drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / net / vmw_vsock / vmci_transport.c
blobb370070194fa4ac0df45a073d389ffccf69a0029
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
30 #include "vmci_transport_notify.h"
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 const struct vmci_event_data *ed,
36 void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 struct sock *sk,
43 struct sock *pending,
44 struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 struct sock *sk,
47 struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 struct sock *sk,
50 struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 struct sock *sk,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
62 struct vmci_transport_recv_pkt_info {
63 struct work_struct work;
64 struct sock *sk;
65 struct vmci_transport_packet pkt;
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73 VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
76 static int PROTOCOL_OVERRIDE = -1;
78 static struct vsock_transport vmci_transport; /* forward declaration */
80 /* Helper function to convert from a VMCI error code to a VSock error code. */
82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
84 switch (vmci_error) {
85 case VMCI_ERROR_NO_MEM:
86 return -ENOMEM;
87 case VMCI_ERROR_DUPLICATE_ENTRY:
88 case VMCI_ERROR_ALREADY_EXISTS:
89 return -EADDRINUSE;
90 case VMCI_ERROR_NO_ACCESS:
91 return -EPERM;
92 case VMCI_ERROR_NO_RESOURCES:
93 return -ENOBUFS;
94 case VMCI_ERROR_INVALID_RESOURCE:
95 return -EHOSTUNREACH;
96 case VMCI_ERROR_INVALID_ARGS:
97 default:
98 break;
100 return -EINVAL;
103 static u32 vmci_transport_peer_rid(u32 peer_cid)
105 if (VMADDR_CID_HYPERVISOR == peer_cid)
106 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
108 return VMCI_TRANSPORT_PACKET_RID;
111 static inline void
112 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113 struct sockaddr_vm *src,
114 struct sockaddr_vm *dst,
115 u8 type,
116 u64 size,
117 u64 mode,
118 struct vmci_transport_waiting_info *wait,
119 u16 proto,
120 struct vmci_handle handle)
122 /* We register the stream control handler as an any cid handle so we
123 * must always send from a source address of VMADDR_CID_ANY
125 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126 VMCI_TRANSPORT_PACKET_RID);
127 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128 vmci_transport_peer_rid(dst->svm_cid));
129 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131 pkt->type = type;
132 pkt->src_port = src->svm_port;
133 pkt->dst_port = dst->svm_port;
134 memset(&pkt->proto, 0, sizeof(pkt->proto));
135 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
137 switch (pkt->type) {
138 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139 pkt->u.size = 0;
140 break;
142 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144 pkt->u.size = size;
145 break;
147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149 pkt->u.handle = handle;
150 break;
152 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153 case VMCI_TRANSPORT_PACKET_TYPE_READ:
154 case VMCI_TRANSPORT_PACKET_TYPE_RST:
155 pkt->u.size = 0;
156 break;
158 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159 pkt->u.mode = mode;
160 break;
162 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165 break;
167 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169 pkt->u.size = size;
170 pkt->proto = proto;
171 break;
175 static inline void
176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177 struct sockaddr_vm *local,
178 struct sockaddr_vm *remote)
180 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
184 static int
185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186 struct sockaddr_vm *src,
187 struct sockaddr_vm *dst,
188 enum vmci_transport_packet_type type,
189 u64 size,
190 u64 mode,
191 struct vmci_transport_waiting_info *wait,
192 u16 proto,
193 struct vmci_handle handle,
194 bool convert_error)
196 int err;
198 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199 proto, handle);
200 err = vmci_datagram_send(&pkt->dg);
201 if (convert_error && (err < 0))
202 return vmci_transport_error_to_vsock_error(err);
204 return err;
207 static int
208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209 enum vmci_transport_packet_type type,
210 u64 size,
211 u64 mode,
212 struct vmci_transport_waiting_info *wait,
213 struct vmci_handle handle)
215 struct vmci_transport_packet reply;
216 struct sockaddr_vm src, dst;
218 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219 return 0;
220 } else {
221 vmci_transport_packet_get_addresses(pkt, &src, &dst);
222 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223 type,
224 size, mode, wait,
225 VSOCK_PROTO_INVALID,
226 handle, true);
230 static int
231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232 struct sockaddr_vm *dst,
233 enum vmci_transport_packet_type type,
234 u64 size,
235 u64 mode,
236 struct vmci_transport_waiting_info *wait,
237 struct vmci_handle handle)
239 /* Note that it is safe to use a single packet across all CPUs since
240 * two tasklets of the same type are guaranteed to not ever run
241 * simultaneously. If that ever changes, or VMCI stops using tasklets,
242 * we can use per-cpu packets.
