drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / net / core / dev.c
blobea5fbcd133ae4c743545945def00790ec74e2bb6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 struct net_device *dev,
173 struct netlink_ext_ack *extack);
175 static DEFINE_MUTEX(ifalias_mutex);
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
183 static DECLARE_RWSEM(devnet_rename_sem);
185 static inline void dev_base_seq_inc(struct net *net)
187 unsigned int val = net->dev_base_seq + 1;
189 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 #ifndef CONFIG_PREEMPT_RT
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
208 static int __init setup_backlog_napi_threads(char *arg)
210 static_branch_enable(&use_backlog_threads_key);
211 return 0;
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
215 static bool use_backlog_threads(void)
217 return static_branch_unlikely(&use_backlog_threads_key);
220 #else
222 static bool use_backlog_threads(void)
224 return true;
227 #endif
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 unsigned long *flags)
232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 else
235 local_irq_save(*flags);
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 spin_lock_irq(&sd->input_pkt_queue.lock);
242 else
243 local_irq_disable();
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 unsigned long *flags)
249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 else
252 local_irq_restore(*flags);
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 spin_unlock_irq(&sd->input_pkt_queue.lock);
259 else
260 local_irq_enable();
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 const char *name)
266 struct netdev_name_node *name_node;
268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 if (!name_node)
270 return NULL;
271 INIT_HLIST_NODE(&name_node->hlist);
272 name_node->dev = dev;
273 name_node->name = name;
274 return name_node;
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
280 struct netdev_name_node *name_node;
282 name_node = netdev_name_node_alloc(dev, dev->name);
283 if (!name_node)
284 return NULL;
285 INIT_LIST_HEAD(&name_node->list);
286 return name_node;
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
291 kfree(name_node);
294 static void netdev_name_node_add(struct net *net,
295 struct netdev_name_node *name_node)
297 hlist_add_head_rcu(&name_node->hlist,
298 dev_name_hash(net, name_node->name));
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
303 hlist_del_rcu(&name_node->hlist);
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 const char *name)
309 struct hlist_head *head = dev_name_hash(net, name);
310 struct netdev_name_node *name_node;
312 hlist_for_each_entry(name_node, head, hlist)
313 if (!strcmp(name_node->name, name))
314 return name_node;
315 return NULL;
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 const char *name)
321 struct hlist_head *head = dev_name_hash(net, name);
322 struct netdev_name_node *name_node;
324 hlist_for_each_entry_rcu(name_node, head, hlist)
325 if (!strcmp(name_node->name, name))
326 return name_node;
327 return NULL;
330 bool netdev_name_in_use(struct net *net, const char *name)
332 return netdev_name_node_lookup(net, name);
334 EXPORT_SYMBOL(netdev_name_in_use);
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
338 struct netdev_name_node *name_node;
339 struct net *net = dev_net(dev);
341 name_node = netdev_name_node_lookup(net, name);
342 if (name_node)
343 return -EEXIST;
344 name_node = netdev_name_node_alloc(dev, name);
345 if (!name_node)
346 return -ENOMEM;
347 netdev_name_node_add(net, name_node);
348 /* The node that holds dev->name acts as a head of per-device list. */
349 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
351 return 0;
354 static void netdev_name_node_alt_free(struct rcu_head *head)
356 struct netdev_name_node *name_node =
357 container_of(head, struct netdev_name_node, rcu);
359 kfree(name_node->name);
360 netdev_name_node_free(name_node);
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
365 netdev_name_node_del(name_node);
366 list_del(&name_node->list);
367 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
372 struct netdev_name_node *name_node;
373 struct net *net = dev_net(dev);
375 name_node = netdev_name_node_lookup(net, name);
376 if (!name_node)
377 return -ENOENT;
378 /* lookup might have found our primary name or a name belonging
379 * to another device.
381 if (name_node == dev->name_node || name_node->dev != dev)
382 return -EINVAL;
384 __netdev_name_node_alt_destroy(name_node);
385 return 0;
388 static void netdev_name_node_alt_flush(struct net_device *dev)
390 struct netdev_name_node *name_node, *tmp;
392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 list_del(&name_node->list);
394 netdev_name_node_alt_free(&name_node->rcu);
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
401 struct netdev_name_node *name_node;
402 struct net *net = dev_net(dev);
404 ASSERT_RTNL();
406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 netdev_name_node_add(net, dev->name_node);
408 hlist_add_head_rcu(&dev->index_hlist,
409 dev_index_hash(net, dev->ifindex));
411 netdev_for_each_altname(dev, name_node)
412 netdev_name_node_add(net, name_node);
414 /* We reserved the ifindex, this can't fail */
415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
417 dev_base_seq_inc(net);
420 /* Device list removal
421 * caller must respect a RCU grace period before freeing/reusing dev
423 static void unlist_netdevice(struct net_device *dev)
425 struct netdev_name_node *name_node;
426 struct net *net = dev_net(dev);
428 ASSERT_RTNL();
430 xa_erase(&net->dev_by_index, dev->ifindex);
432 netdev_for_each_altname(dev, name_node)
433 netdev_name_node_del(name_node);
435 /* Unlink dev from the device chain */
436 list_del_rcu(&dev->dev_list);
437 netdev_name_node_del(dev->name_node);
438 hlist_del_rcu(&dev->index_hlist);
440 dev_base_seq_inc(dev_net(dev));
444 * Our notifier list
447 static RAW_NOTIFIER_HEAD(netdev_chain);
450 * Device drivers call our routines to queue packets here. We empty the
451 * queue in the local softnet handler.
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460 * PP consumers must pay attention to run APIs in the appropriate context
461 * (e.g. NAPI context).
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
465 #ifdef CONFIG_LOCKDEP
467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468 * according to dev->type
470 static const unsigned short netdev_lock_type[] = {
471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
487 static const char *const netdev_lock_name[] = {
488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
509 int i;
511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 if (netdev_lock_type[i] == dev_type)
513 return i;
514 /* the last key is used by default */
515 return ARRAY_SIZE(netdev_lock_type) - 1;
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 unsigned short dev_type)
521 int i;
523 i = netdev_lock_pos(dev_type);
524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 netdev_lock_name[i]);
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
530 int i;
532 i = netdev_lock_pos(dev->type);
533 lockdep_set_class_and_name(&dev->addr_list_lock,
534 &netdev_addr_lock_key[i],
535 netdev_lock_name[i]);
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 unsigned short dev_type)
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 #endif
548 /*******************************************************************************
550 * Protocol management and registration routines
552 *******************************************************************************/
556 * Add a protocol ID to the list. Now that the input handler is
557 * smarter we can dispense with all the messy stuff that used to be
558 * here.
560 * BEWARE!!! Protocol handlers, mangling input packets,
561 * MUST BE last in hash buckets and checking protocol handlers
562 * MUST start from promiscuous ptype_all chain in net_bh.
563 * It is true now, do not change it.
564 * Explanation follows: if protocol handler, mangling packet, will
565 * be the first on list, it is not able to sense, that packet
566 * is cloned and should be copied-on-write, so that it will
567 * change it and subsequent readers will get broken packet.
568 * --ANK (980803)
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
573 if (pt->type == htons(ETH_P_ALL))
574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 else
576 return pt->dev ? &pt->dev->ptype_specific :
577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
581 * dev_add_pack - add packet handler
582 * @pt: packet type declaration
584 * Add a protocol handler to the networking stack. The passed &packet_type
585 * is linked into kernel lists and may not be freed until it has been
586 * removed from the kernel lists.
588 * This call does not sleep therefore it can not
589 * guarantee all CPU's that are in middle of receiving packets
590 * will see the new packet type (until the next received packet).
593 void dev_add_pack(struct packet_type *pt)
595 struct list_head *head = ptype_head(pt);
597 spin_lock(&ptype_lock);
598 list_add_rcu(&pt->list, head);
599 spin_unlock(&ptype_lock);
601 EXPORT_SYMBOL(dev_add_pack);
604 * __dev_remove_pack - remove packet handler
605 * @pt: packet type declaration
607 * Remove a protocol handler that was previously added to the kernel
608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
609 * from the kernel lists and can be freed or reused once this function
610 * returns.
612 * The packet type might still be in use by receivers
613 * and must not be freed until after all the CPU's have gone
614 * through a quiescent state.
616 void __dev_remove_pack(struct packet_type *pt)
618 struct list_head *head = ptype_head(pt);
619 struct packet_type *pt1;
621 spin_lock(&ptype_lock);
623 list_for_each_entry(pt1, head, list) {
624 if (pt == pt1) {
625 list_del_rcu(&pt->list);
626 goto out;
630 pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 spin_unlock(&ptype_lock);
634 EXPORT_SYMBOL(__dev_remove_pack);
637 * dev_remove_pack - remove packet handler
638 * @pt: packet type declaration
640 * Remove a protocol handler that was previously added to the kernel
641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
642 * from the kernel lists and can be freed or reused once this function
643 * returns.
645 * This call sleeps to guarantee that no CPU is looking at the packet
646 * type after return.
648 void dev_remove_pack(struct packet_type *pt)
650 __dev_remove_pack(pt);
652 synchronize_net();
654 EXPORT_SYMBOL(dev_remove_pack);
657 /*******************************************************************************
659 * Device Interface Subroutines
661 *******************************************************************************/
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
671 int dev_get_iflink(const struct net_device *dev)
673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 return dev->netdev_ops->ndo_get_iflink(dev);
676 return READ_ONCE(dev->ifindex);
678 EXPORT_SYMBOL(dev_get_iflink);
681 * dev_fill_metadata_dst - Retrieve tunnel egress information.
682 * @dev: targeted interface
683 * @skb: The packet.
685 * For better visibility of tunnel traffic OVS needs to retrieve
686 * egress tunnel information for a packet. Following API allows
687 * user to get this info.
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
691 struct ip_tunnel_info *info;
693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
694 return -EINVAL;
696 info = skb_tunnel_info_unclone(skb);
697 if (!info)
698 return -ENOMEM;
699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 return -EINVAL;
702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
708 int k = stack->num_paths++;
710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 return NULL;
713 return &stack->path[k];
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 struct net_device_path_stack *stack)
719 const struct net_device *last_dev;
720 struct net_device_path_ctx ctx = {
721 .dev = dev,
723 struct net_device_path *path;
724 int ret = 0;
726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 stack->num_paths = 0;
728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 last_dev = ctx.dev;
730 path = dev_fwd_path(stack);
731 if (!path)
732 return -1;
734 memset(path, 0, sizeof(struct net_device_path));
735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 if (ret < 0)
737 return -1;
739 if (WARN_ON_ONCE(last_dev == ctx.dev))
740 return -1;
743 if (!ctx.dev)
744 return ret;
746 path = dev_fwd_path(stack);
747 if (!path)
748 return -1;
749 path->type = DEV_PATH_ETHERNET;
750 path->dev = ctx.dev;
752 return ret;
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
757 * __dev_get_by_name - find a device by its name
758 * @net: the applicable net namespace
759 * @name: name to find
761 * Find an interface by name. Must be called under RTNL semaphore.
762 * If the name is found a pointer to the device is returned.
763 * If the name is not found then %NULL is returned. The
764 * reference counters are not incremented so the caller must be
765 * careful with locks.
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
770 struct netdev_name_node *node_name;
772 node_name = netdev_name_node_lookup(net, name);
773 return node_name ? node_name->dev : NULL;
775 EXPORT_SYMBOL(__dev_get_by_name);
778 * dev_get_by_name_rcu - find a device by its name
779 * @net: the applicable net namespace
780 * @name: name to find
782 * Find an interface by name.
783 * If the name is found a pointer to the device is returned.
784 * If the name is not found then %NULL is returned.
785 * The reference counters are not incremented so the caller must be
786 * careful with locks. The caller must hold RCU lock.
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
791 struct netdev_name_node *node_name;
793 node_name = netdev_name_node_lookup_rcu(net, name);
794 return node_name ? node_name->dev : NULL;
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
801 struct net_device *dev;
803 rcu_read_lock();
804 dev = dev_get_by_name_rcu(net, name);
805 dev_hold(dev);
806 rcu_read_unlock();
807 return dev;
809 EXPORT_SYMBOL(dev_get_by_name);
812 * netdev_get_by_name() - find a device by its name
813 * @net: the applicable net namespace
814 * @name: name to find
815 * @tracker: tracking object for the acquired reference
816 * @gfp: allocation flags for the tracker
818 * Find an interface by name. This can be called from any
819 * context and does its own locking. The returned handle has
820 * the usage count incremented and the caller must use netdev_put() to
821 * release it when it is no longer needed. %NULL is returned if no
822 * matching device is found.
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 netdevice_tracker *tracker, gfp_t gfp)
827 struct net_device *dev;
829 dev = dev_get_by_name(net, name);
830 if (dev)
831 netdev_tracker_alloc(dev, tracker, gfp);
832 return dev;
834 EXPORT_SYMBOL(netdev_get_by_name);
837 * __dev_get_by_index - find a device by its ifindex
838 * @net: the applicable net namespace
839 * @ifindex: index of device
841 * Search for an interface by index. Returns %NULL if the device
842 * is not found or a pointer to the device. The device has not
843 * had its reference counter increased so the caller must be careful
844 * about locking. The caller must hold the RTNL semaphore.
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
849 struct net_device *dev;
850 struct hlist_head *head = dev_index_hash(net, ifindex);
852 hlist_for_each_entry(dev, head, index_hlist)
853 if (dev->ifindex == ifindex)
854 return dev;
856 return NULL;
858 EXPORT_SYMBOL(__dev_get_by_index);
861 * dev_get_by_index_rcu - find a device by its ifindex
862 * @net: the applicable net namespace
863 * @ifindex: index of device
865 * Search for an interface by index. Returns %NULL if the device
866 * is not found or a pointer to the device. The device has not
867 * had its reference counter increased so the caller must be careful
868 * about locking. The caller must hold RCU lock.
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
873 struct net_device *dev;
874 struct hlist_head *head = dev_index_hash(net, ifindex);
876 hlist_for_each_entry_rcu(dev, head, index_hlist)
877 if (dev->ifindex == ifindex)
878 return dev;
880 return NULL;
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
887 struct net_device *dev;
889 rcu_read_lock();
890 dev = dev_get_by_index_rcu(net, ifindex);
891 dev_hold(dev);
892 rcu_read_unlock();
893 return dev;
895 EXPORT_SYMBOL(dev_get_by_index);
898 * netdev_get_by_index() - find a device by its ifindex
899 * @net: the applicable net namespace
900 * @ifindex: index of device
901 * @tracker: tracking object for the acquired reference
902 * @gfp: allocation flags for the tracker
904 * Search for an interface by index. Returns NULL if the device
905 * is not found or a pointer to the device. The device returned has
906 * had a reference added and the pointer is safe until the user calls
907 * netdev_put() to indicate they have finished with it.
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 netdevice_tracker *tracker, gfp_t gfp)
912 struct net_device *dev;
914 dev = dev_get_by_index(net, ifindex);
915 if (dev)
916 netdev_tracker_alloc(dev, tracker, gfp);
917 return dev;
919 EXPORT_SYMBOL(netdev_get_by_index);
922 * dev_get_by_napi_id - find a device by napi_id
923 * @napi_id: ID of the NAPI struct
925 * Search for an interface by NAPI ID. Returns %NULL if the device
926 * is not found or a pointer to the device. The device has not had
927 * its reference counter increased so the caller must be careful
928 * about locking. The caller must hold RCU lock.
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
933 struct napi_struct *napi;
935 WARN_ON_ONCE(!rcu_read_lock_held());
937 if (napi_id < MIN_NAPI_ID)
938 return NULL;
940 napi = napi_by_id(napi_id);
942 return napi ? napi->dev : NULL;
944 EXPORT_SYMBOL(dev_get_by_napi_id);
946 static DEFINE_SEQLOCK(netdev_rename_lock);
948 void netdev_copy_name(struct net_device *dev, char *name)
950 unsigned int seq;
952 do {
953 seq = read_seqbegin(&netdev_rename_lock);
954 strscpy(name, dev->name, IFNAMSIZ);
955 } while (read_seqretry(&netdev_rename_lock, seq));
959 * netdev_get_name - get a netdevice name, knowing its ifindex.
960 * @net: network namespace
961 * @name: a pointer to the buffer where the name will be stored.
962 * @ifindex: the ifindex of the interface to get the name from.
964 int netdev_get_name(struct net *net, char *name, int ifindex)
966 struct net_device *dev;
967 int ret;
969 rcu_read_lock();
971 dev = dev_get_by_index_rcu(net, ifindex);
972 if (!dev) {
973 ret = -ENODEV;
974 goto out;
977 netdev_copy_name(dev, name);
979 ret = 0;
980 out:
981 rcu_read_unlock();
982 return ret;
986 * dev_getbyhwaddr_rcu - find a device by its hardware address
987 * @net: the applicable net namespace
988 * @type: media type of device
989 * @ha: hardware address
991 * Search for an interface by MAC address. Returns NULL if the device
992 * is not found or a pointer to the device.
993 * The caller must hold RCU or RTNL.
994 * The returned device has not had its ref count increased
995 * and the caller must therefore be careful about locking
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 const char *ha)
1002 struct net_device *dev;
1004 for_each_netdev_rcu(net, dev)
1005 if (dev->type == type &&
1006 !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 return dev;
1009 return NULL;
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1015 struct net_device *dev, *ret = NULL;
1017 rcu_read_lock();
1018 for_each_netdev_rcu(net, dev)
1019 if (dev->type == type) {
1020 dev_hold(dev);
1021 ret = dev;
1022 break;
1024 rcu_read_unlock();
1025 return ret;
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1030 * __dev_get_by_flags - find any device with given flags
1031 * @net: the applicable net namespace
1032 * @if_flags: IFF_* values
1033 * @mask: bitmask of bits in if_flags to check
1035 * Search for any interface with the given flags. Returns NULL if a device
1036 * is not found or a pointer to the device. Must be called inside
1037 * rtnl_lock(), and result refcount is unchanged.
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 unsigned short mask)
1043 struct net_device *dev, *ret;
1045 ASSERT_RTNL();
1047 ret = NULL;
1048 for_each_netdev(net, dev) {
1049 if (((dev->flags ^ if_flags) & mask) == 0) {
1050 ret = dev;
1051 break;
1054 return ret;
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1059 * dev_valid_name - check if name is okay for network device
1060 * @name: name string
1062 * Network device names need to be valid file names to
1063 * allow sysfs to work. We also disallow any kind of
1064 * whitespace.
1066 bool dev_valid_name(const char *name)
1068 if (*name == '\0')
1069 return false;
1070 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 return false;
1072 if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 return false;
1075 while (*name) {
1076 if (*name == '/' || *name == ':' || isspace(*name))
1077 return false;
1078 name++;
1080 return true;
1082 EXPORT_SYMBOL(dev_valid_name);
1085 * __dev_alloc_name - allocate a name for a device
1086 * @net: network namespace to allocate the device name in
1087 * @name: name format string
1088 * @res: result name string
1090 * Passed a format string - eg "lt%d" it will try and find a suitable
1091 * id. It scans list of devices to build up a free map, then chooses
1092 * the first empty slot. The caller must hold the dev_base or rtnl lock
1093 * while allocating the name and adding the device in order to avoid
1094 * duplicates.
1095 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096 * Returns the number of the unit assigned or a negative errno code.
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1101 int i = 0;
1102 const char *p;
1103 const int max_netdevices = 8*PAGE_SIZE;
1104 unsigned long *inuse;
1105 struct net_device *d;
1106 char buf[IFNAMSIZ];
1108 /* Verify the string as this thing may have come from the user.
1109 * There must be one "%d" and no other "%" characters.
1111 p = strchr(name, '%');
1112 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 return -EINVAL;
1115 /* Use one page as a bit array of possible slots */
1116 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 if (!inuse)
1118 return -ENOMEM;
1120 for_each_netdev(net, d) {
1121 struct netdev_name_node *name_node;
1123 netdev_for_each_altname(d, name_node) {
1124 if (!sscanf(name_node->name, name, &i))
1125 continue;
1126 if (i < 0 || i >= max_netdevices)
1127 continue;
1129 /* avoid cases where sscanf is not exact inverse of printf */
1130 snprintf(buf, IFNAMSIZ, name, i);
1131 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 __set_bit(i, inuse);
1134 if (!sscanf(d->name, name, &i))
1135 continue;
1136 if (i < 0 || i >= max_netdevices)
1137 continue;
1139 /* avoid cases where sscanf is not exact inverse of printf */
1140 snprintf(buf, IFNAMSIZ, name, i);
1141 if (!strncmp(buf, d->name, IFNAMSIZ))
1142 __set_bit(i, inuse);
1145 i = find_first_zero_bit(inuse, max_netdevices);
1146 bitmap_free(inuse);
1147 if (i == max_netdevices)
1148 return -ENFILE;
1150 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 strscpy(buf, name, IFNAMSIZ);
1152 snprintf(res, IFNAMSIZ, buf, i);
1153 return i;
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 const char *want_name, char *out_name,
1159 int dup_errno)
1161 if (!dev_valid_name(want_name))
1162 return -EINVAL;
1164 if (strchr(want_name, '%'))
1165 return __dev_alloc_name(net, want_name, out_name);
1167 if (netdev_name_in_use(net, want_name))
1168 return -dup_errno;
1169 if (out_name != want_name)
1170 strscpy(out_name, want_name, IFNAMSIZ);
1171 return 0;
1175 * dev_alloc_name - allocate a name for a device
1176 * @dev: device
1177 * @name: name format string
1179 * Passed a format string - eg "lt%d" it will try and find a suitable
1180 * id. It scans list of devices to build up a free map, then chooses
1181 * the first empty slot. The caller must hold the dev_base or rtnl lock
1182 * while allocating the name and adding the device in order to avoid
1183 * duplicates.
1184 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185 * Returns the number of the unit assigned or a negative errno code.
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1190 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1192 EXPORT_SYMBOL(dev_alloc_name);
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 const char *name)
1197 int ret;
1199 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 return ret < 0 ? ret : 0;
1204 * dev_change_name - change name of a device
1205 * @dev: device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1208 * Change name of a device, can pass format strings "eth%d".
1209 * for wildcarding.
1211 int dev_change_name(struct net_device *dev, const char *newname)
1213 unsigned char old_assign_type;
1214 char oldname[IFNAMSIZ];
1215 int err = 0;
1216 int ret;
1217 struct net *net;
1219 ASSERT_RTNL();
1220 BUG_ON(!dev_net(dev));
1222 net = dev_net(dev);
1224 down_write(&devnet_rename_sem);
1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 up_write(&devnet_rename_sem);
1228 return 0;
1231 memcpy(oldname, dev->name, IFNAMSIZ);
1233 write_seqlock_bh(&netdev_rename_lock);
1234 err = dev_get_valid_name(net, dev, newname);
1235 write_sequnlock_bh(&netdev_rename_lock);
1237 if (err < 0) {
1238 up_write(&devnet_rename_sem);
1239 return err;
1242 if (oldname[0] && !strchr(oldname, '%'))
1243 netdev_info(dev, "renamed from %s%s\n", oldname,
1244 dev->flags & IFF_UP ? " (while UP)" : "");
1246 old_assign_type = dev->name_assign_type;
1247 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1249 rollback:
1250 ret = device_rename(&dev->dev, dev->name);
1251 if (ret) {
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 up_write(&devnet_rename_sem);
1255 return ret;
1258 up_write(&devnet_rename_sem);
1260 netdev_adjacent_rename_links(dev, oldname);
1262 netdev_name_node_del(dev->name_node);
1264 synchronize_net();
1266 netdev_name_node_add(net, dev->name_node);
1268 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 ret = notifier_to_errno(ret);
1271 if (ret) {
1272 /* err >= 0 after dev_alloc_name() or stores the first errno */
1273 if (err >= 0) {
1274 err = ret;
1275 down_write(&devnet_rename_sem);
1276 write_seqlock_bh(&netdev_rename_lock);
1277 memcpy(dev->name, oldname, IFNAMSIZ);
1278 write_sequnlock_bh(&netdev_rename_lock);
1279 memcpy(oldname, newname, IFNAMSIZ);
1280 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 old_assign_type = NET_NAME_RENAMED;
1282 goto rollback;
1283 } else {
1284 netdev_err(dev, "name change rollback failed: %d\n",
1285 ret);
1289 return err;
1293 * dev_set_alias - change ifalias of a device
1294 * @dev: device
1295 * @alias: name up to IFALIASZ
1296 * @len: limit of bytes to copy from info
1298 * Set ifalias for a device,
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1302 struct dev_ifalias *new_alias = NULL;
1304 if (len >= IFALIASZ)
1305 return -EINVAL;
1307 if (len) {
1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 if (!new_alias)
1310 return -ENOMEM;
1312 memcpy(new_alias->ifalias, alias, len);
1313 new_alias->ifalias[len] = 0;
1316 mutex_lock(&ifalias_mutex);
1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 mutex_is_locked(&ifalias_mutex));
1319 mutex_unlock(&ifalias_mutex);
1321 if (new_alias)
1322 kfree_rcu(new_alias, rcuhead);
1324 return len;
1326 EXPORT_SYMBOL(dev_set_alias);
1329 * dev_get_alias - get ifalias of a device
1330 * @dev: device
1331 * @name: buffer to store name of ifalias
1332 * @len: size of buffer
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1339 const struct dev_ifalias *alias;
1340 int ret = 0;
1342 rcu_read_lock();
1343 alias = rcu_dereference(dev->ifalias);
1344 if (alias)
1345 ret = snprintf(name, len, "%s", alias->ifalias);
1346 rcu_read_unlock();
1348 return ret;
1352 * netdev_features_change - device changes features
1353 * @dev: device to cause notification
1355 * Called to indicate a device has changed features.
1357 void netdev_features_change(struct net_device *dev)
1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1361 EXPORT_SYMBOL(netdev_features_change);
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1371 void netdev_state_change(struct net_device *dev)
1373 if (dev->flags & IFF_UP) {
1374 struct netdev_notifier_change_info change_info = {
1375 .info.dev = dev,
1378 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 &change_info.info);
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1383 EXPORT_SYMBOL(netdev_state_change);
1386 * __netdev_notify_peers - notify network peers about existence of @dev,
1387 * to be called when rtnl lock is already held.
1388 * @dev: network device
1390 * Generate traffic such that interested network peers are aware of
1391 * @dev, such as by generating a gratuitous ARP. This may be used when
1392 * a device wants to inform the rest of the network about some sort of
1393 * reconfiguration such as a failover event or virtual machine
1394 * migration.
1396 void __netdev_notify_peers(struct net_device *dev)
1398 ASSERT_RTNL();
1399 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1405 * netdev_notify_peers - notify network peers about existence of @dev
1406 * @dev: network device
1408 * Generate traffic such that interested network peers are aware of
1409 * @dev, such as by generating a gratuitous ARP. This may be used when
1410 * a device wants to inform the rest of the network about some sort of
1411 * reconfiguration such as a failover event or virtual machine
1412 * migration.
1414 void netdev_notify_peers(struct net_device *dev)
1416 rtnl_lock();
1417 __netdev_notify_peers(dev);
1418 rtnl_unlock();
1420 EXPORT_SYMBOL(netdev_notify_peers);
1422 static int napi_threaded_poll(void *data);
1424 static int napi_kthread_create(struct napi_struct *n)
1426 int err = 0;
1428 /* Create and wake up the kthread once to put it in
1429 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 * warning and work with loadavg.
1432 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 n->dev->name, n->napi_id);
1434 if (IS_ERR(n->thread)) {
1435 err = PTR_ERR(n->thread);
1436 pr_err("kthread_run failed with err %d\n", err);
1437 n->thread = NULL;
1440 return err;
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1445 const struct net_device_ops *ops = dev->netdev_ops;
1446 int ret;
1448 ASSERT_RTNL();
1449 dev_addr_check(dev);
1451 if (!netif_device_present(dev)) {
1452 /* may be detached because parent is runtime-suspended */
1453 if (dev->dev.parent)
1454 pm_runtime_resume(dev->dev.parent);
1455 if (!netif_device_present(dev))
1456 return -ENODEV;
1459 /* Block netpoll from trying to do any rx path servicing.
1460 * If we don't do this there is a chance ndo_poll_controller
1461 * or ndo_poll may be running while we open the device
1463 netpoll_poll_disable(dev);
1465 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 ret = notifier_to_errno(ret);
1467 if (ret)
1468 return ret;
1470 set_bit(__LINK_STATE_START, &dev->state);
1472 if (ops->ndo_validate_addr)
1473 ret = ops->ndo_validate_addr(dev);
1475 if (!ret && ops->ndo_open)
1476 ret = ops->ndo_open(dev);
1478 netpoll_poll_enable(dev);
1480 if (ret)
1481 clear_bit(__LINK_STATE_START, &dev->state);
1482 else {
1483 dev->flags |= IFF_UP;
1484 dev_set_rx_mode(dev);
1485 dev_activate(dev);
1486 add_device_randomness(dev->dev_addr, dev->addr_len);
1489 return ret;
1493 * dev_open - prepare an interface for use.
1494 * @dev: device to open
1495 * @extack: netlink extended ack
1497 * Takes a device from down to up state. The device's private open
1498 * function is invoked and then the multicast lists are loaded. Finally
1499 * the device is moved into the up state and a %NETDEV_UP message is
1500 * sent to the netdev notifier chain.
1502 * Calling this function on an active interface is a nop. On a failure
1503 * a negative errno code is returned.
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1507 int ret;
1509 if (dev->flags & IFF_UP)
1510 return 0;
1512 ret = __dev_open(dev, extack);
1513 if (ret < 0)
1514 return ret;
1516 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 call_netdevice_notifiers(NETDEV_UP, dev);
1519 return ret;
1521 EXPORT_SYMBOL(dev_open);
1523 static void __dev_close_many(struct list_head *head)
1525 struct net_device *dev;
1527 ASSERT_RTNL();
1528 might_sleep();
1530 list_for_each_entry(dev, head, close_list) {
1531 /* Temporarily disable netpoll until the interface is down */
1532 netpoll_poll_disable(dev);
1534 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1536 clear_bit(__LINK_STATE_START, &dev->state);
1538 /* Synchronize to scheduled poll. We cannot touch poll list, it
1539 * can be even on different cpu. So just clear netif_running().
1541 * dev->stop() will invoke napi_disable() on all of it's
1542 * napi_struct instances on this device.
1544 smp_mb__after_atomic(); /* Commit netif_running(). */
1547 dev_deactivate_many(head);
1549 list_for_each_entry(dev, head, close_list) {
1550 const struct net_device_ops *ops = dev->netdev_ops;
1553 * Call the device specific close. This cannot fail.
1554 * Only if device is UP
1556 * We allow it to be called even after a DETACH hot-plug
1557 * event.
1559 if (ops->ndo_stop)
1560 ops->ndo_stop(dev);
1562 dev->flags &= ~IFF_UP;
1563 netpoll_poll_enable(dev);
1567 static void __dev_close(struct net_device *dev)
1569 LIST_HEAD(single);
1571 list_add(&dev->close_list, &single);
1572 __dev_close_many(&single);
1573 list_del(&single);
1576 void dev_close_many(struct list_head *head, bool unlink)
1578 struct net_device *dev, *tmp;
1580 /* Remove the devices that don't need to be closed */
1581 list_for_each_entry_safe(dev, tmp, head, close_list)
1582 if (!(dev->flags & IFF_UP))
1583 list_del_init(&dev->close_list);
1585 __dev_close_many(head);
1587 list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 if (unlink)
1591 list_del_init(&dev->close_list);
1594 EXPORT_SYMBOL(dev_close_many);
1597 * dev_close - shutdown an interface.
1598 * @dev: device to shutdown
1600 * This function moves an active device into down state. A
1601 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603 * chain.
1605 void dev_close(struct net_device *dev)
1607 if (dev->flags & IFF_UP) {
1608 LIST_HEAD(single);
1610 list_add(&dev->close_list, &single);
1611 dev_close_many(&single, true);
1612 list_del(&single);
1615 EXPORT_SYMBOL(dev_close);
1619 * dev_disable_lro - disable Large Receive Offload on a device
1620 * @dev: device
1622 * Disable Large Receive Offload (LRO) on a net device. Must be
1623 * called under RTNL. This is needed if received packets may be
1624 * forwarded to another interface.
1626 void dev_disable_lro(struct net_device *dev)
1628 struct net_device *lower_dev;
1629 struct list_head *iter;
1631 dev->wanted_features &= ~NETIF_F_LRO;
1632 netdev_update_features(dev);
1634 if (unlikely(dev->features & NETIF_F_LRO))
1635 netdev_WARN(dev, "failed to disable LRO!\n");
1637 netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 dev_disable_lro(lower_dev);
1640 EXPORT_SYMBOL(dev_disable_lro);
1643 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644 * @dev: device
1646 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1647 * called under RTNL. This is needed if Generic XDP is installed on
1648 * the device.
1650 static void dev_disable_gro_hw(struct net_device *dev)
1652 dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 netdev_update_features(dev);
1655 if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1661 #define N(val) \
1662 case NETDEV_##val: \
1663 return "NETDEV_" __stringify(val);
1664 switch (cmd) {
1665 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 N(XDP_FEAT_CHANGE)
1678 #undef N
1679 return "UNKNOWN_NETDEV_EVENT";
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 struct net_device *dev)
1686 struct netdev_notifier_info info = {
1687 .dev = dev,
1690 return nb->notifier_call(nb, val, &info);
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 struct net_device *dev)
1696 int err;
1698 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 err = notifier_to_errno(err);
1700 if (err)
1701 return err;
1703 if (!(dev->flags & IFF_UP))
1704 return 0;
1706 call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 return 0;
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 struct net_device *dev)
1713 if (dev->flags & IFF_UP) {
1714 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 dev);
1716 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1718 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 struct net *net)
1724 struct net_device *dev;
1725 int err;
1727 for_each_netdev(net, dev) {
1728 err = call_netdevice_register_notifiers(nb, dev);
1729 if (err)
1730 goto rollback;
1732 return 0;
1734 rollback:
1735 for_each_netdev_continue_reverse(net, dev)
1736 call_netdevice_unregister_notifiers(nb, dev);
1737 return err;
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 struct net *net)
1743 struct net_device *dev;
1745 for_each_netdev(net, dev)
1746 call_netdevice_unregister_notifiers(nb, dev);
1749 static int dev_boot_phase = 1;
1752 * register_netdevice_notifier - register a network notifier block
1753 * @nb: notifier
1755 * Register a notifier to be called when network device events occur.
1756 * The notifier passed is linked into the kernel structures and must
1757 * not be reused until it has been unregistered. A negative errno code
1758 * is returned on a failure.
1760 * When registered all registration and up events are replayed
1761 * to the new notifier to allow device to have a race free
1762 * view of the network device list.
1765 int register_netdevice_notifier(struct notifier_block *nb)
1767 struct net *net;
1768 int err;
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem);
1772 rtnl_lock();
1773 err = raw_notifier_chain_register(&netdev_chain, nb);
1774 if (err)
1775 goto unlock;
1776 if (dev_boot_phase)
1777 goto unlock;
1778 for_each_net(net) {
1779 err = call_netdevice_register_net_notifiers(nb, net);
1780 if (err)
1781 goto rollback;
1784 unlock:
1785 rtnl_unlock();
1786 up_write(&pernet_ops_rwsem);
1787 return err;
1789 rollback:
1790 for_each_net_continue_reverse(net)
1791 call_netdevice_unregister_net_notifiers(nb, net);
1793 raw_notifier_chain_unregister(&netdev_chain, nb);
1794 goto unlock;
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1799 * unregister_netdevice_notifier - unregister a network notifier block
1800 * @nb: notifier
1802 * Unregister a notifier previously registered by
1803 * register_netdevice_notifier(). The notifier is unlinked into the
1804 * kernel structures and may then be reused. A negative errno code
1805 * is returned on a failure.
1807 * After unregistering unregister and down device events are synthesized
1808 * for all devices on the device list to the removed notifier to remove
1809 * the need for special case cleanup code.
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1814 struct net *net;
1815 int err;
1817 /* Close race with setup_net() and cleanup_net() */
1818 down_write(&pernet_ops_rwsem);
1819 rtnl_lock();
1820 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 if (err)
1822 goto unlock;
1824 for_each_net(net)
1825 call_netdevice_unregister_net_notifiers(nb, net);
1827 unlock:
1828 rtnl_unlock();
1829 up_write(&pernet_ops_rwsem);
1830 return err;
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1834 static int __register_netdevice_notifier_net(struct net *net,
1835 struct notifier_block *nb,
1836 bool ignore_call_fail)
1838 int err;
1840 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 if (err)
1842 return err;
1843 if (dev_boot_phase)
1844 return 0;
1846 err = call_netdevice_register_net_notifiers(nb, net);
1847 if (err && !ignore_call_fail)
1848 goto chain_unregister;
1850 return 0;
1852 chain_unregister:
1853 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 return err;
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 struct notifier_block *nb)
1860 int err;
1862 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 if (err)
1864 return err;
1866 call_netdevice_unregister_net_notifiers(nb, net);
1867 return 0;
1871 * register_netdevice_notifier_net - register a per-netns network notifier block
1872 * @net: network namespace
1873 * @nb: notifier
1875 * Register a notifier to be called when network device events occur.
