENT_STS_REG 0x0C
55 #define MSA311_RANGE_REG 0x0F
56 #define MSA311_ODR_REG 0x10
57 #define MSA311_PWR_MODE_REG 0x11
58 #define MSA311_SWAP_POLARITY_REG 0x12
59 #define MSA311_INT_SET_0_REG 0x16
60 #define MSA311_INT_SET_1_REG 0x17
61 #define MSA311_INT_MAP_0_REG 0x19
62 #define MSA311_INT_MAP_1_REG 0x1A
63 #define MSA311_INT_CONFIG_REG 0x20
64 #define MSA311_INT_LATCH_REG 0x21
65 #define MSA311_FREEFALL_DUR_REG 0x22
66 #define MSA311_FREEFALL_TH_REG 0x23
67 #define MSA311_FREEFALL_HY_REG 0x24
68 #define MSA311_ACTIVE_DUR_REG 0x27
69 #define MSA311_ACTIVE_TH_REG 0x28
70 #define MSA311_TAP_DUR_REG 0x2A
71 #define MSA311_TAP_TH_REG 0x2B
72 #define MSA311_ORIENT_HY_REG 0x2C
73 #define MSA311_Z_BLOCK_REG 0x2D
74 #define MSA311_OFFSET_X_REG 0x38
75 #define MSA311_OFFSET_Y_REG 0x39
76 #define MSA311_OFFSET_Z_REG 0x3A
78 enum msa311_fields {
79 /* Soft_Reset */
80 F_SOFT_RESET_I2C, F_SOFT_RESET_SPI,
81 /* Motion_Interrupt */
82 F_ORIENT_INT, F_S_TAP_INT, F_D_TAP_INT, F_ACTIVE_INT, F_FREEFALL_INT,
83 /* Data_Interrupt */
84 F_NEW_DATA_INT,
85 /* Tap_Active_Status */
86 F_TAP_SIGN, F_TAP_FIRST_X, F_TAP_FIRST_Y, F_TAP_FIRST_Z, F_ACTV_SIGN,
87 F_ACTV_FIRST_X, F_ACTV_FIRST_Y, F_ACTV_FIRST_Z,
88 /* Orientation_Status */
89 F_ORIENT_Z, F_ORIENT_X_Y,
90 /* Range */
91 F_FS,
92 /* ODR */
93 F_X_AXIS_DIS, F_Y_AXIS_DIS, F_Z_AXIS_DIS, F_ODR,
94 /* Power Mode/Bandwidth */
95 F_PWR_MODE, F_LOW_POWER_BW,
96 /* Swap_Polarity */
97 F_X_POLARITY, F_Y_POLARITY, F_Z_POLARITY, F_X_Y_SWAP,
98 /* Int_Set_0 */
99 F_ORIENT_INT_EN, F_S_TAP_INT_EN, F_D_TAP_INT_EN, F_ACTIVE_INT_EN_Z,
100 F_ACTIVE_INT_EN_Y, F_ACTIVE_INT_EN_X,
101 /* Int_Set_1 */
102 F_NEW_DATA_INT_EN, F_FREEFALL_INT_EN,
103 /* Int_Map_0 */
104 F_INT1_ORIENT, F_INT1_S_TAP, F_INT1_D_TAP, F_INT1_ACTIVE,
105 F_INT1_FREEFALL,
106 /* Int_Map_1 */
107 F_INT1_NEW_DATA,
108 /* Int_Config */
109 F_INT1_OD, F_INT1_LVL,
110 /* Int_Latch */
111 F_RESET_INT, F_LATCH_INT,
112 /* Freefall_Hy */
113 F_FREEFALL_MODE, F_FREEFALL_HY,
114 /* Active_Dur */
115 F_ACTIVE_DUR,
116 /* Tap_Dur */
117 F_TAP_QUIET, F_TAP_SHOCK, F_TAP_DUR,
118 /* Tap_Th */
119 F_TAP_TH,
120 /* Orient_Hy */
121 F_ORIENT_HYST, F_ORIENT_BLOCKING, F_ORIENT_MODE,
122 /* Z_Block */
123 F_Z_BLOCKING,
124 /* End of register map */
125 F_MAX_FIELDS,
128 static const struct reg_field msa311_reg_fields[] = {
129 /* Soft_Reset */
130 [F_SOFT_RESET_I2C] = REG_FIELD(MSA311_SOFT_RESET_REG, 2, 2),
131 [F_SOFT_RESET_SPI] = REG_FIELD(MSA311_SOFT_RESET_REG, 5, 5),
132 /* Motion_Interrupt */
133 [F_ORIENT_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 6, 6),
134 [F_S_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 5, 5),
135 [F_D_TAP_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 4, 4),
136 [F_ACTIVE_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 2, 2),
137 [F_FREEFALL_INT] = REG_FIELD(MSA311_MOTION_INT_REG, 0, 0),
138 /* Data_Interrupt */
139 [F_NEW_DATA_INT] = REG_FIELD(MSA311_DATA_INT_REG, 0, 0),
140 /* Tap_Active_Status */
141 [F_TAP_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 7, 7),
142 [F_TAP_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 6, 6),
143 [F_TAP_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 5, 5),
144 [F_TAP_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 4, 4),
145 [F_ACTV_SIGN] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 3, 3),
146 [F_ACTV_FIRST_X] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 2, 2),
147 [F_ACTV_FIRST_Y] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 1, 1),
148 [F_ACTV_FIRST_Z] = REG_FIELD(MSA311_TAP_ACTIVE_STS_REG, 0, 0),
149 /* Orientation_Status */
150 [F_ORIENT_Z] = REG_FIELD(MSA311_ORIENT_STS_REG, 6, 6),
151 [F_ORIENT_X_Y] = REG_FIELD(MSA311_ORIENT_STS_REG, 4, 5),
152 /* Range */
153 [F_FS] = REG_FIELD(MSA311_RANGE_REG, 0, 1),
154 /* ODR */
155 [F_X_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 7, 7),
156 [F_Y_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 6, 6),
157 [F_Z_AXIS_DIS] = REG_FIELD(MSA311_ODR_REG, 5, 5),
158 [F_ODR] = REG_FIELD(MSA311_ODR_REG, 0, 3),
159 /* Power Mode/Bandwidth */