244 static struct vmci_transport_packet pkt;
246 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247 size, mode, wait,
248 VSOCK_PROTO_INVALID, handle,
249 false);
252 static int
253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254 struct sockaddr_vm *dst,
255 enum vmci_transport_packet_type type,
256 u64 size,
257 u64 mode,
258 struct vmci_transport_waiting_info *wait,
259 u16 proto,
260 struct vmci_handle handle)
262 struct vmci_transport_packet *pkt;
263 int err;
265 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266 if (!pkt)
267 return -ENOMEM;
269 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270 mode, wait, proto, handle,
271 true);
272 kfree(pkt);
274 return err;
277 static int
278 vmci_transport_send_control_pkt(struct sock *sk,
279 enum vmci_transport_packet_type type,
280 u64 size,
281 u64 mode,
282 struct vmci_transport_waiting_info *wait,
283 u16 proto,
284 struct vmci_handle handle)
286 struct vsock_sock *vsk;
288 vsk = vsock_sk(sk);
290 if (!vsock_addr_bound(&vsk->local_addr))
291 return -EINVAL;
293 if (!vsock_addr_bound(&vsk->remote_addr))
294 return -EINVAL;
296 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297 &vsk->remote_addr,
298 type, size, mode,
299 wait, proto, handle);
302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303 struct sockaddr_vm *src,
304 struct vmci_transport_packet *pkt)
306 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307 return 0;
308 return vmci_transport_send_control_pkt_bh(
309 dst, src,
310 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311 0, NULL, VMCI_INVALID_HANDLE);
314 static int vmci_transport_send_reset(struct sock *sk,
315 struct vmci_transport_packet *pkt)
317 struct sockaddr_vm *dst_ptr;
318 struct sockaddr_vm dst;
319 struct vsock_sock *vsk;
321 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322 return 0;
324 vsk = vsock_sk(sk);
326 if (!vsock_addr_bound(&vsk->local_addr))
327 return -EINVAL;
329 if (vsock_addr_bound(&vsk->remote_addr)) {
330 dst_ptr = &vsk->remote_addr;
331 } else {
332 vsock_addr_init(&dst, pkt->dg.src.context,
333 pkt->src_port);
334 dst_ptr = &dst;
336 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337 VMCI_TRANSPORT_PACKET_TYPE_RST,
338 0, 0, NULL, VSOCK_PROTO_INVALID,
339 VMCI_INVALID_HANDLE);
342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
344 return vmci_transport_send_control_pkt(
346 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347 size, 0, NULL,
348 VSOCK_PROTO_INVALID,
349 VMCI_INVALID_HANDLE);
352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353 u16 version)
355 return vmci_transport_send_control_pkt(
357 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358 size, 0, NULL, version,
359 VMCI_INVALID_HANDLE);
362 static int vmci_transport_send_qp_offer(struct sock *sk,
363 struct vmci_handle handle)
365 return vmci_transport_send_control_pkt(
366 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367 0, NULL,
368 VSOCK_PROTO_INVALID, handle);
371 static int vmci_transport_send_attach(struct sock *sk,
372 struct vmci_handle handle)
374 return vmci_transport_send_control_pkt(
375 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376 0, 0, NULL, VSOCK_PROTO_INVALID,
377 handle);
380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
382 return vmci_transport_reply_control_pkt_fast(
383 pkt,
384 VMCI_TRANSPORT_PACKET_TYPE_RST,
385 0, 0, NULL,
386 VMCI_INVALID_HANDLE);
389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390 struct sockaddr_vm *src)
392 return vmci_transport_send_control_pkt_bh(
393 dst, src,
394 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395 0, 0, NULL, VMCI_INVALID_HANDLE);
398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399 struct sockaddr_vm *src)
401 return vmci_transport_send_control_pkt_bh(
402 dst, src,
403 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404 0, NULL, VMCI_INVALID_HANDLE);
407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408 struct sockaddr_vm *src)
410 return vmci_transport_send_control_pkt_bh(
411 dst, src,
412 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413 0, NULL, VMCI_INVALID_HANDLE);
416 int vmci_transport_send_wrote(struct sock *sk)
418 return vmci_transport_send_control_pkt(
419 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420 0, NULL, VSOCK_PROTO_INVALID,
421 VMCI_INVALID_HANDLE);
424 int vmci_transport_send_read(struct sock *sk)
426 return vmci_transport_send_control_pkt(
427 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428 0, NULL, VSOCK_PROTO_INVALID,
429 VMCI_INVALID_HANDLE);
432 int vmci_transport_send_waiting_write(struct sock *sk,
433 struct vmci_transport_waiting_info *wait)
435 return vmci_transport_send_control_pkt(
436 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437 0, 0, wait, VSOCK_PROTO_INVALID,
438 VMCI_INVALID_HANDLE);
441 int vmci_transport_send_waiting_read(struct sock *sk,
442 struct vmci_transport_waiting_info *wait)
444 return vmci_transport_send_control_pkt(
445 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446 0, 0, wait, VSOCK_PROTO_INVALID,
447 VMCI_INVALID_HANDLE);
450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
452 return vmci_transport_send_control_pkt(
453 &vsk->sk,
454 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455 0, mode, NULL,
456 VSOCK_PROTO_INVALID,
457 VMCI_INVALID_HANDLE);
460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
462 return vmci_transport_send_control_pkt(sk,
463 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464 size, 0, NULL,
465 VSOCK_PROTO_INVALID,
466 VMCI_INVALID_HANDLE);
469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470 u16 version)
472 return vmci_transport_send_control_pkt(
473 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474 size, 0, NULL, version,
475 VMCI_INVALID_HANDLE);
478 static struct sock *vmci_transport_get_pending(
479 struct sock *listener,
480 struct vmci_transport_packet *pkt)
482 struct vsock_sock *vlistener;
483 struct vsock_sock *vpending;
484 struct sock *pending;
485 struct sockaddr_vm src;
487 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
489 vlistener = vsock_sk(listener);
491 list_for_each_entry(vpending, &vlistener->pending_links,
492 pending_links) {
493 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494 pkt->dst_port == vpending->local_addr.svm_port) {
495 pending = sk_vsock(vpending);
496 sock_hold(pending);
497 goto found;
501 pending = NULL;
502 found:
503 return pending;
507 static void vmci_transport_release_pending(struct sock *pending)
509 sock_put(pending);
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513 * trusted sockets 2) sockets from applications running as the same user as the
514 * VM (this is only true for the host side and only when using hosted products)
517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
519 return vsock->trusted ||
520 vmci_is_context_owner(peer_cid, vsock->owner->uid);
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524 * only if it is trusted as described in vmci_transport_is_trusted.
527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
529 if (VMADDR_CID_HYPERVISOR == peer_cid)
530 return true;
532 if (vsock->cached_peer != peer_cid) {
533 vsock->cached_peer = peer_cid;
534 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535 (vmci_context_get_priv_flags(peer_cid) &
536 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537 vsock->cached_peer_allow_dgram = false;
538 } else {
539 vsock->cached_peer_allow_dgram = true;
543 return vsock->cached_peer_allow_dgram;
546 static int
547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548 struct vmci_handle *handle,
549 u64 produce_size,
550 u64 consume_size,
551 u32 peer, u32 flags, bool trusted)
553 int err = 0;
555 if (trusted) {
556 /* Try to allocate our queue pair as trusted. This will only
557 * work if vsock is running in the host.