1876 * The notifier passed is linked into the kernel structures and must
1877 * not be reused until it has been unregistered. A negative errno code
1878 * is returned on a failure.
1880 * When registered all registration and up events are replayed
1881 * to the new notifier to allow device to have a race free
1882 * view of the network device list.
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1887 int err;
1889 rtnl_lock();
1890 err = __register_netdevice_notifier_net(net, nb, false);
1891 rtnl_unlock();
1892 return err;
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1897 * unregister_netdevice_notifier_net - unregister a per-netns
1898 * network notifier block
1899 * @net: network namespace
1900 * @nb: notifier
1902 * Unregister a notifier previously registered by
1903 * register_netdevice_notifier_net(). The notifier is unlinked from the
1904 * kernel structures and may then be reused. A negative errno code
1905 * is returned on a failure.
1907 * After unregistering unregister and down device events are synthesized
1908 * for all devices on the device list to the removed notifier to remove
1909 * the need for special case cleanup code.
1912 int unregister_netdevice_notifier_net(struct net *net,
1913 struct notifier_block *nb)
1915 int err;
1917 rtnl_lock();
1918 err = __unregister_netdevice_notifier_net(net, nb);
1919 rtnl_unlock();
1920 return err;
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 struct net *dst_net,
1926 struct notifier_block *nb)
1928 __unregister_netdevice_notifier_net(src_net, nb);
1929 __register_netdevice_notifier_net(dst_net, nb, true);
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 struct notifier_block *nb,
1934 struct netdev_net_notifier *nn)
1936 int err;
1938 rtnl_lock();
1939 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 if (!err) {
1941 nn->nb = nb;
1942 list_add(&nn->list, &dev->net_notifier_list);
1944 rtnl_unlock();
1945 return err;
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 struct notifier_block *nb,
1951 struct netdev_net_notifier *nn)
1953 int err;
1955 rtnl_lock();
1956 list_del(&nn->list);
1957 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 rtnl_unlock();
1959 return err;
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 struct net *net)
1966 struct netdev_net_notifier *nn;
1968 list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1973 * call_netdevice_notifiers_info - call all network notifier blocks
1974 * @val: value passed unmodified to notifier function
1975 * @info: notifier information data
1977 * Call all network notifier blocks. Parameters and return value
1978 * are as for raw_notifier_call_chain().
1981 int call_netdevice_notifiers_info(unsigned long val,
1982 struct netdev_notifier_info *info)
1984 struct net *net = dev_net(info->dev);
1985 int ret;
1987 ASSERT_RTNL();
1989 /* Run per-netns notifier block chain first, then run the global one.
1990 * Hopefully, one day, the global one is going to be removed after
1991 * all notifier block registrators get converted to be per-netns.
1993 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 if (ret & NOTIFY_STOP_MASK)
1995 return ret;
1996 return raw_notifier_call_chain(&netdev_chain, val, info);
2000 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001 * for and rollback on error
2002 * @val_up: value passed unmodified to notifier function
2003 * @val_down: value passed unmodified to the notifier function when
2004 * recovering from an error on @val_up
2005 * @info: notifier information data
2007 * Call all per-netns network notifier blocks, but not notifier blocks on
2008 * the global notifier chain. Parameters and return value are as for
2009 * raw_notifier_call_chain_robust().
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 unsigned long val_down,
2015 struct netdev_notifier_info *info)
2017 struct net *net = dev_net(info->dev);
2019 ASSERT_RTNL();
2021 return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 val_up, val_down, info);
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 struct net_device *dev,
2027 struct netlink_ext_ack *extack)
2029 struct netdev_notifier_info info = {
2030 .dev = dev,
2031 .extack = extack,
2034 return call_netdevice_notifiers_info(val, &info);
2038 * call_netdevice_notifiers - call all network notifier blocks
2039 * @val: value passed unmodified to notifier function
2040 * @dev: net_device pointer passed unmodified to notifier function
2042 * Call all network notifier blocks. Parameters and return value
2043 * are as for raw_notifier_call_chain().
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2048 return call_netdevice_notifiers_extack(val, dev, NULL);
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2053 * call_netdevice_notifiers_mtu - call all network notifier blocks
2054 * @val: value passed unmodified to notifier function
2055 * @dev: net_device pointer passed unmodified to notifier function
2056 * @arg: additional u32 argument passed to the notifier function
2058 * Call all network notifier blocks. Parameters and return value
2059 * are as for raw_notifier_call_chain().
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 struct net_device *dev, u32 arg)
2064 struct netdev_notifier_info_ext info = {
2065 .info.dev = dev,
2066 .ext.mtu = arg,
2069 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2071 return call_netdevice_notifiers_info(val, &info.info);
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2077 void net_inc_ingress_queue(void)
2079 static_branch_inc(&ingress_needed_key);
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2083 void net_dec_ingress_queue(void)
2085 static_branch_dec(&ingress_needed_key);
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2093 void net_inc_egress_queue(void)
2095 static_branch_inc(&egress_needed_key);
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2099 void net_dec_egress_queue(void)
2101 static_branch_dec(&egress_needed_key);
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2118 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 int wanted;
2121 wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 if (wanted > 0)
2123 static_branch_enable(&netstamp_needed_key);
2124 else
2125 static_branch_disable(&netstamp_needed_key);
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2130 void net_enable_timestamp(void)
2132 #ifdef CONFIG_JUMP_LABEL
2133 int wanted = atomic_read(&netstamp_wanted);
2135 while (wanted > 0) {
2136 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 return;
2139 atomic_inc(&netstamp_needed_deferred);
2140 schedule_work(&netstamp_work);
2141 #else
2142 static_branch_inc(&netstamp_needed_key);
2143 #endif
2145 EXPORT_SYMBOL(net_enable_timestamp);
2147 void net_disable_timestamp(void)
2149 #ifdef CONFIG_JUMP_LABEL
2150 int wanted = atomic_read(&netstamp_wanted);
2152 while (wanted > 1) {
2153 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 return;
2156 atomic_dec(&netstamp_needed_deferred);
2157 schedule_work(&netstamp_work);
2158 #else
2159 static_branch_dec(&netstamp_needed_key);
2160 #endif
2162 EXPORT_SYMBOL(net_disable_timestamp);
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2166 skb->tstamp = 0;
2167 skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 if (static_branch_unlikely(&netstamp_needed_key))
2169 skb->tstamp = ktime_get_real();
2172 #define net_timestamp_check(COND, SKB) \
2173 if (static_branch_unlikely(&netstamp_needed_key)) { \
2174 if ((COND) && !(SKB)->tstamp) \
2175 (SKB)->tstamp = ktime_get_real(); \
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2180 return __is_skb_forwardable(dev, skb, true);
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 bool check_mtu)
2187 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2189 if (likely(!ret)) {
2190 skb->protocol = eth_type_trans(skb, dev);
2191 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2194 return ret;
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2199 return __dev_forward_skb2(dev, skb, true);
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2204 * dev_forward_skb - loopback an skb to another netif
2206 * @dev: destination network device
2207 * @skb: buffer to forward
2209 * return values:
2210 * NET_RX_SUCCESS (no congestion)
2211 * NET_RX_DROP (packet was dropped, but freed)
2213 * dev_forward_skb can be used for injecting an skb from the
2214 * start_xmit function of one device into the receive queue
2215 * of another device.
2217 * The receiving device may be in another namespace, so
2218 * we have to clear all information in the skb that could
2219 * impact namespace isolation.
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2223 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2229 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2232 static inline int deliver_skb(struct sk_buff *skb,
2233 struct packet_type *pt_prev,
2234 struct net_device *orig_dev)
2236 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 return -ENOMEM;
2238 refcount_inc(&skb->users);
2239 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 struct packet_type **pt,
2244 struct net_device *orig_dev,
2245 __be16 type,
2246 struct list_head *ptype_list)
2248 struct packet_type *ptype, *pt_prev = *pt;
2250 list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 if (ptype->type != type)
2252 continue;
2253 if (pt_prev)
2254 deliver_skb(skb, pt_prev, orig_dev);
2255 pt_prev = ptype;
2257 *pt = pt_prev;
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2262 if (!ptype->af_packet_priv || !skb->sk)
2263 return false;
2265 if (ptype->id_match)
2266 return ptype->id_match(ptype, skb->sk);
2267 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 return true;
2270 return false;
2274 * dev_nit_active - return true if any network interface taps are in use
2276 * @dev: network device to check for the presence of taps
2278 bool dev_nit_active(struct net_device *dev)
2280 return !list_empty(&net_hotdata.ptype_all) ||
2281 !list_empty(&dev->ptype_all);
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2286 * Support routine. Sends outgoing frames to any network
2287 * taps currently in use.
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2292 struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 struct packet_type *ptype, *pt_prev = NULL;
2294 struct sk_buff *skb2 = NULL;
2296 rcu_read_lock();
2297 again:
2298 list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 if (READ_ONCE(ptype->ignore_outgoing))
2300 continue;
2302 /* Never send packets back to the socket
2303 * they originated from - MvS (miquels@drinkel.ow.org)
2305 if (skb_loop_sk(ptype, skb))
2306 continue;
2308 if (pt_prev) {
2309 deliver_skb(skb2, pt_prev, skb->dev);
2310 pt_prev = ptype;
2311 continue;
2314 /* need to clone skb, done only once */
2315 skb2 = skb_clone(skb, GFP_ATOMIC);
2316 if (!skb2)
2317 goto out_unlock;
2319 net_timestamp_set(skb2);
2321 /* skb->nh should be correctly
2322 * set by sender, so that the second statement is
2323 * just protection against buggy protocols.
2325 skb_reset_mac_header(skb2);
2327 if (skb_network_header(skb2) < skb2->data ||
2328 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 ntohs(skb2->protocol),
2331 dev->name);
2332 skb_reset_network_header(skb2);
2335 skb2->transport_header = skb2->network_header;
2336 skb2->pkt_type = PACKET_OUTGOING;
2337 pt_prev = ptype;
2340 if (ptype_list == &net_hotdata.ptype_all) {
2341 ptype_list = &dev->ptype_all;
2342 goto again;
2344 out_unlock:
2345 if (pt_prev) {
2346 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 else
2349 kfree_skb(skb2);
2351 rcu_read_unlock();
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2356 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357 * @dev: Network device
2358 * @txq: number of queues available
2360 * If real_num_tx_queues is changed the tc mappings may no longer be
2361 * valid. To resolve this verify the tc mapping remains valid and if
2362 * not NULL the mapping. With no priorities mapping to this
2363 * offset/count pair it will no longer be used. In the worst case TC0
2364 * is invalid nothing can be done so disable priority mappings. If is
2365 * expected that drivers will fix this mapping if they can before
2366 * calling netif_set_real_num_tx_queues.
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2370 int i;
2371 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2373 /* If TC0 is invalidated disable TC mapping */
2374 if (tc->offset + tc->count > txq) {
2375 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 dev->num_tc = 0;
2377 return;
2380 /* Invalidated prio to tc mappings set to TC0 */
2381 for (i = 1; i < TC_BITMASK + 1; i++) {
2382 int q = netdev_get_prio_tc_map(dev, i);
2384 tc = &dev->tc_to_txq[q];
2385 if (tc->offset + tc->count > txq) {
2386 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 i, q);
2388 netdev_set_prio_tc_map(dev, i, 0);
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2395 if (dev->num_tc) {
2396 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 int i;
2399 /* walk through the TCs and see if it falls into any of them */
2400 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 if ((txq - tc->offset) < tc->count)
2402 return i;
2405 /* didn't find it, just return -1 to indicate no match */
2406 return -1;
2409 return 0;
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P) \
2418 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 struct xps_dev_maps *old_maps, int tci, u16 index)
2423 struct xps_map *map = NULL;
2424 int pos;
2426 map = xmap_dereference(dev_maps->attr_map[tci]);
2427 if (!map)
2428 return false;
2430 for (pos = map->len; pos--;) {
2431 if (map->queues[pos] != index)
2432 continue;
2434 if (map->len > 1) {
2435 map->queues[pos] = map->queues[--map->len];
2436 break;
2439 if (old_maps)
2440 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 kfree_rcu(map, rcu);
2443 return false;
2446 return true;
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 struct xps_dev_maps *dev_maps,
2451 int cpu, u16 offset, u16 count)
2453 int num_tc = dev_maps->num_tc;
2454 bool active = false;
2455 int tci;
2457 for (tci = cpu * num_tc; num_tc--; tci++) {
2458 int i, j;
2460 for (i = count, j = offset; i--; j++) {
2461 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 break;
2465 active |= i < 0;
2468 return active;
2471 static void reset_xps_maps(struct net_device *dev,
2472 struct xps_dev_maps *dev_maps,
2473 enum xps_map_type type)
2475 static_key_slow_dec_cpuslocked(&xps_needed);
2476 if (type == XPS_RXQS)
2477 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2479 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2481 kfree_rcu(dev_maps, rcu);
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 u16 offset, u16 count)
2487 struct xps_dev_maps *dev_maps;
2488 bool active = false;
2489 int i, j;
2491 dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 if (!dev_maps)
2493 return;
2495 for (j = 0; j < dev_maps->nr_ids; j++)
2496 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 if (!active)
2498 reset_xps_maps(dev, dev_maps, type);
2500 if (type == XPS_CPUS) {
2501 for (i = offset + (count - 1); count--; i--)
2502 netdev_queue_numa_node_write(
2503 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 u16 count)
2510 if (!static_key_false(&xps_needed))
2511 return;
2513 cpus_read_lock();
2514 mutex_lock(&xps_map_mutex);
2516 if (static_key_false(&xps_rxqs_needed))
2517 clean_xps_maps(dev, XPS_RXQS, offset, count);
2519 clean_xps_maps(dev, XPS_CPUS, offset, count);
2521 mutex_unlock(&xps_map_mutex);
2522 cpus_read_unlock();
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2527 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 u16 index, bool is_rxqs_map)
2533 struct xps_map *new_map;
2534 int alloc_len = XPS_MIN_MAP_ALLOC;
2535 int i, pos;
2537 for (pos = 0; map && pos < map->len; pos++) {
2538 if (map->queues[pos] != index)
2539 continue;
2540 return map;
2543 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 if (map) {
2545 if (pos < map->alloc_len)
2546 return map;
2548 alloc_len = map->alloc_len * 2;
2551 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 * map
2554 if (is_rxqs_map)
2555 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 else
2557 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 cpu_to_node(attr_index));
2559 if (!new_map)
2560 return NULL;
2562 for (i = 0; i < pos; i++)
2563 new_map->queues[i] = map->queues[i];
2564 new_map->alloc_len = alloc_len;
2565 new_map->len = pos;
2567 return new_map;
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 struct xps_dev_maps *new_dev_maps, int index,
2573 int tc, bool skip_tc)
2575 int i, tci = index * dev_maps->num_tc;
2576 struct xps_map *map;
2578 /* copy maps belonging to foreign traffic classes */
2579 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 if (i == tc && skip_tc)
2581 continue;
2583 /* fill in the new device map from the old device map */
2584 map = xmap_dereference(dev_maps->attr_map[tci]);
2585 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 u16 index, enum xps_map_type type)
2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 const unsigned long *online_mask = NULL;
2595 bool active = false, copy = false;
2596 int i, j, tci, numa_node_id = -2;
2597 int maps_sz, num_tc = 1, tc = 0;
2598 struct xps_map *map, *new_map;
2599 unsigned int nr_ids;
2601 WARN_ON_ONCE(index >= dev->num_tx_queues);
2603 if (dev->num_tc) {
2604 /* Do not allow XPS on subordinate device directly */
2605 num_tc = dev->num_tc;
2606 if (num_tc < 0)
2607 return -EINVAL;
2609 /* If queue belongs to subordinate dev use its map */
2610 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2612 tc = netdev_txq_to_tc(dev, index);
2613 if (tc < 0)
2614 return -EINVAL;
2617 mutex_lock(&xps_map_mutex);
2619 dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 if (type == XPS_RXQS) {
2621 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 nr_ids = dev->num_rx_queues;
2623 } else {
2624 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 if (num_possible_cpus() > 1)
2626 online_mask = cpumask_bits(cpu_online_mask);
2627 nr_ids = nr_cpu_ids;
2630 if (maps_sz < L1_CACHE_BYTES)
2631 maps_sz = L1_CACHE_BYTES;
2633 /* The old dev_maps could be larger or smaller than the one we're
2634 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 * between. We could try to be smart, but let's be safe instead and only
2636 * copy foreign traffic classes if the two map sizes match.
2638 if (dev_maps &&
2639 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 copy = true;
2642 /* allocate memory for queue storage */
2643 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 j < nr_ids;) {
2645 if (!new_dev_maps) {
2646 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 if (!new_dev_maps) {
2648 mutex_unlock(&xps_map_mutex);
2649 return -ENOMEM;
2652 new_dev_maps->nr_ids = nr_ids;
2653 new_dev_maps->num_tc = num_tc;
2656 tci = j * num_tc + tc;
2657 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2659 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 if (!map)
2661 goto error;
2663 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2666 if (!new_dev_maps)
2667 goto out_no_new_maps;
2669 if (!dev_maps) {
2670 /* Increment static keys at most once per type */
2671 static_key_slow_inc_cpuslocked(&xps_needed);
2672 if (type == XPS_RXQS)
2673 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2676 for (j = 0; j < nr_ids; j++) {
2677 bool skip_tc = false;
2679 tci = j * num_tc + tc;
2680 if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 netif_attr_test_online(j, online_mask, nr_ids)) {
2682 /* add tx-queue to CPU/rx-queue maps */
2683 int pos = 0;
2685 skip_tc = true;
2687 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 while ((pos < map->len) && (map->queues[pos] != index))
2689 pos++;
2691 if (pos == map->len)
2692 map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 if (type == XPS_CPUS) {
2695 if (numa_node_id == -2)
2696 numa_node_id = cpu_to_node(j);
2697 else if (numa_node_id != cpu_to_node(j))
2698 numa_node_id = -1;
2700 #endif
2703 if (copy)
2704 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 skip_tc);
2708 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2710 /* Cleanup old maps */
2711 if (!dev_maps)
2712 goto out_no_old_maps;
2714 for (j = 0; j < dev_maps->nr_ids; j++) {
2715 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 map = xmap_dereference(dev_maps->attr_map[tci]);
2717 if (!map)
2718 continue;
2720 if (copy) {
2721 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 if (map == new_map)
2723 continue;
2726 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 kfree_rcu(map, rcu);
2731 old_dev_maps = dev_maps;
2733 out_no_old_maps:
2734 dev_maps = new_dev_maps;
2735 active = true;
2737 out_no_new_maps:
2738 if (type == XPS_CPUS)
2739 /* update Tx queue numa node */
2740 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 (numa_node_id >= 0) ?
2742 numa_node_id : NUMA_NO_NODE);
2744 if (!dev_maps)
2745 goto out_no_maps;
2747 /* removes tx-queue from unused CPUs/rx-queues */
2748 for (j = 0; j < dev_maps->nr_ids; j++) {
2749 tci = j * dev_maps->num_tc;
2751 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 if (i == tc &&
2753 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 continue;
2757 active |= remove_xps_queue(dev_maps,
2758 copy ? old_dev_maps : NULL,
2759 tci, index);
2763 if (old_dev_maps)
2764 kfree_rcu(old_dev_maps, rcu);
2766 /* free map if not active */
2767 if (!active)
2768 reset_xps_maps(dev, dev_maps, type);
2770 out_no_maps:
2771 mutex_unlock(&xps_map_mutex);
2773 return 0;
2774 error:
2775 /* remove any maps that we added */
2776 for (j = 0; j < nr_ids; j++) {
2777 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 map = copy ?
2780 xmap_dereference(dev_maps->attr_map[tci]) :
2781 NULL;
2782 if (new_map && new_map != map)
2783 kfree(new_map);
2787 mutex_unlock(&xps_map_mutex);
2789 kfree(new_dev_maps);
2790 return -ENOMEM;
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 u16 index)
2797 int ret;
2799 cpus_read_lock();
2800 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 cpus_read_unlock();
2803 return ret;
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2810 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2812 /* Unbind any subordinate channels */
2813 while (txq-- != &dev->_tx[0]) {
2814 if (txq->sb_dev)
2815 netdev_unbind_sb_channel(dev, txq->sb_dev);
2819 void netdev_reset_tc(struct net_device *dev)
2821 #ifdef CONFIG_XPS
2822 netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 netdev_unbind_all_sb_channels(dev);
2826 /* Reset TC configuration of device */
2827 dev->num_tc = 0;
2828 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2831 EXPORT_SYMBOL(netdev_reset_tc);
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2835 if (tc >= dev->num_tc)
2836 return -EINVAL;
2838 #ifdef CONFIG_XPS
2839 netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 dev->tc_to_txq[tc].count = count;
2842 dev->tc_to_txq[tc].offset = offset;
2843 return 0;
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2849 if (num_tc > TC_MAX_QUEUE)
2850 return -EINVAL;
2852 #ifdef CONFIG_XPS
2853 netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 netdev_unbind_all_sb_channels(dev);
2857 dev->num_tc = num_tc;
2858 return 0;
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 struct net_device *sb_dev)
2865 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2867 #ifdef CONFIG_XPS
2868 netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2873 while (txq-- != &dev->_tx[0]) {
2874 if (txq->sb_dev == sb_dev)
2875 txq->sb_dev = NULL;
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 struct net_device *sb_dev,
2882 u8 tc, u16 count, u16 offset)
2884 /* Make certain the sb_dev and dev are already configured */
2885 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 return -EINVAL;
2888 /* We cannot hand out queues we don't have */
2889 if ((offset + count) > dev->real_num_tx_queues)
2890 return -EINVAL;
2892 /* Record the mapping */
2893 sb_dev->tc_to_txq[tc].count = count;
2894 sb_dev->tc_to_txq[tc].offset = offset;
2896 /* Provide a way for Tx queue to find the tc_to_txq map or
2897 * XPS map for itself.
2899 while (count--)
2900 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2902 return 0;
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2908 /* Do not use a multiqueue device to represent a subordinate channel */
2909 if (netif_is_multiqueue(dev))
2910 return -ENODEV;
2912 /* We allow channels 1 - 32767 to be used for subordinate channels.
2913 * Channel 0 is meant to be "native" mode and used only to represent
2914 * the main root device. We allow writing 0 to reset the device back
2915 * to normal mode after being used as a subordinate channel.
2917 if (channel > S16_MAX)
2918 return -EINVAL;
2920 dev->num_tc = -channel;
2922 return 0;
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2927 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2932 bool disabling;
2933 int rc;
2935 disabling = txq < dev->real_num_tx_queues;
2937 if (txq < 1 || txq > dev->num_tx_queues)
2938 return -EINVAL;
2940 if (dev->reg_state == NETREG_REGISTERED ||
2941 dev->reg_state == NETREG_UNREGISTERING) {
2942 ASSERT_RTNL();
2944 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 txq);
2946 if (rc)
2947 return rc;
2949 if (dev->num_tc)
2950 netif_setup_tc(dev, txq);
2952 dev_qdisc_change_real_num_tx(dev, txq);
2954 dev->real_num_tx_queues = txq;
2956 if (disabling) {
2957 synchronize_net();
2958 qdisc_reset_all_tx_gt(dev, txq);
2959 #ifdef CONFIG_XPS
2960 netif_reset_xps_queues_gt(dev, txq);
2961 #endif
2963 } else {
2964 dev->real_num_tx_queues = txq;
2967 return 0;
2969 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2971 #ifdef CONFIG_SYSFS
2973 * netif_set_real_num_rx_queues - set actual number of RX queues used
2974 * @dev: Network device
2975 * @rxq: Actual number of RX queues
2977 * This must be called either with the rtnl_lock held or before
2978 * registration of the net device. Returns 0 on success, or a
2979 * negative error code. If called before registration, it always
2980 * succeeds.
2982 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2984 int rc;
2986 if (rxq < 1 || rxq > dev->num_rx_queues)
2987 return -EINVAL;
2989 if (dev->reg_state == NETREG_REGISTERED) {
2990 ASSERT_RTNL();
2992 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2993 rxq);
2994 if (rc)
2995 return rc;
2998 dev->real_num_rx_queues = rxq;
2999 return 0;
3001 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3002 #endif
3005 * netif_set_real_num_queues - set actual number of RX and TX queues used
3006 * @dev: Network device
3007 * @txq: Actual number of TX queues
3008 * @rxq: Actual number of RX queues
3010 * Set the real number of both TX and RX queues.
3011 * Does nothing if the number of queues is already correct.
3013 int netif_set_real_num_queues(struct net_device *dev,
3014 unsigned int txq, unsigned int rxq)
3016 unsigned int old_rxq = dev->real_num_rx_queues;
3017 int err;
3019 if (txq < 1 || txq > dev->num_tx_queues ||
3020 rxq < 1 || rxq > dev->num_rx_queues)
3021 return -EINVAL;
3023 /* Start from increases, so the error path only does decreases -
3024 * decreases can't fail.
3026 if (rxq > dev->real_num_rx_queues) {
3027 err = netif_set_real_num_rx_queues(dev, rxq);
3028 if (err)
3029 return err;
3031 if (txq > dev->real_num_tx_queues) {
3032 err = netif_set_real_num_tx_queues(dev, txq);
3033 if (err)
3034 goto undo_rx;
3036 if (rxq < dev->real_num_rx_queues)
3037 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3038 if (txq < dev->real_num_tx_queues)
3039 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3041 return 0;
3042 undo_rx:
3043 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3044 return err;
3046 EXPORT_SYMBOL(netif_set_real_num_queues);
3049 * netif_set_tso_max_size() - set the max size of TSO frames supported
3050 * @dev: netdev to update
3051 * @size: max skb->len of a TSO frame
3053 * Set the limit on the size of TSO super-frames the device can handle.
3054 * Unless explicitly set the stack will assume the value of
3055 * %GSO_LEGACY_MAX_SIZE.
3057 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3059 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3060 if (size < READ_ONCE(dev->gso_max_size))
3061 netif_set_gso_max_size(dev, size);
3062 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3063 netif_set_gso_ipv4_max_size(dev, size);
3065 EXPORT_SYMBOL(netif_set_tso_max_size);
3068 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3069 * @dev: netdev to update
3070 * @segs: max number of TCP segments
3072 * Set the limit on the number of TCP segments the device can generate from
3073 * a single TSO super-frame.
3074 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3076 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3078 dev->tso_max_segs = segs;
3079 if (segs < READ_ONCE(dev->gso_max_segs))
3080 netif_set_gso_max_segs(dev, segs);
3082 EXPORT_SYMBOL(netif_set_tso_max_segs);
3085 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3086 * @to: netdev to update
3087 * @from: netdev from which to copy the limits
3089 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3091 netif_set_tso_max_size(to, from->tso_max_size);
3092 netif_set_tso_max_segs(to, from->tso_max_segs);
3094 EXPORT_SYMBOL(netif_inherit_tso_max);
3097 * netif_get_num_default_rss_queues - default number of RSS queues
3099 * Default value is the number of physical cores if there are only 1 or 2, or
3100 * divided by 2 if there are more.
3102 int netif_get_num_default_rss_queues(void)
3104 cpumask_var_t cpus;
3105 int cpu, count = 0;
3107 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3108 return 1;
3110 cpumask_copy(cpus, cpu_online_mask);
3111 for_each_cpu(cpu, cpus) {
3112 ++count;
3113 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3115 free_cpumask_var(cpus);
3117 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3119 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3121 static void __netif_reschedule(struct Qdisc *q)
3123 struct softnet_data *sd;
3124 unsigned long flags;
3126 local_irq_save(flags);
3127 sd = this_cpu_ptr(&softnet_data);
3128 q->next_sched = NULL;
3129 *sd->output_queue_tailp = q;
3130 sd->output_queue_tailp = &q->next_sched;
3131 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3132 local_irq_restore(flags);
3135 void __netif_schedule(struct Qdisc *q)
3137 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3138 __netif_reschedule(q);
3140 EXPORT_SYMBOL(__netif_schedule);
3142 struct dev_kfree_skb_cb {
3143 enum skb_drop_reason reason;
3146 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3148 return (struct dev_kfree_skb_cb *)skb->cb;
3151 void netif_schedule_queue(struct netdev_queue *txq)
3153 rcu_read_lock();
3154 if (!netif_xmit_stopped(txq)) {
3155 struct Qdisc *q = rcu_dereference(txq->qdisc);
3157 __netif_schedule(q);
3159 rcu_read_unlock();
3161 EXPORT_SYMBOL(netif_schedule_queue);
3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3165 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3166 struct Qdisc *q;
3168 rcu_read_lock();
3169 q = rcu_dereference(dev_queue->qdisc);
3170 __netif_schedule(q);
3171 rcu_read_unlock();
3174 EXPORT_SYMBOL(netif_tx_wake_queue);
3176 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3178 unsigned long flags;
3180 if (unlikely(!skb))
3181 return;
3183 if (likely(refcount_read(&skb->users) == 1)) {
3184 smp_rmb();
3185 refcount_set(&skb->users, 0);
3186 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3187 return;
3189 get_kfree_skb_cb(skb)->reason = reason;
3190 local_irq_save(flags);
3191 skb->next = __this_cpu_read(softnet_data.completion_queue);
3192 __this_cpu_write(softnet_data.completion_queue, skb);
3193 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3194 local_irq_restore(flags);
3196 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3198 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3200 if (in_hardirq() || irqs_disabled())
3201 dev_kfree_skb_irq_reason(skb, reason);
3202 else
3203 kfree_skb_reason(skb, reason);
3205 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3209 * netif_device_detach - mark device as removed
3210 * @dev: network device
3212 * Mark device as removed from system and therefore no longer available.
3214 void netif_device_detach(struct net_device *dev)
3216 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3217 netif_running(dev)) {
3218 netif_tx_stop_all_queues(dev);
3221 EXPORT_SYMBOL(netif_device_detach);
3224 * netif_device_attach - mark device as attached
3225 * @dev: network device
3227 * Mark device as attached from system and restart if needed.
3229 void netif_device_attach(struct net_device *dev)
3231 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3232 netif_running(dev)) {
3233 netif_tx_wake_all_queues(dev);
3234 __netdev_watchdog_up(dev);
3237 EXPORT_SYMBOL(netif_device_attach);
3240 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3241 * to be used as a distribution range.
3243 static u16 skb_tx_hash(const struct net_device *dev,
3244 const struct net_device *sb_dev,
3245 struct sk_buff *skb)
3247 u32 hash;
3248 u16 qoffset = 0;
3249 u16 qcount = dev->real_num_tx_queues;
3251 if (dev->num_tc) {
3252 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3254 qoffset = sb_dev->tc_to_txq[tc].offset;
3255 qcount = sb_dev->tc_to_txq[tc].count;
3256 if (unlikely(!qcount)) {
3257 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3258 sb_dev->name, qoffset, tc);
3259 qoffset = 0;
3260 qcount = dev->real_num_tx_queues;
3264 if (skb_rx_queue_recorded(skb)) {
3265 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3266 hash = skb_get_rx_queue(skb);
3267 if (hash >= qoffset)
3268 hash -= qoffset;
3269 while (unlikely(hash >= qcount))
3270 hash -= qcount;
3271 return hash + qoffset;
3274 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3277 void skb_warn_bad_offload(const struct sk_buff *skb)
3279 static const netdev_features_t null_features;
3280 struct net_device *dev = skb->dev;
3281 const char *name = "";
3283 if (!net_ratelimit())
3284 return;
3286 if (dev) {
3287 if (dev->dev.parent)
3288 name = dev_driver_string(dev->dev.parent);
3289 else
3290 name = netdev_name(dev);
3292 skb_dump(KERN_WARNING, skb, false);
3293 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3294 name, dev ? &dev->features : &null_features,
3295 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3299 * Invalidate hardware checksum when packet is to be mangled, and
3300 * complete checksum manually on outgoing path.
3302 int skb_checksum_help(struct sk_buff *skb)
3304 __wsum csum;
3305 int ret = 0, offset;
3307 if (skb->ip_summed == CHECKSUM_COMPLETE)
3308 goto out_set_summed;
3310 if (unlikely(skb_is_gso(skb))) {
3311 skb_warn_bad_offload(skb);
3312 return -EINVAL;
3315 if (!skb_frags_readable(skb)) {
3316 return -EFAULT;
3319 /* Before computing a checksum, we should make sure no frag could
3320 * be modified by an external entity : checksum could be wrong.
3322 if (skb_has_shared_frag(skb)) {
3323 ret = __skb_linearize(skb);
3324 if (ret)
3325 goto out;
3328 offset = skb_checksum_start_offset(skb);
3329 ret = -EINVAL;
3330 if (unlikely(offset >= skb_headlen(skb))) {
3331 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3332 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3333 offset, skb_headlen(skb));
3334 goto out;
3336 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3338 offset += skb->csum_offset;
3339 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3340 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3341 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3342 offset + sizeof(__sum16), skb_headlen(skb));
3343 goto out;
3345 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3346 if (ret)
3347 goto out;
3349 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3350 out_set_summed:
3351 skb->ip_summed = CHECKSUM_NONE;
3352 out:
3353 return ret;
3355 EXPORT_SYMBOL(skb_checksum_help);
3357 int skb_crc32c_csum_help(struct sk_buff *skb)
3359 __le32 crc32c_csum;
3360 int ret = 0, offset, start;
3362 if (skb->ip_summed != CHECKSUM_PARTIAL)
3363 goto out;
3365 if (unlikely(skb_is_gso(skb)))
3366 goto out;
3368 /* Before computing a checksum, we should make sure no frag could
3369 * be modified by an external entity : checksum could be wrong.
3371 if (unlikely(skb_has_shared_frag(skb))) {
3372 ret = __skb_linearize(skb);
3373 if (ret)
3374 goto out;
3376 start = skb_checksum_start_offset(skb);
3377 offset = start + offsetof(struct sctphdr, checksum);
3378 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3379 ret = -EINVAL;
3380 goto out;
3383 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3384 if (ret)
3385 goto out;
3387 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3388 skb->len - start, ~(__u32)0,
3389 crc32c_csum_stub));
3390 *(__le32 *)(skb->data + offset) = crc32c_csum;
3391 skb_reset_csum_not_inet(skb);
3392 out:
3393 return ret;
3395 EXPORT_SYMBOL(skb_crc32c_csum_help);
3397 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3399 __be16 type = skb->protocol;
3401 /* Tunnel gso handlers can set protocol to ethernet. */
3402 if (type == htons(ETH_P_TEB)) {
3403 struct ethhdr *eth;
3405 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3406 return 0;
3408 eth = (struct ethhdr *)skb->data;
3409 type = eth->h_proto;
3412 return vlan_get_protocol_and_depth(skb, type, depth);
3416 /* Take action when hardware reception checksum errors are detected. */
3417 #ifdef CONFIG_BUG
3418 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3420 netdev_err(dev, "hw csum failure\n");
3421 skb_dump(KERN_ERR, skb, true);
3422 dump_stack();
3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3427 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3429 EXPORT_SYMBOL(netdev_rx_csum_fault);
3430 #endif
3432 /* XXX: check that highmem exists at all on the given machine. */
3433 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3435 #ifdef CONFIG_HIGHMEM
3436 int i;
3438 if (!(dev->features & NETIF_F_HIGHDMA)) {
3439 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3440 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3441 struct page *page = skb_frag_page(frag);
3443 if (page && PageHighMem(page))
3444 return 1;
3447 #endif
3448 return 0;
3451 /* If MPLS offload request, verify we are testing hardware MPLS features
3452 * instead of standard features for the netdev.
3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 netdev_features_t features,
3457 __be16 type)
3459 if (eth_p_mpls(type))
3460 features &= skb->dev->mpls_features;
3462 return features;
3464 #else
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466 netdev_features_t features,
3467 __be16 type)
3469 return features;
3471 #endif
3473 static netdev_features_t harmonize_features(struct sk_buff *skb,
3474 netdev_features_t features)
3476 __be16 type;
3478 type = skb_network_protocol(skb, NULL);
3479 features = net_mpls_features(skb, features, type);
3481 if (skb->ip_summed != CHECKSUM_NONE &&
3482 !can_checksum_protocol(features, type)) {
3483 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3485 if (illegal_highdma(skb->dev, skb))
3486 features &= ~NETIF_F_SG;
3488 return features;
3491 netdev_features_t passthru_features_check(struct sk_buff *skb,
3492 struct net_device *dev,
3493 netdev_features_t features)
3495 return features;
3497 EXPORT_SYMBOL(passthru_features_check);
3499 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500 struct net_device *dev,
3501 netdev_features_t features)
3503 return vlan_features_check(skb, features);
3506 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507 struct net_device *dev,
3508 netdev_features_t features)
3510 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3512 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513 return features & ~NETIF_F_GSO_MASK;
3515 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3516 return features & ~NETIF_F_GSO_MASK;
3518 if (!skb_shinfo(skb)->gso_type) {
3519 skb_warn_bad_offload(skb);
3520 return features & ~NETIF_F_GSO_MASK;
3523 /* Support for GSO partial features requires software
3524 * intervention before we can actually process the packets
3525 * so we need to strip support for any partial features now
3526 * and we can pull them back in after we have partially
3527 * segmented the frame.