160 [F_PWR_MODE] = REG_FIELD(MSA311_PWR_MODE_REG, 6, 7),
161 [F_LOW_POWER_BW] = REG_FIELD(MSA311_PWR_MODE_REG, 1, 4),
162 /* Swap_Polarity */
163 [F_X_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 3, 3),
164 [F_Y_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 2, 2),
165 [F_Z_POLARITY] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 1, 1),
166 [F_X_Y_SWAP] = REG_FIELD(MSA311_SWAP_POLARITY_REG, 0, 0),
167 /* Int_Set_0 */
168 [F_ORIENT_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 6, 6),
169 [F_S_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 5, 5),
170 [F_D_TAP_INT_EN] = REG_FIELD(MSA311_INT_SET_0_REG, 4, 4),
171 [F_ACTIVE_INT_EN_Z] = REG_FIELD(MSA311_INT_SET_0_REG, 2, 2),
172 [F_ACTIVE_INT_EN_Y] = REG_FIELD(MSA311_INT_SET_0_REG, 1, 1),
173 [F_ACTIVE_INT_EN_X] = REG_FIELD(MSA311_INT_SET_0_REG, 0, 0),
174 /* Int_Set_1 */
175 [F_NEW_DATA_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 4, 4),
176 [F_FREEFALL_INT_EN] = REG_FIELD(MSA311_INT_SET_1_REG, 3, 3),
177 /* Int_Map_0 */
178 [F_INT1_ORIENT] = REG_FIELD(MSA311_INT_MAP_0_REG, 6, 6),
179 [F_INT1_S_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 5, 5),
180 [F_INT1_D_TAP] = REG_FIELD(MSA311_INT_MAP_0_REG, 4, 4),
181 [F_INT1_ACTIVE] = REG_FIELD(MSA311_INT_MAP_0_REG, 2, 2),
182 [F_INT1_FREEFALL] = REG_FIELD(MSA311_INT_MAP_0_REG, 0, 0),
183 /* Int_Map_1 */
184 [F_INT1_NEW_DATA] = REG_FIELD(MSA311_INT_MAP_1_REG, 0, 0),
185 /* Int_Config */
186 [F_INT1_OD] = REG_FIELD(MSA311_INT_CONFIG_REG, 1, 1),
187 [F_INT1_LVL] = REG_FIELD(MSA311_INT_CONFIG_REG, 0, 0),
188 /* Int_Latch */
189 [F_RESET_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 7, 7),
190 [F_LATCH_INT] = REG_FIELD(MSA311_INT_LATCH_REG, 0, 3),
191 /* Freefall_Hy */
192 [F_FREEFALL_MODE] = REG_FIELD(MSA311_FREEFALL_HY_REG, 2, 2),
193 [F_FREEFALL_HY] = REG_FIELD(MSA311_FREEFALL_HY_REG, 0, 1),
194 /* Active_Dur */
195 [F_ACTIVE_DUR] = REG_FIELD(MSA311_ACTIVE_DUR_REG, 0, 1),
196 /* Tap_Dur */
197 [F_TAP_QUIET] = REG_FIELD(MSA311_TAP_DUR_REG, 7, 7),
198 [F_TAP_SHOCK] = REG_FIELD(MSA311_TAP_DUR_REG, 6, 6),
199 [F_TAP_DUR] = REG_FIELD(MSA311_TAP_DUR_REG, 0, 2),
200 /* Tap_Th */
201 [F_TAP_TH] = REG_FIELD(MSA311_TAP_TH_REG, 0, 4),
202 /* Orient_Hy */
203 [F_ORIENT_HYST] = REG_FIELD(MSA311_ORIENT_HY_REG, 4, 6),
204 [F_ORIENT_BLOCKING] = REG_FIELD(MSA311_ORIENT_HY_REG, 2, 3),
205 [F_ORIENT_MODE] = REG_FIELD(MSA311_ORIENT_HY_REG, 0, 1),
206 /* Z_Block */
207 [F_Z_BLOCKING] = REG_FIELD(MSA311_Z_BLOCK_REG, 0, 3),
210 #define MSA311_WHO_AM_I 0x13
213 * Possible Full Scale ranges
215 * Axis data is 12-bit signed value, so
217 * fs0 = (2 + 2) * 9.81 / (2^11) = 0.009580
218 * fs1 = (4 + 4) * 9.81 / (2^11) = 0.019160
219 * fs2 = (8 + 8) * 9.81 / (2^11) = 0.038320
220 * fs3 = (16 + 16) * 9.81 / (2^11) = 0.076641
222 enum {
223 MSA311_FS_2G,
224 MSA311_FS_4G,
225 MSA311_FS_8G,
226 MSA311_FS_16G,
229 struct iio_decimal_fract {
230 int integral;
231 int microfract;
234 static const struct iio_decimal_fract msa311_fs_table[] = {
235 {0, 9580}, {0, 19160}, {0, 38320}, {0, 76641},
238 /* Possible Output Data Rate values */
239 enum {
240 MSA311_ODR_1_HZ,
241 MSA311_ODR_1_95_HZ,
242 MSA311_ODR_3_9_HZ,
243 MSA311_ODR_7_81_HZ,
244 MSA311_ODR_15_63_HZ,
245 MSA311_ODR_31_25_HZ,
246 MSA311_ODR_62_5_HZ,
247 MSA311_ODR_125_HZ,
248 MSA311_ODR_250_HZ,
249 MSA311_ODR_500_HZ,
250 MSA311_ODR_1000_HZ,
253 static const struct iio_decimal_fract msa311_odr_table[] = {
254 {1, 0}, {1, 950000}, {3, 900000}, {7, 810000}, {15, 630000},
255 {31, 250000}, {62, 500000}, {125, 0}, {250, 0}, {500, 0}, {1000, 0},
258 /* All supported power modes */
259 #define MSA311_PWR_MODE_NORMAL 0b00
260 #define MSA311_PWR_MODE_LOW 0b01
261 #define MSA311_PWR_MODE_UNKNOWN 0b10
262 #define MSA311_PWR_MODE_SUSPEND 0b11
263 static const char * const msa311_pwr_modes[] = {
264 [MSA311_PWR_MODE_NORMAL] = "normal",
265 [MSA311_PWR_MODE_LOW] = "low",
266 [MSA311_PWR_MODE_UNKNOWN] = "unknown",
267 [MSA311_PWR_MODE_SUSPEND] = "suspend",
270 /* Autosuspend delay */
271 #define MSA311_PWR_SLEEP_DELAY_MS 2000
273 /* Possible INT1 types and levels */
