1 // SPDX-License-Identifier: GPL-2.0-only
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
20 /* Quick Fair Queueing Plus
21 ========================
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
35 http://retis.sssup.it/~fabio/linux/qfq/
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
54 Virtual time computations.
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
63 The layout of the bits is as below:
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 where MIN_SLOT_SHIFT is derived by difference from the others.
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
91 * Maximum number of consecutive slots occupied by backlogged classes
94 #define QFQ_MAX_SLOTS 32
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121 * Possible group states. These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
124 enum qfq_state
{ ER
, IR
, EB
, IB
, QFQ_MAX_STATE
};
128 struct qfq_aggregate
;
131 struct Qdisc_class_common common
;
133 struct gnet_stats_basic_sync bstats
;
134 struct gnet_stats_queue qstats
;
135 struct net_rate_estimator __rcu
*rate_est
;
137 struct list_head alist
; /* Link for active-classes list. */
138 struct qfq_aggregate
*agg
; /* Parent aggregate. */
139 int deficit
; /* DRR deficit counter. */
142 struct qfq_aggregate
{
143 struct hlist_node next
; /* Link for the slot list. */
144 u64 S
, F
; /* flow timestamps (exact) */
146 /* group we belong to. In principle we would need the index,
147 * which is log_2(lmax/weight), but we never reference it
148 * directly, only the group.
150 struct qfq_group
*grp
;
152 /* these are copied from the flowset. */
153 u32 class_weight
; /* Weight of each class in this aggregate. */
154 /* Max pkt size for the classes in this aggregate, DRR quantum. */
157 u32 inv_w
; /* ONE_FP/(sum of weights of classes in aggr.). */
158 u32 budgetmax
; /* Max budget for this aggregate. */
159 u32 initial_budget
, budget
; /* Initial and current budget. */
161 int num_classes
; /* Number of classes in this aggr. */
162 struct list_head active
; /* DRR queue of active classes. */
164 struct hlist_node nonfull_next
; /* See nonfull_aggs in qfq_sched. */
168 u64 S
, F
; /* group timestamps (approx). */
169 unsigned int slot_shift
; /* Slot shift. */
170 unsigned int index
; /* Group index. */
171 unsigned int front
; /* Index of the front slot. */
172 unsigned long full_slots
; /* non-empty slots */
174 /* Array of RR lists of active aggregates. */
175 struct hlist_head slots
[QFQ_MAX_SLOTS
];
179 struct tcf_proto __rcu
*filter_list
;
180 struct tcf_block
*block
;
181 struct Qdisc_class_hash clhash
;
183 u64 oldV
, V
; /* Precise virtual times. */
184 struct qfq_aggregate
*in_serv_agg
; /* Aggregate being served. */
185 u32 wsum
; /* weight sum */
186 u32 iwsum
; /* inverse weight sum */
188 unsigned long bitmaps
[QFQ_MAX_STATE
]; /* Group bitmaps. */
189 struct qfq_group groups
[QFQ_MAX_INDEX
+ 1]; /* The groups. */
190 u32 min_slot_shift
; /* Index of the group-0 bit in the bitmaps. */
192 u32 max_agg_classes
; /* Max number of classes per aggr. */
193 struct hlist_head nonfull_aggs
; /* Aggs with room for more classes. */
197 * Possible reasons why the timestamps of an aggregate are updated
198 * enqueue: the aggregate switches from idle to active and must scheduled
200 * requeue: the aggregate finishes its budget, so it stops being served and
201 * must be rescheduled for service
203 enum update_reason
{enqueue
, requeue
};
205 static struct qfq_class
*qfq_find_class(struct Qdisc
*sch
, u32 classid
)
207 struct qfq_sched
*q
= qdisc_priv(sch
);
208 struct Qdisc_class_common
*clc
;
210 clc
= qdisc_class_find(&q
->clhash
, classid
);
213 return container_of(clc
, struct qfq_class
, common
);
216 static const struct netlink_range_validation lmax_range
= {
221 static const struct nla_policy qfq_policy
[TCA_QFQ_MAX
+ 1] = {
222 [TCA_QFQ_WEIGHT
] = NLA_POLICY_RANGE(NLA_U32
, 1, QFQ_MAX_WEIGHT
),
223 [TCA_QFQ_LMAX
] = NLA_POLICY_FULL_RANGE(NLA_U32
, &lmax_range
),
227 * Calculate a flow index, given its weight and maximum packet length.
228 * index = log_2(maxlen/weight) but we need to apply the scaling.
229 * This is used only once at flow creation.
231 static int qfq_calc_index(u32 inv_w
, unsigned int maxlen
, u32 min_slot_shift
)
233 u64 slot_size
= (u64
)maxlen
* inv_w
;
234 unsigned long size_map
;
237 size_map
= slot_size
>> min_slot_shift
;
241 index
= __fls(size_map
) + 1; /* basically a log_2 */
242 index
-= !(slot_size
- (1ULL << (index
+ min_slot_shift
- 1)));
247 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
248 (unsigned long) ONE_FP
/inv_w
, maxlen
, index
);
253 static void qfq_deactivate_agg(struct qfq_sched
*, struct qfq_aggregate
*);
254 static void qfq_activate_agg(struct qfq_sched
*, struct qfq_aggregate
*,
257 static void qfq_init_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
258 u32 lmax
, u32 weight
)
260 INIT_LIST_HEAD(&agg
->active
);
261 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
264 agg
->class_weight
= weight
;
267 static struct qfq_aggregate
*qfq_find_agg(struct qfq_sched
*q
,
268 u32 lmax
, u32 weight
)
270 struct qfq_aggregate
*agg
;
272 hlist_for_each_entry(agg
, &q
->nonfull_aggs
, nonfull_next
)
273 if (agg
->lmax
== lmax
&& agg
->class_weight
== weight
)
280 /* Update aggregate as a function of the new number of classes. */
281 static void qfq_update_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
286 if (new_num_classes
== q
->max_agg_classes
)
287 hlist_del_init(&agg
->nonfull_next
);
289 if (agg
->num_classes
> new_num_classes
&&
290 new_num_classes
== q
->max_agg_classes
- 1) /* agg no more full */
291 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
293 /* The next assignment may let
294 * agg->initial_budget > agg->budgetmax
295 * hold, we will take it into account in charge_actual_service().