3529 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530 features &= ~dev->gso_partial_features;
3532 /* Make sure to clear the IPv4 ID mangling feature if the
3533 * IPv4 header has the potential to be fragmented.
3535 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536 struct iphdr *iph = skb->encapsulation ?
3537 inner_ip_hdr(skb) : ip_hdr(skb);
3539 if (!(iph->frag_off & htons(IP_DF)))
3540 features &= ~NETIF_F_TSO_MANGLEID;
3543 return features;
3546 netdev_features_t netif_skb_features(struct sk_buff *skb)
3548 struct net_device *dev = skb->dev;
3549 netdev_features_t features = dev->features;
3551 if (skb_is_gso(skb))
3552 features = gso_features_check(skb, dev, features);
3554 /* If encapsulation offload request, verify we are testing
3555 * hardware encapsulation features instead of standard
3556 * features for the netdev
3558 if (skb->encapsulation)
3559 features &= dev->hw_enc_features;
3561 if (skb_vlan_tagged(skb))
3562 features = netdev_intersect_features(features,
3563 dev->vlan_features |
3564 NETIF_F_HW_VLAN_CTAG_TX |
3565 NETIF_F_HW_VLAN_STAG_TX);
3567 if (dev->netdev_ops->ndo_features_check)
3568 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569 features);
3570 else
3571 features &= dflt_features_check(skb, dev, features);
3573 return harmonize_features(skb, features);
3575 EXPORT_SYMBOL(netif_skb_features);
3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578 struct netdev_queue *txq, bool more)
3580 unsigned int len;
3581 int rc;
3583 if (dev_nit_active(dev))
3584 dev_queue_xmit_nit(skb, dev);
3586 len = skb->len;
3587 trace_net_dev_start_xmit(skb, dev);
3588 rc = netdev_start_xmit(skb, dev, txq, more);
3589 trace_net_dev_xmit(skb, rc, dev, len);
3591 return rc;
3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 struct netdev_queue *txq, int *ret)
3597 struct sk_buff *skb = first;
3598 int rc = NETDEV_TX_OK;
3600 while (skb) {
3601 struct sk_buff *next = skb->next;
3603 skb_mark_not_on_list(skb);
3604 rc = xmit_one(skb, dev, txq, next != NULL);
3605 if (unlikely(!dev_xmit_complete(rc))) {
3606 skb->next = next;
3607 goto out;
3610 skb = next;
3611 if (netif_tx_queue_stopped(txq) && skb) {
3612 rc = NETDEV_TX_BUSY;
3613 break;
3617 out:
3618 *ret = rc;
3619 return skb;
3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 netdev_features_t features)
3625 if (skb_vlan_tag_present(skb) &&
3626 !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 skb = __vlan_hwaccel_push_inside(skb);
3628 return skb;
3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 const netdev_features_t features)
3634 if (unlikely(skb_csum_is_sctp(skb)))
3635 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 skb_crc32c_csum_help(skb);
3638 if (features & NETIF_F_HW_CSUM)
3639 return 0;
3641 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642 switch (skb->csum_offset) {
3643 case offsetof(struct tcphdr, check):
3644 case offsetof(struct udphdr, check):
3645 return 0;
3649 return skb_checksum_help(skb);
3651 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3655 netdev_features_t features;
3657 features = netif_skb_features(skb);
3658 skb = validate_xmit_vlan(skb, features);
3659 if (unlikely(!skb))
3660 goto out_null;
3662 skb = sk_validate_xmit_skb(skb, dev);
3663 if (unlikely(!skb))
3664 goto out_null;
3666 if (netif_needs_gso(skb, features)) {
3667 struct sk_buff *segs;
3669 segs = skb_gso_segment(skb, features);
3670 if (IS_ERR(segs)) {
3671 goto out_kfree_skb;
3672 } else if (segs) {
3673 consume_skb(skb);
3674 skb = segs;
3676 } else {
3677 if (skb_needs_linearize(skb, features) &&
3678 __skb_linearize(skb))
3679 goto out_kfree_skb;
3681 /* If packet is not checksummed and device does not
3682 * support checksumming for this protocol, complete
3683 * checksumming here.
3685 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3686 if (skb->encapsulation)
3687 skb_set_inner_transport_header(skb,
3688 skb_checksum_start_offset(skb));
3689 else
3690 skb_set_transport_header(skb,
3691 skb_checksum_start_offset(skb));
3692 if (skb_csum_hwoffload_help(skb, features))
3693 goto out_kfree_skb;
3697 skb = validate_xmit_xfrm(skb, features, again);
3699 return skb;
3701 out_kfree_skb:
3702 kfree_skb(skb);
3703 out_null:
3704 dev_core_stats_tx_dropped_inc(dev);
3705 return NULL;
3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3710 struct sk_buff *next, *head = NULL, *tail;
3712 for (; skb != NULL; skb = next) {
3713 next = skb->next;
3714 skb_mark_not_on_list(skb);
3716 /* in case skb won't be segmented, point to itself */
3717 skb->prev = skb;
3719 skb = validate_xmit_skb(skb, dev, again);
3720 if (!skb)
3721 continue;
3723 if (!head)
3724 head = skb;
3725 else
3726 tail->next = skb;
3727 /* If skb was segmented, skb->prev points to
3728 * the last segment. If not, it still contains skb.
3730 tail = skb->prev;
3732 return head;
3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3736 static void qdisc_pkt_len_init(struct sk_buff *skb)
3738 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3740 qdisc_skb_cb(skb)->pkt_len = skb->len;
3742 /* To get more precise estimation of bytes sent on wire,
3743 * we add to pkt_len the headers size of all segments
3745 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3746 u16 gso_segs = shinfo->gso_segs;
3747 unsigned int hdr_len;
3749 /* mac layer + network layer */
3750 hdr_len = skb_transport_offset(skb);
3752 /* + transport layer */
3753 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3754 const struct tcphdr *th;
3755 struct tcphdr _tcphdr;
3757 th = skb_header_pointer(skb, hdr_len,
3758 sizeof(_tcphdr), &_tcphdr);
3759 if (likely(th))
3760 hdr_len += __tcp_hdrlen(th);
3761 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3762 struct udphdr _udphdr;
3764 if (skb_header_pointer(skb, hdr_len,
3765 sizeof(_udphdr), &_udphdr))
3766 hdr_len += sizeof(struct udphdr);
3769 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3770 int payload = skb->len - hdr_len;
3772 /* Malicious packet. */
3773 if (payload <= 0)
3774 return;
3775 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3777 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3781 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3782 struct sk_buff **to_free,
3783 struct netdev_queue *txq)
3785 int rc;
3787 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3788 if (rc == NET_XMIT_SUCCESS)
3789 trace_qdisc_enqueue(q, txq, skb);
3790 return rc;
3793 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3794 struct net_device *dev,
3795 struct netdev_queue *txq)
3797 spinlock_t *root_lock = qdisc_lock(q);
3798 struct sk_buff *to_free = NULL;
3799 bool contended;
3800 int rc;
3802 qdisc_calculate_pkt_len(skb, q);
3804 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3806 if (q->flags & TCQ_F_NOLOCK) {
3807 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3808 qdisc_run_begin(q)) {
3809 /* Retest nolock_qdisc_is_empty() within the protection
3810 * of q->seqlock to protect from racing with requeuing.
3812 if (unlikely(!nolock_qdisc_is_empty(q))) {
3813 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814 __qdisc_run(q);
3815 qdisc_run_end(q);
3817 goto no_lock_out;
3820 qdisc_bstats_cpu_update(q, skb);
3821 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3822 !nolock_qdisc_is_empty(q))
3823 __qdisc_run(q);
3825 qdisc_run_end(q);
3826 return NET_XMIT_SUCCESS;
3829 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3830 qdisc_run(q);
3832 no_lock_out:
3833 if (unlikely(to_free))
3834 kfree_skb_list_reason(to_free,
3835 tcf_get_drop_reason(to_free));
3836 return rc;
3839 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3840 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3841 return NET_XMIT_DROP;
3844 * Heuristic to force contended enqueues to serialize on a
3845 * separate lock before trying to get qdisc main lock.
3846 * This permits qdisc->running owner to get the lock more
3847 * often and dequeue packets faster.
3848 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3849 * and then other tasks will only enqueue packets. The packets will be
3850 * sent after the qdisc owner is scheduled again. To prevent this
3851 * scenario the task always serialize on the lock.
3853 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3854 if (unlikely(contended))
3855 spin_lock(&q->busylock);
3857 spin_lock(root_lock);
3858 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3859 __qdisc_drop(skb, &to_free);
3860 rc = NET_XMIT_DROP;
3861 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3862 qdisc_run_begin(q)) {
3864 * This is a work-conserving queue; there are no old skbs
3865 * waiting to be sent out; and the qdisc is not running -
3866 * xmit the skb directly.
3869 qdisc_bstats_update(q, skb);
3871 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3872 if (unlikely(contended)) {
3873 spin_unlock(&q->busylock);
3874 contended = false;
3876 __qdisc_run(q);
3879 qdisc_run_end(q);
3880 rc = NET_XMIT_SUCCESS;
3881 } else {
3882 WRITE_ONCE(q->owner, smp_processor_id());
3883 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3884 WRITE_ONCE(q->owner, -1);
3885 if (qdisc_run_begin(q)) {
3886 if (unlikely(contended)) {
3887 spin_unlock(&q->busylock);
3888 contended = false;
3890 __qdisc_run(q);
3891 qdisc_run_end(q);
3894 spin_unlock(root_lock);
3895 if (unlikely(to_free))
3896 kfree_skb_list_reason(to_free,
3897 tcf_get_drop_reason(to_free));
3898 if (unlikely(contended))
3899 spin_unlock(&q->busylock);
3900 return rc;
3903 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3904 static void skb_update_prio(struct sk_buff *skb)
3906 const struct netprio_map *map;
3907 const struct sock *sk;
3908 unsigned int prioidx;
3910 if (skb->priority)
3911 return;
3912 map = rcu_dereference_bh(skb->dev->priomap);
3913 if (!map)
3914 return;
3915 sk = skb_to_full_sk(skb);
3916 if (!sk)
3917 return;
3919 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3921 if (prioidx < map->priomap_len)
3922 skb->priority = map->priomap[prioidx];
3924 #else
3925 #define skb_update_prio(skb)
3926 #endif
3929 * dev_loopback_xmit - loop back @skb
3930 * @net: network namespace this loopback is happening in
3931 * @sk: sk needed to be a netfilter okfn
3932 * @skb: buffer to transmit
3934 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3936 skb_reset_mac_header(skb);
3937 __skb_pull(skb, skb_network_offset(skb));
3938 skb->pkt_type = PACKET_LOOPBACK;
3939 if (skb->ip_summed == CHECKSUM_NONE)
3940 skb->ip_summed = CHECKSUM_UNNECESSARY;
3941 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3942 skb_dst_force(skb);
3943 netif_rx(skb);
3944 return 0;
3946 EXPORT_SYMBOL(dev_loopback_xmit);
3948 #ifdef CONFIG_NET_EGRESS
3949 static struct netdev_queue *
3950 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3952 int qm = skb_get_queue_mapping(skb);
3954 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3957 #ifndef CONFIG_PREEMPT_RT
3958 static bool netdev_xmit_txqueue_skipped(void)
3960 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3963 void netdev_xmit_skip_txqueue(bool skip)
3965 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3967 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3969 #else
3970 static bool netdev_xmit_txqueue_skipped(void)
3972 return current->net_xmit.skip_txqueue;
3975 void netdev_xmit_skip_txqueue(bool skip)
3977 current->net_xmit.skip_txqueue = skip;
3979 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3980 #endif
3981 #endif /* CONFIG_NET_EGRESS */
3983 #ifdef CONFIG_NET_XGRESS
3984 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3985 enum skb_drop_reason *drop_reason)
3987 int ret = TC_ACT_UNSPEC;
3988 #ifdef CONFIG_NET_CLS_ACT
3989 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3990 struct tcf_result res;
3992 if (!miniq)
3993 return ret;
3995 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3996 if (tcf_block_bypass_sw(miniq->block))
3997 return ret;
4000 tc_skb_cb(skb)->mru = 0;
4001 tc_skb_cb(skb)->post_ct = false;
4002 tcf_set_drop_reason(skb, *drop_reason);
4004 mini_qdisc_bstats_cpu_update(miniq, skb);
4005 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4006 /* Only tcf related quirks below. */
4007 switch (ret) {
4008 case TC_ACT_SHOT:
4009 *drop_reason = tcf_get_drop_reason(skb);
4010 mini_qdisc_qstats_cpu_drop(miniq);
4011 break;
4012 case TC_ACT_OK:
4013 case TC_ACT_RECLASSIFY:
4014 skb->tc_index = TC_H_MIN(res.classid);
4015 break;
4017 #endif /* CONFIG_NET_CLS_ACT */
4018 return ret;
4021 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4023 void tcx_inc(void)
4025 static_branch_inc(&tcx_needed_key);
4028 void tcx_dec(void)
4030 static_branch_dec(&tcx_needed_key);
4033 static __always_inline enum tcx_action_base
4034 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4035 const bool needs_mac)
4037 const struct bpf_mprog_fp *fp;
4038 const struct bpf_prog *prog;
4039 int ret = TCX_NEXT;
4041 if (needs_mac)
4042 __skb_push(skb, skb->mac_len);
4043 bpf_mprog_foreach_prog(entry, fp, prog) {
4044 bpf_compute_data_pointers(skb);
4045 ret = bpf_prog_run(prog, skb);
4046 if (ret != TCX_NEXT)
4047 break;
4049 if (needs_mac)
4050 __skb_pull(skb, skb->mac_len);
4051 return tcx_action_code(skb, ret);
4054 static __always_inline struct sk_buff *
4055 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4056 struct net_device *orig_dev, bool *another)
4058 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4059 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4060 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4061 int sch_ret;
4063 if (!entry)
4064 return skb;
4066 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4067 if (*pt_prev) {
4068 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4069 *pt_prev = NULL;
4072 qdisc_skb_cb(skb)->pkt_len = skb->len;
4073 tcx_set_ingress(skb, true);
4075 if (static_branch_unlikely(&tcx_needed_key)) {
4076 sch_ret = tcx_run(entry, skb, true);
4077 if (sch_ret != TC_ACT_UNSPEC)
4078 goto ingress_verdict;
4080 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4081 ingress_verdict:
4082 switch (sch_ret) {
4083 case TC_ACT_REDIRECT:
4084 /* skb_mac_header check was done by BPF, so we can safely
4085 * push the L2 header back before redirecting to another
4086 * netdev.
4088 __skb_push(skb, skb->mac_len);
4089 if (skb_do_redirect(skb) == -EAGAIN) {
4090 __skb_pull(skb, skb->mac_len);
4091 *another = true;
4092 break;
4094 *ret = NET_RX_SUCCESS;
4095 bpf_net_ctx_clear(bpf_net_ctx);
4096 return NULL;
4097 case TC_ACT_SHOT:
4098 kfree_skb_reason(skb, drop_reason);
4099 *ret = NET_RX_DROP;
4100 bpf_net_ctx_clear(bpf_net_ctx);
4101 return NULL;
4102 /* used by tc_run */
4103 case TC_ACT_STOLEN:
4104 case TC_ACT_QUEUED:
4105 case TC_ACT_TRAP:
4106 consume_skb(skb);
4107 fallthrough;
4108 case TC_ACT_CONSUMED:
4109 *ret = NET_RX_SUCCESS;
4110 bpf_net_ctx_clear(bpf_net_ctx);
4111 return NULL;
4113 bpf_net_ctx_clear(bpf_net_ctx);
4115 return skb;
4118 static __always_inline struct sk_buff *
4119 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4121 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4122 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4123 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4124 int sch_ret;
4126 if (!entry)
4127 return skb;
4129 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4131 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4132 * already set by the caller.
4134 if (static_branch_unlikely(&tcx_needed_key)) {
4135 sch_ret = tcx_run(entry, skb, false);
4136 if (sch_ret != TC_ACT_UNSPEC)
4137 goto egress_verdict;
4139 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4140 egress_verdict:
4141 switch (sch_ret) {
4142 case TC_ACT_REDIRECT:
4143 /* No need to push/pop skb's mac_header here on egress! */
4144 skb_do_redirect(skb);
4145 *ret = NET_XMIT_SUCCESS;
4146 bpf_net_ctx_clear(bpf_net_ctx);
4147 return NULL;
4148 case TC_ACT_SHOT:
4149 kfree_skb_reason(skb, drop_reason);
4150 *ret = NET_XMIT_DROP;
4151 bpf_net_ctx_clear(bpf_net_ctx);
4152 return NULL;
4153 /* used by tc_run */
4154 case TC_ACT_STOLEN:
4155 case TC_ACT_QUEUED:
4156 case TC_ACT_TRAP:
4157 consume_skb(skb);
4158 fallthrough;
4159 case TC_ACT_CONSUMED:
4160 *ret = NET_XMIT_SUCCESS;
4161 bpf_net_ctx_clear(bpf_net_ctx);
4162 return NULL;
4164 bpf_net_ctx_clear(bpf_net_ctx);
4166 return skb;
4168 #else
4169 static __always_inline struct sk_buff *
4170 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4171 struct net_device *orig_dev, bool *another)
4173 return skb;
4176 static __always_inline struct sk_buff *
4177 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4179 return skb;
4181 #endif /* CONFIG_NET_XGRESS */
4183 #ifdef CONFIG_XPS
4184 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4185 struct xps_dev_maps *dev_maps, unsigned int tci)
4187 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4188 struct xps_map *map;
4189 int queue_index = -1;
4191 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4192 return queue_index;
4194 tci *= dev_maps->num_tc;
4195 tci += tc;
4197 map = rcu_dereference(dev_maps->attr_map[tci]);
4198 if (map) {
4199 if (map->len == 1)
4200 queue_index = map->queues[0];
4201 else
4202 queue_index = map->queues[reciprocal_scale(
4203 skb_get_hash(skb), map->len)];
4204 if (unlikely(queue_index >= dev->real_num_tx_queues))
4205 queue_index = -1;
4207 return queue_index;
4209 #endif
4211 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4212 struct sk_buff *skb)
4214 #ifdef CONFIG_XPS
4215 struct xps_dev_maps *dev_maps;
4216 struct sock *sk = skb->sk;
4217 int queue_index = -1;
4219 if (!static_key_false(&xps_needed))
4220 return -1;
4222 rcu_read_lock();
4223 if (!static_key_false(&xps_rxqs_needed))
4224 goto get_cpus_map;
4226 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4227 if (dev_maps) {
4228 int tci = sk_rx_queue_get(sk);
4230 if (tci >= 0)
4231 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4232 tci);
4235 get_cpus_map:
4236 if (queue_index < 0) {
4237 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4238 if (dev_maps) {
4239 unsigned int tci = skb->sender_cpu - 1;
4241 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4242 tci);
4245 rcu_read_unlock();
4247 return queue_index;
4248 #else
4249 return -1;
4250 #endif
4253 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4254 struct net_device *sb_dev)
4256 return 0;
4258 EXPORT_SYMBOL(dev_pick_tx_zero);
4260 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4261 struct net_device *sb_dev)
4263 struct sock *sk = skb->sk;
4264 int queue_index = sk_tx_queue_get(sk);
4266 sb_dev = sb_dev ? : dev;
4268 if (queue_index < 0 || skb->ooo_okay ||
4269 queue_index >= dev->real_num_tx_queues) {
4270 int new_index = get_xps_queue(dev, sb_dev, skb);
4272 if (new_index < 0)
4273 new_index = skb_tx_hash(dev, sb_dev, skb);
4275 if (queue_index != new_index && sk &&
4276 sk_fullsock(sk) &&
4277 rcu_access_pointer(sk->sk_dst_cache))
4278 sk_tx_queue_set(sk, new_index);
4280 queue_index = new_index;
4283 return queue_index;
4285 EXPORT_SYMBOL(netdev_pick_tx);
4287 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4288 struct sk_buff *skb,
4289 struct net_device *sb_dev)
4291 int queue_index = 0;
4293 #ifdef CONFIG_XPS
4294 u32 sender_cpu = skb->sender_cpu - 1;
4296 if (sender_cpu >= (u32)NR_CPUS)
4297 skb->sender_cpu = raw_smp_processor_id() + 1;
4298 #endif
4300 if (dev->real_num_tx_queues != 1) {
4301 const struct net_device_ops *ops = dev->netdev_ops;
4303 if (ops->ndo_select_queue)
4304 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4305 else
4306 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4308 queue_index = netdev_cap_txqueue(dev, queue_index);
4311 skb_set_queue_mapping(skb, queue_index);
4312 return netdev_get_tx_queue(dev, queue_index);
4316 * __dev_queue_xmit() - transmit a buffer
4317 * @skb: buffer to transmit
4318 * @sb_dev: suboordinate device used for L2 forwarding offload
4320 * Queue a buffer for transmission to a network device. The caller must
4321 * have set the device and priority and built the buffer before calling
4322 * this function. The function can be called from an interrupt.
4324 * When calling this method, interrupts MUST be enabled. This is because
4325 * the BH enable code must have IRQs enabled so that it will not deadlock.
4327 * Regardless of the return value, the skb is consumed, so it is currently
4328 * difficult to retry a send to this method. (You can bump the ref count
4329 * before sending to hold a reference for retry if you are careful.)
4331 * Return:
4332 * * 0 - buffer successfully transmitted
4333 * * positive qdisc return code - NET_XMIT_DROP etc.
4334 * * negative errno - other errors
4336 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4338 struct net_device *dev = skb->dev;
4339 struct netdev_queue *txq = NULL;
4340 struct Qdisc *q;
4341 int rc = -ENOMEM;
4342 bool again = false;
4344 skb_reset_mac_header(skb);
4345 skb_assert_len(skb);
4347 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4348 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4350 /* Disable soft irqs for various locks below. Also
4351 * stops preemption for RCU.
4353 rcu_read_lock_bh();
4355 skb_update_prio(skb);
4357 qdisc_pkt_len_init(skb);
4358 tcx_set_ingress(skb, false);
4359 #ifdef CONFIG_NET_EGRESS
4360 if (static_branch_unlikely(&egress_needed_key)) {
4361 if (nf_hook_egress_active()) {
4362 skb = nf_hook_egress(skb, &rc, dev);
4363 if (!skb)
4364 goto out;
4367 netdev_xmit_skip_txqueue(false);
4369 nf_skip_egress(skb, true);
4370 skb = sch_handle_egress(skb, &rc, dev);
4371 if (!skb)
4372 goto out;
4373 nf_skip_egress(skb, false);
4375 if (netdev_xmit_txqueue_skipped())
4376 txq = netdev_tx_queue_mapping(dev, skb);
4378 #endif
4379 /* If device/qdisc don't need skb->dst, release it right now while
4380 * its hot in this cpu cache.
4382 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4383 skb_dst_drop(skb);
4384 else
4385 skb_dst_force(skb);
4387 if (!txq)
4388 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4390 q = rcu_dereference_bh(txq->qdisc);
4392 trace_net_dev_queue(skb);
4393 if (q->enqueue) {
4394 rc = __dev_xmit_skb(skb, q, dev, txq);
4395 goto out;
4398 /* The device has no queue. Common case for software devices:
4399 * loopback, all the sorts of tunnels...
4401 * Really, it is unlikely that netif_tx_lock protection is necessary
4402 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4403 * counters.)
4404 * However, it is possible, that they rely on protection
4405 * made by us here.
4407 * Check this and shot the lock. It is not prone from deadlocks.
4408 *Either shot noqueue qdisc, it is even simpler 8)
4410 if (dev->flags & IFF_UP) {
4411 int cpu = smp_processor_id(); /* ok because BHs are off */
4413 /* Other cpus might concurrently change txq->xmit_lock_owner
4414 * to -1 or to their cpu id, but not to our id.
4416 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4417 if (dev_xmit_recursion())
4418 goto recursion_alert;
4420 skb = validate_xmit_skb(skb, dev, &again);
4421 if (!skb)
4422 goto out;
4424 HARD_TX_LOCK(dev, txq, cpu);
4426 if (!netif_xmit_stopped(txq)) {
4427 dev_xmit_recursion_inc();
4428 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4429 dev_xmit_recursion_dec();
4430 if (dev_xmit_complete(rc)) {
4431 HARD_TX_UNLOCK(dev, txq);
4432 goto out;
4435 HARD_TX_UNLOCK(dev, txq);
4436 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4437 dev->name);
4438 } else {
4439 /* Recursion is detected! It is possible,
4440 * unfortunately
4442 recursion_alert:
4443 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4444 dev->name);
4448 rc = -ENETDOWN;
4449 rcu_read_unlock_bh();
4451 dev_core_stats_tx_dropped_inc(dev);
4452 kfree_skb_list(skb);
4453 return rc;
4454 out:
4455 rcu_read_unlock_bh();
4456 return rc;
4458 EXPORT_SYMBOL(__dev_queue_xmit);
4460 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4462 struct net_device *dev = skb->dev;
4463 struct sk_buff *orig_skb = skb;
4464 struct netdev_queue *txq;
4465 int ret = NETDEV_TX_BUSY;
4466 bool again = false;
4468 if (unlikely(!netif_running(dev) ||
4469 !netif_carrier_ok(dev)))
4470 goto drop;
4472 skb = validate_xmit_skb_list(skb, dev, &again);
4473 if (skb != orig_skb)
4474 goto drop;
4476 skb_set_queue_mapping(skb, queue_id);
4477 txq = skb_get_tx_queue(dev, skb);
4479 local_bh_disable();
4481 dev_xmit_recursion_inc();
4482 HARD_TX_LOCK(dev, txq, smp_processor_id());
4483 if (!netif_xmit_frozen_or_drv_stopped(txq))
4484 ret = netdev_start_xmit(skb, dev, txq, false);
4485 HARD_TX_UNLOCK(dev, txq);
4486 dev_xmit_recursion_dec();
4488 local_bh_enable();
4489 return ret;
4490 drop:
4491 dev_core_stats_tx_dropped_inc(dev);
4492 kfree_skb_list(skb);
4493 return NET_XMIT_DROP;
4495 EXPORT_SYMBOL(__dev_direct_xmit);
4497 /*************************************************************************
4498 * Receiver routines
4499 *************************************************************************/
4500 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4502 int weight_p __read_mostly = 64; /* old backlog weight */
4503 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4504 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4506 /* Called with irq disabled */
4507 static inline void ____napi_schedule(struct softnet_data *sd,
4508 struct napi_struct *napi)
4510 struct task_struct *thread;
4512 lockdep_assert_irqs_disabled();
4514 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4515 /* Paired with smp_mb__before_atomic() in
4516 * napi_enable()/dev_set_threaded().
4517 * Use READ_ONCE() to guarantee a complete
4518 * read on napi->thread. Only call
4519 * wake_up_process() when it's not NULL.
4521 thread = READ_ONCE(napi->thread);
4522 if (thread) {
4523 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4524 goto use_local_napi;
4526 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4527 wake_up_process(thread);
4528 return;
4532 use_local_napi:
4533 list_add_tail(&napi->poll_list, &sd->poll_list);
4534 WRITE_ONCE(napi->list_owner, smp_processor_id());
4535 /* If not called from net_rx_action()
4536 * we have to raise NET_RX_SOFTIRQ.
4538 if (!sd->in_net_rx_action)
4539 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4542 #ifdef CONFIG_RPS
4544 struct static_key_false rps_needed __read_mostly;
4545 EXPORT_SYMBOL(rps_needed);
4546 struct static_key_false rfs_needed __read_mostly;
4547 EXPORT_SYMBOL(rfs_needed);
4549 static struct rps_dev_flow *
4550 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4551 struct rps_dev_flow *rflow, u16 next_cpu)
4553 if (next_cpu < nr_cpu_ids) {
4554 u32 head;
4555 #ifdef CONFIG_RFS_ACCEL
4556 struct netdev_rx_queue *rxqueue;
4557 struct rps_dev_flow_table *flow_table;
4558 struct rps_dev_flow *old_rflow;
4559 u16 rxq_index;
4560 u32 flow_id;
4561 int rc;
4563 /* Should we steer this flow to a different hardware queue? */
4564 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4565 !(dev->features & NETIF_F_NTUPLE))
4566 goto out;
4567 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4568 if (rxq_index == skb_get_rx_queue(skb))
4569 goto out;
4571 rxqueue = dev->_rx + rxq_index;
4572 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4573 if (!flow_table)
4574 goto out;
4575 flow_id = skb_get_hash(skb) & flow_table->mask;
4576 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4577 rxq_index, flow_id);
4578 if (rc < 0)
4579 goto out;
4580 old_rflow = rflow;
4581 rflow = &flow_table->flows[flow_id];
4582 WRITE_ONCE(rflow->filter, rc);
4583 if (old_rflow->filter == rc)
4584 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4585 out:
4586 #endif
4587 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4588 rps_input_queue_tail_save(&rflow->last_qtail, head);
4591 WRITE_ONCE(rflow->cpu, next_cpu);
4592 return rflow;
4596 * get_rps_cpu is called from netif_receive_skb and returns the target
4597 * CPU from the RPS map of the receiving queue for a given skb.
4598 * rcu_read_lock must be held on entry.
4600 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4601 struct rps_dev_flow **rflowp)
4603 const struct rps_sock_flow_table *sock_flow_table;
4604 struct netdev_rx_queue *rxqueue = dev->_rx;
4605 struct rps_dev_flow_table *flow_table;
4606 struct rps_map *map;
4607 int cpu = -1;
4608 u32 tcpu;
4609 u32 hash;
4611 if (skb_rx_queue_recorded(skb)) {
4612 u16 index = skb_get_rx_queue(skb);
4614 if (unlikely(index >= dev->real_num_rx_queues)) {
4615 WARN_ONCE(dev->real_num_rx_queues > 1,
4616 "%s received packet on queue %u, but number "
4617 "of RX queues is %u\n",
4618 dev->name, index, dev->real_num_rx_queues);
4619 goto done;
4621 rxqueue += index;
4624 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4626 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4627 map = rcu_dereference(rxqueue->rps_map);
4628 if (!flow_table && !map)
4629 goto done;
4631 skb_reset_network_header(skb);
4632 hash = skb_get_hash(skb);
4633 if (!hash)
4634 goto done;
4636 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4637 if (flow_table && sock_flow_table) {
4638 struct rps_dev_flow *rflow;
4639 u32 next_cpu;
4640 u32 ident;
4642 /* First check into global flow table if there is a match.
4643 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4645 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4646 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4647 goto try_rps;
4649 next_cpu = ident & net_hotdata.rps_cpu_mask;
4651 /* OK, now we know there is a match,
4652 * we can look at the local (per receive queue) flow table
4654 rflow = &flow_table->flows[hash & flow_table->mask];
4655 tcpu = rflow->cpu;
4658 * If the desired CPU (where last recvmsg was done) is
4659 * different from current CPU (one in the rx-queue flow
4660 * table entry), switch if one of the following holds:
4661 * - Current CPU is unset (>= nr_cpu_ids).
4662 * - Current CPU is offline.
4663 * - The current CPU's queue tail has advanced beyond the
4664 * last packet that was enqueued using this table entry.
4665 * This guarantees that all previous packets for the flow
4666 * have been dequeued, thus preserving in order delivery.
4668 if (unlikely(tcpu != next_cpu) &&
4669 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4670 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4671 rflow->last_qtail)) >= 0)) {
4672 tcpu = next_cpu;
4673 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4676 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4677 *rflowp = rflow;
4678 cpu = tcpu;
4679 goto done;
4683 try_rps:
4685 if (map) {
4686 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4687 if (cpu_online(tcpu)) {
4688 cpu = tcpu;
4689 goto done;
4693 done:
4694 return cpu;
4697 #ifdef CONFIG_RFS_ACCEL
4700 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4701 * @dev: Device on which the filter was set
4702 * @rxq_index: RX queue index
4703 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4704 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4706 * Drivers that implement ndo_rx_flow_steer() should periodically call
4707 * this function for each installed filter and remove the filters for
4708 * which it returns %true.
4710 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4711 u32 flow_id, u16 filter_id)
4713 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4714 struct rps_dev_flow_table *flow_table;
4715 struct rps_dev_flow *rflow;
4716 bool expire = true;
4717 unsigned int cpu;
4719 rcu_read_lock();
4720 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4721 if (flow_table && flow_id <= flow_table->mask) {
4722 rflow = &flow_table->flows[flow_id];
4723 cpu = READ_ONCE(rflow->cpu);
4724 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4725 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4726 READ_ONCE(rflow->last_qtail)) <
4727 (int)(10 * flow_table->mask)))
4728 expire = false;
4730 rcu_read_unlock();
4731 return expire;
4733 EXPORT_SYMBOL(rps_may_expire_flow);
4735 #endif /* CONFIG_RFS_ACCEL */
4737 /* Called from hardirq (IPI) context */
4738 static void rps_trigger_softirq(void *data)
4740 struct softnet_data *sd = data;
4742 ____napi_schedule(sd, &sd->backlog);
4743 sd->received_rps++;
4746 #endif /* CONFIG_RPS */
4748 /* Called from hardirq (IPI) context */
4749 static void trigger_rx_softirq(void *data)
4751 struct softnet_data *sd = data;
4753 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4754 smp_store_release(&sd->defer_ipi_scheduled, 0);
4758 * After we queued a packet into sd->input_pkt_queue,
4759 * we need to make sure this queue is serviced soon.
4761 * - If this is another cpu queue, link it to our rps_ipi_list,
4762 * and make sure we will process rps_ipi_list from net_rx_action().
4764 * - If this is our own queue, NAPI schedule our backlog.
4765 * Note that this also raises NET_RX_SOFTIRQ.
4767 static void napi_schedule_rps(struct softnet_data *sd)
4769 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4771 #ifdef CONFIG_RPS
4772 if (sd != mysd) {
4773 if (use_backlog_threads()) {
4774 __napi_schedule_irqoff(&sd->backlog);
4775 return;
4778 sd->rps_ipi_next = mysd->rps_ipi_list;
4779 mysd->rps_ipi_list = sd;
4781 /* If not called from net_rx_action() or napi_threaded_poll()
4782 * we have to raise NET_RX_SOFTIRQ.
4784 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4785 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4786 return;
4788 #endif /* CONFIG_RPS */
4789 __napi_schedule_irqoff(&mysd->backlog);
4792 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4794 unsigned long flags;
4796 if (use_backlog_threads()) {
4797 backlog_lock_irq_save(sd, &flags);
4799 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4800 __napi_schedule_irqoff(&sd->backlog);
4802 backlog_unlock_irq_restore(sd, &flags);
4804 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4805 smp_call_function_single_async(cpu, &sd->defer_csd);
4809 #ifdef CONFIG_NET_FLOW_LIMIT
4810 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4811 #endif
4813 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4815 #ifdef CONFIG_NET_FLOW_LIMIT
4816 struct sd_flow_limit *fl;
4817 struct softnet_data *sd;
4818 unsigned int old_flow, new_flow;
4820 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4821 return false;
4823 sd = this_cpu_ptr(&softnet_data);
4825 rcu_read_lock();
4826 fl = rcu_dereference(sd->flow_limit);
4827 if (fl) {
4828 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4829 old_flow = fl->history[fl->history_head];
4830 fl->history[fl->history_head] = new_flow;
4832 fl->history_head++;
4833 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4835 if (likely(fl->buckets[old_flow]))
4836 fl->buckets[old_flow]--;
4838 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4839 fl->count++;
4840 rcu_read_unlock();
4841 return true;
4844 rcu_read_unlock();
4845 #endif
4846 return false;
4850 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4851 * queue (may be a remote CPU queue).
4853 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4854 unsigned int *qtail)
4856 enum skb_drop_reason reason;
4857 struct softnet_data *sd;
4858 unsigned long flags;
4859 unsigned int qlen;
4860 int max_backlog;
4861 u32 tail;
4863 reason = SKB_DROP_REASON_DEV_READY;
4864 if (!netif_running(skb->dev))
4865 goto bad_dev;
4867 reason = SKB_DROP_REASON_CPU_BACKLOG;
4868 sd = &per_cpu(softnet_data, cpu);
4870 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4871 max_backlog = READ_ONCE(net_hotdata.max_backlog);
4872 if (unlikely(qlen > max_backlog))
4873 goto cpu_backlog_drop;
4874 backlog_lock_irq_save(sd, &flags);
4875 qlen = skb_queue_len(&sd->input_pkt_queue);
4876 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4877 if (!qlen) {
4878 /* Schedule NAPI for backlog device. We can use
4879 * non atomic operation as we own the queue lock.