274 enum {
275 MSA311_INT1_OD_PUSH_PULL,
276 MSA311_INT1_OD_OPEN_DRAIN,
279 enum {
280 MSA311_INT1_LVL_LOW,
281 MSA311_INT1_LVL_HIGH,
284 /* Latch INT modes */
285 #define MSA311_LATCH_INT_NOT_LATCHED 0b0000
286 #define MSA311_LATCH_INT_250MS 0b0001
287 #define MSA311_LATCH_INT_500MS 0b0010
288 #define MSA311_LATCH_INT_1S 0b0011
289 #define MSA311_LATCH_INT_2S 0b0100
290 #define MSA311_LATCH_INT_4S 0b0101
291 #define MSA311_LATCH_INT_8S 0b0110
292 #define MSA311_LATCH_INT_1MS 0b1010
293 #define MSA311_LATCH_INT_2MS 0b1011
294 #define MSA311_LATCH_INT_25MS 0b1100
295 #define MSA311_LATCH_INT_50MS 0b1101
296 #define MSA311_LATCH_INT_100MS 0b1110
297 #define MSA311_LATCH_INT_LATCHED 0b0111
299 static const struct regmap_range msa311_readonly_registers[] = {
300 regmap_reg_range(MSA311_PARTID_REG, MSA311_ORIENT_STS_REG),
303 static const struct regmap_access_table msa311_writeable_table = {
304 .no_ranges = msa311_readonly_registers,
305 .n_no_ranges = ARRAY_SIZE(msa311_readonly_registers),
308 static const struct regmap_range msa311_writeonly_registers[] = {
309 regmap_reg_range(MSA311_SOFT_RESET_REG, MSA311_SOFT_RESET_REG),
312 static const struct regmap_access_table msa311_readable_table = {
313 .no_ranges = msa311_writeonly_registers,
314 .n_no_ranges = ARRAY_SIZE(msa311_writeonly_registers),
317 static const struct regmap_range msa311_volatile_registers[] = {
318 regmap_reg_range(MSA311_ACC_X_REG, MSA311_ORIENT_STS_REG),
321 static const struct regmap_access_table msa311_volatile_table = {
322 .yes_ranges = msa311_volatile_registers,
323 .n_yes_ranges = ARRAY_SIZE(msa311_volatile_registers),
326 static const struct regmap_config msa311_regmap_config = {
327 .name = "msa311",
328 .reg_bits = 8,
329 .val_bits = 8,
330 .max_register = MSA311_OFFSET_Z_REG,
331 .wr_table = &msa311_writeable_table,
332 .rd_table = &msa311_readable_table,
333 .volatile_table = &msa311_volatile_table,
334 .cache_type = REGCACHE_RBTREE,
337 #define MSA311_GENMASK(field) ({ \
338 typeof(&(msa311_reg_fields)[0]) _field; \
339 _field = &msa311_reg_fields[(field)]; \
340 GENMASK(_field->msb, _field->lsb); \
344 * struct msa311_priv - MSA311 internal private state
345 * @regs: Underlying I2C bus adapter used to abstract slave
346 * register accesses
347 * @fields: Abstract objects for each registers fields access
348 * @dev: Device handler associated with appropriate bus client
349 * @lock: Protects msa311 device state between setup and data access routines
350 * (power transitions, samp_freq/scale tune, retrieving axes data, etc)
351 * @chip_name: Chip name in the format "msa311-%02x" % partid
352 * @new_data_trig: Optional NEW_DATA interrupt driven trigger used
353 * to notify external consumers a new sample is ready
355 struct msa311_priv {
356 struct regmap *regs;
357 struct regmap_field *fields[F_MAX_FIELDS];
359 struct device *dev;
360 struct mutex lock;
361 char *chip_name;
363 struct iio_trigger *new_data_trig;
366 enum msa311_si {
367 MSA311_SI_X,
368 MSA311_SI_Y,
369 MSA311_SI_Z,
370 MSA311_SI_TIMESTAMP,
373 #define MSA311_ACCEL_CHANNEL(axis) { \
374 .type = IIO_ACCEL, \
375 .modified = 1, \
376 .channel2 = IIO_MOD_##axis, \
377 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
378 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
379 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
380 .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \
381 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
382 .scan_index = MSA311_SI_##axis, \
383 .scan_type = { \
384 .sign = 's', \
385 .realbits = 12, \
386 .storagebits = 16, \
387 .shift = 4, \
388 .endianness = IIO_LE, \
389 }, \
390 .datasheet_name = "ACC_"#axis, \
393 static const struct iio_chan_spec msa311_channels[] = {
394 MSA311_ACCEL_CHANNEL(X),
395 MSA311_ACCEL_CHANNEL(Y),
396 MSA311_ACCEL_CHANNEL(Z),
397 IIO_CHAN_SOFT_TIMESTAMP(MSA311_SI_TIMESTAMP),
401 * msa311_get_odr() - Read Output Data Rate (ODR) value from MSA311 accel
402 * @msa311: MSA311 internal private state
403 * @odr: output ODR value
405 * This function should be called under msa311->lock.