297 agg
->budgetmax
= new_num_classes
* agg
->lmax
;
298 new_agg_weight
= agg
->class_weight
* new_num_classes
;
299 agg
->inv_w
= ONE_FP
/new_agg_weight
;
301 if (agg
->grp
== NULL
) {
302 int i
= qfq_calc_index(agg
->inv_w
, agg
->budgetmax
,
304 agg
->grp
= &q
->groups
[i
];
308 (int) agg
->class_weight
* (new_num_classes
- agg
->num_classes
);
309 q
->iwsum
= ONE_FP
/ q
->wsum
;
311 agg
->num_classes
= new_num_classes
;
314 /* Add class to aggregate. */
315 static void qfq_add_to_agg(struct qfq_sched
*q
,
316 struct qfq_aggregate
*agg
,
317 struct qfq_class
*cl
)
321 qfq_update_agg(q
, agg
, agg
->num_classes
+1);
322 if (cl
->qdisc
->q
.qlen
> 0) { /* adding an active class */
323 list_add_tail(&cl
->alist
, &agg
->active
);
324 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) ==
325 cl
&& q
->in_serv_agg
!= agg
) /* agg was inactive */
326 qfq_activate_agg(q
, agg
, enqueue
); /* schedule agg */
330 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*);
332 static void qfq_destroy_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
334 hlist_del_init(&agg
->nonfull_next
);
335 q
->wsum
-= agg
->class_weight
;
337 q
->iwsum
= ONE_FP
/ q
->wsum
;
339 if (q
->in_serv_agg
== agg
)
340 q
->in_serv_agg
= qfq_choose_next_agg(q
);
344 /* Deschedule class from within its parent aggregate. */
345 static void qfq_deactivate_class(struct qfq_sched
*q
, struct qfq_class
*cl
)
347 struct qfq_aggregate
*agg
= cl
->agg
;
350 list_del(&cl
->alist
); /* remove from RR queue of the aggregate */
351 if (list_empty(&agg
->active
)) /* agg is now inactive */
352 qfq_deactivate_agg(q
, agg
);
355 /* Remove class from its parent aggregate. */
356 static void qfq_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
358 struct qfq_aggregate
*agg
= cl
->agg
;
361 if (agg
->num_classes
== 1) { /* agg being emptied, destroy it */
362 qfq_destroy_agg(q
, agg
);
365 qfq_update_agg(q
, agg
, agg
->num_classes
-1);
368 /* Deschedule class and remove it from its parent aggregate. */
369 static void qfq_deact_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
371 if (cl
->qdisc
->q
.qlen
> 0) /* class is active */
372 qfq_deactivate_class(q
, cl
);
374 qfq_rm_from_agg(q
, cl
);
377 /* Move class to a new aggregate, matching the new class weight and/or lmax */
378 static int qfq_change_agg(struct Qdisc
*sch
, struct qfq_class
*cl
, u32 weight
,
381 struct qfq_sched
*q
= qdisc_priv(sch
);
382 struct qfq_aggregate
*new_agg
;
384 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
385 if (lmax
> QFQ_MAX_LMAX
)
388 new_agg
= qfq_find_agg(q
, lmax
, weight
);
389 if (new_agg
== NULL
) { /* create new aggregate */
390 new_agg
= kzalloc(sizeof(*new_agg
), GFP_ATOMIC
);
393 qfq_init_agg(q
, new_agg
, lmax
, weight
);
395 qfq_deact_rm_from_agg(q
, cl
);
396 qfq_add_to_agg(q
, new_agg
, cl
);
401 static int qfq_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
402 struct nlattr
**tca
, unsigned long *arg
,
403 struct netlink_ext_ack
*extack
)
405 struct qfq_sched
*q
= qdisc_priv(sch
);
406 struct qfq_class
*cl
= (struct qfq_class
*)*arg
;
407 bool existing
= false;
408 struct nlattr
*tb
[TCA_QFQ_MAX
+ 1];
409 struct qfq_aggregate
*new_agg
= NULL
;
410 u32 weight
, lmax
, inv_w
;
414 if (NL_REQ_ATTR_CHECK(extack
, NULL
, tca
, TCA_OPTIONS
)) {
415 NL_SET_ERR_MSG_MOD(extack
, "missing options");
419 err
= nla_parse_nested_deprecated(tb
, TCA_QFQ_MAX
, tca
[TCA_OPTIONS
],
424 if (tb
[TCA_QFQ_WEIGHT
])
425 weight
= nla_get_u32(tb
[TCA_QFQ_WEIGHT
]);
429 if (tb
[TCA_QFQ_LMAX
]) {
430 lmax
= nla_get_u32(tb
[TCA_QFQ_LMAX
]);
432 /* MTU size is user controlled */
433 lmax
= psched_mtu(qdisc_dev(sch
));
434 if (lmax
< QFQ_MIN_LMAX
|| lmax
> QFQ_MAX_LMAX
) {
435 NL_SET_ERR_MSG_MOD(extack
,
436 "MTU size out of bounds for qfq");
441 inv_w
= ONE_FP
/ weight
;
442 weight
= ONE_FP
/ inv_w
;
445 lmax
== cl
->agg
->lmax
&&
446 weight
== cl
->agg
->class_weight
)
447 return 0; /* nothing to change */
449 delta_w
= weight
- (cl
? cl
->agg
->class_weight
: 0);
451 if (q
->wsum
+ delta_w
> QFQ_MAX_WSUM
) {
452 NL_SET_ERR_MSG_FMT_MOD(extack
,
453 "total weight out of range (%d + %u)\n",
458 if (cl
!= NULL
) { /* modify existing class */
460 err
= gen_replace_estimator(&cl
->bstats
, NULL
,