560 err = vmci_qpair_alloc(qpair, handle, produce_size,
561 consume_size,
562 peer, flags,
563 VMCI_PRIVILEGE_FLAG_TRUSTED);
564 if (err != VMCI_ERROR_NO_ACCESS)
565 goto out;
569 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571 out:
572 if (err < 0) {
573 pr_err_once("Could not attach to queue pair with %d\n", err);
574 err = vmci_transport_error_to_vsock_error(err);
577 return err;
580 static int
581 vmci_transport_datagram_create_hnd(u32 resource_id,
582 u32 flags,
583 vmci_datagram_recv_cb recv_cb,
584 void *client_data,
585 struct vmci_handle *out_handle)
587 int err = 0;
589 /* Try to allocate our datagram handler as trusted. This will only work
590 * if vsock is running in the host.
593 err = vmci_datagram_create_handle_priv(resource_id, flags,
594 VMCI_PRIVILEGE_FLAG_TRUSTED,
595 recv_cb,
596 client_data, out_handle);
598 if (err == VMCI_ERROR_NO_ACCESS)
599 err = vmci_datagram_create_handle(resource_id, flags,
600 recv_cb, client_data,
601 out_handle);
603 return err;
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607 * interrupt fires. This is run in bottom-half context and if it ever needs to
608 * sleep it should defer that work to a work queue.
611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
613 struct sock *sk;
614 size_t size;
615 struct sk_buff *skb;
616 struct vsock_sock *vsk;
618 sk = (struct sock *)data;
620 /* This handler is privileged when this module is running on the host.
621 * We will get datagrams from all endpoints (even VMs that are in a
622 * restricted context). If we get one from a restricted context then
623 * the destination socket must be trusted.
625 * NOTE: We access the socket struct without holding the lock here.
626 * This is ok because the field we are interested is never modified
627 * outside of the create and destruct socket functions.
629 vsk = vsock_sk(sk);
630 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631 return VMCI_ERROR_NO_ACCESS;
633 size = VMCI_DG_SIZE(dg);
635 /* Attach the packet to the socket's receive queue as an sk_buff. */
636 skb = alloc_skb(size, GFP_ATOMIC);
637 if (!skb)
638 return VMCI_ERROR_NO_MEM;
640 /* sk_receive_skb() will do a sock_put(), so hold here. */
641 sock_hold(sk);
642 skb_put(skb, size);
643 memcpy(skb->data, dg, size);
644 sk_receive_skb(sk, skb, 0);
646 return VMCI_SUCCESS;
649 static bool vmci_transport_stream_allow(u32 cid, u32 port)
651 static const u32 non_socket_contexts[] = {
652 VMADDR_CID_LOCAL,
654 int i;
656 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
658 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659 if (cid == non_socket_contexts[i])
660 return false;
663 return true;
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667 * interrupt fires. This is run in bottom-half context but it defers most of
668 * its work to the packet handling work queue.
671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
673 struct sock *sk;
674 struct sockaddr_vm dst;
675 struct sockaddr_vm src;
676 struct vmci_transport_packet *pkt;
677 struct vsock_sock *vsk;
678 bool bh_process_pkt;
679 int err;
681 sk = NULL;
682 err = VMCI_SUCCESS;
683 bh_process_pkt = false;
685 /* Ignore incoming packets from contexts without sockets, or resources
686 * that aren't vsock implementations.
689 if (!vmci_transport_stream_allow(dg->src.context, -1)
690 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691 return VMCI_ERROR_NO_ACCESS;
693 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694 /* Drop datagrams that do not contain full VSock packets. */
695 return VMCI_ERROR_INVALID_ARGS;
697 pkt = (struct vmci_transport_packet *)dg;
699 /* Find the socket that should handle this packet. First we look for a
700 * connected socket and if there is none we look for a socket bound to
701 * the destintation address.
703 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
706 sk = vsock_find_connected_socket(&src, &dst);
707 if (!sk) {
708 sk = vsock_find_bound_socket(&dst);
709 if (!sk) {
710 /* We could not find a socket for this specified
711 * address. If this packet is a RST, we just drop it.
712 * If it is another packet, we send a RST. Note that
713 * we do not send a RST reply to RSTs so that we do not
714 * continually send RSTs between two endpoints.
716 * Note that since this is a reply, dst is src and src
717 * is dst.
719 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720 pr_err("unable to send reset\n");
722 err = VMCI_ERROR_NOT_FOUND;
723 goto out;
727 /* If the received packet type is beyond all types known to this
728 * implementation, reply with an invalid message. Hopefully this will
729 * help when implementing backwards compatibility in the future.
731 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732 vmci_transport_send_invalid_bh(&dst, &src);
733 err = VMCI_ERROR_INVALID_ARGS;
734 goto out;
737 /* This handler is privileged when this module is running on the host.
738 * We will get datagram connect requests from all endpoints (even VMs
739 * that are in a restricted context). If we get one from a restricted
740 * context then the destination socket must be trusted.
742 * NOTE: We access the socket struct without holding the lock here.
743 * This is ok because the field we are interested is never modified
744 * outside of the create and destruct socket functions.
746 vsk = vsock_sk(sk);
747 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748 err = VMCI_ERROR_NO_ACCESS;
749 goto out;
752 /* We do most everything in a work queue, but let's fast path the
753 * notification of reads and writes to help data transfer performance.
754 * We can only do this if there is no process context code executing
755 * for this socket since that may change the state.
757 bh_lock_sock(sk);
759 if (!sock_owned_by_user(sk)) {
760 /* The local context ID may be out of date, update it. */
761 vsk->local_addr.svm_cid = dst.svm_cid;
763 if (sk->sk_state == TCP_ESTABLISHED)
764 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765 sk, pkt, true, &dst, &src,
766 &bh_process_pkt);
769 bh_unlock_sock(sk);
771 if (!bh_process_pkt) {
772 struct vmci_transport_recv_pkt_info *recv_pkt_info;
774 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775 if (!recv_pkt_info) {
776 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777 pr_err("unable to send reset\n");
779 err = VMCI_ERROR_NO_MEM;
780 goto out;
783 recv_pkt_info->sk = sk;
784 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
787 schedule_work(&recv_pkt_info->work);
788 /* Clear sk so that the reference count incremented by one of
789 * the Find functions above is not decremented below. We need
790 * that reference count for the packet handler we've scheduled
791 * to run.