407 * Return: 0 on success, -ERRNO in other failures
409 static int msa311_get_odr(struct msa311_priv *msa311, unsigned int *odr)
411 int err;
413 err = regmap_field_read(msa311->fields[F_ODR], odr);
414 if (err)
415 return err;
418 * Filter the same 1000Hz ODR register values based on datasheet info.
419 * ODR can be equal to 1010-1111 for 1000Hz, but function returns 1010
420 * all the time.
422 if (*odr > MSA311_ODR_1000_HZ)
423 *odr = MSA311_ODR_1000_HZ;
425 return 0;
429 * msa311_set_odr() - Setup Output Data Rate (ODR) value for MSA311 accel
430 * @msa311: MSA311 internal private state
431 * @odr: requested ODR value
433 * This function should be called under msa311->lock. Possible ODR values:
434 * - 1Hz (not available in normal mode)
435 * - 1.95Hz (not available in normal mode)
436 * - 3.9Hz
437 * - 7.81Hz
438 * - 15.63Hz
439 * - 31.25Hz
440 * - 62.5Hz
441 * - 125Hz
442 * - 250Hz
443 * - 500Hz
444 * - 1000Hz
446 * Return: 0 on success, -EINVAL for bad ODR value in the certain power mode,
447 * -ERRNO in other failures
449 static int msa311_set_odr(struct msa311_priv *msa311, unsigned int odr)
451 struct device *dev = msa311->dev;
452 unsigned int pwr_mode;
453 bool good_odr;
454 int err;
456 err = regmap_field_read(msa311->fields[F_PWR_MODE], &pwr_mode);
457 if (err)
458 return err;
460 /* Filter bad ODR values */
461 if (pwr_mode == MSA311_PWR_MODE_NORMAL)
462 good_odr = (odr > MSA311_ODR_1_95_HZ);
463 else
464 good_odr = false;
466 if (!good_odr) {
467 dev_err(dev,
468 "can't set odr %u.%06uHz, not available in %s mode\n",
469 msa311_odr_table[odr].integral,
470 msa311_odr_table[odr].microfract,
471 msa311_pwr_modes[pwr_mode]);
472 return -EINVAL;
475 return regmap_field_write(msa311->fields[F_ODR], odr);
479 * msa311_wait_for_next_data() - Wait next accel data available after resume
480 * @msa311: MSA311 internal private state
482 * Return: 0 on success, -EINTR if msleep() was interrupted,
483 * -ERRNO in other failures
485 static int msa311_wait_for_next_data(struct msa311_priv *msa311)
487 static const unsigned int unintr_thresh_ms = 20;
488 struct device *dev = msa311->dev;
489 unsigned long freq_uhz;
490 unsigned long wait_ms;
491 unsigned int odr;
492 int err;
494 err = msa311_get_odr(msa311, &odr);
495 if (err) {
496 dev_err(dev, "can't get actual frequency (%pe)\n",
497 ERR_PTR(err));
498 return err;
502 * After msa311 resuming is done, we need to wait for data
503 * to be refreshed by accel logic.
504 * A certain timeout is calculated based on the current ODR value.
505 * If requested timeout isn't so long (let's assume 20ms),
506 * we can wait for next data in uninterruptible sleep.
508 freq_uhz = msa311_odr_table[odr].integral * MICROHZ_PER_HZ +
509 msa311_odr_table[odr].microfract;
510 wait_ms = (MICROHZ_PER_HZ / freq_uhz) * MSEC_PER_SEC;
512 if (wait_ms < unintr_thresh_ms)
513 usleep_range(wait_ms * USEC_PER_MSEC,
514 unintr_thresh_ms * USEC_PER_MSEC);
515 else if (msleep_interruptible(wait_ms))
516 return -EINTR;
518 return 0;
522 * msa311_set_pwr_mode() - Install certain MSA311 power mode
523 * @msa311: MSA311 internal private state
524 * @mode: Power mode can be equal to NORMAL or SUSPEND
526 * This function should be called under msa311->lock.
528 * Return: 0 on success, -ERRNO on failure
530 static int msa311_set_pwr_mode(struct msa311_priv *msa311, unsigned int mode)
532 struct device *dev = msa311->dev;
533 unsigned int prev_mode;
534 int err;
536 if (mode >= ARRAY_SIZE(msa311_pwr_modes))
537 return -EINVAL;
539 dev_dbg(dev, "transition to %s mode\n", msa311_pwr_modes[mode]);
541 err = regmap_field_read(msa311->fields[F_PWR_MODE], &prev_mode);
542 if (err)
543 return err;
545 err = regmap_field_write(msa311->fields[F_PWR_MODE], mode);
546 if (err)
547 return err;
549 /* Wait actual data if we wake up */
550 if (prev_mode == MSA311_PWR_MODE_SUSPEND &&
551 mode == MSA311_PWR_MODE_NORMAL)
552 return msa311_wait_for_next_data(msa311);
554 return 0;
558 * msa311_get_axis() - Read MSA311 accel data for certain IIO channel axis spec
559 * @msa311: MSA311 internal private state
560 * @chan: IIO channel specification
561 * @axis: Output accel axis data for requested IIO channel spec
563 * This function should be called under msa311->lock.