472 /* create and init new class */
473 cl
= kzalloc(sizeof(struct qfq_class
), GFP_KERNEL
);
477 gnet_stats_basic_sync_init(&cl
->bstats
);
478 cl
->common
.classid
= classid
;
481 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
483 if (cl
->qdisc
== NULL
)
484 cl
->qdisc
= &noop_qdisc
;
487 err
= gen_new_estimator(&cl
->bstats
, NULL
,
496 if (cl
->qdisc
!= &noop_qdisc
)
497 qdisc_hash_add(cl
->qdisc
, true);
501 new_agg
= qfq_find_agg(q
, lmax
, weight
);
502 if (new_agg
== NULL
) { /* create new aggregate */
503 sch_tree_unlock(sch
);
504 new_agg
= kzalloc(sizeof(*new_agg
), GFP_KERNEL
);
505 if (new_agg
== NULL
) {
507 gen_kill_estimator(&cl
->rate_est
);
511 qfq_init_agg(q
, new_agg
, lmax
, weight
);
514 qfq_deact_rm_from_agg(q
, cl
);
516 qdisc_class_hash_insert(&q
->clhash
, &cl
->common
);
517 qfq_add_to_agg(q
, new_agg
, cl
);
518 sch_tree_unlock(sch
);
519 qdisc_class_hash_grow(sch
, &q
->clhash
);
521 *arg
= (unsigned long)cl
;
525 qdisc_put(cl
->qdisc
);
530 static void qfq_destroy_class(struct Qdisc
*sch
, struct qfq_class
*cl
)
532 struct qfq_sched
*q
= qdisc_priv(sch
);
534 qfq_rm_from_agg(q
, cl
);
535 gen_kill_estimator(&cl
->rate_est
);
536 qdisc_put(cl
->qdisc
);
540 static int qfq_delete_class(struct Qdisc
*sch
, unsigned long arg
,
541 struct netlink_ext_ack
*extack
)
543 struct qfq_sched
*q
= qdisc_priv(sch
);
544 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
546 if (qdisc_class_in_use(&cl
->common
)) {
547 NL_SET_ERR_MSG_MOD(extack
, "QFQ class in use");
553 qdisc_purge_queue(cl
->qdisc
);
554 qdisc_class_hash_remove(&q
->clhash
, &cl
->common
);
556 sch_tree_unlock(sch
);
558 qfq_destroy_class(sch
, cl
);
562 static unsigned long qfq_search_class(struct Qdisc
*sch
, u32 classid
)
564 return (unsigned long)qfq_find_class(sch
, classid
);
567 static struct tcf_block
*qfq_tcf_block(struct Qdisc
*sch
, unsigned long cl
,
568 struct netlink_ext_ack
*extack
)
570 struct qfq_sched
*q
= qdisc_priv(sch
);
578 static unsigned long qfq_bind_tcf(struct Qdisc
*sch
, unsigned long parent
,
581 struct qfq_class
*cl
= qfq_find_class(sch
, classid
);
584 qdisc_class_get(&cl
->common
);
586 return (unsigned long)cl
;
589 static void qfq_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
591 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
593 qdisc_class_put(&cl
->common
);
596 static int qfq_graft_class(struct Qdisc
*sch
, unsigned long arg
,
597 struct Qdisc
*new, struct Qdisc
**old
,
598 struct netlink_ext_ack
*extack
)
600 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
603 new = qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
604 cl
->common
.classid
, NULL
);
609 *old
= qdisc_replace(sch
, new, &cl
->qdisc
);
613 static struct Qdisc
*qfq_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
615 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
620 static int qfq_dump_class(struct Qdisc
*sch
, unsigned long arg
,
621 struct sk_buff
*skb
, struct tcmsg
*tcm
)
623 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
626 tcm
->tcm_parent
= TC_H_ROOT
;
627 tcm
->tcm_handle
= cl
->common
.classid
;
628 tcm
->tcm_info
= cl
->qdisc
->handle
;
630 nest
= nla_nest_start_noflag(skb
, TCA_OPTIONS
);
632 goto nla_put_failure
;
633 if (nla_put_u32(skb
, TCA_QFQ_WEIGHT
, cl
->agg
->class_weight
) ||
634 nla_put_u32(skb
, TCA_QFQ_LMAX
, cl
->agg
->lmax
))
635 goto nla_put_failure
;
636 return nla_nest_end(skb
, nest
);
639 nla_nest_cancel(skb
, nest
);
643 static int qfq_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
646 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
647 struct tc_qfq_stats xstats
;
649 memset(&xstats
, 0, sizeof(xstats
));
651 xstats
.weight
= cl
->agg
->class_weight
;
652 xstats
.lmax
= cl
->agg
->lmax
;
654 if (gnet_stats_copy_basic(d
, NULL
, &cl
->bstats
, true) < 0 ||
655 gnet_stats_copy_rate_est(d
, &cl
->rate_est
) < 0 ||
656 qdisc_qstats_copy(d
, cl
->qdisc
) < 0)
659 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
662 static void qfq_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
664 struct qfq_sched
*q
= qdisc_priv(sch
);
665 struct qfq_class
*cl
;
671 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
672 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