793 sk = NULL;
796 out:
797 if (sk)
798 sock_put(sk);
800 return err;
803 static void vmci_transport_handle_detach(struct sock *sk)
805 struct vsock_sock *vsk;
807 vsk = vsock_sk(sk);
808 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
809 sock_set_flag(sk, SOCK_DONE);
811 /* On a detach the peer will not be sending or receiving
812 * anymore.
814 vsk->peer_shutdown = SHUTDOWN_MASK;
816 /* We should not be sending anymore since the peer won't be
817 * there to receive, but we can still receive if there is data
818 * left in our consume queue. If the local endpoint is a host,
819 * we can't call vsock_stream_has_data, since that may block,
820 * but a host endpoint can't read data once the VM has
821 * detached, so there is no available data in that case.
823 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
824 vsock_stream_has_data(vsk) <= 0) {
825 if (sk->sk_state == TCP_SYN_SENT) {
826 /* The peer may detach from a queue pair while
827 * we are still in the connecting state, i.e.,
828 * if the peer VM is killed after attaching to
829 * a queue pair, but before we complete the
830 * handshake. In that case, we treat the detach
831 * event like a reset.
834 sk->sk_state = TCP_CLOSE;
835 sk->sk_err = ECONNRESET;
836 sk_error_report(sk);
837 return;
839 sk->sk_state = TCP_CLOSE;
841 sk->sk_state_change(sk);
845 static void vmci_transport_peer_detach_cb(u32 sub_id,
846 const struct vmci_event_data *e_data,
847 void *client_data)
849 struct vmci_transport *trans = client_data;
850 const struct vmci_event_payload_qp *e_payload;
852 e_payload = vmci_event_data_const_payload(e_data);
854 /* XXX This is lame, we should provide a way to lookup sockets by
855 * qp_handle.
857 if (vmci_handle_is_invalid(e_payload->handle) ||
858 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
859 return;
861 /* We don't ask for delayed CBs when we subscribe to this event (we
862 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
863 * guarantees in that case about what context we might be running in,
864 * so it could be BH or process, blockable or non-blockable. So we
865 * need to account for all possible contexts here.
867 spin_lock_bh(&trans->lock);
868 if (!trans->sk)
869 goto out;
871 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
872 * where trans->sk isn't locked.
874 bh_lock_sock(trans->sk);
876 vmci_transport_handle_detach(trans->sk);
878 bh_unlock_sock(trans->sk);
879 out:
880 spin_unlock_bh(&trans->lock);
883 static void vmci_transport_qp_resumed_cb(u32 sub_id,
884 const struct vmci_event_data *e_data,
885 void *client_data)
887 vsock_for_each_connected_socket(&vmci_transport,
888 vmci_transport_handle_detach);
891 static void vmci_transport_recv_pkt_work(struct work_struct *work)
893 struct vmci_transport_recv_pkt_info *recv_pkt_info;
894 struct vmci_transport_packet *pkt;
895 struct sock *sk;
897 recv_pkt_info =
898 container_of(work, struct vmci_transport_recv_pkt_info, work);
899 sk = recv_pkt_info->sk;
900 pkt = &recv_pkt_info->pkt;
902 lock_sock(sk);
904 /* The local context ID may be out of date. */
905 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
907 switch (sk->sk_state) {
908 case TCP_LISTEN:
909 vmci_transport_recv_listen(sk, pkt);
910 break;
911 case TCP_SYN_SENT:
912 /* Processing of pending connections for servers goes through
913 * the listening socket, so see vmci_transport_recv_listen()
914 * for that path.
916 vmci_transport_recv_connecting_client(sk, pkt);
917 break;
918 case TCP_ESTABLISHED:
919 vmci_transport_recv_connected(sk, pkt);
920 break;
921 default:
922 /* Because this function does not run in the same context as
923 * vmci_transport_recv_stream_cb it is possible that the
924 * socket has closed. We need to let the other side know or it
925 * could be sitting in a connect and hang forever. Send a
926 * reset to prevent that.
928 vmci_transport_send_reset(sk, pkt);
929 break;
932 release_sock(sk);
933 kfree(recv_pkt_info);
934 /* Release reference obtained in the stream callback when we fetched
935 * this socket out of the bound or connected list.
937 sock_put(sk);
940 static int vmci_transport_recv_listen(struct sock *sk,
941 struct vmci_transport_packet *pkt)
943 struct sock *pending;
944 struct vsock_sock *vpending;
945 int err;
946 u64 qp_size;
947 bool old_request = false;
948 bool old_pkt_proto = false;
950 /* Because we are in the listen state, we could be receiving a packet
951 * for ourself or any previous connection requests that we received.
952 * If it's the latter, we try to find a socket in our list of pending
953 * connections and, if we do, call the appropriate handler for the
954 * state that socket is in. Otherwise we try to service the
955 * connection request.
957 pending = vmci_transport_get_pending(sk, pkt);
958 if (pending) {
959 lock_sock(pending);
961 /* The local context ID may be out of date. */
962 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
964 switch (pending->sk_state) {
965 case TCP_SYN_SENT:
966 err = vmci_transport_recv_connecting_server(sk,
967 pending,
968 pkt);
969 break;
970 default:
971 vmci_transport_send_reset(pending, pkt);
972 err = -EINVAL;
975 if (err < 0)
976 vsock_remove_pending(sk, pending);
978 release_sock(pending);
979 vmci_transport_release_pending(pending);
981 return err;
984 /* The listen state only accepts connection requests. Reply with a
985 * reset unless we received a reset.