565 * Return: 0 on success, -EINVAL for unknown IIO channel specification,
566 * -ERRNO in other failures
568 static int msa311_get_axis(struct msa311_priv *msa311,
569 const struct iio_chan_spec * const chan,
570 __le16 *axis)
572 struct device *dev = msa311->dev;
573 unsigned int axis_reg;
575 if (chan->scan_index < MSA311_SI_X || chan->scan_index > MSA311_SI_Z) {
576 dev_err(dev, "invalid scan_index value [%d]\n",
577 chan->scan_index);
578 return -EINVAL;
581 /* Axes data layout has 2 byte gap for each axis starting from X axis */
582 axis_reg = MSA311_ACC_X_REG + (chan->scan_index << 1);
584 return regmap_bulk_read(msa311->regs, axis_reg, axis, sizeof(*axis));
587 static int msa311_read_raw_data(struct iio_dev *indio_dev,
588 struct iio_chan_spec const *chan,
589 int *val, int *val2)
591 struct msa311_priv *msa311 = iio_priv(indio_dev);
592 struct device *dev = msa311->dev;
593 __le16 axis;
594 int err;
596 err = pm_runtime_resume_and_get(dev);
597 if (err)
598 return err;
600 err = iio_device_claim_direct_mode(indio_dev);
601 if (err)
602 return err;
604 mutex_lock(&msa311->lock);
605 err = msa311_get_axis(msa311, chan, &axis);
606 mutex_unlock(&msa311->lock);
608 iio_device_release_direct_mode(indio_dev);
610 pm_runtime_mark_last_busy(dev);
611 pm_runtime_put_autosuspend(dev);
613 if (err) {
614 dev_err(dev, "can't get axis %s (%pe)\n",
615 chan->datasheet_name, ERR_PTR(err));
616 return err;
620 * Axis data format is:
621 * ACC_X = (ACC_X_MSB[7:0] << 4) | ACC_X_LSB[7:4]
623 *val = sign_extend32(le16_to_cpu(axis) >> chan->scan_type.shift,
624 chan->scan_type.realbits - 1);
626 return IIO_VAL_INT;
629 static int msa311_read_scale(struct iio_dev *indio_dev, int *val, int *val2)
631 struct msa311_priv *msa311 = iio_priv(indio_dev);
632 struct device *dev = msa311->dev;
633 unsigned int fs;
634 int err;
636 mutex_lock(&msa311->lock);
637 err = regmap_field_read(msa311->fields[F_FS], &fs);
638 mutex_unlock(&msa311->lock);
639 if (err) {
640 dev_err(dev, "can't get actual scale (%pe)\n", ERR_PTR(err));
641 return err;
644 *val = msa311_fs_table[fs].integral;
645 *val2 = msa311_fs_table[fs].microfract;
647 return IIO_VAL_INT_PLUS_MICRO;
650 static int msa311_read_samp_freq(struct iio_dev *indio_dev,
651 int *val, int *val2)
653 struct msa311_priv *msa311 = iio_priv(indio_dev);
654 struct device *dev = msa311->dev;
655 unsigned int odr;
656 int err;
658 mutex_lock(&msa311->lock);
659 err = msa311_get_odr(msa311, &odr);
660 mutex_unlock(&msa311->lock);
661 if (err) {
662 dev_err(dev, "can't get actual frequency (%pe)\n",
663 ERR_PTR(err));
664 return err;
667 *val = msa311_odr_table[odr].integral;
668 *val2 = msa311_odr_table[odr].microfract;
670 return IIO_VAL_INT_PLUS_MICRO;
673 static int msa311_read_raw(struct iio_dev *indio_dev,
674 struct iio_chan_spec const *chan,
675 int *val, int *val2, long mask)
677 switch (mask) {
678 case IIO_CHAN_INFO_RAW:
679 return msa311_read_raw_data(indio_dev, chan, val, val2);
681 case IIO_CHAN_INFO_SCALE:
682 return msa311_read_scale(indio_dev, val, val2);
684 case IIO_CHAN_INFO_SAMP_FREQ:
685 return msa311_read_samp_freq(indio_dev, val, val2);
687 default:
688 return -EINVAL;
692 static int msa311_read_avail(struct iio_dev *indio_dev,
693 struct iio_chan_spec const *chan,
694 const int **vals, int *type,
695 int *length, long mask)
697 switch (mask) {
698 case IIO_CHAN_INFO_SAMP_FREQ:
699 *vals = (int *)msa311_odr_table;
700 *type = IIO_VAL_INT_PLUS_MICRO;
701 /* ODR value has 2 ints (integer and fractional parts) */
702 *length = ARRAY_SIZE(msa311_odr_table) * 2;
703 return IIO_AVAIL_LIST;
705 case IIO_CHAN_INFO_SCALE:
706 *vals = (int *)msa311_fs_table;
707 *type = IIO_VAL_INT_PLUS_MICRO;
708 /* FS value has 2 ints (integer and fractional parts) */
709 *length = ARRAY_SIZE(msa311_fs_table) * 2;
710 return IIO_AVAIL_LIST;
712 default:
713 return -EINVAL;
717 static int msa311_write_scale(struct iio_dev *indio_dev, int val, int val2)
719 struct msa311_priv *msa311 = iio_priv(indio_dev);
720 struct device *dev = msa311->dev;
721 unsigned int fs;
722 int err;
724 /* We do not have fs >= 1, so skip such values */
725 if (val)
726 return 0;
728 err = pm_runtime_resume_and_get(dev);
729 if (err)
730 return err;
732 err = -EINVAL;
733 for (fs = 0; fs < ARRAY_SIZE(msa311_fs_table); fs++)
734 /* Do not check msa311_fs_table[fs].integral, it's always 0 */
735 if (val2 == msa311_fs_table[fs].microfract) {
736 mutex_lock(&msa311->lock);
737 err = regmap_field_write(msa311->fields[F_FS], fs);
738 mutex_unlock(&msa311->lock);
739 break;
742 pm_runtime_mark_last_busy(dev);
743 pm_runtime_put_autosuspend(dev);
745 if (err)
746 dev_err(dev, "can't update scale (%pe)\n", ERR_PTR(err));
748 return err;
751 static int msa311_write_samp_freq(struct iio_dev *indio_dev, int val, int val2)
753 struct msa311_priv *msa311 = iio_priv(indio_dev);
754 struct device *dev = msa311->dev;
755 unsigned int odr;
756 int err;
758 err = pm_runtime_resume_and_get(dev);
759 if (err)
760 return err;
763 * Sampling frequency changing is prohibited when buffer mode is
764 * enabled, because sometimes MSA311 chip returns outliers during
765 * frequency values growing up in the read operation moment.