4881 if (!__test_and_set_bit(NAPI_STATE_SCHED,
4882 &sd->backlog.state))
4883 napi_schedule_rps(sd);
4885 __skb_queue_tail(&sd->input_pkt_queue, skb);
4886 tail = rps_input_queue_tail_incr(sd);
4887 backlog_unlock_irq_restore(sd, &flags);
4889 /* save the tail outside of the critical section */
4890 rps_input_queue_tail_save(qtail, tail);
4891 return NET_RX_SUCCESS;
4894 backlog_unlock_irq_restore(sd, &flags);
4896 cpu_backlog_drop:
4897 atomic_inc(&sd->dropped);
4898 bad_dev:
4899 dev_core_stats_rx_dropped_inc(skb->dev);
4900 kfree_skb_reason(skb, reason);
4901 return NET_RX_DROP;
4904 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4906 struct net_device *dev = skb->dev;
4907 struct netdev_rx_queue *rxqueue;
4909 rxqueue = dev->_rx;
4911 if (skb_rx_queue_recorded(skb)) {
4912 u16 index = skb_get_rx_queue(skb);
4914 if (unlikely(index >= dev->real_num_rx_queues)) {
4915 WARN_ONCE(dev->real_num_rx_queues > 1,
4916 "%s received packet on queue %u, but number "
4917 "of RX queues is %u\n",
4918 dev->name, index, dev->real_num_rx_queues);
4920 return rxqueue; /* Return first rxqueue */
4922 rxqueue += index;
4924 return rxqueue;
4927 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4928 struct bpf_prog *xdp_prog)
4930 void *orig_data, *orig_data_end, *hard_start;
4931 struct netdev_rx_queue *rxqueue;
4932 bool orig_bcast, orig_host;
4933 u32 mac_len, frame_sz;
4934 __be16 orig_eth_type;
4935 struct ethhdr *eth;
4936 u32 metalen, act;
4937 int off;
4939 /* The XDP program wants to see the packet starting at the MAC
4940 * header.
4942 mac_len = skb->data - skb_mac_header(skb);
4943 hard_start = skb->data - skb_headroom(skb);
4945 /* SKB "head" area always have tailroom for skb_shared_info */
4946 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4947 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4949 rxqueue = netif_get_rxqueue(skb);
4950 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4951 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4952 skb_headlen(skb) + mac_len, true);
4953 if (skb_is_nonlinear(skb)) {
4954 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4955 xdp_buff_set_frags_flag(xdp);
4956 } else {
4957 xdp_buff_clear_frags_flag(xdp);
4960 orig_data_end = xdp->data_end;
4961 orig_data = xdp->data;
4962 eth = (struct ethhdr *)xdp->data;
4963 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4964 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4965 orig_eth_type = eth->h_proto;
4967 act = bpf_prog_run_xdp(xdp_prog, xdp);
4969 /* check if bpf_xdp_adjust_head was used */
4970 off = xdp->data - orig_data;
4971 if (off) {
4972 if (off > 0)
4973 __skb_pull(skb, off);
4974 else if (off < 0)
4975 __skb_push(skb, -off);
4977 skb->mac_header += off;
4978 skb_reset_network_header(skb);
4981 /* check if bpf_xdp_adjust_tail was used */
4982 off = xdp->data_end - orig_data_end;
4983 if (off != 0) {
4984 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4985 skb->len += off; /* positive on grow, negative on shrink */
4988 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4989 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4991 if (xdp_buff_has_frags(xdp))
4992 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4993 else
4994 skb->data_len = 0;
4996 /* check if XDP changed eth hdr such SKB needs update */
4997 eth = (struct ethhdr *)xdp->data;
4998 if ((orig_eth_type != eth->h_proto) ||
4999 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5000 skb->dev->dev_addr)) ||
5001 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5002 __skb_push(skb, ETH_HLEN);
5003 skb->pkt_type = PACKET_HOST;
5004 skb->protocol = eth_type_trans(skb, skb->dev);
5007 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5008 * before calling us again on redirect path. We do not call do_redirect
5009 * as we leave that up to the caller.
5011 * Caller is responsible for managing lifetime of skb (i.e. calling
5012 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5014 switch (act) {
5015 case XDP_REDIRECT:
5016 case XDP_TX:
5017 __skb_push(skb, mac_len);
5018 break;
5019 case XDP_PASS:
5020 metalen = xdp->data - xdp->data_meta;
5021 if (metalen)
5022 skb_metadata_set(skb, metalen);
5023 break;
5026 return act;
5029 static int
5030 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5032 struct sk_buff *skb = *pskb;
5033 int err, hroom, troom;
5035 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5036 return 0;
5038 /* In case we have to go down the path and also linearize,
5039 * then lets do the pskb_expand_head() work just once here.
5041 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5042 troom = skb->tail + skb->data_len - skb->end;
5043 err = pskb_expand_head(skb,
5044 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5045 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5046 if (err)
5047 return err;
5049 return skb_linearize(skb);
5052 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5053 struct xdp_buff *xdp,
5054 struct bpf_prog *xdp_prog)
5056 struct sk_buff *skb = *pskb;
5057 u32 mac_len, act = XDP_DROP;
5059 /* Reinjected packets coming from act_mirred or similar should
5060 * not get XDP generic processing.
5062 if (skb_is_redirected(skb))
5063 return XDP_PASS;
5065 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5066 * bytes. This is the guarantee that also native XDP provides,
5067 * thus we need to do it here as well.
5069 mac_len = skb->data - skb_mac_header(skb);
5070 __skb_push(skb, mac_len);
5072 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5073 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5074 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5075 goto do_drop;
5078 __skb_pull(*pskb, mac_len);
5080 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5081 switch (act) {
5082 case XDP_REDIRECT:
5083 case XDP_TX:
5084 case XDP_PASS:
5085 break;
5086 default:
5087 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5088 fallthrough;
5089 case XDP_ABORTED:
5090 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5091 fallthrough;
5092 case XDP_DROP:
5093 do_drop:
5094 kfree_skb(*pskb);
5095 break;
5098 return act;
5101 /* When doing generic XDP we have to bypass the qdisc layer and the
5102 * network taps in order to match in-driver-XDP behavior. This also means
5103 * that XDP packets are able to starve other packets going through a qdisc,
5104 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5105 * queues, so they do not have this starvation issue.
5107 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5109 struct net_device *dev = skb->dev;
5110 struct netdev_queue *txq;
5111 bool free_skb = true;
5112 int cpu, rc;
5114 txq = netdev_core_pick_tx(dev, skb, NULL);
5115 cpu = smp_processor_id();
5116 HARD_TX_LOCK(dev, txq, cpu);
5117 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5118 rc = netdev_start_xmit(skb, dev, txq, 0);
5119 if (dev_xmit_complete(rc))
5120 free_skb = false;
5122 HARD_TX_UNLOCK(dev, txq);
5123 if (free_skb) {
5124 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5125 dev_core_stats_tx_dropped_inc(dev);
5126 kfree_skb(skb);
5130 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5132 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5134 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5136 if (xdp_prog) {
5137 struct xdp_buff xdp;
5138 u32 act;
5139 int err;
5141 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5142 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5143 if (act != XDP_PASS) {
5144 switch (act) {
5145 case XDP_REDIRECT:
5146 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5147 &xdp, xdp_prog);
5148 if (err)
5149 goto out_redir;
5150 break;
5151 case XDP_TX:
5152 generic_xdp_tx(*pskb, xdp_prog);
5153 break;
5155 bpf_net_ctx_clear(bpf_net_ctx);
5156 return XDP_DROP;
5158 bpf_net_ctx_clear(bpf_net_ctx);
5160 return XDP_PASS;
5161 out_redir:
5162 bpf_net_ctx_clear(bpf_net_ctx);
5163 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5164 return XDP_DROP;
5166 EXPORT_SYMBOL_GPL(do_xdp_generic);
5168 static int netif_rx_internal(struct sk_buff *skb)
5170 int ret;
5172 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5174 trace_netif_rx(skb);
5176 #ifdef CONFIG_RPS
5177 if (static_branch_unlikely(&rps_needed)) {
5178 struct rps_dev_flow voidflow, *rflow = &voidflow;
5179 int cpu;
5181 rcu_read_lock();
5183 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5184 if (cpu < 0)
5185 cpu = smp_processor_id();
5187 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5189 rcu_read_unlock();
5190 } else
5191 #endif
5193 unsigned int qtail;
5195 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5197 return ret;
5201 * __netif_rx - Slightly optimized version of netif_rx
5202 * @skb: buffer to post
5204 * This behaves as netif_rx except that it does not disable bottom halves.
5205 * As a result this function may only be invoked from the interrupt context
5206 * (either hard or soft interrupt).
5208 int __netif_rx(struct sk_buff *skb)
5210 int ret;
5212 lockdep_assert_once(hardirq_count() | softirq_count());
5214 trace_netif_rx_entry(skb);
5215 ret = netif_rx_internal(skb);
5216 trace_netif_rx_exit(ret);
5217 return ret;
5219 EXPORT_SYMBOL(__netif_rx);
5222 * netif_rx - post buffer to the network code
5223 * @skb: buffer to post
5225 * This function receives a packet from a device driver and queues it for
5226 * the upper (protocol) levels to process via the backlog NAPI device. It
5227 * always succeeds. The buffer may be dropped during processing for
5228 * congestion control or by the protocol layers.
5229 * The network buffer is passed via the backlog NAPI device. Modern NIC
5230 * driver should use NAPI and GRO.
5231 * This function can used from interrupt and from process context. The
5232 * caller from process context must not disable interrupts before invoking
5233 * this function.
5235 * return values:
5236 * NET_RX_SUCCESS (no congestion)
5237 * NET_RX_DROP (packet was dropped)
5240 int netif_rx(struct sk_buff *skb)
5242 bool need_bh_off = !(hardirq_count() | softirq_count());
5243 int ret;
5245 if (need_bh_off)
5246 local_bh_disable();
5247 trace_netif_rx_entry(skb);
5248 ret = netif_rx_internal(skb);
5249 trace_netif_rx_exit(ret);
5250 if (need_bh_off)
5251 local_bh_enable();
5252 return ret;
5254 EXPORT_SYMBOL(netif_rx);
5256 static __latent_entropy void net_tx_action(void)
5258 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5260 if (sd->completion_queue) {
5261 struct sk_buff *clist;
5263 local_irq_disable();
5264 clist = sd->completion_queue;
5265 sd->completion_queue = NULL;
5266 local_irq_enable();
5268 while (clist) {
5269 struct sk_buff *skb = clist;
5271 clist = clist->next;
5273 WARN_ON(refcount_read(&skb->users));
5274 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5275 trace_consume_skb(skb, net_tx_action);
5276 else
5277 trace_kfree_skb(skb, net_tx_action,
5278 get_kfree_skb_cb(skb)->reason, NULL);
5280 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5281 __kfree_skb(skb);
5282 else
5283 __napi_kfree_skb(skb,
5284 get_kfree_skb_cb(skb)->reason);
5288 if (sd->output_queue) {
5289 struct Qdisc *head;
5291 local_irq_disable();
5292 head = sd->output_queue;
5293 sd->output_queue = NULL;
5294 sd->output_queue_tailp = &sd->output_queue;
5295 local_irq_enable();
5297 rcu_read_lock();
5299 while (head) {
5300 struct Qdisc *q = head;
5301 spinlock_t *root_lock = NULL;
5303 head = head->next_sched;
5305 /* We need to make sure head->next_sched is read
5306 * before clearing __QDISC_STATE_SCHED
5308 smp_mb__before_atomic();
5310 if (!(q->flags & TCQ_F_NOLOCK)) {
5311 root_lock = qdisc_lock(q);
5312 spin_lock(root_lock);
5313 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5314 &q->state))) {
5315 /* There is a synchronize_net() between
5316 * STATE_DEACTIVATED flag being set and
5317 * qdisc_reset()/some_qdisc_is_busy() in
5318 * dev_deactivate(), so we can safely bail out
5319 * early here to avoid data race between
5320 * qdisc_deactivate() and some_qdisc_is_busy()
5321 * for lockless qdisc.
5323 clear_bit(__QDISC_STATE_SCHED, &q->state);
5324 continue;
5327 clear_bit(__QDISC_STATE_SCHED, &q->state);
5328 qdisc_run(q);
5329 if (root_lock)
5330 spin_unlock(root_lock);
5333 rcu_read_unlock();
5336 xfrm_dev_backlog(sd);
5339 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5340 /* This hook is defined here for ATM LANE */
5341 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5342 unsigned char *addr) __read_mostly;
5343 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5344 #endif
5347 * netdev_is_rx_handler_busy - check if receive handler is registered
5348 * @dev: device to check
5350 * Check if a receive handler is already registered for a given device.
5351 * Return true if there one.
5353 * The caller must hold the rtnl_mutex.
5355 bool netdev_is_rx_handler_busy(struct net_device *dev)
5357 ASSERT_RTNL();
5358 return dev && rtnl_dereference(dev->rx_handler);
5360 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5363 * netdev_rx_handler_register - register receive handler
5364 * @dev: device to register a handler for
5365 * @rx_handler: receive handler to register
5366 * @rx_handler_data: data pointer that is used by rx handler
5368 * Register a receive handler for a device. This handler will then be
5369 * called from __netif_receive_skb. A negative errno code is returned
5370 * on a failure.
5372 * The caller must hold the rtnl_mutex.
5374 * For a general description of rx_handler, see enum rx_handler_result.
5376 int netdev_rx_handler_register(struct net_device *dev,
5377 rx_handler_func_t *rx_handler,
5378 void *rx_handler_data)
5380 if (netdev_is_rx_handler_busy(dev))
5381 return -EBUSY;
5383 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5384 return -EINVAL;
5386 /* Note: rx_handler_data must be set before rx_handler */
5387 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5388 rcu_assign_pointer(dev->rx_handler, rx_handler);
5390 return 0;
5392 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5395 * netdev_rx_handler_unregister - unregister receive handler
5396 * @dev: device to unregister a handler from
5398 * Unregister a receive handler from a device.
5400 * The caller must hold the rtnl_mutex.
5402 void netdev_rx_handler_unregister(struct net_device *dev)
5405 ASSERT_RTNL();
5406 RCU_INIT_POINTER(dev->rx_handler, NULL);
5407 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5408 * section has a guarantee to see a non NULL rx_handler_data
5409 * as well.
5411 synchronize_net();
5412 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5414 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5417 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5418 * the special handling of PFMEMALLOC skbs.
5420 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5422 switch (skb->protocol) {
5423 case htons(ETH_P_ARP):
5424 case htons(ETH_P_IP):
5425 case htons(ETH_P_IPV6):
5426 case htons(ETH_P_8021Q):
5427 case htons(ETH_P_8021AD):
5428 return true;
5429 default:
5430 return false;
5434 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5435 int *ret, struct net_device *orig_dev)
5437 if (nf_hook_ingress_active(skb)) {
5438 int ingress_retval;
5440 if (*pt_prev) {
5441 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5442 *pt_prev = NULL;
5445 rcu_read_lock();
5446 ingress_retval = nf_hook_ingress(skb);
5447 rcu_read_unlock();
5448 return ingress_retval;
5450 return 0;
5453 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5454 struct packet_type **ppt_prev)
5456 struct packet_type *ptype, *pt_prev;
5457 rx_handler_func_t *rx_handler;
5458 struct sk_buff *skb = *pskb;
5459 struct net_device *orig_dev;
5460 bool deliver_exact = false;
5461 int ret = NET_RX_DROP;
5462 __be16 type;
5464 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5466 trace_netif_receive_skb(skb);
5468 orig_dev = skb->dev;
5470 skb_reset_network_header(skb);
5471 if (!skb_transport_header_was_set(skb))
5472 skb_reset_transport_header(skb);
5473 skb_reset_mac_len(skb);
5475 pt_prev = NULL;
5477 another_round:
5478 skb->skb_iif = skb->dev->ifindex;
5480 __this_cpu_inc(softnet_data.processed);
5482 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5483 int ret2;
5485 migrate_disable();
5486 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5487 &skb);
5488 migrate_enable();
5490 if (ret2 != XDP_PASS) {
5491 ret = NET_RX_DROP;
5492 goto out;
5496 if (eth_type_vlan(skb->protocol)) {
5497 skb = skb_vlan_untag(skb);
5498 if (unlikely(!skb))
5499 goto out;
5502 if (skb_skip_tc_classify(skb))
5503 goto skip_classify;
5505 if (pfmemalloc)
5506 goto skip_taps;
5508 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5509 if (pt_prev)
5510 ret = deliver_skb(skb, pt_prev, orig_dev);
5511 pt_prev = ptype;
5514 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5515 if (pt_prev)
5516 ret = deliver_skb(skb, pt_prev, orig_dev);
5517 pt_prev = ptype;
5520 skip_taps:
5521 #ifdef CONFIG_NET_INGRESS
5522 if (static_branch_unlikely(&ingress_needed_key)) {
5523 bool another = false;
5525 nf_skip_egress(skb, true);
5526 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5527 &another);
5528 if (another)
5529 goto another_round;
5530 if (!skb)
5531 goto out;
5533 nf_skip_egress(skb, false);
5534 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5535 goto out;
5537 #endif
5538 skb_reset_redirect(skb);
5539 skip_classify:
5540 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5541 goto drop;
5543 if (skb_vlan_tag_present(skb)) {
5544 if (pt_prev) {
5545 ret = deliver_skb(skb, pt_prev, orig_dev);
5546 pt_prev = NULL;
5548 if (vlan_do_receive(&skb))
5549 goto another_round;
5550 else if (unlikely(!skb))
5551 goto out;
5554 rx_handler = rcu_dereference(skb->dev->rx_handler);
5555 if (rx_handler) {
5556 if (pt_prev) {
5557 ret = deliver_skb(skb, pt_prev, orig_dev);
5558 pt_prev = NULL;
5560 switch (rx_handler(&skb)) {
5561 case RX_HANDLER_CONSUMED:
5562 ret = NET_RX_SUCCESS;
5563 goto out;
5564 case RX_HANDLER_ANOTHER:
5565 goto another_round;
5566 case RX_HANDLER_EXACT:
5567 deliver_exact = true;
5568 break;
5569 case RX_HANDLER_PASS:
5570 break;
5571 default:
5572 BUG();
5576 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5577 check_vlan_id:
5578 if (skb_vlan_tag_get_id(skb)) {
5579 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5580 * find vlan device.
5582 skb->pkt_type = PACKET_OTHERHOST;
5583 } else if (eth_type_vlan(skb->protocol)) {
5584 /* Outer header is 802.1P with vlan 0, inner header is
5585 * 802.1Q or 802.1AD and vlan_do_receive() above could
5586 * not find vlan dev for vlan id 0.
5588 __vlan_hwaccel_clear_tag(skb);
5589 skb = skb_vlan_untag(skb);
5590 if (unlikely(!skb))
5591 goto out;
5592 if (vlan_do_receive(&skb))
5593 /* After stripping off 802.1P header with vlan 0
5594 * vlan dev is found for inner header.
5596 goto another_round;
5597 else if (unlikely(!skb))
5598 goto out;
5599 else
5600 /* We have stripped outer 802.1P vlan 0 header.
5601 * But could not find vlan dev.
5602 * check again for vlan id to set OTHERHOST.
5604 goto check_vlan_id;
5606 /* Note: we might in the future use prio bits
5607 * and set skb->priority like in vlan_do_receive()
5608 * For the time being, just ignore Priority Code Point
5610 __vlan_hwaccel_clear_tag(skb);
5613 type = skb->protocol;
5615 /* deliver only exact match when indicated */
5616 if (likely(!deliver_exact)) {
5617 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5618 &ptype_base[ntohs(type) &
5619 PTYPE_HASH_MASK]);
5622 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5623 &orig_dev->ptype_specific);
5625 if (unlikely(skb->dev != orig_dev)) {
5626 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5627 &skb->dev->ptype_specific);
5630 if (pt_prev) {
5631 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5632 goto drop;
5633 *ppt_prev = pt_prev;
5634 } else {
5635 drop:
5636 if (!deliver_exact)
5637 dev_core_stats_rx_dropped_inc(skb->dev);
5638 else
5639 dev_core_stats_rx_nohandler_inc(skb->dev);
5640 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5641 /* Jamal, now you will not able to escape explaining
5642 * me how you were going to use this. :-)
5644 ret = NET_RX_DROP;
5647 out:
5648 /* The invariant here is that if *ppt_prev is not NULL
5649 * then skb should also be non-NULL.
5651 * Apparently *ppt_prev assignment above holds this invariant due to
5652 * skb dereferencing near it.
5654 *pskb = skb;
5655 return ret;
5658 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5660 struct net_device *orig_dev = skb->dev;
5661 struct packet_type *pt_prev = NULL;
5662 int ret;
5664 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5665 if (pt_prev)
5666 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5667 skb->dev, pt_prev, orig_dev);
5668 return ret;
5672 * netif_receive_skb_core - special purpose version of netif_receive_skb
5673 * @skb: buffer to process
5675 * More direct receive version of netif_receive_skb(). It should
5676 * only be used by callers that have a need to skip RPS and Generic XDP.
5677 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5679 * This function may only be called from softirq context and interrupts
5680 * should be enabled.
5682 * Return values (usually ignored):
5683 * NET_RX_SUCCESS: no congestion
5684 * NET_RX_DROP: packet was dropped
5686 int netif_receive_skb_core(struct sk_buff *skb)
5688 int ret;
5690 rcu_read_lock();
5691 ret = __netif_receive_skb_one_core(skb, false);
5692 rcu_read_unlock();
5694 return ret;
5696 EXPORT_SYMBOL(netif_receive_skb_core);
5698 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5699 struct packet_type *pt_prev,
5700 struct net_device *orig_dev)
5702 struct sk_buff *skb, *next;
5704 if (!pt_prev)
5705 return;
5706 if (list_empty(head))
5707 return;
5708 if (pt_prev->list_func != NULL)
5709 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5710 ip_list_rcv, head, pt_prev, orig_dev);
5711 else
5712 list_for_each_entry_safe(skb, next, head, list) {
5713 skb_list_del_init(skb);
5714 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5718 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5720 /* Fast-path assumptions:
5721 * - There is no RX handler.
5722 * - Only one packet_type matches.
5723 * If either of these fails, we will end up doing some per-packet
5724 * processing in-line, then handling the 'last ptype' for the whole
5725 * sublist. This can't cause out-of-order delivery to any single ptype,
5726 * because the 'last ptype' must be constant across the sublist, and all
5727 * other ptypes are handled per-packet.
5729 /* Current (common) ptype of sublist */
5730 struct packet_type *pt_curr = NULL;
5731 /* Current (common) orig_dev of sublist */
5732 struct net_device *od_curr = NULL;
5733 struct sk_buff *skb, *next;
5734 LIST_HEAD(sublist);
5736 list_for_each_entry_safe(skb, next, head, list) {
5737 struct net_device *orig_dev = skb->dev;
5738 struct packet_type *pt_prev = NULL;
5740 skb_list_del_init(skb);
5741 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5742 if (!pt_prev)
5743 continue;
5744 if (pt_curr != pt_prev || od_curr != orig_dev) {
5745 /* dispatch old sublist */
5746 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5747 /* start new sublist */
5748 INIT_LIST_HEAD(&sublist);
5749 pt_curr = pt_prev;
5750 od_curr = orig_dev;
5752 list_add_tail(&skb->list, &sublist);
5755 /* dispatch final sublist */
5756 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5759 static int __netif_receive_skb(struct sk_buff *skb)
5761 int ret;
5763 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5764 unsigned int noreclaim_flag;
5767 * PFMEMALLOC skbs are special, they should
5768 * - be delivered to SOCK_MEMALLOC sockets only
5769 * - stay away from userspace
5770 * - have bounded memory usage
5772 * Use PF_MEMALLOC as this saves us from propagating the allocation
5773 * context down to all allocation sites.
5775 noreclaim_flag = memalloc_noreclaim_save();
5776 ret = __netif_receive_skb_one_core(skb, true);
5777 memalloc_noreclaim_restore(noreclaim_flag);
5778 } else
5779 ret = __netif_receive_skb_one_core(skb, false);
5781 return ret;
5784 static void __netif_receive_skb_list(struct list_head *head)
5786 unsigned long noreclaim_flag = 0;
5787 struct sk_buff *skb, *next;
5788 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5790 list_for_each_entry_safe(skb, next, head, list) {
5791 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5792 struct list_head sublist;
5794 /* Handle the previous sublist */
5795 list_cut_before(&sublist, head, &skb->list);
5796 if (!list_empty(&sublist))
5797 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5798 pfmemalloc = !pfmemalloc;
5799 /* See comments in __netif_receive_skb */
5800 if (pfmemalloc)
5801 noreclaim_flag = memalloc_noreclaim_save();
5802 else
5803 memalloc_noreclaim_restore(noreclaim_flag);
5806 /* Handle the remaining sublist */
5807 if (!list_empty(head))
5808 __netif_receive_skb_list_core(head, pfmemalloc);
5809 /* Restore pflags */
5810 if (pfmemalloc)
5811 memalloc_noreclaim_restore(noreclaim_flag);
5814 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5816 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5817 struct bpf_prog *new = xdp->prog;
5818 int ret = 0;
5820 switch (xdp->command) {
5821 case XDP_SETUP_PROG:
5822 rcu_assign_pointer(dev->xdp_prog, new);
5823 if (old)
5824 bpf_prog_put(old);
5826 if (old && !new) {
5827 static_branch_dec(&generic_xdp_needed_key);
5828 } else if (new && !old) {
5829 static_branch_inc(&generic_xdp_needed_key);
5830 dev_disable_lro(dev);
5831 dev_disable_gro_hw(dev);
5833 break;
5835 default:
5836 ret = -EINVAL;
5837 break;
5840 return ret;
5843 static int netif_receive_skb_internal(struct sk_buff *skb)
5845 int ret;
5847 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5849 if (skb_defer_rx_timestamp(skb))
5850 return NET_RX_SUCCESS;
5852 rcu_read_lock();
5853 #ifdef CONFIG_RPS
5854 if (static_branch_unlikely(&rps_needed)) {
5855 struct rps_dev_flow voidflow, *rflow = &voidflow;
5856 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5858 if (cpu >= 0) {
5859 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5860 rcu_read_unlock();
5861 return ret;
5864 #endif
5865 ret = __netif_receive_skb(skb);
5866 rcu_read_unlock();
5867 return ret;
5870 void netif_receive_skb_list_internal(struct list_head *head)
5872 struct sk_buff *skb, *next;
5873 LIST_HEAD(sublist);
5875 list_for_each_entry_safe(skb, next, head, list) {
5876 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5877 skb);
5878 skb_list_del_init(skb);
5879 if (!skb_defer_rx_timestamp(skb))
5880 list_add_tail(&skb->list, &sublist);
5882 list_splice_init(&sublist, head);
5884 rcu_read_lock();
5885 #ifdef CONFIG_RPS
5886 if (static_branch_unlikely(&rps_needed)) {
5887 list_for_each_entry_safe(skb, next, head, list) {
5888 struct rps_dev_flow voidflow, *rflow = &voidflow;
5889 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5891 if (cpu >= 0) {
5892 /* Will be handled, remove from list */
5893 skb_list_del_init(skb);
5894 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5898 #endif
5899 __netif_receive_skb_list(head);
5900 rcu_read_unlock();
5904 * netif_receive_skb - process receive buffer from network
5905 * @skb: buffer to process
5907 * netif_receive_skb() is the main receive data processing function.
5908 * It always succeeds. The buffer may be dropped during processing
5909 * for congestion control or by the protocol layers.
5911 * This function may only be called from softirq context and interrupts
5912 * should be enabled.
5914 * Return values (usually ignored):
5915 * NET_RX_SUCCESS: no congestion
5916 * NET_RX_DROP: packet was dropped
5918 int netif_receive_skb(struct sk_buff *skb)
5920 int ret;
5922 trace_netif_receive_skb_entry(skb);
5924 ret = netif_receive_skb_internal(skb);
5925 trace_netif_receive_skb_exit(ret);
5927 return ret;
5929 EXPORT_SYMBOL(netif_receive_skb);
5932 * netif_receive_skb_list - process many receive buffers from network
5933 * @head: list of skbs to process.
5935 * Since return value of netif_receive_skb() is normally ignored, and
5936 * wouldn't be meaningful for a list, this function returns void.
5938 * This function may only be called from softirq context and interrupts
5939 * should be enabled.
5941 void netif_receive_skb_list(struct list_head *head)
5943 struct sk_buff *skb;
5945 if (list_empty(head))
5946 return;
5947 if (trace_netif_receive_skb_list_entry_enabled()) {
5948 list_for_each_entry(skb, head, list)
5949 trace_netif_receive_skb_list_entry(skb);
5951 netif_receive_skb_list_internal(head);
5952 trace_netif_receive_skb_list_exit(0);
5954 EXPORT_SYMBOL(netif_receive_skb_list);
5956 static DEFINE_PER_CPU(struct work_struct, flush_works);
5958 /* Network device is going away, flush any packets still pending */
5959 static void flush_backlog(struct work_struct *work)
5961 struct sk_buff *skb, *tmp;
5962 struct softnet_data *sd;
5964 local_bh_disable();
5965 sd = this_cpu_ptr(&softnet_data);
5967 backlog_lock_irq_disable(sd);
5968 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5969 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5970 __skb_unlink(skb, &sd->input_pkt_queue);
5971 dev_kfree_skb_irq(skb);
5972 rps_input_queue_head_incr(sd);
5975 backlog_unlock_irq_enable(sd);
5977 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5978 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5979 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5980 __skb_unlink(skb, &sd->process_queue);
5981 kfree_skb(skb);
5982 rps_input_queue_head_incr(sd);
5985 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5986 local_bh_enable();
5989 static bool flush_required(int cpu)
5991 #if IS_ENABLED(CONFIG_RPS)
5992 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5993 bool do_flush;
5995 backlog_lock_irq_disable(sd);
5997 /* as insertion into process_queue happens with the rps lock held,
5998 * process_queue access may race only with dequeue
6000 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6001 !skb_queue_empty_lockless(&sd->process_queue);
6002 backlog_unlock_irq_enable(sd);
6004 return do_flush;
6005 #endif
6006 /* without RPS we can't safely check input_pkt_queue: during a
6007 * concurrent remote skb_queue_splice() we can detect as empty both
6008 * input_pkt_queue and process_queue even if the latter could end-up
6009 * containing a lot of packets.
6011 return true;
6014 static void flush_all_backlogs(void)
6016 static cpumask_t flush_cpus;
6017 unsigned int cpu;
6019 /* since we are under rtnl lock protection we can use static data
6020 * for the cpumask and avoid allocating on stack the possibly
6021 * large mask
6023 ASSERT_RTNL();
6025 cpus_read_lock();
6027 cpumask_clear(&flush_cpus);
6028 for_each_online_cpu(cpu) {
6029 if (flush_required(cpu)) {
6030 queue_work_on(cpu, system_highpri_wq,
6031 per_cpu_ptr(&flush_works, cpu));
6032 cpumask_set_cpu(cpu, &flush_cpus);
6036 /* we can have in flight packet[s] on the cpus we are not flushing,
6037 * synchronize_net() in unregister_netdevice_many() will take care of
6038 * them
6040 for_each_cpu(cpu, &flush_cpus)
6041 flush_work(per_cpu_ptr(&flush_works, cpu));
6043 cpus_read_unlock();
6046 static void net_rps_send_ipi(struct softnet_data *remsd)
6048 #ifdef CONFIG_RPS
6049 while (remsd) {
6050 struct softnet_data *next = remsd->rps_ipi_next;
6052 if (cpu_online(remsd->cpu))
6053 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6054 remsd = next;
6056 #endif
6060 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6061 * Note: called with local irq disabled, but exits with local irq enabled.
6063 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6065 #ifdef CONFIG_RPS
6066 struct softnet_data *remsd = sd->rps_ipi_list;
6068 if (!use_backlog_threads() && remsd) {
6069 sd->rps_ipi_list = NULL;
6071 local_irq_enable();
6073 /* Send pending IPI's to kick RPS processing on remote cpus. */
6074 net_rps_send_ipi(remsd);
6075 } else
6076 #endif
6077 local_irq_enable();
6080 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6082 #ifdef CONFIG_RPS
6083 return !use_backlog_threads() && sd->rps_ipi_list;
6084 #else
6085 return false;
6086 #endif
6089 static int process_backlog(struct napi_struct *napi, int quota)
6091 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6092 bool again = true;
6093 int work = 0;
6095 /* Check if we have pending ipi, its better to send them now,
6096 * not waiting net_rx_action() end.
6098 if (sd_has_rps_ipi_waiting(sd)) {
6099 local_irq_disable();
6100 net_rps_action_and_irq_enable(sd);
6103 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6104 while (again) {
6105 struct sk_buff *skb;
6107 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6108 while ((skb = __skb_dequeue(&sd->process_queue))) {
6109 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6110 rcu_read_lock();
6111 __netif_receive_skb(skb);
6112 rcu_read_unlock();
6113 if (++work >= quota) {
6114 rps_input_queue_head_add(sd, work);
6115 return work;
6118 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6120 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6122 backlog_lock_irq_disable(sd);
6123 if (skb_queue_empty(&sd->input_pkt_queue)) {
6125 * Inline a custom version of __napi_complete().
6126 * only current cpu owns and manipulates this napi,
6127 * and NAPI_STATE_SCHED is the only possible flag set
6128 * on backlog.
6129 * We can use a plain write instead of clear_bit(),
6130 * and we dont need an smp_mb() memory barrier.
6132 napi->state &= NAPIF_STATE_THREADED;
6133 again = false;
6134 } else {
6135 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6136 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6137 &sd->process_queue);
6138 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6140 backlog_unlock_irq_enable(sd);
6143 if (work)
6144 rps_input_queue_head_add(sd, work);
6145 return work;
6149 * __napi_schedule - schedule for receive
6150 * @n: entry to schedule
6152 * The entry's receive function will be scheduled to run.
6153 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6155 void __napi_schedule(struct napi_struct *n)
6157 unsigned long flags;
6159 local_irq_save(flags);
6160 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6161 local_irq_restore(flags);
6163 EXPORT_SYMBOL(__napi_schedule);
6166 * napi_schedule_prep - check if napi can be scheduled
6167 * @n: napi context
6169 * Test if NAPI routine is already running, and if not mark
6170 * it as running. This is used as a condition variable to
6171 * insure only one NAPI poll instance runs. We also make
6172 * sure there is no pending NAPI disable.
6174 bool napi_schedule_prep(struct napi_struct *n)
6176 unsigned long new, val = READ_ONCE(n->state);
6178 do {
6179 if (unlikely(val & NAPIF_STATE_DISABLE))
6180 return false;
6181 new = val | NAPIF_STATE_SCHED;
6183 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6184 * This was suggested by Alexander Duyck, as compiler
6185 * emits better code than :
6186 * if (val & NAPIF_STATE_SCHED)
6187 * new |= NAPIF_STATE_MISSED;
6189 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6190 NAPIF_STATE_MISSED;
6191 } while (!try_cmpxchg(&n->state, &val, new));
6193 return !(val & NAPIF_STATE_SCHED);
6195 EXPORT_SYMBOL(napi_schedule_prep);
6198 * __napi_schedule_irqoff - schedule for receive
6199 * @n: entry to schedule
6201 * Variant of __napi_schedule() assuming hard irqs are masked.
6203 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6204 * because the interrupt disabled assumption might not be true
6205 * due to force-threaded interrupts and spinlock substitution.
6207 void __napi_schedule_irqoff(struct napi_struct *n)
6209 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6210 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6211 else
6212 __napi_schedule(n);
6214 EXPORT_SYMBOL(__napi_schedule_irqoff);
6216 bool napi_complete_done(struct napi_struct *n, int work_done)
6218 unsigned long flags, val, new, timeout = 0;
6219 bool ret = true;
6222 * 1) Don't let napi dequeue from the cpu poll list
6223 * just in case its running on a different cpu.
6224 * 2) If we are busy polling, do nothing here, we have
6225 * the guarantee we will be called later.
6227 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6228 NAPIF_STATE_IN_BUSY_POLL)))
6229 return false;
6231 if (work_done) {
6232 if (n->gro_bitmask)
6233 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6234 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6236 if (n->defer_hard_irqs_count > 0) {
6237 n->defer_hard_irqs_count--;
6238 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6239 if (timeout)
6240 ret = false;
6242 if (n->gro_bitmask) {
6243 /* When the NAPI instance uses a timeout and keeps postponing
6244 * it, we need to bound somehow the time packets are kept in
6245 * the GRO layer
6247 napi_gro_flush(n, !!timeout);
6250 gro_normal_list(n);
6252 if (unlikely(!list_empty(&n->poll_list))) {
6253 /* If n->poll_list is not empty, we need to mask irqs */
6254 local_irq_save(flags);
6255 list_del_init(&n->poll_list);
6256 local_irq_restore(flags);
6258 WRITE_ONCE(n->list_owner, -1);
6260 val = READ_ONCE(n->state);
6261 do {
6262 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6264 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6265 NAPIF_STATE_SCHED_THREADED |
6266 NAPIF_STATE_PREFER_BUSY_POLL);
6268 /* If STATE_MISSED was set, leave STATE_SCHED set,
6269 * because we will call napi->poll() one more time.
6270 * This C code was suggested by Alexander Duyck to help gcc.