673 if (!tc_qdisc_stats_dump(sch
, (unsigned long)cl
, arg
))
679 static struct qfq_class
*qfq_classify(struct sk_buff
*skb
, struct Qdisc
*sch
,
682 struct qfq_sched
*q
= qdisc_priv(sch
);
683 struct qfq_class
*cl
;
684 struct tcf_result res
;
685 struct tcf_proto
*fl
;
688 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0) {
689 pr_debug("qfq_classify: found %d\n", skb
->priority
);
690 cl
= qfq_find_class(sch
, skb
->priority
);
695 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
696 fl
= rcu_dereference_bh(q
->filter_list
);
697 result
= tcf_classify(skb
, NULL
, fl
, &res
, false);
699 #ifdef CONFIG_NET_CLS_ACT
704 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
710 cl
= (struct qfq_class
*)res
.class;
712 cl
= qfq_find_class(sch
, res
.classid
);
719 /* Generic comparison function, handling wraparound. */
720 static inline int qfq_gt(u64 a
, u64 b
)
722 return (s64
)(a
- b
) > 0;
725 /* Round a precise timestamp to its slotted value. */
726 static inline u64
qfq_round_down(u64 ts
, unsigned int shift
)
728 return ts
& ~((1ULL << shift
) - 1);
731 /* return the pointer to the group with lowest index in the bitmap */
732 static inline struct qfq_group
*qfq_ffs(struct qfq_sched
*q
,
733 unsigned long bitmap
)
735 int index
= __ffs(bitmap
);
736 return &q
->groups
[index
];
738 /* Calculate a mask to mimic what would be ffs_from(). */
739 static inline unsigned long mask_from(unsigned long bitmap
, int from
)
741 return bitmap
& ~((1UL << from
) - 1);
745 * The state computation relies on ER=0, IR=1, EB=2, IB=3
746 * First compute eligibility comparing grp->S, q->V,
747 * then check if someone is blocking us and possibly add EB
749 static int qfq_calc_state(struct qfq_sched
*q
, const struct qfq_group
*grp
)
751 /* if S > V we are not eligible */
752 unsigned int state
= qfq_gt(grp
->S
, q
->V
);
753 unsigned long mask
= mask_from(q
->bitmaps
[ER
], grp
->index
);
754 struct qfq_group
*next
;
757 next
= qfq_ffs(q
, mask
);
758 if (qfq_gt(grp
->F
, next
->F
))
768 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
769 * q->bitmaps[src] &= ~mask;
770 * but we should make sure that src != dst
772 static inline void qfq_move_groups(struct qfq_sched
*q
, unsigned long mask
,
775 q
->bitmaps
[dst
] |= q
->bitmaps
[src
] & mask
;
776 q
->bitmaps
[src
] &= ~mask
;
779 static void qfq_unblock_groups(struct qfq_sched
*q
, int index
, u64 old_F
)
781 unsigned long mask
= mask_from(q
->bitmaps
[ER
], index
+ 1);
782 struct qfq_group
*next
;
785 next
= qfq_ffs(q
, mask
);
786 if (!qfq_gt(next
->F
, old_F
))
790 mask
= (1UL << index
) - 1;
791 qfq_move_groups(q
, mask
, EB
, ER
);
792 qfq_move_groups(q
, mask
, IB
, IR
);
799 old_V >>= q->min_slot_shift;
805 static void qfq_make_eligible(struct qfq_sched
*q
)
807 unsigned long vslot
= q
->V
>> q
->min_slot_shift
;
808 unsigned long old_vslot
= q
->oldV
>> q
->min_slot_shift
;
810 if (vslot
!= old_vslot
) {
812 int last_flip_pos
= fls(vslot
^ old_vslot
);
814 if (last_flip_pos
> 31) /* higher than the number of groups */
815 mask
= ~0UL; /* make all groups eligible */
817 mask
= (1UL << last_flip_pos
) - 1;
819 qfq_move_groups(q
, mask
, IR
, ER
);
820 qfq_move_groups(q
, mask
, IB
, EB
);
825 * The index of the slot in which the input aggregate agg is to be
826 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
827 * and not a '-1' because the start time of the group may be moved
828 * backward by one slot after the aggregate has been inserted, and
829 * this would cause non-empty slots to be right-shifted by one
832 * QFQ+ fully satisfies this bound to the slot index if the parameters
833 * of the classes are not changed dynamically, and if QFQ+ never
834 * happens to postpone the service of agg unjustly, i.e., it never
835 * happens that the aggregate becomes backlogged and eligible, or just
836 * eligible, while an aggregate with a higher approximated finish time
837 * is being served. In particular, in this case QFQ+ guarantees that
838 * the timestamps of agg are low enough that the slot index is never
839 * higher than 2. Unfortunately, QFQ+ cannot provide the same
840 * guarantee if it happens to unjustly postpone the service of agg, or
841 * if the parameters of some class are changed.