767 err = iio_device_claim_direct_mode(indio_dev);
768 if (err)
769 return err;
771 err = -EINVAL;
772 for (odr = 0; odr < ARRAY_SIZE(msa311_odr_table); odr++)
773 if (val == msa311_odr_table[odr].integral &&
774 val2 == msa311_odr_table[odr].microfract) {
775 mutex_lock(&msa311->lock);
776 err = msa311_set_odr(msa311, odr);
777 mutex_unlock(&msa311->lock);
778 break;
781 iio_device_release_direct_mode(indio_dev);
783 pm_runtime_mark_last_busy(dev);
784 pm_runtime_put_autosuspend(dev);
786 if (err)
787 dev_err(dev, "can't update frequency (%pe)\n", ERR_PTR(err));
789 return err;
792 static int msa311_write_raw(struct iio_dev *indio_dev,
793 struct iio_chan_spec const *chan,
794 int val, int val2, long mask)
796 switch (mask) {
797 case IIO_CHAN_INFO_SCALE:
798 return msa311_write_scale(indio_dev, val, val2);
800 case IIO_CHAN_INFO_SAMP_FREQ:
801 return msa311_write_samp_freq(indio_dev, val, val2);
803 default:
804 return -EINVAL;
808 static int msa311_debugfs_reg_access(struct iio_dev *indio_dev,
809 unsigned int reg, unsigned int writeval,
810 unsigned int *readval)
812 struct msa311_priv *msa311 = iio_priv(indio_dev);
813 struct device *dev = msa311->dev;
814 int err;
816 if (reg > regmap_get_max_register(msa311->regs))
817 return -EINVAL;
819 err = pm_runtime_resume_and_get(dev);
820 if (err)
821 return err;
823 mutex_lock(&msa311->lock);
825 if (readval)
826 err = regmap_read(msa311->regs, reg, readval);
827 else
828 err = regmap_write(msa311->regs, reg, writeval);
830 mutex_unlock(&msa311->lock);
832 pm_runtime_mark_last_busy(dev);
833 pm_runtime_put_autosuspend(dev);
835 if (err)
836 dev_err(dev, "can't %s register %u from debugfs (%pe)\n",
837 str_read_write(readval), reg, ERR_PTR(err));
839 return err;
842 static int msa311_buffer_preenable(struct iio_dev *indio_dev)
844 struct msa311_priv *msa311 = iio_priv(indio_dev);
845 struct device *dev = msa311->dev;
847 return pm_runtime_resume_and_get(dev);
850 static int msa311_buffer_postdisable(struct iio_dev *indio_dev)
852 struct msa311_priv *msa311 = iio_priv(indio_dev);
853 struct device *dev = msa311->dev;
855 pm_runtime_mark_last_busy(dev);
856 pm_runtime_put_autosuspend(dev);
858 return 0;
861 static int msa311_set_new_data_trig_state(struct iio_trigger *trig, bool state)
863 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
864 struct msa311_priv *msa311 = iio_priv(indio_dev);
865 struct device *dev = msa311->dev;
866 int err;
868 mutex_lock(&msa311->lock);
869 err = regmap_field_write(msa311->fields[F_NEW_DATA_INT_EN], state);
870 mutex_unlock(&msa311->lock);
871 if (err)
872 dev_err(dev,
873 "can't %s buffer due to new_data_int failure (%pe)\n",
874 str_enable_disable(state), ERR_PTR(err));
876 return err;
879 static int msa311_validate_device(struct iio_trigger *trig,
880 struct iio_dev *indio_dev)
882 return iio_trigger_get_drvdata(trig) == indio_dev ? 0 : -EINVAL;
885 static irqreturn_t msa311_buffer_thread(int irq, void *p)
887 struct iio_poll_func *pf = p;
888 struct msa311_priv *msa311 = iio_priv(pf->indio_dev);
889 struct iio_dev *indio_dev = pf->indio_dev;
890 const struct iio_chan_spec *chan;
891 struct device *dev = msa311->dev;
892 int bit, err, i = 0;
893 __le16 axis;
894 struct {
895 __le16 channels[MSA311_SI_Z + 1];
896 s64 ts __aligned(8);
897 } buf;
899 memset(&buf, 0, sizeof(buf));
901 mutex_lock(&msa311->lock);
903 iio_for_each_active_channel(indio_dev, bit) {
904 chan = &msa311_channels[bit];
906 err = msa311_get_axis(msa311, chan, &axis);
907 if (err) {
908 mutex_unlock(&msa311->lock);
909 dev_err(dev, "can't get axis %s (%pe)\n",
910 chan->datasheet_name, ERR_PTR(err));
911 goto notify_done;
914 buf.channels[i++] = axis;
917 mutex_unlock(&msa311->lock);
919 iio_push_to_buffers_with_timestamp(indio_dev, &buf,
920 iio_get_time_ns(indio_dev));
922 notify_done:
923 iio_trigger_notify_done(indio_dev->trig);
925 return IRQ_HANDLED;
928 static irqreturn_t msa311_irq_thread(int irq, void *p)
930 struct msa311_priv *msa311 = iio_priv(p);
931 unsigned int new_data_int_enabled;
932 struct device *dev = msa311->dev;
933 int err;
935 mutex_lock(&msa311->lock);
938 * We do not check NEW_DATA int status, because based on the
939 * specification it's cleared automatically after a fixed time.
940 * So just check that is enabled by driver logic.