6272 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6273 NAPIF_STATE_SCHED;
6274 } while (!try_cmpxchg(&n->state, &val, new));
6276 if (unlikely(val & NAPIF_STATE_MISSED)) {
6277 __napi_schedule(n);
6278 return false;
6281 if (timeout)
6282 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6283 HRTIMER_MODE_REL_PINNED);
6284 return ret;
6286 EXPORT_SYMBOL(napi_complete_done);
6288 /* must be called under rcu_read_lock(), as we dont take a reference */
6289 struct napi_struct *napi_by_id(unsigned int napi_id)
6291 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6292 struct napi_struct *napi;
6294 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6295 if (napi->napi_id == napi_id)
6296 return napi;
6298 return NULL;
6301 static void skb_defer_free_flush(struct softnet_data *sd)
6303 struct sk_buff *skb, *next;
6305 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6306 if (!READ_ONCE(sd->defer_list))
6307 return;
6309 spin_lock(&sd->defer_lock);
6310 skb = sd->defer_list;
6311 sd->defer_list = NULL;
6312 sd->defer_count = 0;
6313 spin_unlock(&sd->defer_lock);
6315 while (skb != NULL) {
6316 next = skb->next;
6317 napi_consume_skb(skb, 1);
6318 skb = next;
6322 #if defined(CONFIG_NET_RX_BUSY_POLL)
6324 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6326 if (!skip_schedule) {
6327 gro_normal_list(napi);
6328 __napi_schedule(napi);
6329 return;
6332 if (napi->gro_bitmask) {
6333 /* flush too old packets
6334 * If HZ < 1000, flush all packets.
6336 napi_gro_flush(napi, HZ >= 1000);
6339 gro_normal_list(napi);
6340 clear_bit(NAPI_STATE_SCHED, &napi->state);
6343 enum {
6344 NAPI_F_PREFER_BUSY_POLL = 1,
6345 NAPI_F_END_ON_RESCHED = 2,
6348 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6349 unsigned flags, u16 budget)
6351 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6352 bool skip_schedule = false;
6353 unsigned long timeout;
6354 int rc;
6356 /* Busy polling means there is a high chance device driver hard irq
6357 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6358 * set in napi_schedule_prep().
6359 * Since we are about to call napi->poll() once more, we can safely
6360 * clear NAPI_STATE_MISSED.
6362 * Note: x86 could use a single "lock and ..." instruction
6363 * to perform these two clear_bit()
6365 clear_bit(NAPI_STATE_MISSED, &napi->state);
6366 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6368 local_bh_disable();
6369 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6371 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6372 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6373 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6374 if (napi->defer_hard_irqs_count && timeout) {
6375 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6376 skip_schedule = true;
6380 /* All we really want here is to re-enable device interrupts.
6381 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6383 rc = napi->poll(napi, budget);
6384 /* We can't gro_normal_list() here, because napi->poll() might have
6385 * rearmed the napi (napi_complete_done()) in which case it could
6386 * already be running on another CPU.
6388 trace_napi_poll(napi, rc, budget);
6389 netpoll_poll_unlock(have_poll_lock);
6390 if (rc == budget)
6391 __busy_poll_stop(napi, skip_schedule);
6392 bpf_net_ctx_clear(bpf_net_ctx);
6393 local_bh_enable();
6396 static void __napi_busy_loop(unsigned int napi_id,
6397 bool (*loop_end)(void *, unsigned long),
6398 void *loop_end_arg, unsigned flags, u16 budget)
6400 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6401 int (*napi_poll)(struct napi_struct *napi, int budget);
6402 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6403 void *have_poll_lock = NULL;
6404 struct napi_struct *napi;
6406 WARN_ON_ONCE(!rcu_read_lock_held());
6408 restart:
6409 napi_poll = NULL;
6411 napi = napi_by_id(napi_id);
6412 if (!napi)
6413 return;
6415 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6416 preempt_disable();
6417 for (;;) {
6418 int work = 0;
6420 local_bh_disable();
6421 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6422 if (!napi_poll) {
6423 unsigned long val = READ_ONCE(napi->state);
6425 /* If multiple threads are competing for this napi,
6426 * we avoid dirtying napi->state as much as we can.
6428 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6429 NAPIF_STATE_IN_BUSY_POLL)) {
6430 if (flags & NAPI_F_PREFER_BUSY_POLL)
6431 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6432 goto count;
6434 if (cmpxchg(&napi->state, val,
6435 val | NAPIF_STATE_IN_BUSY_POLL |
6436 NAPIF_STATE_SCHED) != val) {
6437 if (flags & NAPI_F_PREFER_BUSY_POLL)
6438 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6439 goto count;
6441 have_poll_lock = netpoll_poll_lock(napi);
6442 napi_poll = napi->poll;
6444 work = napi_poll(napi, budget);
6445 trace_napi_poll(napi, work, budget);
6446 gro_normal_list(napi);
6447 count:
6448 if (work > 0)
6449 __NET_ADD_STATS(dev_net(napi->dev),
6450 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6451 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6452 bpf_net_ctx_clear(bpf_net_ctx);
6453 local_bh_enable();
6455 if (!loop_end || loop_end(loop_end_arg, start_time))
6456 break;
6458 if (unlikely(need_resched())) {
6459 if (flags & NAPI_F_END_ON_RESCHED)
6460 break;
6461 if (napi_poll)
6462 busy_poll_stop(napi, have_poll_lock, flags, budget);
6463 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6464 preempt_enable();
6465 rcu_read_unlock();
6466 cond_resched();
6467 rcu_read_lock();
6468 if (loop_end(loop_end_arg, start_time))
6469 return;
6470 goto restart;
6472 cpu_relax();
6474 if (napi_poll)
6475 busy_poll_stop(napi, have_poll_lock, flags, budget);
6476 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6477 preempt_enable();
6480 void napi_busy_loop_rcu(unsigned int napi_id,
6481 bool (*loop_end)(void *, unsigned long),
6482 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6484 unsigned flags = NAPI_F_END_ON_RESCHED;
6486 if (prefer_busy_poll)
6487 flags |= NAPI_F_PREFER_BUSY_POLL;
6489 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6492 void napi_busy_loop(unsigned int napi_id,
6493 bool (*loop_end)(void *, unsigned long),
6494 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6496 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6498 rcu_read_lock();
6499 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6500 rcu_read_unlock();
6502 EXPORT_SYMBOL(napi_busy_loop);
6504 #endif /* CONFIG_NET_RX_BUSY_POLL */
6506 static void napi_hash_add(struct napi_struct *napi)
6508 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6509 return;
6511 spin_lock(&napi_hash_lock);
6513 /* 0..NR_CPUS range is reserved for sender_cpu use */
6514 do {
6515 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6516 napi_gen_id = MIN_NAPI_ID;
6517 } while (napi_by_id(napi_gen_id));
6518 napi->napi_id = napi_gen_id;
6520 hlist_add_head_rcu(&napi->napi_hash_node,
6521 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6523 spin_unlock(&napi_hash_lock);
6526 /* Warning : caller is responsible to make sure rcu grace period
6527 * is respected before freeing memory containing @napi
6529 static void napi_hash_del(struct napi_struct *napi)
6531 spin_lock(&napi_hash_lock);
6533 hlist_del_init_rcu(&napi->napi_hash_node);
6535 spin_unlock(&napi_hash_lock);
6538 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6540 struct napi_struct *napi;
6542 napi = container_of(timer, struct napi_struct, timer);
6544 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6545 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6547 if (!napi_disable_pending(napi) &&
6548 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6549 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6550 __napi_schedule_irqoff(napi);
6553 return HRTIMER_NORESTART;
6556 static void init_gro_hash(struct napi_struct *napi)
6558 int i;
6560 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6561 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6562 napi->gro_hash[i].count = 0;
6564 napi->gro_bitmask = 0;
6567 int dev_set_threaded(struct net_device *dev, bool threaded)
6569 struct napi_struct *napi;
6570 int err = 0;
6572 if (dev->threaded == threaded)
6573 return 0;
6575 if (threaded) {
6576 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6577 if (!napi->thread) {
6578 err = napi_kthread_create(napi);
6579 if (err) {
6580 threaded = false;
6581 break;
6587 WRITE_ONCE(dev->threaded, threaded);
6589 /* Make sure kthread is created before THREADED bit
6590 * is set.
6592 smp_mb__before_atomic();
6594 /* Setting/unsetting threaded mode on a napi might not immediately
6595 * take effect, if the current napi instance is actively being
6596 * polled. In this case, the switch between threaded mode and
6597 * softirq mode will happen in the next round of napi_schedule().
6598 * This should not cause hiccups/stalls to the live traffic.
6600 list_for_each_entry(napi, &dev->napi_list, dev_list)
6601 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6603 return err;
6605 EXPORT_SYMBOL(dev_set_threaded);
6608 * netif_queue_set_napi - Associate queue with the napi
6609 * @dev: device to which NAPI and queue belong
6610 * @queue_index: Index of queue
6611 * @type: queue type as RX or TX
6612 * @napi: NAPI context, pass NULL to clear previously set NAPI
6614 * Set queue with its corresponding napi context. This should be done after
6615 * registering the NAPI handler for the queue-vector and the queues have been
6616 * mapped to the corresponding interrupt vector.
6618 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6619 enum netdev_queue_type type, struct napi_struct *napi)
6621 struct netdev_rx_queue *rxq;
6622 struct netdev_queue *txq;
6624 if (WARN_ON_ONCE(napi && !napi->dev))
6625 return;
6626 if (dev->reg_state >= NETREG_REGISTERED)
6627 ASSERT_RTNL();
6629 switch (type) {
6630 case NETDEV_QUEUE_TYPE_RX:
6631 rxq = __netif_get_rx_queue(dev, queue_index);
6632 rxq->napi = napi;
6633 return;
6634 case NETDEV_QUEUE_TYPE_TX:
6635 txq = netdev_get_tx_queue(dev, queue_index);
6636 txq->napi = napi;
6637 return;
6638 default:
6639 return;
6642 EXPORT_SYMBOL(netif_queue_set_napi);
6644 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6645 int (*poll)(struct napi_struct *, int), int weight)
6647 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6648 return;
6650 INIT_LIST_HEAD(&napi->poll_list);
6651 INIT_HLIST_NODE(&napi->napi_hash_node);
6652 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6653 napi->timer.function = napi_watchdog;
6654 init_gro_hash(napi);
6655 napi->skb = NULL;
6656 INIT_LIST_HEAD(&napi->rx_list);
6657 napi->rx_count = 0;
6658 napi->poll = poll;
6659 if (weight > NAPI_POLL_WEIGHT)
6660 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6661 weight);
6662 napi->weight = weight;
6663 napi->dev = dev;
6664 #ifdef CONFIG_NETPOLL
6665 napi->poll_owner = -1;
6666 #endif
6667 napi->list_owner = -1;
6668 set_bit(NAPI_STATE_SCHED, &napi->state);
6669 set_bit(NAPI_STATE_NPSVC, &napi->state);
6670 list_add_rcu(&napi->dev_list, &dev->napi_list);
6671 napi_hash_add(napi);
6672 napi_get_frags_check(napi);
6673 /* Create kthread for this napi if dev->threaded is set.
6674 * Clear dev->threaded if kthread creation failed so that
6675 * threaded mode will not be enabled in napi_enable().
6677 if (dev->threaded && napi_kthread_create(napi))
6678 dev->threaded = false;
6679 netif_napi_set_irq(napi, -1);
6681 EXPORT_SYMBOL(netif_napi_add_weight);
6683 void napi_disable(struct napi_struct *n)
6685 unsigned long val, new;
6687 might_sleep();
6688 set_bit(NAPI_STATE_DISABLE, &n->state);
6690 val = READ_ONCE(n->state);
6691 do {
6692 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6693 usleep_range(20, 200);
6694 val = READ_ONCE(n->state);
6697 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6698 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6699 } while (!try_cmpxchg(&n->state, &val, new));
6701 hrtimer_cancel(&n->timer);
6703 clear_bit(NAPI_STATE_DISABLE, &n->state);
6705 EXPORT_SYMBOL(napi_disable);
6708 * napi_enable - enable NAPI scheduling
6709 * @n: NAPI context
6711 * Resume NAPI from being scheduled on this context.
6712 * Must be paired with napi_disable.
6714 void napi_enable(struct napi_struct *n)
6716 unsigned long new, val = READ_ONCE(n->state);
6718 do {
6719 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6721 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6722 if (n->dev->threaded && n->thread)
6723 new |= NAPIF_STATE_THREADED;
6724 } while (!try_cmpxchg(&n->state, &val, new));
6726 EXPORT_SYMBOL(napi_enable);
6728 static void flush_gro_hash(struct napi_struct *napi)
6730 int i;
6732 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6733 struct sk_buff *skb, *n;
6735 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6736 kfree_skb(skb);
6737 napi->gro_hash[i].count = 0;
6741 /* Must be called in process context */
6742 void __netif_napi_del(struct napi_struct *napi)
6744 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6745 return;
6747 napi_hash_del(napi);
6748 list_del_rcu(&napi->dev_list);
6749 napi_free_frags(napi);
6751 flush_gro_hash(napi);
6752 napi->gro_bitmask = 0;
6754 if (napi->thread) {
6755 kthread_stop(napi->thread);
6756 napi->thread = NULL;
6759 EXPORT_SYMBOL(__netif_napi_del);
6761 static int __napi_poll(struct napi_struct *n, bool *repoll)
6763 int work, weight;
6765 weight = n->weight;
6767 /* This NAPI_STATE_SCHED test is for avoiding a race
6768 * with netpoll's poll_napi(). Only the entity which
6769 * obtains the lock and sees NAPI_STATE_SCHED set will
6770 * actually make the ->poll() call. Therefore we avoid
6771 * accidentally calling ->poll() when NAPI is not scheduled.
6773 work = 0;
6774 if (napi_is_scheduled(n)) {
6775 work = n->poll(n, weight);
6776 trace_napi_poll(n, work, weight);
6778 xdp_do_check_flushed(n);
6781 if (unlikely(work > weight))
6782 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6783 n->poll, work, weight);
6785 if (likely(work < weight))
6786 return work;
6788 /* Drivers must not modify the NAPI state if they
6789 * consume the entire weight. In such cases this code
6790 * still "owns" the NAPI instance and therefore can
6791 * move the instance around on the list at-will.
6793 if (unlikely(napi_disable_pending(n))) {
6794 napi_complete(n);
6795 return work;
6798 /* The NAPI context has more processing work, but busy-polling
6799 * is preferred. Exit early.
6801 if (napi_prefer_busy_poll(n)) {
6802 if (napi_complete_done(n, work)) {
6803 /* If timeout is not set, we need to make sure
6804 * that the NAPI is re-scheduled.
6806 napi_schedule(n);
6808 return work;
6811 if (n->gro_bitmask) {
6812 /* flush too old packets
6813 * If HZ < 1000, flush all packets.
6815 napi_gro_flush(n, HZ >= 1000);
6818 gro_normal_list(n);
6820 /* Some drivers may have called napi_schedule
6821 * prior to exhausting their budget.
6823 if (unlikely(!list_empty(&n->poll_list))) {
6824 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6825 n->dev ? n->dev->name : "backlog");
6826 return work;
6829 *repoll = true;
6831 return work;
6834 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6836 bool do_repoll = false;
6837 void *have;
6838 int work;
6840 list_del_init(&n->poll_list);
6842 have = netpoll_poll_lock(n);
6844 work = __napi_poll(n, &do_repoll);
6846 if (do_repoll)
6847 list_add_tail(&n->poll_list, repoll);
6849 netpoll_poll_unlock(have);
6851 return work;
6854 static int napi_thread_wait(struct napi_struct *napi)
6856 set_current_state(TASK_INTERRUPTIBLE);
6858 while (!kthread_should_stop()) {
6859 /* Testing SCHED_THREADED bit here to make sure the current
6860 * kthread owns this napi and could poll on this napi.
6861 * Testing SCHED bit is not enough because SCHED bit might be
6862 * set by some other busy poll thread or by napi_disable().
6864 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6865 WARN_ON(!list_empty(&napi->poll_list));
6866 __set_current_state(TASK_RUNNING);
6867 return 0;
6870 schedule();
6871 set_current_state(TASK_INTERRUPTIBLE);
6873 __set_current_state(TASK_RUNNING);
6875 return -1;
6878 static void napi_threaded_poll_loop(struct napi_struct *napi)
6880 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6881 struct softnet_data *sd;
6882 unsigned long last_qs = jiffies;
6884 for (;;) {
6885 bool repoll = false;
6886 void *have;
6888 local_bh_disable();
6889 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6891 sd = this_cpu_ptr(&softnet_data);
6892 sd->in_napi_threaded_poll = true;
6894 have = netpoll_poll_lock(napi);
6895 __napi_poll(napi, &repoll);
6896 netpoll_poll_unlock(have);
6898 sd->in_napi_threaded_poll = false;
6899 barrier();
6901 if (sd_has_rps_ipi_waiting(sd)) {
6902 local_irq_disable();
6903 net_rps_action_and_irq_enable(sd);
6905 skb_defer_free_flush(sd);
6906 bpf_net_ctx_clear(bpf_net_ctx);
6907 local_bh_enable();
6909 if (!repoll)
6910 break;
6912 rcu_softirq_qs_periodic(last_qs);
6913 cond_resched();
6917 static int napi_threaded_poll(void *data)
6919 struct napi_struct *napi = data;
6921 while (!napi_thread_wait(napi))
6922 napi_threaded_poll_loop(napi);
6924 return 0;
6927 static __latent_entropy void net_rx_action(void)
6929 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6930 unsigned long time_limit = jiffies +
6931 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6932 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6933 int budget = READ_ONCE(net_hotdata.netdev_budget);
6934 LIST_HEAD(list);
6935 LIST_HEAD(repoll);
6937 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6938 start:
6939 sd->in_net_rx_action = true;
6940 local_irq_disable();
6941 list_splice_init(&sd->poll_list, &list);
6942 local_irq_enable();
6944 for (;;) {
6945 struct napi_struct *n;
6947 skb_defer_free_flush(sd);
6949 if (list_empty(&list)) {
6950 if (list_empty(&repoll)) {
6951 sd->in_net_rx_action = false;
6952 barrier();
6953 /* We need to check if ____napi_schedule()
6954 * had refilled poll_list while
6955 * sd->in_net_rx_action was true.
6957 if (!list_empty(&sd->poll_list))
6958 goto start;
6959 if (!sd_has_rps_ipi_waiting(sd))
6960 goto end;
6962 break;
6965 n = list_first_entry(&list, struct napi_struct, poll_list);
6966 budget -= napi_poll(n, &repoll);
6968 /* If softirq window is exhausted then punt.
6969 * Allow this to run for 2 jiffies since which will allow
6970 * an average latency of 1.5/HZ.
6972 if (unlikely(budget <= 0 ||
6973 time_after_eq(jiffies, time_limit))) {
6974 sd->time_squeeze++;
6975 break;
6979 local_irq_disable();
6981 list_splice_tail_init(&sd->poll_list, &list);
6982 list_splice_tail(&repoll, &list);
6983 list_splice(&list, &sd->poll_list);
6984 if (!list_empty(&sd->poll_list))
6985 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6986 else
6987 sd->in_net_rx_action = false;
6989 net_rps_action_and_irq_enable(sd);
6990 end:
6991 bpf_net_ctx_clear(bpf_net_ctx);
6994 struct netdev_adjacent {
6995 struct net_device *dev;
6996 netdevice_tracker dev_tracker;
6998 /* upper master flag, there can only be one master device per list */
6999 bool master;
7001 /* lookup ignore flag */
7002 bool ignore;
7004 /* counter for the number of times this device was added to us */
7005 u16 ref_nr;
7007 /* private field for the users */
7008 void *private;
7010 struct list_head list;
7011 struct rcu_head rcu;
7014 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7015 struct list_head *adj_list)
7017 struct netdev_adjacent *adj;
7019 list_for_each_entry(adj, adj_list, list) {
7020 if (adj->dev == adj_dev)
7021 return adj;
7023 return NULL;
7026 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7027 struct netdev_nested_priv *priv)
7029 struct net_device *dev = (struct net_device *)priv->data;
7031 return upper_dev == dev;
7035 * netdev_has_upper_dev - Check if device is linked to an upper device
7036 * @dev: device
7037 * @upper_dev: upper device to check
7039 * Find out if a device is linked to specified upper device and return true
7040 * in case it is. Note that this checks only immediate upper device,
7041 * not through a complete stack of devices. The caller must hold the RTNL lock.
7043 bool netdev_has_upper_dev(struct net_device *dev,
7044 struct net_device *upper_dev)
7046 struct netdev_nested_priv priv = {
7047 .data = (void *)upper_dev,
7050 ASSERT_RTNL();
7052 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7053 &priv);
7055 EXPORT_SYMBOL(netdev_has_upper_dev);
7058 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7059 * @dev: device
7060 * @upper_dev: upper device to check
7062 * Find out if a device is linked to specified upper device and return true
7063 * in case it is. Note that this checks the entire upper device chain.
7064 * The caller must hold rcu lock.
7067 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7068 struct net_device *upper_dev)
7070 struct netdev_nested_priv priv = {
7071 .data = (void *)upper_dev,
7074 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7075 &priv);
7077 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7080 * netdev_has_any_upper_dev - Check if device is linked to some device
7081 * @dev: device
7083 * Find out if a device is linked to an upper device and return true in case
7084 * it is. The caller must hold the RTNL lock.
7086 bool netdev_has_any_upper_dev(struct net_device *dev)
7088 ASSERT_RTNL();
7090 return !list_empty(&dev->adj_list.upper);
7092 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7095 * netdev_master_upper_dev_get - Get master upper device
7096 * @dev: device
7098 * Find a master upper device and return pointer to it or NULL in case
7099 * it's not there. The caller must hold the RTNL lock.
7101 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7103 struct netdev_adjacent *upper;
7105 ASSERT_RTNL();
7107 if (list_empty(&dev->adj_list.upper))
7108 return NULL;
7110 upper = list_first_entry(&dev->adj_list.upper,
7111 struct netdev_adjacent, list);
7112 if (likely(upper->master))
7113 return upper->dev;
7114 return NULL;
7116 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7118 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7120 struct netdev_adjacent *upper;
7122 ASSERT_RTNL();
7124 if (list_empty(&dev->adj_list.upper))
7125 return NULL;
7127 upper = list_first_entry(&dev->adj_list.upper,
7128 struct netdev_adjacent, list);
7129 if (likely(upper->master) && !upper->ignore)
7130 return upper->dev;
7131 return NULL;
7135 * netdev_has_any_lower_dev - Check if device is linked to some device
7136 * @dev: device
7138 * Find out if a device is linked to a lower device and return true in case
7139 * it is. The caller must hold the RTNL lock.
7141 static bool netdev_has_any_lower_dev(struct net_device *dev)
7143 ASSERT_RTNL();
7145 return !list_empty(&dev->adj_list.lower);
7148 void *netdev_adjacent_get_private(struct list_head *adj_list)
7150 struct netdev_adjacent *adj;
7152 adj = list_entry(adj_list, struct netdev_adjacent, list);
7154 return adj->private;
7156 EXPORT_SYMBOL(netdev_adjacent_get_private);
7159 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7160 * @dev: device
7161 * @iter: list_head ** of the current position
7163 * Gets the next device from the dev's upper list, starting from iter
7164 * position. The caller must hold RCU read lock.
7166 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7167 struct list_head **iter)
7169 struct netdev_adjacent *upper;
7171 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7173 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7175 if (&upper->list == &dev->adj_list.upper)
7176 return NULL;
7178 *iter = &upper->list;
7180 return upper->dev;
7182 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7184 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7185 struct list_head **iter,
7186 bool *ignore)
7188 struct netdev_adjacent *upper;
7190 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7192 if (&upper->list == &dev->adj_list.upper)
7193 return NULL;
7195 *iter = &upper->list;
7196 *ignore = upper->ignore;
7198 return upper->dev;
7201 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7202 struct list_head **iter)
7204 struct netdev_adjacent *upper;
7206 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7208 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7210 if (&upper->list == &dev->adj_list.upper)
7211 return NULL;
7213 *iter = &upper->list;
7215 return upper->dev;
7218 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7219 int (*fn)(struct net_device *dev,
7220 struct netdev_nested_priv *priv),
7221 struct netdev_nested_priv *priv)
7223 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7224 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7225 int ret, cur = 0;
7226 bool ignore;
7228 now = dev;
7229 iter = &dev->adj_list.upper;
7231 while (1) {
7232 if (now != dev) {
7233 ret = fn(now, priv);
7234 if (ret)
7235 return ret;
7238 next = NULL;
7239 while (1) {
7240 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7241 if (!udev)
7242 break;
7243 if (ignore)
7244 continue;
7246 next = udev;
7247 niter = &udev->adj_list.upper;
7248 dev_stack[cur] = now;
7249 iter_stack[cur++] = iter;
7250 break;
7253 if (!next) {
7254 if (!cur)
7255 return 0;
7256 next = dev_stack[--cur];
7257 niter = iter_stack[cur];
7260 now = next;
7261 iter = niter;
7264 return 0;
7267 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7268 int (*fn)(struct net_device *dev,
7269 struct netdev_nested_priv *priv),
7270 struct netdev_nested_priv *priv)
7272 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7273 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7274 int ret, cur = 0;
7276 now = dev;
7277 iter = &dev->adj_list.upper;
7279 while (1) {
7280 if (now != dev) {
7281 ret = fn(now, priv);
7282 if (ret)
7283 return ret;
7286 next = NULL;
7287 while (1) {
7288 udev = netdev_next_upper_dev_rcu(now, &iter);
7289 if (!udev)
7290 break;
7292 next = udev;
7293 niter = &udev->adj_list.upper;
7294 dev_stack[cur] = now;
7295 iter_stack[cur++] = iter;
7296 break;
7299 if (!next) {
7300 if (!cur)
7301 return 0;
7302 next = dev_stack[--cur];
7303 niter = iter_stack[cur];
7306 now = next;
7307 iter = niter;
7310 return 0;
7312 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7314 static bool __netdev_has_upper_dev(struct net_device *dev,
7315 struct net_device *upper_dev)
7317 struct netdev_nested_priv priv = {
7318 .flags = 0,
7319 .data = (void *)upper_dev,
7322 ASSERT_RTNL();
7324 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7325 &priv);
7329 * netdev_lower_get_next_private - Get the next ->private from the
7330 * lower neighbour list
7331 * @dev: device
7332 * @iter: list_head ** of the current position
7334 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7335 * list, starting from iter position. The caller must hold either hold the
7336 * RTNL lock or its own locking that guarantees that the neighbour lower
7337 * list will remain unchanged.
7339 void *netdev_lower_get_next_private(struct net_device *dev,
7340 struct list_head **iter)
7342 struct netdev_adjacent *lower;
7344 lower = list_entry(*iter, struct netdev_adjacent, list);
7346 if (&lower->list == &dev->adj_list.lower)
7347 return NULL;
7349 *iter = lower->list.next;
7351 return lower->private;
7353 EXPORT_SYMBOL(netdev_lower_get_next_private);
7356 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7357 * lower neighbour list, RCU
7358 * variant
7359 * @dev: device
7360 * @iter: list_head ** of the current position
7362 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7363 * list, starting from iter position. The caller must hold RCU read lock.
7365 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7366 struct list_head **iter)
7368 struct netdev_adjacent *lower;
7370 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7372 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7374 if (&lower->list == &dev->adj_list.lower)
7375 return NULL;
7377 *iter = &lower->list;
7379 return lower->private;
7381 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7384 * netdev_lower_get_next - Get the next device from the lower neighbour
7385 * list
7386 * @dev: device
7387 * @iter: list_head ** of the current position
7389 * Gets the next netdev_adjacent from the dev's lower neighbour
7390 * list, starting from iter position. The caller must hold RTNL lock or
7391 * its own locking that guarantees that the neighbour lower
7392 * list will remain unchanged.
7394 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7396 struct netdev_adjacent *lower;
7398 lower = list_entry(*iter, struct netdev_adjacent, list);
7400 if (&lower->list == &dev->adj_list.lower)
7401 return NULL;
7403 *iter = lower->list.next;
7405 return lower->dev;
7407 EXPORT_SYMBOL(netdev_lower_get_next);
7409 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7410 struct list_head **iter)
7412 struct netdev_adjacent *lower;
7414 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7416 if (&lower->list == &dev->adj_list.lower)
7417 return NULL;
7419 *iter = &lower->list;
7421 return lower->dev;
7424 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7425 struct list_head **iter,
7426 bool *ignore)
7428 struct netdev_adjacent *lower;
7430 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7432 if (&lower->list == &dev->adj_list.lower)
7433 return NULL;
7435 *iter = &lower->list;
7436 *ignore = lower->ignore;
7438 return lower->dev;
7441 int netdev_walk_all_lower_dev(struct net_device *dev,
7442 int (*fn)(struct net_device *dev,
7443 struct netdev_nested_priv *priv),
7444 struct netdev_nested_priv *priv)
7446 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7447 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7448 int ret, cur = 0;
7450 now = dev;
7451 iter = &dev->adj_list.lower;
7453 while (1) {
7454 if (now != dev) {
7455 ret = fn(now, priv);
7456 if (ret)
7457 return ret;
7460 next = NULL;
7461 while (1) {
7462 ldev = netdev_next_lower_dev(now, &iter);
7463 if (!ldev)
7464 break;
7466 next = ldev;
7467 niter = &ldev->adj_list.lower;
7468 dev_stack[cur] = now;
7469 iter_stack[cur++] = iter;
7470 break;
7473 if (!next) {
7474 if (!cur)
7475 return 0;
7476 next = dev_stack[--cur];
7477 niter = iter_stack[cur];
7480 now = next;
7481 iter = niter;
7484 return 0;
7486 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7488 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7489 int (*fn)(struct net_device *dev,
7490 struct netdev_nested_priv *priv),
7491 struct netdev_nested_priv *priv)
7493 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7494 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7495 int ret, cur = 0;
7496 bool ignore;
7498 now = dev;
7499 iter = &dev->adj_list.lower;
7501 while (1) {
7502 if (now != dev) {
7503 ret = fn(now, priv);
7504 if (ret)
7505 return ret;
7508 next = NULL;
7509 while (1) {
7510 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7511 if (!ldev)
7512 break;
7513 if (ignore)
7514 continue;
7516 next = ldev;
7517 niter = &ldev->adj_list.lower;
7518 dev_stack[cur] = now;
7519 iter_stack[cur++] = iter;
7520 break;
7523 if (!next) {
7524 if (!cur)
7525 return 0;
7526 next = dev_stack[--cur];
7527 niter = iter_stack[cur];
7530 now = next;
7531 iter = niter;
7534 return 0;
7537 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7538 struct list_head **iter)
7540 struct netdev_adjacent *lower;
7542 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7543 if (&lower->list == &dev->adj_list.lower)
7544 return NULL;
7546 *iter = &lower->list;
7548 return lower->dev;
7550 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7552 static u8 __netdev_upper_depth(struct net_device *dev)
7554 struct net_device *udev;
7555 struct list_head *iter;
7556 u8 max_depth = 0;
7557 bool ignore;
7559 for (iter = &dev->adj_list.upper,
7560 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7561 udev;
7562 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7563 if (ignore)
7564 continue;
7565 if (max_depth < udev->upper_level)
7566 max_depth = udev->upper_level;
7569 return max_depth;
7572 static u8 __netdev_lower_depth(struct net_device *dev)
7574 struct net_device *ldev;
7575 struct list_head *iter;
7576 u8 max_depth = 0;
7577 bool ignore;
7579 for (iter = &dev->adj_list.lower,
7580 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7581 ldev;
7582 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7583 if (ignore)
7584 continue;
7585 if (max_depth < ldev->lower_level)
7586 max_depth = ldev->lower_level;
7589 return max_depth;
7592 static int __netdev_update_upper_level(struct net_device *dev,
7593 struct netdev_nested_priv *__unused)
7595 dev->upper_level = __netdev_upper_depth(dev) + 1;
7596 return 0;
7599 #ifdef CONFIG_LOCKDEP
7600 static LIST_HEAD(net_unlink_list);
7602 static void net_unlink_todo(struct net_device *dev)
7604 if (list_empty(&dev->unlink_list))
7605 list_add_tail(&dev->unlink_list, &net_unlink_list);
7607 #endif
7609 static int __netdev_update_lower_level(struct net_device *dev,
7610 struct netdev_nested_priv *priv)
7612 dev->lower_level = __netdev_lower_depth(dev) + 1;
7614 #ifdef CONFIG_LOCKDEP
7615 if (!priv)
7616 return 0;
7618 if (priv->flags & NESTED_SYNC_IMM)
7619 dev->nested_level = dev->lower_level - 1;
7620 if (priv->flags & NESTED_SYNC_TODO)
7621 net_unlink_todo(dev);
7622 #endif
7623 return 0;
7626 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7627 int (*fn)(struct net_device *dev,
7628 struct netdev_nested_priv *priv),
7629 struct netdev_nested_priv *priv)
7631 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7632 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7633 int ret, cur = 0;
7635 now = dev;
7636 iter = &dev->adj_list.lower;
7638 while (1) {
7639 if (now != dev) {
7640 ret = fn(now, priv);
7641 if (ret)
7642 return ret;
7645 next = NULL;
7646 while (1) {
7647 ldev = netdev_next_lower_dev_rcu(now, &iter);
7648 if (!ldev)
7649 break;
7651 next = ldev;
7652 niter = &ldev->adj_list.lower;
7653 dev_stack[cur] = now;
7654 iter_stack[cur++] = iter;
7655 break;
7658 if (!next) {
7659 if (!cur)
7660 return 0;
7661 next = dev_stack[--cur];
7662 niter = iter_stack[cur];
7665 now = next;
7666 iter = niter;
7669 return 0;
7671 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7674 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7675 * lower neighbour list, RCU
7676 * variant
7677 * @dev: device
7679 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7680 * list. The caller must hold RCU read lock.
7682 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7684 struct netdev_adjacent *lower;
7686 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7687 struct netdev_adjacent, list);
7688 if (lower)
7689 return lower->private;
7690 return NULL;
7692 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7695 * netdev_master_upper_dev_get_rcu - Get master upper device
7696 * @dev: device
7698 * Find a master upper device and return pointer to it or NULL in case
7699 * it's not there. The caller must hold the RCU read lock.