988 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
989 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
990 vmci_transport_reply_reset(pkt);
991 return -EINVAL;
994 if (pkt->u.size == 0) {
995 vmci_transport_reply_reset(pkt);
996 return -EINVAL;
999 /* If this socket can't accommodate this connection request, we send a
1000 * reset. Otherwise we create and initialize a child socket and reply
1001 * with a connection negotiation.
1003 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1004 vmci_transport_reply_reset(pkt);
1005 return -ECONNREFUSED;
1008 pending = vsock_create_connected(sk);
1009 if (!pending) {
1010 vmci_transport_send_reset(sk, pkt);
1011 return -ENOMEM;
1014 vpending = vsock_sk(pending);
1016 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1017 pkt->dst_port);
1018 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1019 pkt->src_port);
1021 err = vsock_assign_transport(vpending, vsock_sk(sk));
1022 /* Transport assigned (looking at remote_addr) must be the same
1023 * where we received the request.
1025 if (err || !vmci_check_transport(vpending)) {
1026 vmci_transport_send_reset(sk, pkt);
1027 sock_put(pending);
1028 return err;
1031 /* If the proposed size fits within our min/max, accept it. Otherwise
1032 * propose our own size.
1034 if (pkt->u.size >= vpending->buffer_min_size &&
1035 pkt->u.size <= vpending->buffer_max_size) {
1036 qp_size = pkt->u.size;
1037 } else {
1038 qp_size = vpending->buffer_size;
1041 /* Figure out if we are using old or new requests based on the
1042 * overrides pkt types sent by our peer.
1044 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1045 old_request = old_pkt_proto;
1046 } else {
1047 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1048 old_request = true;
1049 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1050 old_request = false;
1054 if (old_request) {
1055 /* Handle a REQUEST (or override) */
1056 u16 version = VSOCK_PROTO_INVALID;
1057 if (vmci_transport_proto_to_notify_struct(
1058 pending, &version, true))
1059 err = vmci_transport_send_negotiate(pending, qp_size);
1060 else
1061 err = -EINVAL;
1063 } else {
1064 /* Handle a REQUEST2 (or override) */
1065 int proto_int = pkt->proto;
1066 int pos;
1067 u16 active_proto_version = 0;
1069 /* The list of possible protocols is the intersection of all
1070 * protocols the client supports ... plus all the protocols we
1071 * support.
1073 proto_int &= vmci_transport_new_proto_supported_versions();
1075 /* We choose the highest possible protocol version and use that
1076 * one.
1078 pos = fls(proto_int);
1079 if (pos) {
1080 active_proto_version = (1 << (pos - 1));
1081 if (vmci_transport_proto_to_notify_struct(
1082 pending, &active_proto_version, false))
1083 err = vmci_transport_send_negotiate2(pending,
1084 qp_size,
1085 active_proto_version);
1086 else
1087 err = -EINVAL;
1089 } else {
1090 err = -EINVAL;
1094 if (err < 0) {
1095 vmci_transport_send_reset(sk, pkt);
1096 sock_put(pending);
1097 err = vmci_transport_error_to_vsock_error(err);
1098 goto out;
1101 vsock_add_pending(sk, pending);
1102 sk_acceptq_added(sk);
1104 pending->sk_state = TCP_SYN_SENT;
1105 vmci_trans(vpending)->produce_size =
1106 vmci_trans(vpending)->consume_size = qp_size;
1107 vpending->buffer_size = qp_size;
1109 vmci_trans(vpending)->notify_ops->process_request(pending);
1111 /* We might never receive another message for this socket and it's not
1112 * connected to any process, so we have to ensure it gets cleaned up
1113 * ourself. Our delayed work function will take care of that. Note
1114 * that we do not ever cancel this function since we have few
1115 * guarantees about its state when calling cancel_delayed_work().
1116 * Instead we hold a reference on the socket for that function and make
1117 * it capable of handling cases where it needs to do nothing but
1118 * release that reference.
1120 vpending->listener = sk;
1121 sock_hold(sk);
1122 sock_hold(pending);
1123 schedule_delayed_work(&vpending->pending_work, HZ);
1125 out:
1126 return err;
1129 static int
1130 vmci_transport_recv_connecting_server(struct sock *listener,
1131 struct sock *pending,
1132 struct vmci_transport_packet *pkt)
1134 struct vsock_sock *vpending;
1135 struct vmci_handle handle;
1136 struct vmci_qp *qpair;
1137 bool is_local;
1138 u32 flags;
1139 u32 detach_sub_id;
1140 int err;
1141 int skerr;
1143 vpending = vsock_sk(pending);
1144 detach_sub_id = VMCI_INVALID_ID;
1146 switch (pkt->type) {
1147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1148 if (vmci_handle_is_invalid(pkt->u.handle)) {
1149 vmci_transport_send_reset(pending, pkt);
1150 skerr = EPROTO;
1151 err = -EINVAL;
1152 goto destroy;
1154 break;
1155 default:
1156 /* Close and cleanup the connection. */
1157 vmci_transport_send_reset(pending, pkt);
1158 skerr = EPROTO;
1159 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1160 goto destroy;
1163 /* In order to complete the connection we need to attach to the offered
1164 * queue pair and send an attach notification. We also subscribe to the
1165 * detach event so we know when our peer goes away, and we do that
1166 * before attaching so we don't miss an event. If all this succeeds,
1167 * we update our state and wakeup anything waiting in accept() for a
1168 * connection.
1171 /* We don't care about attach since we ensure the other side has
1172 * attached by specifying the ATTACH_ONLY flag below.
1174 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1175 vmci_transport_peer_detach_cb,
1176 vmci_trans(vpending), &detach_sub_id);
1177 if (err < VMCI_SUCCESS) {
1178 vmci_transport_send_reset(pending, pkt);
1179 err = vmci_transport_error_to_vsock_error(err);
1180 skerr = -err;
1181 goto destroy;
1184 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1186 /* Now attach to the queue pair the client created. */
1187 handle = pkt->u.handle;
1189 /* vpending->local_addr always has a context id so we do not need to
1190 * worry about VMADDR_CID_ANY in this case.