942 err = regmap_field_read(msa311->fields[F_NEW_DATA_INT_EN],
943 &new_data_int_enabled);
945 mutex_unlock(&msa311->lock);
946 if (err) {
947 dev_err(dev, "can't read new_data interrupt state (%pe)\n",
948 ERR_PTR(err));
949 return IRQ_NONE;
952 if (new_data_int_enabled)
953 iio_trigger_poll_nested(msa311->new_data_trig);
955 return IRQ_HANDLED;
958 static const struct iio_info msa311_info = {
959 .read_raw = msa311_read_raw,
960 .read_avail = msa311_read_avail,
961 .write_raw = msa311_write_raw,
962 .debugfs_reg_access = msa311_debugfs_reg_access,
965 static const struct iio_buffer_setup_ops msa311_buffer_setup_ops = {
966 .preenable = msa311_buffer_preenable,
967 .postdisable = msa311_buffer_postdisable,
970 static const struct iio_trigger_ops msa311_new_data_trig_ops = {
971 .set_trigger_state = msa311_set_new_data_trig_state,
972 .validate_device = msa311_validate_device,
975 static int msa311_check_partid(struct msa311_priv *msa311)
977 struct device *dev = msa311->dev;
978 unsigned int partid;
979 int err;
981 err = regmap_read(msa311->regs, MSA311_PARTID_REG, &partid);
982 if (err)
983 return dev_err_probe(dev, err, "failed to read partid\n");
985 if (partid != MSA311_WHO_AM_I)
986 dev_warn(dev, "invalid partid (%#x), expected (%#x)\n",
987 partid, MSA311_WHO_AM_I);
989 msa311->chip_name = devm_kasprintf(dev, GFP_KERNEL,
990 "msa311-%02x", partid);
991 if (!msa311->chip_name)
992 return dev_err_probe(dev, -ENOMEM, "can't alloc chip name\n");
994 return 0;
997 static int msa311_soft_reset(struct msa311_priv *msa311)
999 struct device *dev = msa311->dev;
1000 int err;
1002 err = regmap_write(msa311->regs, MSA311_SOFT_RESET_REG,
1003 MSA311_GENMASK(F_SOFT_RESET_I2C) |
1004 MSA311_GENMASK(F_SOFT_RESET_SPI));
1005 if (err)
1006 return dev_err_probe(dev, err, "can't soft reset all logic\n");
1008 return 0;
1011 static int msa311_chip_init(struct msa311_priv *msa311)
1013 struct device *dev = msa311->dev;
1014 const char zero_bulk[2] = { };
1015 int err;
1017 err = regmap_write(msa311->regs, MSA311_RANGE_REG, MSA311_FS_16G);
1018 if (err)
1019 return dev_err_probe(dev, err, "failed to setup accel range\n");
1021 /* Disable all interrupts by default */
1022 err = regmap_bulk_write(msa311->regs, MSA311_INT_SET_0_REG,
1023 zero_bulk, sizeof(zero_bulk));
1024 if (err)
1025 return dev_err_probe(dev, err,
1026 "can't disable set0/set1 interrupts\n");
1028 /* Unmap all INT1 interrupts by default */
1029 err = regmap_bulk_write(msa311->regs, MSA311_INT_MAP_0_REG,
1030 zero_bulk, sizeof(zero_bulk));
1031 if (err)
1032 return dev_err_probe(dev, err,
1033 "failed to unmap map0/map1 interrupts\n");
1035 /* Disable all axes by default */
1036 err = regmap_clear_bits(msa311->regs, MSA311_ODR_REG,
1037 MSA311_GENMASK(F_X_AXIS_DIS) |
1038 MSA311_GENMASK(F_Y_AXIS_DIS) |
1039 MSA311_GENMASK(F_Z_AXIS_DIS));
1040 if (err)
1041 return dev_err_probe(dev, err, "can't enable all axes\n");
1043 err = msa311_set_odr(msa311, MSA311_ODR_125_HZ);
1044 if (err)
1045 return dev_err_probe(dev, err,
1046 "failed to set accel frequency\n");
1048 return 0;
1051 static int msa311_setup_interrupts(struct msa311_priv *msa311)
1053 struct device *dev = msa311->dev;
1054 struct i2c_client *i2c = to_i2c_client(dev);
1055 struct iio_dev *indio_dev = i2c_get_clientdata(i2c);
1056 struct iio_trigger *trig;
1057 int err;
1059 /* Keep going without interrupts if no initialized I2C IRQ */
1060 if (i2c->irq <= 0)
1061 return 0;
1063 err = devm_request_threaded_irq(&i2c->dev, i2c->irq, NULL,
1064 msa311_irq_thread, IRQF_ONESHOT,
1065 msa311->chip_name, indio_dev);
1066 if (err)
1067 return dev_err_probe(dev, err, "failed to request IRQ\n");
1069 trig = devm_iio_trigger_alloc(dev, "%s-new-data", msa311->chip_name);
1070 if (!trig)
1071 return dev_err_probe(dev, -ENOMEM,
1072 "can't allocate newdata trigger\n");
1074 msa311->new_data_trig = trig;
1075 msa311->new_data_trig->ops = &msa311_new_data_trig_ops;
1076 iio_trigger_set_drvdata(msa311->new_data_trig, indio_dev);
1078 err = devm_iio_trigger_register(dev, msa311->new_data_trig);
1079 if (err)
1080 return dev_err_probe(dev, err,
1081 "can't register newdata trigger\n");
1083 err = regmap_field_write(msa311->fields[F_INT1_OD],
1084 MSA311_INT1_OD_PUSH_PULL);
1085 if (err)
1086 return dev_err_probe(dev, err,
1087 "can't enable push-pull interrupt\n");
1089 err = regmap_field_write(msa311->fields[F_INT1_LVL],
1090 MSA311_INT1_LVL_HIGH);
1091 if (err)
1092 return dev_err_probe(dev, err,
1093 "can't set active interrupt level\n");
1095 err = regmap_field_write(msa311->fields[F_LATCH_INT],
1096 MSA311_LATCH_INT_LATCHED);
1097 if (err)
1098 return dev_err_probe(dev, err,
1099 "can't latch interrupt\n");
1101 err = regmap_field_write(msa311->fields[F_RESET_INT], 1);
1102 if (err)
1103 return dev_err_probe(dev, err,
1104 "can't reset interrupt\n");
1106 err = regmap_field_write(msa311->fields[F_INT1_NEW_DATA], 1);
1107 if (err)
1108 return dev_err_probe(dev, err,
1109 "can't map new data interrupt\n");
1111 return 0;
1114 static int msa311_regmap_init(struct msa311_priv *msa311)