7701 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7703 struct netdev_adjacent *upper;
7705 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7706 struct netdev_adjacent, list);
7707 if (upper && likely(upper->master))
7708 return upper->dev;
7709 return NULL;
7711 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7713 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7714 struct net_device *adj_dev,
7715 struct list_head *dev_list)
7717 char linkname[IFNAMSIZ+7];
7719 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7720 "upper_%s" : "lower_%s", adj_dev->name);
7721 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7722 linkname);
7724 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7725 char *name,
7726 struct list_head *dev_list)
7728 char linkname[IFNAMSIZ+7];
7730 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7731 "upper_%s" : "lower_%s", name);
7732 sysfs_remove_link(&(dev->dev.kobj), linkname);
7735 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7736 struct net_device *adj_dev,
7737 struct list_head *dev_list)
7739 return (dev_list == &dev->adj_list.upper ||
7740 dev_list == &dev->adj_list.lower) &&
7741 net_eq(dev_net(dev), dev_net(adj_dev));
7744 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7745 struct net_device *adj_dev,
7746 struct list_head *dev_list,
7747 void *private, bool master)
7749 struct netdev_adjacent *adj;
7750 int ret;
7752 adj = __netdev_find_adj(adj_dev, dev_list);
7754 if (adj) {
7755 adj->ref_nr += 1;
7756 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7757 dev->name, adj_dev->name, adj->ref_nr);
7759 return 0;
7762 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7763 if (!adj)
7764 return -ENOMEM;
7766 adj->dev = adj_dev;
7767 adj->master = master;
7768 adj->ref_nr = 1;
7769 adj->private = private;
7770 adj->ignore = false;
7771 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7773 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7774 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7776 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7777 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7778 if (ret)
7779 goto free_adj;
7782 /* Ensure that master link is always the first item in list. */
7783 if (master) {
7784 ret = sysfs_create_link(&(dev->dev.kobj),
7785 &(adj_dev->dev.kobj), "master");
7786 if (ret)
7787 goto remove_symlinks;
7789 list_add_rcu(&adj->list, dev_list);
7790 } else {
7791 list_add_tail_rcu(&adj->list, dev_list);
7794 return 0;
7796 remove_symlinks:
7797 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7798 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7799 free_adj:
7800 netdev_put(adj_dev, &adj->dev_tracker);
7801 kfree(adj);
7803 return ret;
7806 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7807 struct net_device *adj_dev,
7808 u16 ref_nr,
7809 struct list_head *dev_list)
7811 struct netdev_adjacent *adj;
7813 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7814 dev->name, adj_dev->name, ref_nr);
7816 adj = __netdev_find_adj(adj_dev, dev_list);
7818 if (!adj) {
7819 pr_err("Adjacency does not exist for device %s from %s\n",
7820 dev->name, adj_dev->name);
7821 WARN_ON(1);
7822 return;
7825 if (adj->ref_nr > ref_nr) {
7826 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7827 dev->name, adj_dev->name, ref_nr,
7828 adj->ref_nr - ref_nr);
7829 adj->ref_nr -= ref_nr;
7830 return;
7833 if (adj->master)
7834 sysfs_remove_link(&(dev->dev.kobj), "master");
7836 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7837 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7839 list_del_rcu(&adj->list);
7840 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7841 adj_dev->name, dev->name, adj_dev->name);
7842 netdev_put(adj_dev, &adj->dev_tracker);
7843 kfree_rcu(adj, rcu);
7846 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7847 struct net_device *upper_dev,
7848 struct list_head *up_list,
7849 struct list_head *down_list,
7850 void *private, bool master)
7852 int ret;
7854 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7855 private, master);
7856 if (ret)
7857 return ret;
7859 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7860 private, false);
7861 if (ret) {
7862 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7863 return ret;
7866 return 0;
7869 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7870 struct net_device *upper_dev,
7871 u16 ref_nr,
7872 struct list_head *up_list,
7873 struct list_head *down_list)
7875 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7876 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7879 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7880 struct net_device *upper_dev,
7881 void *private, bool master)
7883 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7884 &dev->adj_list.upper,
7885 &upper_dev->adj_list.lower,
7886 private, master);
7889 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7890 struct net_device *upper_dev)
7892 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7893 &dev->adj_list.upper,
7894 &upper_dev->adj_list.lower);
7897 static int __netdev_upper_dev_link(struct net_device *dev,
7898 struct net_device *upper_dev, bool master,
7899 void *upper_priv, void *upper_info,
7900 struct netdev_nested_priv *priv,
7901 struct netlink_ext_ack *extack)
7903 struct netdev_notifier_changeupper_info changeupper_info = {
7904 .info = {
7905 .dev = dev,
7906 .extack = extack,
7908 .upper_dev = upper_dev,
7909 .master = master,
7910 .linking = true,
7911 .upper_info = upper_info,
7913 struct net_device *master_dev;
7914 int ret = 0;
7916 ASSERT_RTNL();
7918 if (dev == upper_dev)
7919 return -EBUSY;
7921 /* To prevent loops, check if dev is not upper device to upper_dev. */
7922 if (__netdev_has_upper_dev(upper_dev, dev))
7923 return -EBUSY;
7925 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7926 return -EMLINK;
7928 if (!master) {
7929 if (__netdev_has_upper_dev(dev, upper_dev))
7930 return -EEXIST;
7931 } else {
7932 master_dev = __netdev_master_upper_dev_get(dev);
7933 if (master_dev)
7934 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7937 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7938 &changeupper_info.info);
7939 ret = notifier_to_errno(ret);
7940 if (ret)
7941 return ret;
7943 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7944 master);
7945 if (ret)
7946 return ret;
7948 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7949 &changeupper_info.info);
7950 ret = notifier_to_errno(ret);
7951 if (ret)
7952 goto rollback;
7954 __netdev_update_upper_level(dev, NULL);
7955 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7957 __netdev_update_lower_level(upper_dev, priv);
7958 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7959 priv);
7961 return 0;
7963 rollback:
7964 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7966 return ret;
7970 * netdev_upper_dev_link - Add a link to the upper device
7971 * @dev: device
7972 * @upper_dev: new upper device
7973 * @extack: netlink extended ack
7975 * Adds a link to device which is upper to this one. The caller must hold
7976 * the RTNL lock. On a failure a negative errno code is returned.
7977 * On success the reference counts are adjusted and the function
7978 * returns zero.
7980 int netdev_upper_dev_link(struct net_device *dev,
7981 struct net_device *upper_dev,
7982 struct netlink_ext_ack *extack)
7984 struct netdev_nested_priv priv = {
7985 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7986 .data = NULL,
7989 return __netdev_upper_dev_link(dev, upper_dev, false,
7990 NULL, NULL, &priv, extack);
7992 EXPORT_SYMBOL(netdev_upper_dev_link);
7995 * netdev_master_upper_dev_link - Add a master link to the upper device
7996 * @dev: device
7997 * @upper_dev: new upper device
7998 * @upper_priv: upper device private
7999 * @upper_info: upper info to be passed down via notifier
8000 * @extack: netlink extended ack
8002 * Adds a link to device which is upper to this one. In this case, only
8003 * one master upper device can be linked, although other non-master devices
8004 * might be linked as well. The caller must hold the RTNL lock.
8005 * On a failure a negative errno code is returned. On success the reference
8006 * counts are adjusted and the function returns zero.
8008 int netdev_master_upper_dev_link(struct net_device *dev,
8009 struct net_device *upper_dev,
8010 void *upper_priv, void *upper_info,
8011 struct netlink_ext_ack *extack)
8013 struct netdev_nested_priv priv = {
8014 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8015 .data = NULL,
8018 return __netdev_upper_dev_link(dev, upper_dev, true,
8019 upper_priv, upper_info, &priv, extack);
8021 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8023 static void __netdev_upper_dev_unlink(struct net_device *dev,
8024 struct net_device *upper_dev,
8025 struct netdev_nested_priv *priv)
8027 struct netdev_notifier_changeupper_info changeupper_info = {
8028 .info = {
8029 .dev = dev,
8031 .upper_dev = upper_dev,
8032 .linking = false,
8035 ASSERT_RTNL();
8037 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8039 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8040 &changeupper_info.info);
8042 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8044 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8045 &changeupper_info.info);
8047 __netdev_update_upper_level(dev, NULL);
8048 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8050 __netdev_update_lower_level(upper_dev, priv);
8051 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8052 priv);
8056 * netdev_upper_dev_unlink - Removes a link to upper device
8057 * @dev: device
8058 * @upper_dev: new upper device
8060 * Removes a link to device which is upper to this one. The caller must hold
8061 * the RTNL lock.
8063 void netdev_upper_dev_unlink(struct net_device *dev,
8064 struct net_device *upper_dev)
8066 struct netdev_nested_priv priv = {
8067 .flags = NESTED_SYNC_TODO,
8068 .data = NULL,
8071 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8073 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8075 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8076 struct net_device *lower_dev,
8077 bool val)
8079 struct netdev_adjacent *adj;
8081 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8082 if (adj)
8083 adj->ignore = val;
8085 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8086 if (adj)
8087 adj->ignore = val;
8090 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8091 struct net_device *lower_dev)
8093 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8096 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8097 struct net_device *lower_dev)
8099 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8102 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8103 struct net_device *new_dev,
8104 struct net_device *dev,
8105 struct netlink_ext_ack *extack)
8107 struct netdev_nested_priv priv = {
8108 .flags = 0,
8109 .data = NULL,
8111 int err;
8113 if (!new_dev)
8114 return 0;
8116 if (old_dev && new_dev != old_dev)
8117 netdev_adjacent_dev_disable(dev, old_dev);
8118 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8119 extack);
8120 if (err) {
8121 if (old_dev && new_dev != old_dev)
8122 netdev_adjacent_dev_enable(dev, old_dev);
8123 return err;
8126 return 0;
8128 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8130 void netdev_adjacent_change_commit(struct net_device *old_dev,
8131 struct net_device *new_dev,
8132 struct net_device *dev)
8134 struct netdev_nested_priv priv = {
8135 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8136 .data = NULL,
8139 if (!new_dev || !old_dev)
8140 return;
8142 if (new_dev == old_dev)
8143 return;
8145 netdev_adjacent_dev_enable(dev, old_dev);
8146 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8148 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8150 void netdev_adjacent_change_abort(struct net_device *old_dev,
8151 struct net_device *new_dev,
8152 struct net_device *dev)
8154 struct netdev_nested_priv priv = {
8155 .flags = 0,
8156 .data = NULL,
8159 if (!new_dev)
8160 return;
8162 if (old_dev && new_dev != old_dev)
8163 netdev_adjacent_dev_enable(dev, old_dev);
8165 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8167 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8170 * netdev_bonding_info_change - Dispatch event about slave change
8171 * @dev: device
8172 * @bonding_info: info to dispatch
8174 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8175 * The caller must hold the RTNL lock.
8177 void netdev_bonding_info_change(struct net_device *dev,
8178 struct netdev_bonding_info *bonding_info)
8180 struct netdev_notifier_bonding_info info = {
8181 .info.dev = dev,
8184 memcpy(&info.bonding_info, bonding_info,
8185 sizeof(struct netdev_bonding_info));
8186 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8187 &info.info);
8189 EXPORT_SYMBOL(netdev_bonding_info_change);
8191 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8192 struct netlink_ext_ack *extack)
8194 struct netdev_notifier_offload_xstats_info info = {
8195 .info.dev = dev,
8196 .info.extack = extack,
8197 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8199 int err;
8200 int rc;
8202 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8203 GFP_KERNEL);
8204 if (!dev->offload_xstats_l3)
8205 return -ENOMEM;
8207 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8208 NETDEV_OFFLOAD_XSTATS_DISABLE,
8209 &info.info);
8210 err = notifier_to_errno(rc);
8211 if (err)
8212 goto free_stats;
8214 return 0;
8216 free_stats:
8217 kfree(dev->offload_xstats_l3);
8218 dev->offload_xstats_l3 = NULL;
8219 return err;
8222 int netdev_offload_xstats_enable(struct net_device *dev,
8223 enum netdev_offload_xstats_type type,
8224 struct netlink_ext_ack *extack)
8226 ASSERT_RTNL();
8228 if (netdev_offload_xstats_enabled(dev, type))
8229 return -EALREADY;
8231 switch (type) {
8232 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8233 return netdev_offload_xstats_enable_l3(dev, extack);
8236 WARN_ON(1);
8237 return -EINVAL;
8239 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8241 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8243 struct netdev_notifier_offload_xstats_info info = {
8244 .info.dev = dev,
8245 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8248 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8249 &info.info);
8250 kfree(dev->offload_xstats_l3);
8251 dev->offload_xstats_l3 = NULL;
8254 int netdev_offload_xstats_disable(struct net_device *dev,
8255 enum netdev_offload_xstats_type type)
8257 ASSERT_RTNL();
8259 if (!netdev_offload_xstats_enabled(dev, type))
8260 return -EALREADY;
8262 switch (type) {
8263 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8264 netdev_offload_xstats_disable_l3(dev);
8265 return 0;
8268 WARN_ON(1);
8269 return -EINVAL;
8271 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8273 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8275 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8278 static struct rtnl_hw_stats64 *
8279 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8280 enum netdev_offload_xstats_type type)
8282 switch (type) {
8283 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8284 return dev->offload_xstats_l3;
8287 WARN_ON(1);
8288 return NULL;
8291 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8292 enum netdev_offload_xstats_type type)
8294 ASSERT_RTNL();
8296 return netdev_offload_xstats_get_ptr(dev, type);
8298 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8300 struct netdev_notifier_offload_xstats_ru {
8301 bool used;
8304 struct netdev_notifier_offload_xstats_rd {
8305 struct rtnl_hw_stats64 stats;
8306 bool used;
8309 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8310 const struct rtnl_hw_stats64 *src)
8312 dest->rx_packets += src->rx_packets;
8313 dest->tx_packets += src->tx_packets;
8314 dest->rx_bytes += src->rx_bytes;
8315 dest->tx_bytes += src->tx_bytes;
8316 dest->rx_errors += src->rx_errors;
8317 dest->tx_errors += src->tx_errors;
8318 dest->rx_dropped += src->rx_dropped;
8319 dest->tx_dropped += src->tx_dropped;
8320 dest->multicast += src->multicast;
8323 static int netdev_offload_xstats_get_used(struct net_device *dev,
8324 enum netdev_offload_xstats_type type,
8325 bool *p_used,
8326 struct netlink_ext_ack *extack)
8328 struct netdev_notifier_offload_xstats_ru report_used = {};
8329 struct netdev_notifier_offload_xstats_info info = {
8330 .info.dev = dev,
8331 .info.extack = extack,
8332 .type = type,
8333 .report_used = &report_used,
8335 int rc;
8337 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8338 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8339 &info.info);
8340 *p_used = report_used.used;
8341 return notifier_to_errno(rc);
8344 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8345 enum netdev_offload_xstats_type type,
8346 struct rtnl_hw_stats64 *p_stats,
8347 bool *p_used,
8348 struct netlink_ext_ack *extack)
8350 struct netdev_notifier_offload_xstats_rd report_delta = {};
8351 struct netdev_notifier_offload_xstats_info info = {
8352 .info.dev = dev,
8353 .info.extack = extack,
8354 .type = type,
8355 .report_delta = &report_delta,
8357 struct rtnl_hw_stats64 *stats;
8358 int rc;
8360 stats = netdev_offload_xstats_get_ptr(dev, type);
8361 if (WARN_ON(!stats))
8362 return -EINVAL;
8364 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8365 &info.info);
8367 /* Cache whatever we got, even if there was an error, otherwise the
8368 * successful stats retrievals would get lost.
8370 netdev_hw_stats64_add(stats, &report_delta.stats);
8372 if (p_stats)
8373 *p_stats = *stats;
8374 *p_used = report_delta.used;
8376 return notifier_to_errno(rc);
8379 int netdev_offload_xstats_get(struct net_device *dev,
8380 enum netdev_offload_xstats_type type,
8381 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8382 struct netlink_ext_ack *extack)
8384 ASSERT_RTNL();
8386 if (p_stats)
8387 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8388 p_used, extack);
8389 else
8390 return netdev_offload_xstats_get_used(dev, type, p_used,
8391 extack);
8393 EXPORT_SYMBOL(netdev_offload_xstats_get);
8395 void
8396 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8397 const struct rtnl_hw_stats64 *stats)
8399 report_delta->used = true;
8400 netdev_hw_stats64_add(&report_delta->stats, stats);
8402 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8404 void
8405 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8407 report_used->used = true;
8409 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8411 void netdev_offload_xstats_push_delta(struct net_device *dev,
8412 enum netdev_offload_xstats_type type,
8413 const struct rtnl_hw_stats64 *p_stats)
8415 struct rtnl_hw_stats64 *stats;
8417 ASSERT_RTNL();
8419 stats = netdev_offload_xstats_get_ptr(dev, type);
8420 if (WARN_ON(!stats))
8421 return;
8423 netdev_hw_stats64_add(stats, p_stats);
8425 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8428 * netdev_get_xmit_slave - Get the xmit slave of master device
8429 * @dev: device
8430 * @skb: The packet
8431 * @all_slaves: assume all the slaves are active
8433 * The reference counters are not incremented so the caller must be
8434 * careful with locks. The caller must hold RCU lock.
8435 * %NULL is returned if no slave is found.
8438 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8439 struct sk_buff *skb,
8440 bool all_slaves)
8442 const struct net_device_ops *ops = dev->netdev_ops;
8444 if (!ops->ndo_get_xmit_slave)
8445 return NULL;
8446 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8448 EXPORT_SYMBOL(netdev_get_xmit_slave);
8450 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8451 struct sock *sk)
8453 const struct net_device_ops *ops = dev->netdev_ops;
8455 if (!ops->ndo_sk_get_lower_dev)
8456 return NULL;
8457 return ops->ndo_sk_get_lower_dev(dev, sk);
8461 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8462 * @dev: device
8463 * @sk: the socket
8465 * %NULL is returned if no lower device is found.
8468 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8469 struct sock *sk)
8471 struct net_device *lower;
8473 lower = netdev_sk_get_lower_dev(dev, sk);
8474 while (lower) {
8475 dev = lower;
8476 lower = netdev_sk_get_lower_dev(dev, sk);
8479 return dev;
8481 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8483 static void netdev_adjacent_add_links(struct net_device *dev)
8485 struct netdev_adjacent *iter;
8487 struct net *net = dev_net(dev);
8489 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8490 if (!net_eq(net, dev_net(iter->dev)))
8491 continue;
8492 netdev_adjacent_sysfs_add(iter->dev, dev,
8493 &iter->dev->adj_list.lower);
8494 netdev_adjacent_sysfs_add(dev, iter->dev,
8495 &dev->adj_list.upper);
8498 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8499 if (!net_eq(net, dev_net(iter->dev)))
8500 continue;
8501 netdev_adjacent_sysfs_add(iter->dev, dev,
8502 &iter->dev->adj_list.upper);
8503 netdev_adjacent_sysfs_add(dev, iter->dev,
8504 &dev->adj_list.lower);
8508 static void netdev_adjacent_del_links(struct net_device *dev)
8510 struct netdev_adjacent *iter;
8512 struct net *net = dev_net(dev);
8514 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8515 if (!net_eq(net, dev_net(iter->dev)))
8516 continue;
8517 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8518 &iter->dev->adj_list.lower);
8519 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8520 &dev->adj_list.upper);
8523 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8524 if (!net_eq(net, dev_net(iter->dev)))
8525 continue;
8526 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8527 &iter->dev->adj_list.upper);
8528 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8529 &dev->adj_list.lower);
8533 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8535 struct netdev_adjacent *iter;
8537 struct net *net = dev_net(dev);
8539 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8540 if (!net_eq(net, dev_net(iter->dev)))
8541 continue;
8542 netdev_adjacent_sysfs_del(iter->dev, oldname,
8543 &iter->dev->adj_list.lower);
8544 netdev_adjacent_sysfs_add(iter->dev, dev,
8545 &iter->dev->adj_list.lower);
8548 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8549 if (!net_eq(net, dev_net(iter->dev)))
8550 continue;
8551 netdev_adjacent_sysfs_del(iter->dev, oldname,
8552 &iter->dev->adj_list.upper);
8553 netdev_adjacent_sysfs_add(iter->dev, dev,
8554 &iter->dev->adj_list.upper);
8558 void *netdev_lower_dev_get_private(struct net_device *dev,
8559 struct net_device *lower_dev)
8561 struct netdev_adjacent *lower;
8563 if (!lower_dev)
8564 return NULL;
8565 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8566 if (!lower)
8567 return NULL;
8569 return lower->private;
8571 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8575 * netdev_lower_state_changed - Dispatch event about lower device state change
8576 * @lower_dev: device
8577 * @lower_state_info: state to dispatch
8579 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8580 * The caller must hold the RTNL lock.
8582 void netdev_lower_state_changed(struct net_device *lower_dev,
8583 void *lower_state_info)
8585 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8586 .info.dev = lower_dev,
8589 ASSERT_RTNL();
8590 changelowerstate_info.lower_state_info = lower_state_info;
8591 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8592 &changelowerstate_info.info);
8594 EXPORT_SYMBOL(netdev_lower_state_changed);
8596 static void dev_change_rx_flags(struct net_device *dev, int flags)
8598 const struct net_device_ops *ops = dev->netdev_ops;
8600 if (ops->ndo_change_rx_flags)
8601 ops->ndo_change_rx_flags(dev, flags);
8604 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8606 unsigned int old_flags = dev->flags;
8607 unsigned int promiscuity, flags;
8608 kuid_t uid;
8609 kgid_t gid;
8611 ASSERT_RTNL();
8613 promiscuity = dev->promiscuity + inc;
8614 if (promiscuity == 0) {
8616 * Avoid overflow.
8617 * If inc causes overflow, untouch promisc and return error.
8619 if (unlikely(inc > 0)) {
8620 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8621 return -EOVERFLOW;
8623 flags = old_flags & ~IFF_PROMISC;
8624 } else {
8625 flags = old_flags | IFF_PROMISC;
8627 WRITE_ONCE(dev->promiscuity, promiscuity);
8628 if (flags != old_flags) {
8629 WRITE_ONCE(dev->flags, flags);
8630 netdev_info(dev, "%s promiscuous mode\n",
8631 dev->flags & IFF_PROMISC ? "entered" : "left");
8632 if (audit_enabled) {
8633 current_uid_gid(&uid, &gid);
8634 audit_log(audit_context(), GFP_ATOMIC,
8635 AUDIT_ANOM_PROMISCUOUS,
8636 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8637 dev->name, (dev->flags & IFF_PROMISC),
8638 (old_flags & IFF_PROMISC),
8639 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8640 from_kuid(&init_user_ns, uid),
8641 from_kgid(&init_user_ns, gid),
8642 audit_get_sessionid(current));
8645 dev_change_rx_flags(dev, IFF_PROMISC);
8647 if (notify)
8648 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8649 return 0;
8653 * dev_set_promiscuity - update promiscuity count on a device
8654 * @dev: device
8655 * @inc: modifier
8657 * Add or remove promiscuity from a device. While the count in the device
8658 * remains above zero the interface remains promiscuous. Once it hits zero
8659 * the device reverts back to normal filtering operation. A negative inc
8660 * value is used to drop promiscuity on the device.
8661 * Return 0 if successful or a negative errno code on error.
8663 int dev_set_promiscuity(struct net_device *dev, int inc)
8665 unsigned int old_flags = dev->flags;
8666 int err;
8668 err = __dev_set_promiscuity(dev, inc, true);
8669 if (err < 0)
8670 return err;
8671 if (dev->flags != old_flags)
8672 dev_set_rx_mode(dev);
8673 return err;
8675 EXPORT_SYMBOL(dev_set_promiscuity);
8677 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8679 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8680 unsigned int allmulti, flags;
8682 ASSERT_RTNL();
8684 allmulti = dev->allmulti + inc;
8685 if (allmulti == 0) {
8687 * Avoid overflow.
8688 * If inc causes overflow, untouch allmulti and return error.
8690 if (unlikely(inc > 0)) {
8691 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8692 return -EOVERFLOW;
8694 flags = old_flags & ~IFF_ALLMULTI;
8695 } else {
8696 flags = old_flags | IFF_ALLMULTI;
8698 WRITE_ONCE(dev->allmulti, allmulti);
8699 if (flags != old_flags) {
8700 WRITE_ONCE(dev->flags, flags);
8701 netdev_info(dev, "%s allmulticast mode\n",
8702 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8703 dev_change_rx_flags(dev, IFF_ALLMULTI);
8704 dev_set_rx_mode(dev);
8705 if (notify)
8706 __dev_notify_flags(dev, old_flags,
8707 dev->gflags ^ old_gflags, 0, NULL);
8709 return 0;
8713 * dev_set_allmulti - update allmulti count on a device
8714 * @dev: device
8715 * @inc: modifier
8717 * Add or remove reception of all multicast frames to a device. While the
8718 * count in the device remains above zero the interface remains listening
8719 * to all interfaces. Once it hits zero the device reverts back to normal
8720 * filtering operation. A negative @inc value is used to drop the counter
8721 * when releasing a resource needing all multicasts.
8722 * Return 0 if successful or a negative errno code on error.
8725 int dev_set_allmulti(struct net_device *dev, int inc)
8727 return __dev_set_allmulti(dev, inc, true);
8729 EXPORT_SYMBOL(dev_set_allmulti);
8732 * Upload unicast and multicast address lists to device and
8733 * configure RX filtering. When the device doesn't support unicast
8734 * filtering it is put in promiscuous mode while unicast addresses
8735 * are present.
8737 void __dev_set_rx_mode(struct net_device *dev)
8739 const struct net_device_ops *ops = dev->netdev_ops;
8741 /* dev_open will call this function so the list will stay sane. */
8742 if (!(dev->flags&IFF_UP))
8743 return;
8745 if (!netif_device_present(dev))
8746 return;
8748 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8749 /* Unicast addresses changes may only happen under the rtnl,
8750 * therefore calling __dev_set_promiscuity here is safe.
8752 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8753 __dev_set_promiscuity(dev, 1, false);
8754 dev->uc_promisc = true;
8755 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8756 __dev_set_promiscuity(dev, -1, false);
8757 dev->uc_promisc = false;
8761 if (ops->ndo_set_rx_mode)
8762 ops->ndo_set_rx_mode(dev);
8765 void dev_set_rx_mode(struct net_device *dev)
8767 netif_addr_lock_bh(dev);
8768 __dev_set_rx_mode(dev);
8769 netif_addr_unlock_bh(dev);
8773 * dev_get_flags - get flags reported to userspace
8774 * @dev: device
8776 * Get the combination of flag bits exported through APIs to userspace.
8778 unsigned int dev_get_flags(const struct net_device *dev)
8780 unsigned int flags;
8782 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8783 IFF_ALLMULTI |
8784 IFF_RUNNING |
8785 IFF_LOWER_UP |
8786 IFF_DORMANT)) |
8787 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8788 IFF_ALLMULTI));
8790 if (netif_running(dev)) {
8791 if (netif_oper_up(dev))
8792 flags |= IFF_RUNNING;
8793 if (netif_carrier_ok(dev))
8794 flags |= IFF_LOWER_UP;
8795 if (netif_dormant(dev))
8796 flags |= IFF_DORMANT;
8799 return flags;
8801 EXPORT_SYMBOL(dev_get_flags);
8803 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8804 struct netlink_ext_ack *extack)
8806 unsigned int old_flags = dev->flags;
8807 int ret;
8809 ASSERT_RTNL();
8812 * Set the flags on our device.
8815 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8816 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8817 IFF_AUTOMEDIA)) |
8818 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8819 IFF_ALLMULTI));
8822 * Load in the correct multicast list now the flags have changed.
8825 if ((old_flags ^ flags) & IFF_MULTICAST)
8826 dev_change_rx_flags(dev, IFF_MULTICAST);
8828 dev_set_rx_mode(dev);
8831 * Have we downed the interface. We handle IFF_UP ourselves
8832 * according to user attempts to set it, rather than blindly
8833 * setting it.
8836 ret = 0;
8837 if ((old_flags ^ flags) & IFF_UP) {
8838 if (old_flags & IFF_UP)
8839 __dev_close(dev);
8840 else
8841 ret = __dev_open(dev, extack);
8844 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8845 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8846 unsigned int old_flags = dev->flags;
8848 dev->gflags ^= IFF_PROMISC;
8850 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8851 if (dev->flags != old_flags)
8852 dev_set_rx_mode(dev);
8855 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8856 * is important. Some (broken) drivers set IFF_PROMISC, when
8857 * IFF_ALLMULTI is requested not asking us and not reporting.
8859 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8860 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8862 dev->gflags ^= IFF_ALLMULTI;
8863 __dev_set_allmulti(dev, inc, false);
8866 return ret;
8869 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8870 unsigned int gchanges, u32 portid,
8871 const struct nlmsghdr *nlh)
8873 unsigned int changes = dev->flags ^ old_flags;
8875 if (gchanges)
8876 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8878 if (changes & IFF_UP) {
8879 if (dev->flags & IFF_UP)
8880 call_netdevice_notifiers(NETDEV_UP, dev);
8881 else
8882 call_netdevice_notifiers(NETDEV_DOWN, dev);
8885 if (dev->flags & IFF_UP &&
8886 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8887 struct netdev_notifier_change_info change_info = {
8888 .info = {
8889 .dev = dev,
8891 .flags_changed = changes,
8894 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8899 * dev_change_flags - change device settings
8900 * @dev: device
8901 * @flags: device state flags
8902 * @extack: netlink extended ack
8904 * Change settings on device based state flags. The flags are
8905 * in the userspace exported format.
8907 int dev_change_flags(struct net_device *dev, unsigned int flags,
8908 struct netlink_ext_ack *extack)
8910 int ret;
8911 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8913 ret = __dev_change_flags(dev, flags, extack);
8914 if (ret < 0)
8915 return ret;
8917 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8918 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8919 return ret;
8921 EXPORT_SYMBOL(dev_change_flags);
8923 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8925 const struct net_device_ops *ops = dev->netdev_ops;
8927 if (ops->ndo_change_mtu)
8928 return ops->ndo_change_mtu(dev, new_mtu);
8930 /* Pairs with all the lockless reads of dev->mtu in the stack */
8931 WRITE_ONCE(dev->mtu, new_mtu);
8932 return 0;
8934 EXPORT_SYMBOL(__dev_set_mtu);
8936 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8937 struct netlink_ext_ack *extack)
8939 /* MTU must be positive, and in range */
8940 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8941 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8942 return -EINVAL;
8945 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8946 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8947 return -EINVAL;
8949 return 0;
8953 * dev_set_mtu_ext - Change maximum transfer unit
8954 * @dev: device
8955 * @new_mtu: new transfer unit
8956 * @extack: netlink extended ack
8958 * Change the maximum transfer size of the network device.
8960 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8961 struct netlink_ext_ack *extack)
8963 int err, orig_mtu;
8965 if (new_mtu == dev->mtu)
8966 return 0;
8968 err = dev_validate_mtu(dev, new_mtu, extack);
8969 if (err)
8970 return err;
8972 if (!netif_device_present(dev))
8973 return -ENODEV;
8975 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8976 err = notifier_to_errno(err);
8977 if (err)
8978 return err;
8980 orig_mtu = dev->mtu;
8981 err = __dev_set_mtu(dev, new_mtu);
8983 if (!err) {
8984 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8985 orig_mtu);
8986 err = notifier_to_errno(err);
8987 if (err) {
8988 /* setting mtu back and notifying everyone again,
8989 * so that they have a chance to revert changes.
8991 __dev_set_mtu(dev, orig_mtu);
8992 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8993 new_mtu);
8996 return err;
8999 int dev_set_mtu(struct net_device *dev, int new_mtu)
9001 struct netlink_ext_ack extack;
9002 int err;
9004 memset(&extack, 0, sizeof(extack));
9005 err = dev_set_mtu_ext(dev, new_mtu, &extack);
9006 if (err && extack._msg)
9007 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9008 return err;
9010 EXPORT_SYMBOL(dev_set_mtu);
9013 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9014 * @dev: device
9015 * @new_len: new tx queue length
9017 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9019 unsigned int orig_len = dev->tx_queue_len;
9020 int res;
9022 if (new_len != (unsigned int)new_len)
9023 return -ERANGE;
9025 if (new_len != orig_len) {
9026 WRITE_ONCE(dev->tx_queue_len, new_len);
9027 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9028 res = notifier_to_errno(res);
9029 if (res)
9030 goto err_rollback;
9031 res = dev_qdisc_change_tx_queue_len(dev);
9032 if (res)
9033 goto err_rollback;
9036 return 0;
9038 err_rollback:
9039 netdev_err(dev, "refused to change device tx_queue_len\n");
9040 WRITE_ONCE(dev->tx_queue_len, orig_len);
9041 return res;
9045 * dev_set_group - Change group this device belongs to
9046 * @dev: device
9047 * @new_group: group this device should belong to
9049 void dev_set_group(struct net_device *dev, int new_group)
9051 dev->group = new_group;
9055 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9056 * @dev: device
9057 * @addr: new address
9058 * @extack: netlink extended ack
9060 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9061 struct netlink_ext_ack *extack)
9063 struct netdev_notifier_pre_changeaddr_info info = {
9064 .info.dev = dev,
9065 .info.extack = extack,
9066 .dev_addr = addr,
9068 int rc;
9070 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9071 return notifier_to_errno(rc);
9073 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9076 * dev_set_mac_address - Change Media Access Control Address
9077 * @dev: device
9078 * @sa: new address
9079 * @extack: netlink extended ack
9081 * Change the hardware (MAC) address of the device
9083 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9084 struct netlink_ext_ack *extack)
9086 const struct net_device_ops *ops = dev->netdev_ops;
9087 int err;
9089 if (!ops->ndo_set_mac_address)
9090 return -EOPNOTSUPP;
9091 if (sa->sa_family != dev->type)
9092 return -EINVAL;
9093 if (!netif_device_present(dev))
9094 return -ENODEV;
9095 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9096 if (err)
9097 return err;
9098 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9099 err = ops->ndo_set_mac_address(dev, sa);
9100 if (err)
9101 return err;
9103 dev->addr_assign_type = NET_ADDR_SET;
9104 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9105 add_device_randomness(dev->dev_addr, dev->addr_len);
9106 return 0;
9108 EXPORT_SYMBOL(dev_set_mac_address);
9110 DECLARE_RWSEM(dev_addr_sem);
9112 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9113 struct netlink_ext_ack *extack)
9115 int ret;
9117 down_write(&dev_addr_sem);
9118 ret = dev_set_mac_address(dev, sa, extack);
9119 up_write(&dev_addr_sem);
9120 return ret;
9122 EXPORT_SYMBOL(dev_set_mac_address_user);
9124 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9126 size_t size = sizeof(sa->sa_data_min);
9127 struct net_device *dev;
9128 int ret = 0;
9130 down_read(&dev_addr_sem);
9131 rcu_read_lock();
9133 dev = dev_get_by_name_rcu(net, dev_name);
9134 if (!dev) {
9135 ret = -ENODEV;
9136 goto unlock;
9138 if (!dev->addr_len)
9139 memset(sa->sa_data, 0, size);
9140 else
9141 memcpy(sa->sa_data, dev->dev_addr,
9142 min_t(size_t, size, dev->addr_len));
9143 sa->sa_family = dev->type;
9145 unlock:
9146 rcu_read_unlock();
9147 up_read(&dev_addr_sem);
9148 return ret;
9150 EXPORT_SYMBOL(dev_get_mac_address);
9153 * dev_change_carrier - Change device carrier
9154 * @dev: device
9155 * @new_carrier: new value
9157 * Change device carrier
9159 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9161 const struct net_device_ops *ops = dev->netdev_ops;
9163 if (!ops->ndo_change_carrier)
9164 return -EOPNOTSUPP;
9165 if (!netif_device_present(dev))
9166 return -ENODEV;
9167 return ops->ndo_change_carrier(dev, new_carrier);
9171 * dev_get_phys_port_id - Get device physical port ID
9172 * @dev: device
9173 * @ppid: port ID
9175 * Get device physical port ID
9177 int dev_get_phys_port_id(struct net_device *dev,
9178 struct netdev_phys_item_id *ppid)
9180 const struct net_device_ops *ops = dev->netdev_ops;
9182 if (!ops->ndo_get_phys_port_id)
9183 return -EOPNOTSUPP;
9184 return ops->ndo_get_phys_port_id(dev, ppid);
9188 * dev_get_phys_port_name - Get device physical port name
9189 * @dev: device
9190 * @name: port name
9191 * @len: limit of bytes to copy to name
9193 * Get device physical port name
9195 int dev_get_phys_port_name(struct net_device *dev,
9196 char *name, size_t len)
9198 const struct net_device_ops *ops = dev->netdev_ops;
9199 int err;
9201 if (ops->ndo_get_phys_port_name) {
9202 err = ops->ndo_get_phys_port_name(dev, name, len);
9203 if (err != -EOPNOTSUPP)
9204 return err;
9206 return devlink_compat_phys_port_name_get(dev, name, len);
9210 * dev_get_port_parent_id - Get the device's port parent identifier
9211 * @dev: network device
9212 * @ppid: pointer to a storage for the port's parent identifier
9213 * @recurse: allow/disallow recursion to lower devices
9215 * Get the devices's port parent identifier
9217 int dev_get_port_parent_id(struct net_device *dev,
9218 struct netdev_phys_item_id *ppid,
9219 bool recurse)
9221 const struct net_device_ops *ops = dev->netdev_ops;
9222 struct netdev_phys_item_id first = { };
9223 struct net_device *lower_dev;
9224 struct list_head *iter;
9225 int err;
9227 if (ops->ndo_get_port_parent_id) {
9228 err = ops->ndo_get_port_parent_id(dev, ppid);
9229 if (err != -EOPNOTSUPP)
9230 return err;
9233 err = devlink_compat_switch_id_get(dev, ppid);
9234 if (!recurse || err != -EOPNOTSUPP)
9235 return err;
9237 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9238 err = dev_get_port_parent_id(lower_dev, ppid, true);
9239 if (err)
9240 break;
9241 if (!first.id_len)
9242 first = *ppid;
9243 else if (memcmp(&first, ppid, sizeof(*ppid)))
9244 return -EOPNOTSUPP;
9247 return err;
9249 EXPORT_SYMBOL(dev_get_port_parent_id);
9252 * netdev_port_same_parent_id - Indicate if two network devices have
9253 * the same port parent identifier
9254 * @a: first network device
9255 * @b: second network device
9257 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9259 struct netdev_phys_item_id a_id = { };
9260 struct netdev_phys_item_id b_id = { };
9262 if (dev_get_port_parent_id(a, &a_id, true) ||
9263 dev_get_port_parent_id(b, &b_id, true))
9264 return false;
9266 return netdev_phys_item_id_same(&a_id, &b_id);
9268 EXPORT_SYMBOL(netdev_port_same_parent_id);
9271 * dev_change_proto_down - set carrier according to proto_down.