843 * As for the first event, i.e., an out-of-order service, the
844 * upper bound to the slot index guaranteed by QFQ+ grows to
846 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
847 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
849 * The following function deals with this problem by backward-shifting
850 * the timestamps of agg, if needed, so as to guarantee that the slot
851 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
852 * cause the service of other aggregates to be postponed, yet the
853 * worst-case guarantees of these aggregates are not violated. In
854 * fact, in case of no out-of-order service, the timestamps of agg
855 * would have been even lower than they are after the backward shift,
856 * because QFQ+ would have guaranteed a maximum value equal to 2 for
857 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
858 * service is postponed because of the backward-shift would have
859 * however waited for the service of agg before being served.
861 * The other event that may cause the slot index to be higher than 2
862 * for agg is a recent change of the parameters of some class. If the
863 * weight of a class is increased or the lmax (max_pkt_size) of the
864 * class is decreased, then a new aggregate with smaller slot size
865 * than the original parent aggregate of the class may happen to be
866 * activated. The activation of this aggregate should be properly
867 * delayed to when the service of the class has finished in the ideal
868 * system tracked by QFQ+. If the activation of the aggregate is not
869 * delayed to this reference time instant, then this aggregate may be
870 * unjustly served before other aggregates waiting for service. This
871 * may cause the above bound to the slot index to be violated for some
872 * of these unlucky aggregates.
874 * Instead of delaying the activation of the new aggregate, which is
875 * quite complex, the above-discussed capping of the slot index is
876 * used to handle also the consequences of a change of the parameters
879 static void qfq_slot_insert(struct qfq_group
*grp
, struct qfq_aggregate
*agg
,
882 u64 slot
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
883 unsigned int i
; /* slot index in the bucket list */
885 if (unlikely(slot
> QFQ_MAX_SLOTS
- 2)) {
886 u64 deltaS
= roundedS
- grp
->S
-
887 ((u64
)(QFQ_MAX_SLOTS
- 2)<<grp
->slot_shift
);
890 slot
= QFQ_MAX_SLOTS
- 2;
893 i
= (grp
->front
+ slot
) % QFQ_MAX_SLOTS
;
895 hlist_add_head(&agg
->next
, &grp
->slots
[i
]);
896 __set_bit(slot
, &grp
->full_slots
);
899 /* Maybe introduce hlist_first_entry?? */
900 static struct qfq_aggregate
*qfq_slot_head(struct qfq_group
*grp
)
902 return hlist_entry(grp
->slots
[grp
->front
].first
,
903 struct qfq_aggregate
, next
);
907 * remove the entry from the slot
909 static void qfq_front_slot_remove(struct qfq_group
*grp
)
911 struct qfq_aggregate
*agg
= qfq_slot_head(grp
);
914 hlist_del(&agg
->next
);
915 if (hlist_empty(&grp
->slots
[grp
->front
]))
916 __clear_bit(0, &grp
->full_slots
);
920 * Returns the first aggregate in the first non-empty bucket of the
921 * group. As a side effect, adjusts the bucket list so the first
922 * non-empty bucket is at position 0 in full_slots.
924 static struct qfq_aggregate
*qfq_slot_scan(struct qfq_group
*grp
)
928 pr_debug("qfq slot_scan: grp %u full %#lx\n",
929 grp
->index
, grp
->full_slots
);
931 if (grp
->full_slots
== 0)
934 i
= __ffs(grp
->full_slots
); /* zero based */
936 grp
->front
= (grp
->front
+ i
) % QFQ_MAX_SLOTS
;
937 grp
->full_slots
>>= i
;
940 return qfq_slot_head(grp
);
944 * adjust the bucket list. When the start time of a group decreases,
945 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
946 * move the objects. The mask of occupied slots must be shifted
947 * because we use ffs() to find the first non-empty slot.
948 * This covers decreases in the group's start time, but what about
949 * increases of the start time ?
950 * Here too we should make sure that i is less than 32
952 static void qfq_slot_rotate(struct qfq_group
*grp
, u64 roundedS
)
954 unsigned int i
= (grp
->S
- roundedS
) >> grp
->slot_shift
;
956 grp
->full_slots
<<= i
;
957 grp
->front
= (grp
->front
- i
) % QFQ_MAX_SLOTS
;
960 static void qfq_update_eligible(struct qfq_sched
*q
)
962 struct qfq_group
*grp
;
963 unsigned long ineligible
;
965 ineligible
= q
->bitmaps
[IR
] | q
->bitmaps
[IB
];
967 if (!q
->bitmaps
[ER
]) {
968 grp
= qfq_ffs(q
, ineligible
);
969 if (qfq_gt(grp
->S
, q
->V
))
972 qfq_make_eligible(q
);
976 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
977 static struct sk_buff
*agg_dequeue(struct qfq_aggregate
*agg
,
978 struct qfq_class
*cl
, unsigned int len
)
980 struct sk_buff
*skb
= qdisc_dequeue_peeked(cl
->qdisc
);
985 cl
->deficit
-= (int) len
;
987 if (cl
->qdisc
->q
.qlen
== 0) /* no more packets, remove from list */
988 list_del(&cl
->alist
);
989 else if (cl
->deficit
< qdisc_pkt_len(cl
->qdisc
->ops
->peek(cl
->qdisc
))) {
990 cl
->deficit
+= agg
->lmax
;
991 list_move_tail(&cl
->alist
, &agg
->active
);
997 static inline struct sk_buff
*qfq_peek_skb(struct qfq_aggregate
*agg
,
998 struct qfq_class
**cl
,
1001 struct sk_buff
*skb
;
1003 *cl
= list_first_entry(&agg
->active
, struct qfq_class
, alist
);
1004 skb
= (*cl
)->qdisc
->ops
->peek((*cl
)->qdisc
);
1006 qdisc_warn_nonwc("qfq_dequeue", (*cl
)->qdisc
);
1008 *len
= qdisc_pkt_len(skb
);
1013 /* Update F according to the actual service received by the aggregate. */
1014 static inline void charge_actual_service(struct qfq_aggregate
*agg
)
1016 /* Compute the service received by the aggregate, taking into
1017 * account that, after decreasing the number of classes in
1018 * agg, it may happen that
1019 * agg->initial_budget - agg->budget > agg->bugdetmax
1021 u32 service_received
= min(agg
->budgetmax
,
1022 agg
->initial_budget
- agg
->budget
);
1024 agg
->F
= agg
->S
+ (u64
)service_received
* agg
->inv_w
;
1027 /* Assign a reasonable start time for a new aggregate in group i.