1192 is_local =
1193 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1194 flags = VMCI_QPFLAG_ATTACH_ONLY;
1195 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1197 err = vmci_transport_queue_pair_alloc(
1198 &qpair,
1199 &handle,
1200 vmci_trans(vpending)->produce_size,
1201 vmci_trans(vpending)->consume_size,
1202 pkt->dg.src.context,
1203 flags,
1204 vmci_transport_is_trusted(
1205 vpending,
1206 vpending->remote_addr.svm_cid));
1207 if (err < 0) {
1208 vmci_transport_send_reset(pending, pkt);
1209 skerr = -err;
1210 goto destroy;
1213 vmci_trans(vpending)->qp_handle = handle;
1214 vmci_trans(vpending)->qpair = qpair;
1216 /* When we send the attach message, we must be ready to handle incoming
1217 * control messages on the newly connected socket. So we move the
1218 * pending socket to the connected state before sending the attach
1219 * message. Otherwise, an incoming packet triggered by the attach being
1220 * received by the peer may be processed concurrently with what happens
1221 * below after sending the attach message, and that incoming packet
1222 * will find the listening socket instead of the (currently) pending
1223 * socket. Note that enqueueing the socket increments the reference
1224 * count, so even if a reset comes before the connection is accepted,
1225 * the socket will be valid until it is removed from the queue.
1227 * If we fail sending the attach below, we remove the socket from the
1228 * connected list and move the socket to TCP_CLOSE before
1229 * releasing the lock, so a pending slow path processing of an incoming
1230 * packet will not see the socket in the connected state in that case.
1232 pending->sk_state = TCP_ESTABLISHED;
1234 vsock_insert_connected(vpending);
1236 /* Notify our peer of our attach. */
1237 err = vmci_transport_send_attach(pending, handle);
1238 if (err < 0) {
1239 vsock_remove_connected(vpending);
1240 pr_err("Could not send attach\n");
1241 vmci_transport_send_reset(pending, pkt);
1242 err = vmci_transport_error_to_vsock_error(err);
1243 skerr = -err;
1244 goto destroy;
1247 /* We have a connection. Move the now connected socket from the
1248 * listener's pending list to the accept queue so callers of accept()
1249 * can find it.
1251 vsock_remove_pending(listener, pending);
1252 vsock_enqueue_accept(listener, pending);
1254 /* Callers of accept() will be waiting on the listening socket, not
1255 * the pending socket.
1257 listener->sk_data_ready(listener);
1259 return 0;
1261 destroy:
1262 pending->sk_err = skerr;
1263 pending->sk_state = TCP_CLOSE;
1264 /* As long as we drop our reference, all necessary cleanup will handle
1265 * when the cleanup function drops its reference and our destruct
1266 * implementation is called. Note that since the listen handler will
1267 * remove pending from the pending list upon our failure, the cleanup
1268 * function won't drop the additional reference, which is why we do it
1269 * here.
1271 sock_put(pending);
1273 return err;
1276 static int
1277 vmci_transport_recv_connecting_client(struct sock *sk,
1278 struct vmci_transport_packet *pkt)
1280 struct vsock_sock *vsk;
1281 int err;
1282 int skerr;
1284 vsk = vsock_sk(sk);
1286 switch (pkt->type) {
1287 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1288 if (vmci_handle_is_invalid(pkt->u.handle) ||
1289 !vmci_handle_is_equal(pkt->u.handle,
1290 vmci_trans(vsk)->qp_handle)) {
1291 skerr = EPROTO;
1292 err = -EINVAL;
1293 goto destroy;
1296 /* Signify the socket is connected and wakeup the waiter in
1297 * connect(). Also place the socket in the connected table for
1298 * accounting (it can already be found since it's in the bound
1299 * table).
1301 sk->sk_state = TCP_ESTABLISHED;
1302 sk->sk_socket->state = SS_CONNECTED;
1303 vsock_insert_connected(vsk);
1304 sk->sk_state_change(sk);
1306 break;
1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1308 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1309 if (pkt->u.size == 0
1310 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1311 || pkt->src_port != vsk->remote_addr.svm_port
1312 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1313 || vmci_trans(vsk)->qpair
1314 || vmci_trans(vsk)->produce_size != 0
1315 || vmci_trans(vsk)->consume_size != 0
1316 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317 skerr = EPROTO;
1318 err = -EINVAL;
1320 goto destroy;
1323 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324 if (err) {
1325 skerr = -err;
1326 goto destroy;
1329 break;
1330 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332 if (err) {
1333 skerr = -err;
1334 goto destroy;
1337 break;
1338 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340 * continue processing here after they sent an INVALID packet.
1341 * This meant that we got a RST after the INVALID. We ignore a
1342 * RST after an INVALID. The common code doesn't send the RST
1343 * ... so we can hang if an old version of the common code
1344 * fails between getting a REQUEST and sending an OFFER back.
1345 * Not much we can do about it... except hope that it doesn't
1346 * happen.
1348 if (vsk->ignore_connecting_rst) {
1349 vsk->ignore_connecting_rst = false;
1350 } else {
1351 skerr = ECONNRESET;
1352 err = 0;
1353 goto destroy;
1356 break;
1357 default:
1358 /* Close and cleanup the connection. */
1359 skerr = EPROTO;
1360 err = -EINVAL;
1361 goto destroy;
1364 return 0;
1366 destroy:
1367 vmci_transport_send_reset(sk, pkt);
1369 sk->sk_state = TCP_CLOSE;
1370 sk->sk_err = skerr;
1371 sk_error_report(sk);
1372 return err;
1375 static int vmci_transport_recv_connecting_client_negotiate(
1376 struct sock *sk,
1377 struct vmci_transport_packet *pkt)
1379 int err;
1380 struct vsock_sock *vsk;
1381 struct vmci_handle handle;
1382 struct vmci_qp *qpair;
1383 u32 detach_sub_id;
1384 bool is_local;
1385 u32 flags;
1386 bool old_proto = true;
1387 bool old_pkt_proto;
1388 u16 version;
1390 vsk = vsock_sk(sk);
1391 handle = VMCI_INVALID_HANDLE;
1392 detach_sub_id = VMCI_INVALID_ID;
1394 /* If we have gotten here then we should be past the point where old
1395 * linux vsock could have sent the bogus rst.