1116 struct regmap_field **fields = msa311->fields;
1117 struct device *dev = msa311->dev;
1118 struct i2c_client *i2c = to_i2c_client(dev);
1119 struct regmap *regmap;
1120 int i;
1122 regmap = devm_regmap_init_i2c(i2c, &msa311_regmap_config);
1123 if (IS_ERR(regmap))
1124 return dev_err_probe(dev, PTR_ERR(regmap),
1125 "failed to register i2c regmap\n");
1127 msa311->regs = regmap;
1129 for (i = 0; i < F_MAX_FIELDS; i++) {
1130 fields[i] = devm_regmap_field_alloc(dev,
1131 msa311->regs,
1132 msa311_reg_fields[i]);
1133 if (IS_ERR(msa311->fields[i]))
1134 return dev_err_probe(dev, PTR_ERR(msa311->fields[i]),
1135 "can't alloc field[%d]\n", i);
1138 return 0;
1141 static void msa311_powerdown(void *msa311)
1143 msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1146 static int msa311_probe(struct i2c_client *i2c)
1148 struct device *dev = &i2c->dev;
1149 struct msa311_priv *msa311;
1150 struct iio_dev *indio_dev;
1151 int err;
1153 indio_dev = devm_iio_device_alloc(dev, sizeof(*msa311));
1154 if (!indio_dev)
1155 return dev_err_probe(dev, -ENOMEM,
1156 "IIO device allocation failed\n");
1158 msa311 = iio_priv(indio_dev);
1159 msa311->dev = dev;
1160 i2c_set_clientdata(i2c, indio_dev);
1162 err = msa311_regmap_init(msa311);
1163 if (err)
1164 return err;
1166 mutex_init(&msa311->lock);
1168 err = devm_regulator_get_enable(dev, "vdd");
1169 if (err)
1170 return dev_err_probe(dev, err, "can't get vdd supply\n");
1172 err = msa311_check_partid(msa311);
1173 if (err)
1174 return err;
1176 err = msa311_soft_reset(msa311);
1177 if (err)
1178 return err;
1180 err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1181 if (err)
1182 return dev_err_probe(dev, err, "failed to power on device\n");
1185 * Register powerdown deferred callback which suspends the chip
1186 * after module unloaded.
1188 * MSA311 should be in SUSPEND mode in the two cases:
1189 * 1) When driver is loaded, but we do not have any data or
1190 * configuration requests to it (we are solving it using
1191 * autosuspend feature).
1192 * 2) When driver is unloaded and device is not used (devm action is
1193 * used in this case).
1195 err = devm_add_action_or_reset(dev, msa311_powerdown, msa311);
1196 if (err)
1197 return dev_err_probe(dev, err, "can't add powerdown action\n");
1199 err = pm_runtime_set_active(dev);
1200 if (err)
1201 return err;
1203 err = devm_pm_runtime_enable(dev);
1204 if (err)
1205 return err;
1207 pm_runtime_get_noresume(dev);
1208 pm_runtime_set_autosuspend_delay(dev, MSA311_PWR_SLEEP_DELAY_MS);
1209 pm_runtime_use_autosuspend(dev);
1211 err = msa311_chip_init(msa311);
1212 if (err)
1213 return err;
1215 indio_dev->modes = INDIO_DIRECT_MODE;
1216 indio_dev->channels = msa311_channels;
1217 indio_dev->num_channels = ARRAY_SIZE(msa311_channels);
1218 indio_dev->name = msa311->chip_name;
1219 indio_dev->info = &msa311_info;
1221 err = devm_iio_triggered_buffer_setup(dev, indio_dev,
1222 iio_pollfunc_store_time,
1223 msa311_buffer_thread,
1224 &msa311_buffer_setup_ops);
1225 if (err)
1226 return dev_err_probe(dev, err,
1227 "can't setup IIO trigger buffer\n");
1229 err = msa311_setup_interrupts(msa311);
1230 if (err)
1231 return err;
1233 pm_runtime_mark_last_busy(dev);
1234 pm_runtime_put_autosuspend(dev);
1236 err = devm_iio_device_register(dev, indio_dev);
1237 if (err)
1238 return dev_err_probe(dev, err, "IIO device register failed\n");
1240 return 0;
1243 static int msa311_runtime_suspend(struct device *dev)
1245 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1246 struct msa311_priv *msa311 = iio_priv(indio_dev);
1247 int err;
1249 mutex_lock(&msa311->lock);
1250 err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_SUSPEND);
1251 mutex_unlock(&msa311->lock);
1252 if (err)
1253 dev_err(dev, "failed to power off device (%pe)\n",
1254 ERR_PTR(err));
1256 return err;
1259 static int msa311_runtime_resume(struct device *dev)
1261 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1262 struct msa311_priv *msa311 = iio_priv(indio_dev);
1263 int err;
1265 mutex_lock(&msa311->lock);
1266 err = msa311_set_pwr_mode(msa311, MSA311_PWR_MODE_NORMAL);
1267 mutex_unlock(&msa311->lock);
1268 if (err)
1269 dev_err(dev, "failed to power on device (%pe)\n",
1270 ERR_PTR(err));
1272 return err;
1275 static DEFINE_RUNTIME_DEV_PM_OPS(msa311_pm_ops, msa311_runtime_suspend,
1276 msa311_runtime_resume, NULL);
1278 static const struct i2c_device_id msa311_i2c_id[] = {
1279 { .name = "msa311" },
1282 MODULE_DEVICE_TABLE(i2c, msa311_i2c_id);
1284 static const struct of_device_id msa311_of_match[] = {
1285 { .compatible = "memsensing,msa311" },
1288 MODULE_DEVICE_TABLE(of, msa311_of_match);
1290 static struct i2c_driver msa311_driver = {
1291 .driver = {
1292 .name = "msa311",
1293 .of_match_table = msa311_of_match,
1294 .pm = pm_ptr(&msa311_pm_ops),
1296 .probe = msa311_probe,
1297 .id_table = msa311_i2c_id,
1299 module_i2c_driver(msa311_driver);
1301 MODULE_AUTHOR("Dmitry Rokosov <ddrokosov@sberdevices.ru>");
1302 MODULE_DESCRIPTION("MEMSensing MSA311 3-axis accelerometer driver");
1303 MODULE_LICENSE("GPL");