1028 * Admissible values for \hat(F) are multiples of \sigma_i
1029 * no greater than V+\sigma_i . Larger values mean that
1030 * we had a wraparound so we consider the timestamp to be stale.
1032 * If F is not stale and F >= V then we set S = F.
1033 * Otherwise we should assign S = V, but this may violate
1034 * the ordering in EB (see [2]). So, if we have groups in ER,
1035 * set S to the F_j of the first group j which would be blocking us.
1036 * We are guaranteed not to move S backward because
1037 * otherwise our group i would still be blocked.
1039 static void qfq_update_start(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1042 u64 limit
, roundedF
;
1043 int slot_shift
= agg
->grp
->slot_shift
;
1045 roundedF
= qfq_round_down(agg
->F
, slot_shift
);
1046 limit
= qfq_round_down(q
->V
, slot_shift
) + (1ULL << slot_shift
);
1048 if (!qfq_gt(agg
->F
, q
->V
) || qfq_gt(roundedF
, limit
)) {
1049 /* timestamp was stale */
1050 mask
= mask_from(q
->bitmaps
[ER
], agg
->grp
->index
);
1052 struct qfq_group
*next
= qfq_ffs(q
, mask
);
1053 if (qfq_gt(roundedF
, next
->F
)) {
1054 if (qfq_gt(limit
, next
->F
))
1056 else /* preserve timestamp correctness */
1062 } else /* timestamp is not stale */
1066 /* Update the timestamps of agg before scheduling/rescheduling it for
1067 * service. In particular, assign to agg->F its maximum possible
1068 * value, i.e., the virtual finish time with which the aggregate
1069 * should be labeled if it used all its budget once in service.
1072 qfq_update_agg_ts(struct qfq_sched
*q
,
1073 struct qfq_aggregate
*agg
, enum update_reason reason
)
1075 if (reason
!= requeue
)
1076 qfq_update_start(q
, agg
);
1077 else /* just charge agg for the service received */
1080 agg
->F
= agg
->S
+ (u64
)agg
->budgetmax
* agg
->inv_w
;
1083 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
);
1085 static struct sk_buff
*qfq_dequeue(struct Qdisc
*sch
)
1087 struct qfq_sched
*q
= qdisc_priv(sch
);
1088 struct qfq_aggregate
*in_serv_agg
= q
->in_serv_agg
;
1089 struct qfq_class
*cl
;
1090 struct sk_buff
*skb
= NULL
;
1091 /* next-packet len, 0 means no more active classes in in-service agg */
1092 unsigned int len
= 0;
1094 if (in_serv_agg
== NULL
)
1097 if (!list_empty(&in_serv_agg
->active
))
1098 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1101 * If there are no active classes in the in-service aggregate,
1102 * or if the aggregate has not enough budget to serve its next
1103 * class, then choose the next aggregate to serve.
1105 if (len
== 0 || in_serv_agg
->budget
< len
) {
1106 charge_actual_service(in_serv_agg
);
1108 /* recharge the budget of the aggregate */
1109 in_serv_agg
->initial_budget
= in_serv_agg
->budget
=
1110 in_serv_agg
->budgetmax
;
1112 if (!list_empty(&in_serv_agg
->active
)) {
1114 * Still active: reschedule for
1115 * service. Possible optimization: if no other
1116 * aggregate is active, then there is no point
1117 * in rescheduling this aggregate, and we can
1118 * just keep it as the in-service one. This
1119 * should be however a corner case, and to
1120 * handle it, we would need to maintain an
1121 * extra num_active_aggs field.
1123 qfq_update_agg_ts(q
, in_serv_agg
, requeue
);
1124 qfq_schedule_agg(q
, in_serv_agg
);
1125 } else if (sch
->q
.qlen
== 0) { /* no aggregate to serve */
1126 q
->in_serv_agg
= NULL
;
1131 * If we get here, there are other aggregates queued:
1132 * choose the new aggregate to serve.
1134 in_serv_agg
= q
->in_serv_agg
= qfq_choose_next_agg(q
);
1135 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1142 skb
= agg_dequeue(in_serv_agg
, cl
, len
);
1149 qdisc_qstats_backlog_dec(sch
, skb
);
1150 qdisc_bstats_update(sch
, skb
);
1152 /* If lmax is lowered, through qfq_change_class, for a class
1153 * owning pending packets with larger size than the new value
1154 * of lmax, then the following condition may hold.