1397 vsk->sent_request = false;
1398 vsk->ignore_connecting_rst = false;
1400 /* Verify that we're OK with the proposed queue pair size */
1401 if (pkt->u.size < vsk->buffer_min_size ||
1402 pkt->u.size > vsk->buffer_max_size) {
1403 err = -EINVAL;
1404 goto destroy;
1407 /* At this point we know the CID the peer is using to talk to us. */
1409 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1410 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1412 /* Setup the notify ops to be the highest supported version that both
1413 * the server and the client support.
1416 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1417 old_proto = old_pkt_proto;
1418 } else {
1419 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1420 old_proto = true;
1421 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1422 old_proto = false;
1426 if (old_proto)
1427 version = VSOCK_PROTO_INVALID;
1428 else
1429 version = pkt->proto;
1431 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1432 err = -EINVAL;
1433 goto destroy;
1436 /* Subscribe to detach events first.
1438 * XXX We attach once for each queue pair created for now so it is easy
1439 * to find the socket (it's provided), but later we should only
1440 * subscribe once and add a way to lookup sockets by queue pair handle.
1442 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1443 vmci_transport_peer_detach_cb,
1444 vmci_trans(vsk), &detach_sub_id);
1445 if (err < VMCI_SUCCESS) {
1446 err = vmci_transport_error_to_vsock_error(err);
1447 goto destroy;
1450 /* Make VMCI select the handle for us. */
1451 handle = VMCI_INVALID_HANDLE;
1452 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1453 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1455 err = vmci_transport_queue_pair_alloc(&qpair,
1456 &handle,
1457 pkt->u.size,
1458 pkt->u.size,
1459 vsk->remote_addr.svm_cid,
1460 flags,
1461 vmci_transport_is_trusted(
1462 vsk,
1463 vsk->
1464 remote_addr.svm_cid));
1465 if (err < 0)
1466 goto destroy;
1468 err = vmci_transport_send_qp_offer(sk, handle);
1469 if (err < 0) {
1470 err = vmci_transport_error_to_vsock_error(err);
1471 goto destroy;
1474 vmci_trans(vsk)->qp_handle = handle;
1475 vmci_trans(vsk)->qpair = qpair;
1477 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1478 pkt->u.size;
1480 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1482 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1484 return 0;
1486 destroy:
1487 if (detach_sub_id != VMCI_INVALID_ID)
1488 vmci_event_unsubscribe(detach_sub_id);
1490 if (!vmci_handle_is_invalid(handle))
1491 vmci_qpair_detach(&qpair);
1493 return err;
1496 static int
1497 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1498 struct vmci_transport_packet *pkt)
1500 int err = 0;
1501 struct vsock_sock *vsk = vsock_sk(sk);
1503 if (vsk->sent_request) {
1504 vsk->sent_request = false;
1505 vsk->ignore_connecting_rst = true;
1507 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1508 if (err < 0)
1509 err = vmci_transport_error_to_vsock_error(err);
1510 else
1511 err = 0;
1515 return err;
1518 static int vmci_transport_recv_connected(struct sock *sk,
1519 struct vmci_transport_packet *pkt)
1521 struct vsock_sock *vsk;
1522 bool pkt_processed = false;
1524 /* In cases where we are closing the connection, it's sufficient to
1525 * mark the state change (and maybe error) and wake up any waiting
1526 * threads. Since this is a connected socket, it's owned by a user
1527 * process and will be cleaned up when the failure is passed back on
1528 * the current or next system call. Our system call implementations
1529 * must therefore check for error and state changes on entry and when
1530 * being awoken.
1532 switch (pkt->type) {
1533 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1534 if (pkt->u.mode) {
1535 vsk = vsock_sk(sk);
1537 vsk->peer_shutdown |= pkt->u.mode;
1538 sk->sk_state_change(sk);
1540 break;
1542 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1543 vsk = vsock_sk(sk);
1544 /* It is possible that we sent our peer a message (e.g a
1545 * WAITING_READ) right before we got notified that the peer had
1546 * detached. If that happens then we can get a RST pkt back
1547 * from our peer even though there is data available for us to
1548 * read. In that case, don't shutdown the socket completely but
1549 * instead allow the local client to finish reading data off
1550 * the queuepair. Always treat a RST pkt in connected mode like
1551 * a clean shutdown.
1553 sock_set_flag(sk, SOCK_DONE);
1554 vsk->peer_shutdown = SHUTDOWN_MASK;
1555 if (vsock_stream_has_data(vsk) <= 0)
1556 sk->sk_state = TCP_CLOSING;
1558 sk->sk_state_change(sk);
1559 break;
1561 default:
1562 vsk = vsock_sk(sk);
1563 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1564 sk, pkt, false, NULL, NULL,
1565 &pkt_processed);
1566 if (!pkt_processed)
1567 return -EINVAL;
1569 break;
1572 return 0;
1575 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1576 struct vsock_sock *psk)
1578 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1579 if (!vsk->trans)
1580 return -ENOMEM;
1582 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1583 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1584 vmci_trans(vsk)->qpair = NULL;
1585 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1586 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1587 vmci_trans(vsk)->notify_ops = NULL;
1588 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1589 vmci_trans(vsk)->sk = &vsk->sk;
1590 spin_lock_init(&vmci_trans(vsk)->lock);
1592 return 0;
1595 static void vmci_transport_free_resources(struct list_head *transport_list)
1597 while (!list_empty(transport_list)) {
1598 struct vmci_transport *transport =
1599 list_first_entry(transport_list, struct vmci_transport,
1600 elem);
1601 list_del(&transport->elem);
1603 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1604 vmci_event_unsubscribe(transport->detach_sub_id);
1605 transport->detach_sub_id = VMCI_INVALID_ID;
1608 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1609 vmci_qpair_detach(&transport->qpair);
1610 transport->qp_handle = VMCI_INVALID_HANDLE;
1611 transport->produce_size = 0;
1612 transport->consume_size = 0;
1615 kfree(transport);
1619 static void vmci_transport_cleanup(struct work_struct *work)
1621 LIST_HEAD(pending);
1623 spin_lock_bh(&vmci_transport_cleanup_lock);
1624 list_replace_init(&vmci_transport_cleanup_list, &pending);
1625 spin_unlock_bh(&vmci_transport_cleanup_lock);
1626 vmci_transport_free_resources(&pending);
1629 static void vmci_transport_destruct(struct vsock_sock *vsk)
1631 /* transport can be NULL if we hit a failure at init() time */
1632 if (!vmci_trans(vsk))
1633 return;
1635 /* Ensure that the detach callback doesn't use the sk/vsk
1636 * we are about to destruct.