9273 * @dev: device
9274 * @proto_down: new value
9276 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9278 if (!dev->change_proto_down)
9279 return -EOPNOTSUPP;
9280 if (!netif_device_present(dev))
9281 return -ENODEV;
9282 if (proto_down)
9283 netif_carrier_off(dev);
9284 else
9285 netif_carrier_on(dev);
9286 WRITE_ONCE(dev->proto_down, proto_down);
9287 return 0;
9291 * dev_change_proto_down_reason - proto down reason
9293 * @dev: device
9294 * @mask: proto down mask
9295 * @value: proto down value
9297 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9298 u32 value)
9300 u32 proto_down_reason;
9301 int b;
9303 if (!mask) {
9304 proto_down_reason = value;
9305 } else {
9306 proto_down_reason = dev->proto_down_reason;
9307 for_each_set_bit(b, &mask, 32) {
9308 if (value & (1 << b))
9309 proto_down_reason |= BIT(b);
9310 else
9311 proto_down_reason &= ~BIT(b);
9314 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9317 struct bpf_xdp_link {
9318 struct bpf_link link;
9319 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9320 int flags;
9323 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9325 if (flags & XDP_FLAGS_HW_MODE)
9326 return XDP_MODE_HW;
9327 if (flags & XDP_FLAGS_DRV_MODE)
9328 return XDP_MODE_DRV;
9329 if (flags & XDP_FLAGS_SKB_MODE)
9330 return XDP_MODE_SKB;
9331 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9334 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9336 switch (mode) {
9337 case XDP_MODE_SKB:
9338 return generic_xdp_install;
9339 case XDP_MODE_DRV:
9340 case XDP_MODE_HW:
9341 return dev->netdev_ops->ndo_bpf;
9342 default:
9343 return NULL;
9347 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9348 enum bpf_xdp_mode mode)
9350 return dev->xdp_state[mode].link;
9353 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9354 enum bpf_xdp_mode mode)
9356 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9358 if (link)
9359 return link->link.prog;
9360 return dev->xdp_state[mode].prog;
9363 u8 dev_xdp_prog_count(struct net_device *dev)
9365 u8 count = 0;
9366 int i;
9368 for (i = 0; i < __MAX_XDP_MODE; i++)
9369 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9370 count++;
9371 return count;
9373 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9375 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9377 if (!dev->netdev_ops->ndo_bpf)
9378 return -EOPNOTSUPP;
9380 if (dev_get_min_mp_channel_count(dev)) {
9381 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9382 return -EBUSY;
9385 return dev->netdev_ops->ndo_bpf(dev, bpf);
9387 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9389 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9391 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9393 return prog ? prog->aux->id : 0;
9396 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9397 struct bpf_xdp_link *link)
9399 dev->xdp_state[mode].link = link;
9400 dev->xdp_state[mode].prog = NULL;
9403 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9404 struct bpf_prog *prog)
9406 dev->xdp_state[mode].link = NULL;
9407 dev->xdp_state[mode].prog = prog;
9410 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9411 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9412 u32 flags, struct bpf_prog *prog)
9414 struct netdev_bpf xdp;
9415 int err;
9417 if (dev_get_min_mp_channel_count(dev)) {
9418 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9419 return -EBUSY;
9422 memset(&xdp, 0, sizeof(xdp));
9423 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9424 xdp.extack = extack;
9425 xdp.flags = flags;
9426 xdp.prog = prog;
9428 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9429 * "moved" into driver), so they don't increment it on their own, but
9430 * they do decrement refcnt when program is detached or replaced.
9431 * Given net_device also owns link/prog, we need to bump refcnt here
9432 * to prevent drivers from underflowing it.
9434 if (prog)
9435 bpf_prog_inc(prog);
9436 err = bpf_op(dev, &xdp);
9437 if (err) {
9438 if (prog)
9439 bpf_prog_put(prog);
9440 return err;
9443 if (mode != XDP_MODE_HW)
9444 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9446 return 0;
9449 static void dev_xdp_uninstall(struct net_device *dev)
9451 struct bpf_xdp_link *link;
9452 struct bpf_prog *prog;
9453 enum bpf_xdp_mode mode;
9454 bpf_op_t bpf_op;
9456 ASSERT_RTNL();
9458 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9459 prog = dev_xdp_prog(dev, mode);
9460 if (!prog)
9461 continue;
9463 bpf_op = dev_xdp_bpf_op(dev, mode);
9464 if (!bpf_op)
9465 continue;
9467 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9469 /* auto-detach link from net device */
9470 link = dev_xdp_link(dev, mode);
9471 if (link)
9472 link->dev = NULL;
9473 else
9474 bpf_prog_put(prog);
9476 dev_xdp_set_link(dev, mode, NULL);
9480 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9481 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9482 struct bpf_prog *old_prog, u32 flags)
9484 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9485 struct bpf_prog *cur_prog;
9486 struct net_device *upper;
9487 struct list_head *iter;
9488 enum bpf_xdp_mode mode;
9489 bpf_op_t bpf_op;
9490 int err;
9492 ASSERT_RTNL();
9494 /* either link or prog attachment, never both */
9495 if (link && (new_prog || old_prog))
9496 return -EINVAL;
9497 /* link supports only XDP mode flags */
9498 if (link && (flags & ~XDP_FLAGS_MODES)) {
9499 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9500 return -EINVAL;
9502 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9503 if (num_modes > 1) {
9504 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9505 return -EINVAL;
9507 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9508 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9509 NL_SET_ERR_MSG(extack,
9510 "More than one program loaded, unset mode is ambiguous");
9511 return -EINVAL;
9513 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9514 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9515 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9516 return -EINVAL;
9519 mode = dev_xdp_mode(dev, flags);
9520 /* can't replace attached link */
9521 if (dev_xdp_link(dev, mode)) {
9522 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9523 return -EBUSY;
9526 /* don't allow if an upper device already has a program */
9527 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9528 if (dev_xdp_prog_count(upper) > 0) {
9529 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9530 return -EEXIST;
9534 cur_prog = dev_xdp_prog(dev, mode);
9535 /* can't replace attached prog with link */
9536 if (link && cur_prog) {
9537 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9538 return -EBUSY;
9540 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9541 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9542 return -EEXIST;
9545 /* put effective new program into new_prog */
9546 if (link)
9547 new_prog = link->link.prog;
9549 if (new_prog) {
9550 bool offload = mode == XDP_MODE_HW;
9551 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9552 ? XDP_MODE_DRV : XDP_MODE_SKB;
9554 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9555 NL_SET_ERR_MSG(extack, "XDP program already attached");
9556 return -EBUSY;
9558 if (!offload && dev_xdp_prog(dev, other_mode)) {
9559 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9560 return -EEXIST;
9562 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9563 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9564 return -EINVAL;
9566 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9567 NL_SET_ERR_MSG(extack, "Program bound to different device");
9568 return -EINVAL;
9570 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9571 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9572 return -EINVAL;
9574 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9575 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9576 return -EINVAL;
9580 /* don't call drivers if the effective program didn't change */
9581 if (new_prog != cur_prog) {
9582 bpf_op = dev_xdp_bpf_op(dev, mode);
9583 if (!bpf_op) {
9584 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9585 return -EOPNOTSUPP;
9588 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9589 if (err)
9590 return err;
9593 if (link)
9594 dev_xdp_set_link(dev, mode, link);
9595 else
9596 dev_xdp_set_prog(dev, mode, new_prog);
9597 if (cur_prog)
9598 bpf_prog_put(cur_prog);
9600 return 0;
9603 static int dev_xdp_attach_link(struct net_device *dev,
9604 struct netlink_ext_ack *extack,
9605 struct bpf_xdp_link *link)
9607 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9610 static int dev_xdp_detach_link(struct net_device *dev,
9611 struct netlink_ext_ack *extack,
9612 struct bpf_xdp_link *link)
9614 enum bpf_xdp_mode mode;
9615 bpf_op_t bpf_op;
9617 ASSERT_RTNL();
9619 mode = dev_xdp_mode(dev, link->flags);
9620 if (dev_xdp_link(dev, mode) != link)
9621 return -EINVAL;
9623 bpf_op = dev_xdp_bpf_op(dev, mode);
9624 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9625 dev_xdp_set_link(dev, mode, NULL);
9626 return 0;
9629 static void bpf_xdp_link_release(struct bpf_link *link)
9631 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9633 rtnl_lock();
9635 /* if racing with net_device's tear down, xdp_link->dev might be
9636 * already NULL, in which case link was already auto-detached
9638 if (xdp_link->dev) {
9639 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9640 xdp_link->dev = NULL;
9643 rtnl_unlock();
9646 static int bpf_xdp_link_detach(struct bpf_link *link)
9648 bpf_xdp_link_release(link);
9649 return 0;
9652 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9654 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9656 kfree(xdp_link);
9659 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9660 struct seq_file *seq)
9662 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9663 u32 ifindex = 0;
9665 rtnl_lock();
9666 if (xdp_link->dev)
9667 ifindex = xdp_link->dev->ifindex;
9668 rtnl_unlock();
9670 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9673 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9674 struct bpf_link_info *info)
9676 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9677 u32 ifindex = 0;
9679 rtnl_lock();
9680 if (xdp_link->dev)
9681 ifindex = xdp_link->dev->ifindex;
9682 rtnl_unlock();
9684 info->xdp.ifindex = ifindex;
9685 return 0;
9688 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9689 struct bpf_prog *old_prog)
9691 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9692 enum bpf_xdp_mode mode;
9693 bpf_op_t bpf_op;
9694 int err = 0;
9696 rtnl_lock();
9698 /* link might have been auto-released already, so fail */
9699 if (!xdp_link->dev) {
9700 err = -ENOLINK;
9701 goto out_unlock;
9704 if (old_prog && link->prog != old_prog) {
9705 err = -EPERM;
9706 goto out_unlock;
9708 old_prog = link->prog;
9709 if (old_prog->type != new_prog->type ||
9710 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9711 err = -EINVAL;
9712 goto out_unlock;
9715 if (old_prog == new_prog) {
9716 /* no-op, don't disturb drivers */
9717 bpf_prog_put(new_prog);
9718 goto out_unlock;
9721 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9722 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9723 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9724 xdp_link->flags, new_prog);
9725 if (err)
9726 goto out_unlock;
9728 old_prog = xchg(&link->prog, new_prog);
9729 bpf_prog_put(old_prog);
9731 out_unlock:
9732 rtnl_unlock();
9733 return err;
9736 static const struct bpf_link_ops bpf_xdp_link_lops = {
9737 .release = bpf_xdp_link_release,
9738 .dealloc = bpf_xdp_link_dealloc,
9739 .detach = bpf_xdp_link_detach,
9740 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9741 .fill_link_info = bpf_xdp_link_fill_link_info,
9742 .update_prog = bpf_xdp_link_update,
9745 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9747 struct net *net = current->nsproxy->net_ns;
9748 struct bpf_link_primer link_primer;
9749 struct netlink_ext_ack extack = {};
9750 struct bpf_xdp_link *link;
9751 struct net_device *dev;
9752 int err, fd;
9754 rtnl_lock();
9755 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9756 if (!dev) {
9757 rtnl_unlock();
9758 return -EINVAL;
9761 link = kzalloc(sizeof(*link), GFP_USER);
9762 if (!link) {
9763 err = -ENOMEM;
9764 goto unlock;
9767 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9768 link->dev = dev;
9769 link->flags = attr->link_create.flags;
9771 err = bpf_link_prime(&link->link, &link_primer);
9772 if (err) {
9773 kfree(link);
9774 goto unlock;
9777 err = dev_xdp_attach_link(dev, &extack, link);
9778 rtnl_unlock();
9780 if (err) {
9781 link->dev = NULL;
9782 bpf_link_cleanup(&link_primer);
9783 trace_bpf_xdp_link_attach_failed(extack._msg);
9784 goto out_put_dev;
9787 fd = bpf_link_settle(&link_primer);
9788 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9789 dev_put(dev);
9790 return fd;
9792 unlock:
9793 rtnl_unlock();
9795 out_put_dev:
9796 dev_put(dev);
9797 return err;
9801 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9802 * @dev: device
9803 * @extack: netlink extended ack
9804 * @fd: new program fd or negative value to clear
9805 * @expected_fd: old program fd that userspace expects to replace or clear
9806 * @flags: xdp-related flags
9808 * Set or clear a bpf program for a device
9810 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9811 int fd, int expected_fd, u32 flags)
9813 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9814 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9815 int err;
9817 ASSERT_RTNL();
9819 if (fd >= 0) {
9820 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9821 mode != XDP_MODE_SKB);
9822 if (IS_ERR(new_prog))
9823 return PTR_ERR(new_prog);
9826 if (expected_fd >= 0) {
9827 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9828 mode != XDP_MODE_SKB);
9829 if (IS_ERR(old_prog)) {
9830 err = PTR_ERR(old_prog);
9831 old_prog = NULL;
9832 goto err_out;
9836 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9838 err_out:
9839 if (err && new_prog)
9840 bpf_prog_put(new_prog);
9841 if (old_prog)
9842 bpf_prog_put(old_prog);
9843 return err;
9846 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9848 int i;
9850 ASSERT_RTNL();
9852 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9853 if (dev->_rx[i].mp_params.mp_priv)
9854 /* The channel count is the idx plus 1. */
9855 return i + 1;
9857 return 0;
9861 * dev_index_reserve() - allocate an ifindex in a namespace
9862 * @net: the applicable net namespace
9863 * @ifindex: requested ifindex, pass %0 to get one allocated
9865 * Allocate a ifindex for a new device. Caller must either use the ifindex
9866 * to store the device (via list_netdevice()) or call dev_index_release()
9867 * to give the index up.
9869 * Return: a suitable unique value for a new device interface number or -errno.
9871 static int dev_index_reserve(struct net *net, u32 ifindex)
9873 int err;
9875 if (ifindex > INT_MAX) {
9876 DEBUG_NET_WARN_ON_ONCE(1);
9877 return -EINVAL;
9880 if (!ifindex)
9881 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9882 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9883 else
9884 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9885 if (err < 0)
9886 return err;
9888 return ifindex;
9891 static void dev_index_release(struct net *net, int ifindex)
9893 /* Expect only unused indexes, unlist_netdevice() removes the used */
9894 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9897 /* Delayed registration/unregisteration */
9898 LIST_HEAD(net_todo_list);
9899 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9900 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9902 static void net_set_todo(struct net_device *dev)
9904 list_add_tail(&dev->todo_list, &net_todo_list);
9907 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9908 struct net_device *upper, netdev_features_t features)
9910 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9911 netdev_features_t feature;
9912 int feature_bit;
9914 for_each_netdev_feature(upper_disables, feature_bit) {
9915 feature = __NETIF_F_BIT(feature_bit);
9916 if (!(upper->wanted_features & feature)
9917 && (features & feature)) {
9918 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9919 &feature, upper->name);
9920 features &= ~feature;
9924 return features;
9927 static void netdev_sync_lower_features(struct net_device *upper,
9928 struct net_device *lower, netdev_features_t features)
9930 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9931 netdev_features_t feature;
9932 int feature_bit;
9934 for_each_netdev_feature(upper_disables, feature_bit) {
9935 feature = __NETIF_F_BIT(feature_bit);
9936 if (!(features & feature) && (lower->features & feature)) {
9937 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9938 &feature, lower->name);
9939 lower->wanted_features &= ~feature;
9940 __netdev_update_features(lower);
9942 if (unlikely(lower->features & feature))
9943 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9944 &feature, lower->name);
9945 else
9946 netdev_features_change(lower);
9951 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9953 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9954 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9955 bool hw_csum = features & NETIF_F_HW_CSUM;
9957 return ip_csum || hw_csum;
9960 static netdev_features_t netdev_fix_features(struct net_device *dev,
9961 netdev_features_t features)
9963 /* Fix illegal checksum combinations */
9964 if ((features & NETIF_F_HW_CSUM) &&
9965 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9966 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9967 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9970 /* TSO requires that SG is present as well. */
9971 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9972 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9973 features &= ~NETIF_F_ALL_TSO;
9976 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9977 !(features & NETIF_F_IP_CSUM)) {
9978 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9979 features &= ~NETIF_F_TSO;
9980 features &= ~NETIF_F_TSO_ECN;
9983 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9984 !(features & NETIF_F_IPV6_CSUM)) {
9985 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9986 features &= ~NETIF_F_TSO6;
9989 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9990 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9991 features &= ~NETIF_F_TSO_MANGLEID;
9993 /* TSO ECN requires that TSO is present as well. */
9994 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9995 features &= ~NETIF_F_TSO_ECN;
9997 /* Software GSO depends on SG. */
9998 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9999 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10000 features &= ~NETIF_F_GSO;
10003 /* GSO partial features require GSO partial be set */
10004 if ((features & dev->gso_partial_features) &&
10005 !(features & NETIF_F_GSO_PARTIAL)) {
10006 netdev_dbg(dev,
10007 "Dropping partially supported GSO features since no GSO partial.\n");
10008 features &= ~dev->gso_partial_features;
10011 if (!(features & NETIF_F_RXCSUM)) {
10012 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10013 * successfully merged by hardware must also have the
10014 * checksum verified by hardware. If the user does not
10015 * want to enable RXCSUM, logically, we should disable GRO_HW.
10017 if (features & NETIF_F_GRO_HW) {
10018 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10019 features &= ~NETIF_F_GRO_HW;
10023 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10024 if (features & NETIF_F_RXFCS) {
10025 if (features & NETIF_F_LRO) {
10026 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10027 features &= ~NETIF_F_LRO;
10030 if (features & NETIF_F_GRO_HW) {
10031 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10032 features &= ~NETIF_F_GRO_HW;
10036 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10037 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10038 features &= ~NETIF_F_LRO;
10041 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10042 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10043 features &= ~NETIF_F_HW_TLS_TX;
10046 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10047 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10048 features &= ~NETIF_F_HW_TLS_RX;
10051 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10052 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10053 features &= ~NETIF_F_GSO_UDP_L4;
10056 return features;
10059 int __netdev_update_features(struct net_device *dev)
10061 struct net_device *upper, *lower;
10062 netdev_features_t features;
10063 struct list_head *iter;
10064 int err = -1;
10066 ASSERT_RTNL();
10068 features = netdev_get_wanted_features(dev);
10070 if (dev->netdev_ops->ndo_fix_features)
10071 features = dev->netdev_ops->ndo_fix_features(dev, features);
10073 /* driver might be less strict about feature dependencies */
10074 features = netdev_fix_features(dev, features);
10076 /* some features can't be enabled if they're off on an upper device */
10077 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10078 features = netdev_sync_upper_features(dev, upper, features);
10080 if (dev->features == features)
10081 goto sync_lower;
10083 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10084 &dev->features, &features);
10086 if (dev->netdev_ops->ndo_set_features)
10087 err = dev->netdev_ops->ndo_set_features(dev, features);
10088 else
10089 err = 0;
10091 if (unlikely(err < 0)) {
10092 netdev_err(dev,
10093 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10094 err, &features, &dev->features);
10095 /* return non-0 since some features might have changed and
10096 * it's better to fire a spurious notification than miss it
10098 return -1;
10101 sync_lower:
10102 /* some features must be disabled on lower devices when disabled
10103 * on an upper device (think: bonding master or bridge)
10105 netdev_for_each_lower_dev(dev, lower, iter)
10106 netdev_sync_lower_features(dev, lower, features);
10108 if (!err) {
10109 netdev_features_t diff = features ^ dev->features;
10111 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10112 /* udp_tunnel_{get,drop}_rx_info both need
10113 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10114 * device, or they won't do anything.
10115 * Thus we need to update dev->features
10116 * *before* calling udp_tunnel_get_rx_info,
10117 * but *after* calling udp_tunnel_drop_rx_info.
10119 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10120 dev->features = features;
10121 udp_tunnel_get_rx_info(dev);
10122 } else {
10123 udp_tunnel_drop_rx_info(dev);
10127 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10128 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10129 dev->features = features;
10130 err |= vlan_get_rx_ctag_filter_info(dev);
10131 } else {
10132 vlan_drop_rx_ctag_filter_info(dev);
10136 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10137 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10138 dev->features = features;
10139 err |= vlan_get_rx_stag_filter_info(dev);
10140 } else {
10141 vlan_drop_rx_stag_filter_info(dev);
10145 dev->features = features;
10148 return err < 0 ? 0 : 1;
10152 * netdev_update_features - recalculate device features
10153 * @dev: the device to check
10155 * Recalculate dev->features set and send notifications if it
10156 * has changed. Should be called after driver or hardware dependent
10157 * conditions might have changed that influence the features.
10159 void netdev_update_features(struct net_device *dev)
10161 if (__netdev_update_features(dev))
10162 netdev_features_change(dev);
10164 EXPORT_SYMBOL(netdev_update_features);
10167 * netdev_change_features - recalculate device features
10168 * @dev: the device to check
10170 * Recalculate dev->features set and send notifications even
10171 * if they have not changed. Should be called instead of
10172 * netdev_update_features() if also dev->vlan_features might
10173 * have changed to allow the changes to be propagated to stacked
10174 * VLAN devices.
10176 void netdev_change_features(struct net_device *dev)
10178 __netdev_update_features(dev);
10179 netdev_features_change(dev);
10181 EXPORT_SYMBOL(netdev_change_features);
10184 * netif_stacked_transfer_operstate - transfer operstate
10185 * @rootdev: the root or lower level device to transfer state from
10186 * @dev: the device to transfer operstate to
10188 * Transfer operational state from root to device. This is normally
10189 * called when a stacking relationship exists between the root
10190 * device and the device(a leaf device).
10192 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10193 struct net_device *dev)
10195 if (rootdev->operstate == IF_OPER_DORMANT)
10196 netif_dormant_on(dev);
10197 else
10198 netif_dormant_off(dev);
10200 if (rootdev->operstate == IF_OPER_TESTING)
10201 netif_testing_on(dev);
10202 else
10203 netif_testing_off(dev);
10205 if (netif_carrier_ok(rootdev))
10206 netif_carrier_on(dev);
10207 else
10208 netif_carrier_off(dev);
10210 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10212 static int netif_alloc_rx_queues(struct net_device *dev)
10214 unsigned int i, count = dev->num_rx_queues;
10215 struct netdev_rx_queue *rx;
10216 size_t sz = count * sizeof(*rx);
10217 int err = 0;
10219 BUG_ON(count < 1);
10221 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10222 if (!rx)
10223 return -ENOMEM;
10225 dev->_rx = rx;
10227 for (i = 0; i < count; i++) {
10228 rx[i].dev = dev;
10230 /* XDP RX-queue setup */
10231 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10232 if (err < 0)
10233 goto err_rxq_info;
10235 return 0;
10237 err_rxq_info:
10238 /* Rollback successful reg's and free other resources */
10239 while (i--)
10240 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10241 kvfree(dev->_rx);
10242 dev->_rx = NULL;
10243 return err;
10246 static void netif_free_rx_queues(struct net_device *dev)
10248 unsigned int i, count = dev->num_rx_queues;
10250 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10251 if (!dev->_rx)
10252 return;
10254 for (i = 0; i < count; i++)
10255 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10257 kvfree(dev->_rx);
10260 static void netdev_init_one_queue(struct net_device *dev,
10261 struct netdev_queue *queue, void *_unused)
10263 /* Initialize queue lock */
10264 spin_lock_init(&queue->_xmit_lock);
10265 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10266 queue->xmit_lock_owner = -1;
10267 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10268 queue->dev = dev;
10269 #ifdef CONFIG_BQL
10270 dql_init(&queue->dql, HZ);
10271 #endif
10274 static void netif_free_tx_queues(struct net_device *dev)
10276 kvfree(dev->_tx);
10279 static int netif_alloc_netdev_queues(struct net_device *dev)
10281 unsigned int count = dev->num_tx_queues;
10282 struct netdev_queue *tx;
10283 size_t sz = count * sizeof(*tx);
10285 if (count < 1 || count > 0xffff)
10286 return -EINVAL;
10288 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10289 if (!tx)
10290 return -ENOMEM;
10292 dev->_tx = tx;
10294 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10295 spin_lock_init(&dev->tx_global_lock);
10297 return 0;
10300 void netif_tx_stop_all_queues(struct net_device *dev)
10302 unsigned int i;
10304 for (i = 0; i < dev->num_tx_queues; i++) {
10305 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10307 netif_tx_stop_queue(txq);
10310 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10312 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10314 void __percpu *v;
10316 /* Drivers implementing ndo_get_peer_dev must support tstat
10317 * accounting, so that skb_do_redirect() can bump the dev's
10318 * RX stats upon network namespace switch.
10320 if (dev->netdev_ops->ndo_get_peer_dev &&
10321 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10322 return -EOPNOTSUPP;
10324 switch (dev->pcpu_stat_type) {
10325 case NETDEV_PCPU_STAT_NONE:
10326 return 0;
10327 case NETDEV_PCPU_STAT_LSTATS:
10328 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10329 break;
10330 case NETDEV_PCPU_STAT_TSTATS:
10331 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10332 break;
10333 case NETDEV_PCPU_STAT_DSTATS:
10334 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10335 break;
10336 default:
10337 return -EINVAL;
10340 return v ? 0 : -ENOMEM;
10343 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10345 switch (dev->pcpu_stat_type) {
10346 case NETDEV_PCPU_STAT_NONE:
10347 return;
10348 case NETDEV_PCPU_STAT_LSTATS:
10349 free_percpu(dev->lstats);
10350 break;
10351 case NETDEV_PCPU_STAT_TSTATS:
10352 free_percpu(dev->tstats);
10353 break;
10354 case NETDEV_PCPU_STAT_DSTATS:
10355 free_percpu(dev->dstats);
10356 break;
10360 static void netdev_free_phy_link_topology(struct net_device *dev)
10362 struct phy_link_topology *topo = dev->link_topo;
10364 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10365 xa_destroy(&topo->phys);
10366 kfree(topo);
10367 dev->link_topo = NULL;
10372 * register_netdevice() - register a network device
10373 * @dev: device to register
10375 * Take a prepared network device structure and make it externally accessible.
10376 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10377 * Callers must hold the rtnl lock - you may want register_netdev()
10378 * instead of this.
10380 int register_netdevice(struct net_device *dev)
10382 int ret;
10383 struct net *net = dev_net(dev);
10385 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10386 NETDEV_FEATURE_COUNT);
10387 BUG_ON(dev_boot_phase);
10388 ASSERT_RTNL();
10390 might_sleep();
10392 /* When net_device's are persistent, this will be fatal. */
10393 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10394 BUG_ON(!net);
10396 ret = ethtool_check_ops(dev->ethtool_ops);
10397 if (ret)
10398 return ret;
10400 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10401 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10402 mutex_init(&dev->ethtool->rss_lock);
10404 spin_lock_init(&dev->addr_list_lock);
10405 netdev_set_addr_lockdep_class(dev);
10407 ret = dev_get_valid_name(net, dev, dev->name);
10408 if (ret < 0)
10409 goto out;
10411 ret = -ENOMEM;
10412 dev->name_node = netdev_name_node_head_alloc(dev);
10413 if (!dev->name_node)
10414 goto out;
10416 /* Init, if this function is available */
10417 if (dev->netdev_ops->ndo_init) {
10418 ret = dev->netdev_ops->ndo_init(dev);
10419 if (ret) {
10420 if (ret > 0)
10421 ret = -EIO;
10422 goto err_free_name;
10426 if (((dev->hw_features | dev->features) &
10427 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10428 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10429 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10430 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10431 ret = -EINVAL;
10432 goto err_uninit;
10435 ret = netdev_do_alloc_pcpu_stats(dev);
10436 if (ret)
10437 goto err_uninit;
10439 ret = dev_index_reserve(net, dev->ifindex);
10440 if (ret < 0)
10441 goto err_free_pcpu;
10442 dev->ifindex = ret;
10444 /* Transfer changeable features to wanted_features and enable
10445 * software offloads (GSO and GRO).
10447 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10448 dev->features |= NETIF_F_SOFT_FEATURES;
10450 if (dev->udp_tunnel_nic_info) {
10451 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10452 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10455 dev->wanted_features = dev->features & dev->hw_features;
10457 if (!(dev->flags & IFF_LOOPBACK))
10458 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10460 /* If IPv4 TCP segmentation offload is supported we should also
10461 * allow the device to enable segmenting the frame with the option
10462 * of ignoring a static IP ID value. This doesn't enable the
10463 * feature itself but allows the user to enable it later.
10465 if (dev->hw_features & NETIF_F_TSO)
10466 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10467 if (dev->vlan_features & NETIF_F_TSO)
10468 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10469 if (dev->mpls_features & NETIF_F_TSO)
10470 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10471 if (dev->hw_enc_features & NETIF_F_TSO)
10472 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10474 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10476 dev->vlan_features |= NETIF_F_HIGHDMA;
10478 /* Make NETIF_F_SG inheritable to tunnel devices.
10480 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10482 /* Make NETIF_F_SG inheritable to MPLS.
10484 dev->mpls_features |= NETIF_F_SG;
10486 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10487 ret = notifier_to_errno(ret);
10488 if (ret)
10489 goto err_ifindex_release;
10491 ret = netdev_register_kobject(dev);
10493 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10495 if (ret)
10496 goto err_uninit_notify;
10498 __netdev_update_features(dev);
10501 * Default initial state at registry is that the
10502 * device is present.
10505 set_bit(__LINK_STATE_PRESENT, &dev->state);
10507 linkwatch_init_dev(dev);
10509 dev_init_scheduler(dev);
10511 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10512 list_netdevice(dev);
10514 add_device_randomness(dev->dev_addr, dev->addr_len);
10516 /* If the device has permanent device address, driver should
10517 * set dev_addr and also addr_assign_type should be set to
10518 * NET_ADDR_PERM (default value).
10520 if (dev->addr_assign_type == NET_ADDR_PERM)
10521 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10523 /* Notify protocols, that a new device appeared. */
10524 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10525 ret = notifier_to_errno(ret);
10526 if (ret) {
10527 /* Expect explicit free_netdev() on failure */
10528 dev->needs_free_netdev = false;
10529 unregister_netdevice_queue(dev, NULL);
10530 goto out;
10533 * Prevent userspace races by waiting until the network
10534 * device is fully setup before sending notifications.
10536 if (!dev->rtnl_link_ops ||
10537 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10538 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10540 out:
10541 return ret;
10543 err_uninit_notify:
10544 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10545 err_ifindex_release:
10546 dev_index_release(net, dev->ifindex);
10547 err_free_pcpu:
10548 netdev_do_free_pcpu_stats(dev);
10549 err_uninit:
10550 if (dev->netdev_ops->ndo_uninit)
10551 dev->netdev_ops->ndo_uninit(dev);
10552 if (dev->priv_destructor)
10553 dev->priv_destructor(dev);
10554 err_free_name:
10555 netdev_name_node_free(dev->name_node);
10556 goto out;
10558 EXPORT_SYMBOL(register_netdevice);
10560 /* Initialize the core of a dummy net device.
10561 * This is useful if you are calling this function after alloc_netdev(),
10562 * since it does not memset the net_device fields.
10564 static void init_dummy_netdev_core(struct net_device *dev)
10566 /* make sure we BUG if trying to hit standard
10567 * register/unregister code path
10569 dev->reg_state = NETREG_DUMMY;
10571 /* NAPI wants this */
10572 INIT_LIST_HEAD(&dev->napi_list);
10574 /* a dummy interface is started by default */
10575 set_bit(__LINK_STATE_PRESENT, &dev->state);
10576 set_bit(__LINK_STATE_START, &dev->state);
10578 /* napi_busy_loop stats accounting wants this */
10579 dev_net_set(dev, &init_net);
10581 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10582 * because users of this 'device' dont need to change
10583 * its refcount.
10588 * init_dummy_netdev - init a dummy network device for NAPI
10589 * @dev: device to init
10591 * This takes a network device structure and initializes the minimum
10592 * amount of fields so it can be used to schedule NAPI polls without
10593 * registering a full blown interface. This is to be used by drivers
10594 * that need to tie several hardware interfaces to a single NAPI
10595 * poll scheduler due to HW limitations.
10597 void init_dummy_netdev(struct net_device *dev)
10599 /* Clear everything. Note we don't initialize spinlocks
10600 * as they aren't supposed to be taken by any of the
10601 * NAPI code and this dummy netdev is supposed to be
10602 * only ever used for NAPI polls
10604 memset(dev, 0, sizeof(struct net_device));
10605 init_dummy_netdev_core(dev);
10607 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10610 * register_netdev - register a network device
10611 * @dev: device to register
10613 * Take a completed network device structure and add it to the kernel
10614 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10615 * chain. 0 is returned on success. A negative errno code is returned
10616 * on a failure to set up the device, or if the name is a duplicate.
10618 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10619 * and expands the device name if you passed a format string to
10620 * alloc_netdev.
10622 int register_netdev(struct net_device *dev)
10624 int err;
10626 if (rtnl_lock_killable())
10627 return -EINTR;
10628 err = register_netdevice(dev);
10629 rtnl_unlock();
10630 return err;
10632 EXPORT_SYMBOL(register_netdev);
10634 int netdev_refcnt_read(const struct net_device *dev)
10636 #ifdef CONFIG_PCPU_DEV_REFCNT
10637 int i, refcnt = 0;
10639 for_each_possible_cpu(i)
10640 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10641 return refcnt;
10642 #else
10643 return refcount_read(&dev->dev_refcnt);
10644 #endif
10646 EXPORT_SYMBOL(netdev_refcnt_read);
10648 int netdev_unregister_timeout_secs __read_mostly = 10;
10650 #define WAIT_REFS_MIN_MSECS 1
10651 #define WAIT_REFS_MAX_MSECS 250
10653 * netdev_wait_allrefs_any - wait until all references are gone.
10654 * @list: list of net_devices to wait on
10656 * This is called when unregistering network devices.
10658 * Any protocol or device that holds a reference should register
10659 * for netdevice notification, and cleanup and put back the
10660 * reference if they receive an UNREGISTER event.
10661 * We can get stuck here if buggy protocols don't correctly
10662 * call dev_put.
10664 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10666 unsigned long rebroadcast_time, warning_time;
10667 struct net_device *dev;
10668 int wait = 0;
10670 rebroadcast_time = warning_time = jiffies;
10672 list_for_each_entry(dev, list, todo_list)
10673 if (netdev_refcnt_read(dev) == 1)
10674 return dev;
10676 while (true) {
10677 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10678 rtnl_lock();
10680 /* Rebroadcast unregister notification */
10681 list_for_each_entry(dev, list, todo_list)
10682 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10684 __rtnl_unlock();
10685 rcu_barrier();
10686 rtnl_lock();
10688 list_for_each_entry(dev, list, todo_list)
10689 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10690 &dev->state)) {
10691 /* We must not have linkwatch events
10692 * pending on unregister. If this
10693 * happens, we simply run the queue
10694 * unscheduled, resulting in a noop
10695 * for this device.
10697 linkwatch_run_queue();
10698 break;
10701 __rtnl_unlock();
10703 rebroadcast_time = jiffies;
10706 rcu_barrier();
10708 if (!wait) {
10709 wait = WAIT_REFS_MIN_MSECS;
10710 } else {
10711 msleep(wait);
10712 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10715 list_for_each_entry(dev, list, todo_list)
10716 if (netdev_refcnt_read(dev) == 1)
10717 return dev;
10719 if (time_after(jiffies, warning_time +
10720 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10721 list_for_each_entry(dev, list, todo_list) {
10722 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10723 dev->name, netdev_refcnt_read(dev));
10724 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10727 warning_time = jiffies;
10732 /* The sequence is:
10734 * rtnl_lock();
10735 * ...
10736 * register_netdevice(x1);
10737 * register_netdevice(x2);
10738 * ...
10739 * unregister_netdevice(y1);
10740 * unregister_netdevice(y2);
10741 * ...
10742 * rtnl_unlock();
10743 * free_netdev(y1);
10744 * free_netdev(y2);
10746 * We are invoked by rtnl_unlock().
10747 * This allows us to deal with problems:
10748 * 1) We can delete sysfs objects which invoke hotplug
10749 * without deadlocking with linkwatch via keventd.
10750 * 2) Since we run with the RTNL semaphore not held, we can sleep
10751 * safely in order to wait for the netdev refcnt to drop to zero.
10753 * We must not return until all unregister events added during
10754 * the interval the lock was held have been completed.
10756 void netdev_run_todo(void)
10758 struct net_device *dev, *tmp;
10759 struct list_head list;
10760 int cnt;
10761 #ifdef CONFIG_LOCKDEP
10762 struct list_head unlink_list;
10764 list_replace_init(&net_unlink_list, &unlink_list);
10766 while (!list_empty(&unlink_list)) {
10767 struct net_device *dev = list_first_entry(&unlink_list,
10768 struct net_device,
10769 unlink_list);
10770 list_del_init(&dev->unlink_list);
10771 dev->nested_level = dev->lower_level - 1;
10773 #endif
10775 /* Snapshot list, allow later requests */
10776 list_replace_init(&net_todo_list, &list);
10778 __rtnl_unlock();
10780 /* Wait for rcu callbacks to finish before next phase */
10781 if (!list_empty(&list))
10782 rcu_barrier();
10784 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10785 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10786 netdev_WARN(dev, "run_todo but not unregistering\n");
10787 list_del(&dev->todo_list);
10788 continue;
10791 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10792 linkwatch_sync_dev(dev);
10795 cnt = 0;
10796 while (!list_empty(&list)) {
10797 dev = netdev_wait_allrefs_any(&list);
10798 list_del(&dev->todo_list);
10800 /* paranoia */
10801 BUG_ON(netdev_refcnt_read(dev) != 1);
10802 BUG_ON(!list_empty(&dev->ptype_all));
10803 BUG_ON(!list_empty(&dev->ptype_specific));
10804 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10805 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10807 netdev_do_free_pcpu_stats(dev);
10808 if (dev->priv_destructor)
10809 dev->priv_destructor(dev);
10810 if (dev->needs_free_netdev)
10811 free_netdev(dev);
10813 cnt++;
10815 /* Free network device */
10816 kobject_put(&dev->dev.kobj);
10818 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10819 wake_up(&netdev_unregistering_wq);
10822 /* Collate per-cpu network dstats statistics
10824 * Read per-cpu network statistics from dev->dstats and populate the related
10825 * fields in @s.