1156 if (unlikely(in_serv_agg
->budget
< len
))
1157 in_serv_agg
->budget
= 0;
1159 in_serv_agg
->budget
-= len
;
1161 q
->V
+= (u64
)len
* q
->iwsum
;
1162 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1163 len
, (unsigned long long) in_serv_agg
->F
,
1164 (unsigned long long) q
->V
);
1169 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*q
)
1171 struct qfq_group
*grp
;
1172 struct qfq_aggregate
*agg
, *new_front_agg
;
1175 qfq_update_eligible(q
);
1178 if (!q
->bitmaps
[ER
])
1181 grp
= qfq_ffs(q
, q
->bitmaps
[ER
]);
1184 agg
= qfq_slot_head(grp
);
1186 /* agg starts to be served, remove it from schedule */
1187 qfq_front_slot_remove(grp
);
1189 new_front_agg
= qfq_slot_scan(grp
);
1191 if (new_front_agg
== NULL
) /* group is now inactive, remove from ER */
1192 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1194 u64 roundedS
= qfq_round_down(new_front_agg
->S
,
1198 if (grp
->S
== roundedS
)
1201 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1202 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1203 s
= qfq_calc_state(q
, grp
);
1204 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1207 qfq_unblock_groups(q
, grp
->index
, old_F
);
1212 static int qfq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
1213 struct sk_buff
**to_free
)
1215 unsigned int len
= qdisc_pkt_len(skb
), gso_segs
;
1216 struct qfq_sched
*q
= qdisc_priv(sch
);
1217 struct qfq_class
*cl
;
1218 struct qfq_aggregate
*agg
;
1222 cl
= qfq_classify(skb
, sch
, &err
);
1224 if (err
& __NET_XMIT_BYPASS
)
1225 qdisc_qstats_drop(sch
);
1226 __qdisc_drop(skb
, to_free
);
1229 pr_debug("qfq_enqueue: cl = %x\n", cl
->common
.classid
);
1231 if (unlikely(cl
->agg
->lmax
< len
)) {
1232 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1233 cl
->agg
->lmax
, len
, cl
->common
.classid
);
1234 err
= qfq_change_agg(sch
, cl
, cl
->agg
->class_weight
, len
);
1237 return qdisc_drop(skb
, sch
, to_free
);
1241 gso_segs
= skb_is_gso(skb
) ? skb_shinfo(skb
)->gso_segs
: 1;
1242 first
= !cl
->qdisc
->q
.qlen
;
1243 err
= qdisc_enqueue(skb
, cl
->qdisc
, to_free
);
1244 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1245 pr_debug("qfq_enqueue: enqueue failed %d\n", err
);
1246 if (net_xmit_drop_count(err
)) {
1248 qdisc_qstats_drop(sch
);
1253 _bstats_update(&cl
->bstats
, len
, gso_segs
);
1254 sch
->qstats
.backlog
+= len
;
1258 /* if the queue was not empty, then done here */
1260 if (unlikely(skb
== cl
->qdisc
->ops
->peek(cl
->qdisc
)) &&
1261 list_first_entry(&agg
->active
, struct qfq_class
, alist
)
1262 == cl
&& cl
->deficit
< len
)
1263 list_move_tail(&cl
->alist
, &agg
->active
);
1268 /* schedule class for service within the aggregate */
1269 cl
->deficit
= agg
->lmax
;
1270 list_add_tail(&cl
->alist
, &agg
->active
);
1272 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) != cl
||
1273 q
->in_serv_agg
== agg
)
1274 return err
; /* non-empty or in service, nothing else to do */
1276 qfq_activate_agg(q
, agg
, enqueue
);
1282 * Schedule aggregate according to its timestamps.
1284 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1286 struct qfq_group
*grp
= agg
->grp
;
1290 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1293 * Insert agg in the correct bucket.
1294 * If agg->S >= grp->S we don't need to adjust the
1295 * bucket list and simply go to the insertion phase.
1296 * Otherwise grp->S is decreasing, we must make room
1297 * in the bucket list, and also recompute the group state.
1298 * Finally, if there were no flows in this group and nobody
1299 * was in ER make sure to adjust V.
1301 if (grp
->full_slots
) {
1302 if (!qfq_gt(grp
->S
, agg
->S
))
1305 /* create a slot for this agg->S */
1306 qfq_slot_rotate(grp
, roundedS
);
1307 /* group was surely ineligible, remove */
1308 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1309 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1310 } else if (!q
->bitmaps
[ER
] && qfq_gt(roundedS
, q
->V
) &&
1311 q
->in_serv_agg
== NULL
)
1315 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1316 s
= qfq_calc_state(q
, grp
);
1317 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1319 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1321 (unsigned long long) agg
->S
,
1322 (unsigned long long) agg
->F
,
1323 (unsigned long long) q
->V
);
1326 qfq_slot_insert(grp
, agg
, roundedS
);
1330 /* Update agg ts and schedule agg for service */
1331 static void qfq_activate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
1332 enum update_reason reason
)
1334 agg
->initial_budget
= agg
->budget
= agg
->budgetmax
; /* recharge budg. */
1336 qfq_update_agg_ts(q
, agg
, reason
);
1337 if (q
->in_serv_agg
== NULL
) { /* no aggr. in service or scheduled */
1338 q
->in_serv_agg
= agg
; /* start serving this aggregate */
1339 /* update V: to be in service, agg must be eligible */
1340 q
->oldV
= q
->V
= agg
->S
;
1341 } else if (agg
!= q
->in_serv_agg
)
1342 qfq_schedule_agg(q
, agg
);
1345 static void qfq_slot_remove(struct qfq_sched
*q
, struct qfq_group
*grp
,
1346 struct qfq_aggregate
*agg
)
1348 unsigned int i
, offset
;
1351 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1352 offset
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
1354 i
= (grp
->front
+ offset
) % QFQ_MAX_SLOTS
;
1356 hlist_del(&agg
->next
);
1357 if (hlist_empty(&grp
->slots
[i
]))
1358 __clear_bit(offset
, &grp
->full_slots
);
1362 * Called to forcibly deschedule an aggregate. If the aggregate is
1363 * not in the front bucket, or if the latter has other aggregates in
1364 * the front bucket, we can simply remove the aggregate with no other
1366 * Otherwise we must propagate the event up.
1368 static void qfq_deactivate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1370 struct qfq_group
*grp
= agg
->grp
;
1375 if (agg
== q
->in_serv_agg
) {
1376 charge_actual_service(agg
);
1377 q
->in_serv_agg
= qfq_choose_next_agg(q
);
1382 qfq_slot_remove(q
, grp
, agg
);
1384 if (!grp
->full_slots
) {
1385 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1386 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1387 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1389 if (test_bit(grp
->index
, &q
->bitmaps
[ER
]) &&
1390 !(q
->bitmaps
[ER
] & ~((1UL << grp
->index
) - 1))) {
1391 mask
= q
->bitmaps
[ER
] & ((1UL << grp
->index
) - 1);
1393 mask
= ~((1UL << __fls(mask
)) - 1);
1396 qfq_move_groups(q
, mask
, EB
, ER
);
1397 qfq_move_groups(q
, mask
, IB
, IR
);
1399 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1400 } else if (hlist_empty(&grp
->slots
[grp
->front
])) {
1401 agg
= qfq_slot_scan(grp
);
1402 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1403 if (grp
->S
!= roundedS
) {
1404 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1405 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1406 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1407 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1409 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1410 s
= qfq_calc_state(q
, grp
);
1411 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1416 static void qfq_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1418 struct qfq_sched
*q
= qdisc_priv(sch
);
1419 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
1421 qfq_deactivate_class(q
, cl
);
1424 static int qfq_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
,
1425 struct netlink_ext_ack
*extack
)
1427 struct qfq_sched
*q
= qdisc_priv(sch
);
1428 struct qfq_group
*grp
;
1430 u32 max_cl_shift
, maxbudg_shift
, max_classes
;
1432 err
= tcf_block_get(&q
->block
, &q
->filter_list
, sch
, extack
);
1436 err
= qdisc_class_hash_init(&q
->clhash
);
1440 max_classes
= min_t(u64
, (u64
)qdisc_dev(sch
)->tx_queue_len
+ 1,
1441 QFQ_MAX_AGG_CLASSES
);
1442 /* max_cl_shift = floor(log_2(max_classes)) */
1443 max_cl_shift
= __fls(max_classes
);
1444 q
->max_agg_classes
= 1<<max_cl_shift
;
1446 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1447 maxbudg_shift
= QFQ_MTU_SHIFT
+ max_cl_shift
;
1448 q
->min_slot_shift
= FRAC_BITS
+ maxbudg_shift
- QFQ_MAX_INDEX
;
1450 for (i
= 0; i
<= QFQ_MAX_INDEX
; i
++) {
1451 grp
= &q
->groups
[i
];
1453 grp
->slot_shift
= q
->min_slot_shift
+ i
;
1454 for (j
= 0; j
< QFQ_MAX_SLOTS
; j
++)
1455 INIT_HLIST_HEAD(&grp
->slots
[j
]);
1458 INIT_HLIST_HEAD(&q
->nonfull_aggs
);
1463 static void qfq_reset_qdisc(struct Qdisc
*sch
)
1465 struct qfq_sched
*q
= qdisc_priv(sch
);
1466 struct qfq_class
*cl
;
1469 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1470 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
1471 if (cl
->qdisc
->q
.qlen
> 0)
1472 qfq_deactivate_class(q
, cl
);
1474 qdisc_reset(cl
->qdisc
);
1479 static void qfq_destroy_qdisc(struct Qdisc
*sch
)
1481 struct qfq_sched
*q
= qdisc_priv(sch
);
1482 struct qfq_class
*cl
;
1483 struct hlist_node
*next
;
1486 tcf_block_put(q
->block
);
1488 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1489 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1491 qfq_destroy_class(sch
, cl
);
1494 qdisc_class_hash_destroy(&q
->clhash
);
1497 static const struct Qdisc_class_ops qfq_class_ops
= {
1498 .change
= qfq_change_class
,
1499 .delete = qfq_delete_class
,
1500 .find
= qfq_search_class
,
1501 .tcf_block
= qfq_tcf_block
,
1502 .bind_tcf
= qfq_bind_tcf
,
1503 .unbind_tcf
= qfq_unbind_tcf
,
1504 .graft
= qfq_graft_class
,
1505 .leaf
= qfq_class_leaf
,
1506 .qlen_notify
= qfq_qlen_notify
,
1507 .dump
= qfq_dump_class
,
1508 .dump_stats
= qfq_dump_class_stats
,
1512 static struct Qdisc_ops qfq_qdisc_ops __read_mostly
= {
1513 .cl_ops
= &qfq_class_ops
,
1515 .priv_size
= sizeof(struct qfq_sched
),
1516 .enqueue
= qfq_enqueue
,
1517 .dequeue
= qfq_dequeue
,
1518 .peek
= qdisc_peek_dequeued
,
1519 .init
= qfq_init_qdisc
,
1520 .reset
= qfq_reset_qdisc
,
1521 .destroy
= qfq_destroy_qdisc
,
1522 .owner
= THIS_MODULE
,
1524 MODULE_ALIAS_NET_SCH("qfq");
1526 static int __init
qfq_init(void)
1528 return register_qdisc(&qfq_qdisc_ops
);
1531 static void __exit
qfq_exit(void)
1533 unregister_qdisc(&qfq_qdisc_ops
);
1536 module_init(qfq_init
);
1537 module_exit(qfq_exit
);
1538 MODULE_LICENSE("GPL");
1539 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");