10827 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10828 const struct pcpu_dstats __percpu *dstats)
10830 int cpu;
10832 for_each_possible_cpu(cpu) {
10833 u64 rx_packets, rx_bytes, rx_drops;
10834 u64 tx_packets, tx_bytes, tx_drops;
10835 const struct pcpu_dstats *stats;
10836 unsigned int start;
10838 stats = per_cpu_ptr(dstats, cpu);
10839 do {
10840 start = u64_stats_fetch_begin(&stats->syncp);
10841 rx_packets = u64_stats_read(&stats->rx_packets);
10842 rx_bytes = u64_stats_read(&stats->rx_bytes);
10843 rx_drops = u64_stats_read(&stats->rx_drops);
10844 tx_packets = u64_stats_read(&stats->tx_packets);
10845 tx_bytes = u64_stats_read(&stats->tx_bytes);
10846 tx_drops = u64_stats_read(&stats->tx_drops);
10847 } while (u64_stats_fetch_retry(&stats->syncp, start));
10849 s->rx_packets += rx_packets;
10850 s->rx_bytes += rx_bytes;
10851 s->rx_dropped += rx_drops;
10852 s->tx_packets += tx_packets;
10853 s->tx_bytes += tx_bytes;
10854 s->tx_dropped += tx_drops;
10858 /* ndo_get_stats64 implementation for dtstats-based accounting.
10860 * Populate @s from dev->stats and dev->dstats. This is used internally by the
10861 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10863 static void dev_get_dstats64(const struct net_device *dev,
10864 struct rtnl_link_stats64 *s)
10866 netdev_stats_to_stats64(s, &dev->stats);
10867 dev_fetch_dstats(s, dev->dstats);
10870 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10871 * all the same fields in the same order as net_device_stats, with only
10872 * the type differing, but rtnl_link_stats64 may have additional fields
10873 * at the end for newer counters.
10875 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10876 const struct net_device_stats *netdev_stats)
10878 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10879 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10880 u64 *dst = (u64 *)stats64;
10882 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10883 for (i = 0; i < n; i++)
10884 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10885 /* zero out counters that only exist in rtnl_link_stats64 */
10886 memset((char *)stats64 + n * sizeof(u64), 0,
10887 sizeof(*stats64) - n * sizeof(u64));
10889 EXPORT_SYMBOL(netdev_stats_to_stats64);
10891 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10892 struct net_device *dev)
10894 struct net_device_core_stats __percpu *p;
10896 p = alloc_percpu_gfp(struct net_device_core_stats,
10897 GFP_ATOMIC | __GFP_NOWARN);
10899 if (p && cmpxchg(&dev->core_stats, NULL, p))
10900 free_percpu(p);
10902 /* This READ_ONCE() pairs with the cmpxchg() above */
10903 return READ_ONCE(dev->core_stats);
10906 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10908 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10909 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10910 unsigned long __percpu *field;
10912 if (unlikely(!p)) {
10913 p = netdev_core_stats_alloc(dev);
10914 if (!p)
10915 return;
10918 field = (unsigned long __percpu *)((void __percpu *)p + offset);
10919 this_cpu_inc(*field);
10921 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10924 * dev_get_stats - get network device statistics
10925 * @dev: device to get statistics from
10926 * @storage: place to store stats
10928 * Get network statistics from device. Return @storage.
10929 * The device driver may provide its own method by setting
10930 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10931 * otherwise the internal statistics structure is used.
10933 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10934 struct rtnl_link_stats64 *storage)
10936 const struct net_device_ops *ops = dev->netdev_ops;
10937 const struct net_device_core_stats __percpu *p;
10939 if (ops->ndo_get_stats64) {
10940 memset(storage, 0, sizeof(*storage));
10941 ops->ndo_get_stats64(dev, storage);
10942 } else if (ops->ndo_get_stats) {
10943 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10944 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10945 dev_get_tstats64(dev, storage);
10946 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10947 dev_get_dstats64(dev, storage);
10948 } else {
10949 netdev_stats_to_stats64(storage, &dev->stats);
10952 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10953 p = READ_ONCE(dev->core_stats);
10954 if (p) {
10955 const struct net_device_core_stats *core_stats;
10956 int i;
10958 for_each_possible_cpu(i) {
10959 core_stats = per_cpu_ptr(p, i);
10960 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10961 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10962 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10963 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10966 return storage;
10968 EXPORT_SYMBOL(dev_get_stats);
10971 * dev_fetch_sw_netstats - get per-cpu network device statistics
10972 * @s: place to store stats
10973 * @netstats: per-cpu network stats to read from
10975 * Read per-cpu network statistics and populate the related fields in @s.
10977 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10978 const struct pcpu_sw_netstats __percpu *netstats)
10980 int cpu;
10982 for_each_possible_cpu(cpu) {
10983 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10984 const struct pcpu_sw_netstats *stats;
10985 unsigned int start;
10987 stats = per_cpu_ptr(netstats, cpu);
10988 do {
10989 start = u64_stats_fetch_begin(&stats->syncp);
10990 rx_packets = u64_stats_read(&stats->rx_packets);
10991 rx_bytes = u64_stats_read(&stats->rx_bytes);
10992 tx_packets = u64_stats_read(&stats->tx_packets);
10993 tx_bytes = u64_stats_read(&stats->tx_bytes);
10994 } while (u64_stats_fetch_retry(&stats->syncp, start));
10996 s->rx_packets += rx_packets;
10997 s->rx_bytes += rx_bytes;
10998 s->tx_packets += tx_packets;
10999 s->tx_bytes += tx_bytes;
11002 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11005 * dev_get_tstats64 - ndo_get_stats64 implementation
11006 * @dev: device to get statistics from
11007 * @s: place to store stats
11009 * Populate @s from dev->stats and dev->tstats. Can be used as
11010 * ndo_get_stats64() callback.
11012 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11014 netdev_stats_to_stats64(s, &dev->stats);
11015 dev_fetch_sw_netstats(s, dev->tstats);
11017 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11019 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11021 struct netdev_queue *queue = dev_ingress_queue(dev);
11023 #ifdef CONFIG_NET_CLS_ACT
11024 if (queue)
11025 return queue;
11026 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11027 if (!queue)
11028 return NULL;
11029 netdev_init_one_queue(dev, queue, NULL);
11030 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11031 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11032 rcu_assign_pointer(dev->ingress_queue, queue);
11033 #endif
11034 return queue;
11037 static const struct ethtool_ops default_ethtool_ops;
11039 void netdev_set_default_ethtool_ops(struct net_device *dev,
11040 const struct ethtool_ops *ops)
11042 if (dev->ethtool_ops == &default_ethtool_ops)
11043 dev->ethtool_ops = ops;
11045 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11048 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11049 * @dev: netdev to enable the IRQ coalescing on
11051 * Sets a conservative default for SW IRQ coalescing. Users can use
11052 * sysfs attributes to override the default values.
11054 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11056 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11058 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11059 dev->gro_flush_timeout = 20000;
11060 dev->napi_defer_hard_irqs = 1;
11063 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11066 * alloc_netdev_mqs - allocate network device
11067 * @sizeof_priv: size of private data to allocate space for
11068 * @name: device name format string
11069 * @name_assign_type: origin of device name
11070 * @setup: callback to initialize device
11071 * @txqs: the number of TX subqueues to allocate
11072 * @rxqs: the number of RX subqueues to allocate
11074 * Allocates a struct net_device with private data area for driver use
11075 * and performs basic initialization. Also allocates subqueue structs
11076 * for each queue on the device.
11078 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11079 unsigned char name_assign_type,
11080 void (*setup)(struct net_device *),
11081 unsigned int txqs, unsigned int rxqs)
11083 struct net_device *dev;
11085 BUG_ON(strlen(name) >= sizeof(dev->name));
11087 if (txqs < 1) {
11088 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11089 return NULL;
11092 if (rxqs < 1) {
11093 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11094 return NULL;
11097 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11098 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11099 if (!dev)
11100 return NULL;
11102 dev->priv_len = sizeof_priv;
11104 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11105 #ifdef CONFIG_PCPU_DEV_REFCNT
11106 dev->pcpu_refcnt = alloc_percpu(int);
11107 if (!dev->pcpu_refcnt)
11108 goto free_dev;
11109 __dev_hold(dev);
11110 #else
11111 refcount_set(&dev->dev_refcnt, 1);
11112 #endif
11114 if (dev_addr_init(dev))
11115 goto free_pcpu;
11117 dev_mc_init(dev);
11118 dev_uc_init(dev);
11120 dev_net_set(dev, &init_net);
11122 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11123 dev->xdp_zc_max_segs = 1;
11124 dev->gso_max_segs = GSO_MAX_SEGS;
11125 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11126 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11127 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11128 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11129 dev->tso_max_segs = TSO_MAX_SEGS;
11130 dev->upper_level = 1;
11131 dev->lower_level = 1;
11132 #ifdef CONFIG_LOCKDEP
11133 dev->nested_level = 0;
11134 INIT_LIST_HEAD(&dev->unlink_list);
11135 #endif
11137 INIT_LIST_HEAD(&dev->napi_list);
11138 INIT_LIST_HEAD(&dev->unreg_list);
11139 INIT_LIST_HEAD(&dev->close_list);
11140 INIT_LIST_HEAD(&dev->link_watch_list);
11141 INIT_LIST_HEAD(&dev->adj_list.upper);
11142 INIT_LIST_HEAD(&dev->adj_list.lower);
11143 INIT_LIST_HEAD(&dev->ptype_all);
11144 INIT_LIST_HEAD(&dev->ptype_specific);
11145 INIT_LIST_HEAD(&dev->net_notifier_list);
11146 #ifdef CONFIG_NET_SCHED
11147 hash_init(dev->qdisc_hash);
11148 #endif
11150 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11151 setup(dev);
11153 if (!dev->tx_queue_len) {
11154 dev->priv_flags |= IFF_NO_QUEUE;
11155 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11158 dev->num_tx_queues = txqs;
11159 dev->real_num_tx_queues = txqs;
11160 if (netif_alloc_netdev_queues(dev))
11161 goto free_all;
11163 dev->num_rx_queues = rxqs;
11164 dev->real_num_rx_queues = rxqs;
11165 if (netif_alloc_rx_queues(dev))
11166 goto free_all;
11167 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11168 if (!dev->ethtool)
11169 goto free_all;
11171 strscpy(dev->name, name);
11172 dev->name_assign_type = name_assign_type;
11173 dev->group = INIT_NETDEV_GROUP;
11174 if (!dev->ethtool_ops)
11175 dev->ethtool_ops = &default_ethtool_ops;
11177 nf_hook_netdev_init(dev);
11179 return dev;
11181 free_all:
11182 free_netdev(dev);
11183 return NULL;
11185 free_pcpu:
11186 #ifdef CONFIG_PCPU_DEV_REFCNT
11187 free_percpu(dev->pcpu_refcnt);
11188 free_dev:
11189 #endif
11190 kvfree(dev);
11191 return NULL;
11193 EXPORT_SYMBOL(alloc_netdev_mqs);
11196 * free_netdev - free network device
11197 * @dev: device
11199 * This function does the last stage of destroying an allocated device
11200 * interface. The reference to the device object is released. If this
11201 * is the last reference then it will be freed.Must be called in process
11202 * context.
11204 void free_netdev(struct net_device *dev)
11206 struct napi_struct *p, *n;
11208 might_sleep();
11210 /* When called immediately after register_netdevice() failed the unwind
11211 * handling may still be dismantling the device. Handle that case by
11212 * deferring the free.
11214 if (dev->reg_state == NETREG_UNREGISTERING) {
11215 ASSERT_RTNL();
11216 dev->needs_free_netdev = true;
11217 return;
11220 kfree(dev->ethtool);
11221 netif_free_tx_queues(dev);
11222 netif_free_rx_queues(dev);
11224 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11226 /* Flush device addresses */
11227 dev_addr_flush(dev);
11229 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11230 netif_napi_del(p);
11232 ref_tracker_dir_exit(&dev->refcnt_tracker);
11233 #ifdef CONFIG_PCPU_DEV_REFCNT
11234 free_percpu(dev->pcpu_refcnt);
11235 dev->pcpu_refcnt = NULL;
11236 #endif
11237 free_percpu(dev->core_stats);
11238 dev->core_stats = NULL;
11239 free_percpu(dev->xdp_bulkq);
11240 dev->xdp_bulkq = NULL;
11242 netdev_free_phy_link_topology(dev);
11244 /* Compatibility with error handling in drivers */
11245 if (dev->reg_state == NETREG_UNINITIALIZED ||
11246 dev->reg_state == NETREG_DUMMY) {
11247 kvfree(dev);
11248 return;
11251 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11252 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11254 /* will free via device release */
11255 put_device(&dev->dev);
11257 EXPORT_SYMBOL(free_netdev);
11260 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11261 * @sizeof_priv: size of private data to allocate space for
11263 * Return: the allocated net_device on success, NULL otherwise
11265 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11267 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11268 init_dummy_netdev_core);
11270 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11273 * synchronize_net - Synchronize with packet receive processing
11275 * Wait for packets currently being received to be done.
11276 * Does not block later packets from starting.
11278 void synchronize_net(void)
11280 might_sleep();
11281 if (rtnl_is_locked())
11282 synchronize_rcu_expedited();
11283 else
11284 synchronize_rcu();
11286 EXPORT_SYMBOL(synchronize_net);
11288 static void netdev_rss_contexts_free(struct net_device *dev)
11290 struct ethtool_rxfh_context *ctx;
11291 unsigned long context;
11293 mutex_lock(&dev->ethtool->rss_lock);
11294 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11295 struct ethtool_rxfh_param rxfh;
11297 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11298 rxfh.key = ethtool_rxfh_context_key(ctx);
11299 rxfh.hfunc = ctx->hfunc;
11300 rxfh.input_xfrm = ctx->input_xfrm;
11301 rxfh.rss_context = context;
11302 rxfh.rss_delete = true;
11304 xa_erase(&dev->ethtool->rss_ctx, context);
11305 if (dev->ethtool_ops->create_rxfh_context)
11306 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11307 context, NULL);
11308 else
11309 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11310 kfree(ctx);
11312 xa_destroy(&dev->ethtool->rss_ctx);
11313 mutex_unlock(&dev->ethtool->rss_lock);
11317 * unregister_netdevice_queue - remove device from the kernel
11318 * @dev: device
11319 * @head: list
11321 * This function shuts down a device interface and removes it
11322 * from the kernel tables.
11323 * If head not NULL, device is queued to be unregistered later.
11325 * Callers must hold the rtnl semaphore. You may want
11326 * unregister_netdev() instead of this.
11329 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11331 ASSERT_RTNL();
11333 if (head) {
11334 list_move_tail(&dev->unreg_list, head);
11335 } else {
11336 LIST_HEAD(single);
11338 list_add(&dev->unreg_list, &single);
11339 unregister_netdevice_many(&single);
11342 EXPORT_SYMBOL(unregister_netdevice_queue);
11344 void unregister_netdevice_many_notify(struct list_head *head,
11345 u32 portid, const struct nlmsghdr *nlh)
11347 struct net_device *dev, *tmp;
11348 LIST_HEAD(close_head);
11349 int cnt = 0;
11351 BUG_ON(dev_boot_phase);
11352 ASSERT_RTNL();
11354 if (list_empty(head))
11355 return;
11357 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11358 /* Some devices call without registering
11359 * for initialization unwind. Remove those
11360 * devices and proceed with the remaining.
11362 if (dev->reg_state == NETREG_UNINITIALIZED) {
11363 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11364 dev->name, dev);
11366 WARN_ON(1);
11367 list_del(&dev->unreg_list);
11368 continue;
11370 dev->dismantle = true;
11371 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11374 /* If device is running, close it first. */
11375 list_for_each_entry(dev, head, unreg_list)
11376 list_add_tail(&dev->close_list, &close_head);
11377 dev_close_many(&close_head, true);
11379 list_for_each_entry(dev, head, unreg_list) {
11380 /* And unlink it from device chain. */
11381 unlist_netdevice(dev);
11382 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11384 flush_all_backlogs();
11386 synchronize_net();
11388 list_for_each_entry(dev, head, unreg_list) {
11389 struct sk_buff *skb = NULL;
11391 /* Shutdown queueing discipline. */
11392 dev_shutdown(dev);
11393 dev_tcx_uninstall(dev);
11394 dev_xdp_uninstall(dev);
11395 bpf_dev_bound_netdev_unregister(dev);
11396 dev_dmabuf_uninstall(dev);
11398 netdev_offload_xstats_disable_all(dev);
11400 /* Notify protocols, that we are about to destroy
11401 * this device. They should clean all the things.
11403 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11405 if (!dev->rtnl_link_ops ||
11406 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11407 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11408 GFP_KERNEL, NULL, 0,
11409 portid, nlh);
11412 * Flush the unicast and multicast chains
11414 dev_uc_flush(dev);
11415 dev_mc_flush(dev);
11417 netdev_name_node_alt_flush(dev);
11418 netdev_name_node_free(dev->name_node);
11420 netdev_rss_contexts_free(dev);
11422 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11424 if (dev->netdev_ops->ndo_uninit)
11425 dev->netdev_ops->ndo_uninit(dev);
11427 mutex_destroy(&dev->ethtool->rss_lock);
11429 if (skb)
11430 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11432 /* Notifier chain MUST detach us all upper devices. */
11433 WARN_ON(netdev_has_any_upper_dev(dev));
11434 WARN_ON(netdev_has_any_lower_dev(dev));
11436 /* Remove entries from kobject tree */
11437 netdev_unregister_kobject(dev);
11438 #ifdef CONFIG_XPS
11439 /* Remove XPS queueing entries */
11440 netif_reset_xps_queues_gt(dev, 0);
11441 #endif
11444 synchronize_net();
11446 list_for_each_entry(dev, head, unreg_list) {
11447 netdev_put(dev, &dev->dev_registered_tracker);
11448 net_set_todo(dev);
11449 cnt++;
11451 atomic_add(cnt, &dev_unreg_count);
11453 list_del(head);
11457 * unregister_netdevice_many - unregister many devices
11458 * @head: list of devices
11460 * Note: As most callers use a stack allocated list_head,
11461 * we force a list_del() to make sure stack won't be corrupted later.
11463 void unregister_netdevice_many(struct list_head *head)
11465 unregister_netdevice_many_notify(head, 0, NULL);
11467 EXPORT_SYMBOL(unregister_netdevice_many);
11470 * unregister_netdev - remove device from the kernel
11471 * @dev: device
11473 * This function shuts down a device interface and removes it
11474 * from the kernel tables.
11476 * This is just a wrapper for unregister_netdevice that takes
11477 * the rtnl semaphore. In general you want to use this and not
11478 * unregister_netdevice.
11480 void unregister_netdev(struct net_device *dev)
11482 rtnl_lock();
11483 unregister_netdevice(dev);
11484 rtnl_unlock();
11486 EXPORT_SYMBOL(unregister_netdev);
11489 * __dev_change_net_namespace - move device to different nethost namespace
11490 * @dev: device
11491 * @net: network namespace
11492 * @pat: If not NULL name pattern to try if the current device name
11493 * is already taken in the destination network namespace.
11494 * @new_ifindex: If not zero, specifies device index in the target
11495 * namespace.
11497 * This function shuts down a device interface and moves it
11498 * to a new network namespace. On success 0 is returned, on
11499 * a failure a netagive errno code is returned.
11501 * Callers must hold the rtnl semaphore.
11504 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11505 const char *pat, int new_ifindex)
11507 struct netdev_name_node *name_node;
11508 struct net *net_old = dev_net(dev);
11509 char new_name[IFNAMSIZ] = {};
11510 int err, new_nsid;
11512 ASSERT_RTNL();
11514 /* Don't allow namespace local devices to be moved. */
11515 err = -EINVAL;
11516 if (dev->netns_local)
11517 goto out;
11519 /* Ensure the device has been registered */
11520 if (dev->reg_state != NETREG_REGISTERED)
11521 goto out;
11523 /* Get out if there is nothing todo */
11524 err = 0;
11525 if (net_eq(net_old, net))
11526 goto out;
11528 /* Pick the destination device name, and ensure
11529 * we can use it in the destination network namespace.
11531 err = -EEXIST;
11532 if (netdev_name_in_use(net, dev->name)) {
11533 /* We get here if we can't use the current device name */
11534 if (!pat)
11535 goto out;
11536 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11537 if (err < 0)
11538 goto out;
11540 /* Check that none of the altnames conflicts. */
11541 err = -EEXIST;
11542 netdev_for_each_altname(dev, name_node)
11543 if (netdev_name_in_use(net, name_node->name))
11544 goto out;
11546 /* Check that new_ifindex isn't used yet. */
11547 if (new_ifindex) {
11548 err = dev_index_reserve(net, new_ifindex);
11549 if (err < 0)
11550 goto out;
11551 } else {
11552 /* If there is an ifindex conflict assign a new one */
11553 err = dev_index_reserve(net, dev->ifindex);
11554 if (err == -EBUSY)
11555 err = dev_index_reserve(net, 0);
11556 if (err < 0)
11557 goto out;
11558 new_ifindex = err;
11562 * And now a mini version of register_netdevice unregister_netdevice.
11565 /* If device is running close it first. */
11566 dev_close(dev);
11568 /* And unlink it from device chain */
11569 unlist_netdevice(dev);
11571 synchronize_net();
11573 /* Shutdown queueing discipline. */
11574 dev_shutdown(dev);
11576 /* Notify protocols, that we are about to destroy
11577 * this device. They should clean all the things.
11579 * Note that dev->reg_state stays at NETREG_REGISTERED.
11580 * This is wanted because this way 8021q and macvlan know
11581 * the device is just moving and can keep their slaves up.
11583 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11584 rcu_barrier();
11586 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11588 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11589 new_ifindex);
11592 * Flush the unicast and multicast chains
11594 dev_uc_flush(dev);
11595 dev_mc_flush(dev);
11597 /* Send a netdev-removed uevent to the old namespace */
11598 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11599 netdev_adjacent_del_links(dev);
11601 /* Move per-net netdevice notifiers that are following the netdevice */
11602 move_netdevice_notifiers_dev_net(dev, net);
11604 /* Actually switch the network namespace */
11605 dev_net_set(dev, net);
11606 dev->ifindex = new_ifindex;
11608 if (new_name[0]) {
11609 /* Rename the netdev to prepared name */
11610 write_seqlock_bh(&netdev_rename_lock);
11611 strscpy(dev->name, new_name, IFNAMSIZ);
11612 write_sequnlock_bh(&netdev_rename_lock);
11615 /* Fixup kobjects */
11616 dev_set_uevent_suppress(&dev->dev, 1);
11617 err = device_rename(&dev->dev, dev->name);
11618 dev_set_uevent_suppress(&dev->dev, 0);
11619 WARN_ON(err);
11621 /* Send a netdev-add uevent to the new namespace */
11622 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11623 netdev_adjacent_add_links(dev);
11625 /* Adapt owner in case owning user namespace of target network
11626 * namespace is different from the original one.
11628 err = netdev_change_owner(dev, net_old, net);
11629 WARN_ON(err);
11631 /* Add the device back in the hashes */
11632 list_netdevice(dev);
11634 /* Notify protocols, that a new device appeared. */
11635 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11638 * Prevent userspace races by waiting until the network
11639 * device is fully setup before sending notifications.
11641 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11643 synchronize_net();
11644 err = 0;
11645 out:
11646 return err;
11648 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11650 static int dev_cpu_dead(unsigned int oldcpu)
11652 struct sk_buff **list_skb;
11653 struct sk_buff *skb;
11654 unsigned int cpu;
11655 struct softnet_data *sd, *oldsd, *remsd = NULL;
11657 local_irq_disable();
11658 cpu = smp_processor_id();
11659 sd = &per_cpu(softnet_data, cpu);
11660 oldsd = &per_cpu(softnet_data, oldcpu);
11662 /* Find end of our completion_queue. */
11663 list_skb = &sd->completion_queue;
11664 while (*list_skb)
11665 list_skb = &(*list_skb)->next;
11666 /* Append completion queue from offline CPU. */
11667 *list_skb = oldsd->completion_queue;
11668 oldsd->completion_queue = NULL;
11670 /* Append output queue from offline CPU. */
11671 if (oldsd->output_queue) {
11672 *sd->output_queue_tailp = oldsd->output_queue;
11673 sd->output_queue_tailp = oldsd->output_queue_tailp;
11674 oldsd->output_queue = NULL;
11675 oldsd->output_queue_tailp = &oldsd->output_queue;
11677 /* Append NAPI poll list from offline CPU, with one exception :
11678 * process_backlog() must be called by cpu owning percpu backlog.
11679 * We properly handle process_queue & input_pkt_queue later.
11681 while (!list_empty(&oldsd->poll_list)) {
11682 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11683 struct napi_struct,
11684 poll_list);
11686 list_del_init(&napi->poll_list);
11687 if (napi->poll == process_backlog)
11688 napi->state &= NAPIF_STATE_THREADED;
11689 else
11690 ____napi_schedule(sd, napi);
11693 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11694 local_irq_enable();
11696 if (!use_backlog_threads()) {
11697 #ifdef CONFIG_RPS
11698 remsd = oldsd->rps_ipi_list;
11699 oldsd->rps_ipi_list = NULL;
11700 #endif
11701 /* send out pending IPI's on offline CPU */
11702 net_rps_send_ipi(remsd);
11705 /* Process offline CPU's input_pkt_queue */
11706 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11707 netif_rx(skb);
11708 rps_input_queue_head_incr(oldsd);
11710 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11711 netif_rx(skb);
11712 rps_input_queue_head_incr(oldsd);
11715 return 0;
11719 * netdev_increment_features - increment feature set by one
11720 * @all: current feature set
11721 * @one: new feature set
11722 * @mask: mask feature set
11724 * Computes a new feature set after adding a device with feature set
11725 * @one to the master device with current feature set @all. Will not
11726 * enable anything that is off in @mask. Returns the new feature set.
11728 netdev_features_t netdev_increment_features(netdev_features_t all,
11729 netdev_features_t one, netdev_features_t mask)
11731 if (mask & NETIF_F_HW_CSUM)
11732 mask |= NETIF_F_CSUM_MASK;
11733 mask |= NETIF_F_VLAN_CHALLENGED;
11735 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11736 all &= one | ~NETIF_F_ALL_FOR_ALL;
11738 /* If one device supports hw checksumming, set for all. */
11739 if (all & NETIF_F_HW_CSUM)
11740 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11742 return all;
11744 EXPORT_SYMBOL(netdev_increment_features);
11746 static struct hlist_head * __net_init netdev_create_hash(void)
11748 int i;
11749 struct hlist_head *hash;
11751 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11752 if (hash != NULL)
11753 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11754 INIT_HLIST_HEAD(&hash[i]);
11756 return hash;
11759 /* Initialize per network namespace state */
11760 static int __net_init netdev_init(struct net *net)
11762 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11763 8 * sizeof_field(struct napi_struct, gro_bitmask));
11765 INIT_LIST_HEAD(&net->dev_base_head);
11767 net->dev_name_head = netdev_create_hash();
11768 if (net->dev_name_head == NULL)
11769 goto err_name;
11771 net->dev_index_head = netdev_create_hash();
11772 if (net->dev_index_head == NULL)
11773 goto err_idx;
11775 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11777 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11779 return 0;
11781 err_idx:
11782 kfree(net->dev_name_head);
11783 err_name:
11784 return -ENOMEM;
11788 * netdev_drivername - network driver for the device
11789 * @dev: network device
11791 * Determine network driver for device.
11793 const char *netdev_drivername(const struct net_device *dev)
11795 const struct device_driver *driver;
11796 const struct device *parent;
11797 const char *empty = "";
11799 parent = dev->dev.parent;
11800 if (!parent)
11801 return empty;
11803 driver = parent->driver;
11804 if (driver && driver->name)
11805 return driver->name;
11806 return empty;
11809 static void __netdev_printk(const char *level, const struct net_device *dev,
11810 struct va_format *vaf)
11812 if (dev && dev->dev.parent) {
11813 dev_printk_emit(level[1] - '0',
11814 dev->dev.parent,
11815 "%s %s %s%s: %pV",
11816 dev_driver_string(dev->dev.parent),
11817 dev_name(dev->dev.parent),
11818 netdev_name(dev), netdev_reg_state(dev),
11819 vaf);
11820 } else if (dev) {
11821 printk("%s%s%s: %pV",
11822 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11823 } else {
11824 printk("%s(NULL net_device): %pV", level, vaf);
11828 void netdev_printk(const char *level, const struct net_device *dev,
11829 const char *format, ...)
11831 struct va_format vaf;
11832 va_list args;
11834 va_start(args, format);
11836 vaf.fmt = format;
11837 vaf.va = &args;
11839 __netdev_printk(level, dev, &vaf);
11841 va_end(args);
11843 EXPORT_SYMBOL(netdev_printk);
11845 #define define_netdev_printk_level(func, level) \
11846 void func(const struct net_device *dev, const char *fmt, ...) \
11848 struct va_format vaf; \
11849 va_list args; \
11851 va_start(args, fmt); \
11853 vaf.fmt = fmt; \
11854 vaf.va = &args; \
11856 __netdev_printk(level, dev, &vaf); \
11858 va_end(args); \
11860 EXPORT_SYMBOL(func);
11862 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11863 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11864 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11865 define_netdev_printk_level(netdev_err, KERN_ERR);
11866 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11867 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11868 define_netdev_printk_level(netdev_info, KERN_INFO);
11870 static void __net_exit netdev_exit(struct net *net)
11872 kfree(net->dev_name_head);
11873 kfree(net->dev_index_head);
11874 xa_destroy(&net->dev_by_index);
11875 if (net != &init_net)
11876 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11879 static struct pernet_operations __net_initdata netdev_net_ops = {
11880 .init = netdev_init,
11881 .exit = netdev_exit,
11884 static void __net_exit default_device_exit_net(struct net *net)
11886 struct netdev_name_node *name_node, *tmp;
11887 struct net_device *dev, *aux;
11889 * Push all migratable network devices back to the
11890 * initial network namespace
11892 ASSERT_RTNL();
11893 for_each_netdev_safe(net, dev, aux) {
11894 int err;
11895 char fb_name[IFNAMSIZ];
11897 /* Ignore unmoveable devices (i.e. loopback) */
11898 if (dev->netns_local)
11899 continue;
11901 /* Leave virtual devices for the generic cleanup */
11902 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11903 continue;
11905 /* Push remaining network devices to init_net */
11906 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11907 if (netdev_name_in_use(&init_net, fb_name))
11908 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11910 netdev_for_each_altname_safe(dev, name_node, tmp)
11911 if (netdev_name_in_use(&init_net, name_node->name))
11912 __netdev_name_node_alt_destroy(name_node);
11914 err = dev_change_net_namespace(dev, &init_net, fb_name);
11915 if (err) {
11916 pr_emerg("%s: failed to move %s to init_net: %d\n",
11917 __func__, dev->name, err);
11918 BUG();
11923 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11925 /* At exit all network devices most be removed from a network
11926 * namespace. Do this in the reverse order of registration.
11927 * Do this across as many network namespaces as possible to
11928 * improve batching efficiency.
11930 struct net_device *dev;
11931 struct net *net;
11932 LIST_HEAD(dev_kill_list);
11934 rtnl_lock();
11935 list_for_each_entry(net, net_list, exit_list) {
11936 default_device_exit_net(net);
11937 cond_resched();
11940 list_for_each_entry(net, net_list, exit_list) {
11941 for_each_netdev_reverse(net, dev) {
11942 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11943 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11944 else
11945 unregister_netdevice_queue(dev, &dev_kill_list);
11948 unregister_netdevice_many(&dev_kill_list);
11949 rtnl_unlock();
11952 static struct pernet_operations __net_initdata default_device_ops = {
11953 .exit_batch = default_device_exit_batch,
11956 static void __init net_dev_struct_check(void)
11958 /* TX read-mostly hotpath */
11959 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11960 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11961 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11962 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11963 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11964 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11965 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11966 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11967 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11968 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11969 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11970 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11971 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11972 #ifdef CONFIG_XPS
11973 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11974 #endif
11975 #ifdef CONFIG_NETFILTER_EGRESS
11976 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11977 #endif
11978 #ifdef CONFIG_NET_XGRESS
11979 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11980 #endif
11981 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11983 /* TXRX read-mostly hotpath */
11984 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11985 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11986 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11987 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11988 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11989 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11990 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11992 /* RX read-mostly hotpath */
11993 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11994 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11995 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11996 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11997 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11998 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11999 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12000 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12001 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12002 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12003 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12004 #ifdef CONFIG_NETPOLL
12005 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12006 #endif
12007 #ifdef CONFIG_NET_XGRESS
12008 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12009 #endif
12010 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12014 * Initialize the DEV module. At boot time this walks the device list and
12015 * unhooks any devices that fail to initialise (normally hardware not
12016 * present) and leaves us with a valid list of present and active devices.
12020 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12021 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12023 static int net_page_pool_create(int cpuid)
12025 #if IS_ENABLED(CONFIG_PAGE_POOL)
12026 struct page_pool_params page_pool_params = {
12027 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12028 .flags = PP_FLAG_SYSTEM_POOL,
12029 .nid = cpu_to_mem(cpuid),
12031 struct page_pool *pp_ptr;
12033 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12034 if (IS_ERR(pp_ptr))
12035 return -ENOMEM;
12037 per_cpu(system_page_pool, cpuid) = pp_ptr;
12038 #endif
12039 return 0;
12042 static int backlog_napi_should_run(unsigned int cpu)
12044 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12045 struct napi_struct *napi = &sd->backlog;
12047 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12050 static void run_backlog_napi(unsigned int cpu)
12052 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12054 napi_threaded_poll_loop(&sd->backlog);
12057 static void backlog_napi_setup(unsigned int cpu)
12059 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12060 struct napi_struct *napi = &sd->backlog;
12062 napi->thread = this_cpu_read(backlog_napi);
12063 set_bit(NAPI_STATE_THREADED, &napi->state);
12066 static struct smp_hotplug_thread backlog_threads = {
12067 .store = &backlog_napi,
12068 .thread_should_run = backlog_napi_should_run,
12069 .thread_fn = run_backlog_napi,
12070 .thread_comm = "backlog_napi/%u",
12071 .setup = backlog_napi_setup,
12075 * This is called single threaded during boot, so no need
12076 * to take the rtnl semaphore.
12078 static int __init net_dev_init(void)
12080 int i, rc = -ENOMEM;
12082 BUG_ON(!dev_boot_phase);
12084 net_dev_struct_check();
12086 if (dev_proc_init())
12087 goto out;
12089 if (netdev_kobject_init())
12090 goto out;
12092 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12093 INIT_LIST_HEAD(&ptype_base[i]);
12095 if (register_pernet_subsys(&netdev_net_ops))
12096 goto out;
12099 * Initialise the packet receive queues.
12102 for_each_possible_cpu(i) {
12103 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12104 struct softnet_data *sd = &per_cpu(softnet_data, i);
12106 INIT_WORK(flush, flush_backlog);
12108 skb_queue_head_init(&sd->input_pkt_queue);
12109 skb_queue_head_init(&sd->process_queue);
12110 #ifdef CONFIG_XFRM_OFFLOAD
12111 skb_queue_head_init(&sd->xfrm_backlog);
12112 #endif
12113 INIT_LIST_HEAD(&sd->poll_list);
12114 sd->output_queue_tailp = &sd->output_queue;
12115 #ifdef CONFIG_RPS
12116 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12117 sd->cpu = i;
12118 #endif
12119 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12120 spin_lock_init(&sd->defer_lock);
12122 init_gro_hash(&sd->backlog);
12123 sd->backlog.poll = process_backlog;
12124 sd->backlog.weight = weight_p;
12125 INIT_LIST_HEAD(&sd->backlog.poll_list);
12127 if (net_page_pool_create(i))
12128 goto out;
12130 if (use_backlog_threads())
12131 smpboot_register_percpu_thread(&backlog_threads);
12133 dev_boot_phase = 0;
12135 /* The loopback device is special if any other network devices
12136 * is present in a network namespace the loopback device must
12137 * be present. Since we now dynamically allocate and free the
12138 * loopback device ensure this invariant is maintained by
12139 * keeping the loopback device as the first device on the
12140 * list of network devices. Ensuring the loopback devices
12141 * is the first device that appears and the last network device
12142 * that disappears.
12144 if (register_pernet_device(&loopback_net_ops))
12145 goto out;
12147 if (register_pernet_device(&default_device_ops))
12148 goto out;
12150 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12151 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12153 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12154 NULL, dev_cpu_dead);
12155 WARN_ON(rc < 0);
12156 rc = 0;
12158 /* avoid static key IPIs to isolated CPUs */
12159 if (housekeeping_enabled(HK_TYPE_MISC))
12160 net_enable_timestamp();
12161 out:
12162 if (rc < 0) {
12163 for_each_possible_cpu(i) {
12164 struct page_pool *pp_ptr;
12166 pp_ptr = per_cpu(system_page_pool, i);
12167 if (!pp_ptr)
12168 continue;
12170 page_pool_destroy(pp_ptr);
12171 per_cpu(system_page_pool, i) = NULL;
12175 return rc;
12178 subsys_initcall(net_dev_init);