1638 spin_lock_bh(&vmci_trans(vsk)->lock);
1639 vmci_trans(vsk)->sk = NULL;
1640 spin_unlock_bh(&vmci_trans(vsk)->lock);
1642 if (vmci_trans(vsk)->notify_ops)
1643 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1645 spin_lock_bh(&vmci_transport_cleanup_lock);
1646 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1647 spin_unlock_bh(&vmci_transport_cleanup_lock);
1648 schedule_work(&vmci_transport_cleanup_work);
1650 vsk->trans = NULL;
1653 static void vmci_transport_release(struct vsock_sock *vsk)
1655 vsock_remove_sock(vsk);
1657 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1658 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1659 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1663 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1664 struct sockaddr_vm *addr)
1666 u32 port;
1667 u32 flags;
1668 int err;
1670 /* VMCI will select a resource ID for us if we provide
1671 * VMCI_INVALID_ID.
1673 port = addr->svm_port == VMADDR_PORT_ANY ?
1674 VMCI_INVALID_ID : addr->svm_port;
1676 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1677 return -EACCES;
1679 flags = addr->svm_cid == VMADDR_CID_ANY ?
1680 VMCI_FLAG_ANYCID_DG_HND : 0;
1682 err = vmci_transport_datagram_create_hnd(port, flags,
1683 vmci_transport_recv_dgram_cb,
1684 &vsk->sk,
1685 &vmci_trans(vsk)->dg_handle);
1686 if (err < VMCI_SUCCESS)
1687 return vmci_transport_error_to_vsock_error(err);
1688 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1689 vmci_trans(vsk)->dg_handle.resource);
1691 return 0;
1694 static int vmci_transport_dgram_enqueue(
1695 struct vsock_sock *vsk,
1696 struct sockaddr_vm *remote_addr,
1697 struct msghdr *msg,
1698 size_t len)
1700 int err;
1701 struct vmci_datagram *dg;
1703 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1704 return -EMSGSIZE;
1706 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1707 return -EPERM;
1709 /* Allocate a buffer for the user's message and our packet header. */
1710 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1711 if (!dg)
1712 return -ENOMEM;
1714 err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1715 if (err) {
1716 kfree(dg);
1717 return err;
1720 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1721 remote_addr->svm_port);
1722 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1723 vsk->local_addr.svm_port);
1724 dg->payload_size = len;
1726 err = vmci_datagram_send(dg);
1727 kfree(dg);
1728 if (err < 0)
1729 return vmci_transport_error_to_vsock_error(err);
1731 return err - sizeof(*dg);
1734 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1735 struct msghdr *msg, size_t len,
1736 int flags)
1738 int err;
1739 struct vmci_datagram *dg;
1740 size_t payload_len;
1741 struct sk_buff *skb;
1743 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1744 return -EOPNOTSUPP;
1746 /* Retrieve the head sk_buff from the socket's receive queue. */
1747 err = 0;
1748 skb = skb_recv_datagram(&vsk->sk, flags, &err);
1749 if (!skb)
1750 return err;
1752 dg = (struct vmci_datagram *)skb->data;
1753 if (!dg)
1754 /* err is 0, meaning we read zero bytes. */
1755 goto out;
1757 payload_len = dg->payload_size;
1758 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1759 if (payload_len != skb->len - sizeof(*dg)) {
1760 err = -EINVAL;
1761 goto out;
1764 if (payload_len > len) {
1765 payload_len = len;
1766 msg->msg_flags |= MSG_TRUNC;
1769 /* Place the datagram payload in the user's iovec. */
1770 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1771 if (err)
1772 goto out;
1774 if (msg->msg_name) {
1775 /* Provide the address of the sender. */
1776 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1777 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1778 msg->msg_namelen = sizeof(*vm_addr);
1780 err = payload_len;
1782 out:
1783 skb_free_datagram(&vsk->sk, skb);
1784 return err;
1787 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1789 if (cid == VMADDR_CID_HYPERVISOR) {
1790 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1791 * state and are allowed.
1793 return port == VMCI_UNITY_PBRPC_REGISTER;
1796 return true;
1799 static int vmci_transport_connect(struct vsock_sock *vsk)
1801 int err;
1802 bool old_pkt_proto = false;
1803 struct sock *sk = &vsk->sk;
1805 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1806 old_pkt_proto) {
1807 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1808 if (err < 0) {
1809 sk->sk_state = TCP_CLOSE;
1810 return err;
1812 } else {
1813 int supported_proto_versions =
1814 vmci_transport_new_proto_supported_versions();
1815 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1816 supported_proto_versions);
1817 if (err < 0) {
1818 sk->sk_state = TCP_CLOSE;
1819 return err;
1822 vsk->sent_request = true;
1825 return err;
1828 static ssize_t vmci_transport_stream_dequeue(
1829 struct vsock_sock *vsk,
1830 struct msghdr *msg,
1831 size_t len,
1832 int flags)
1834 ssize_t err;
1836 if (flags & MSG_PEEK)
1837 err = vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1838 else
1839 err = vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1841 if (err < 0)
1842 err = -ENOMEM;
1844 return err;
1847 static ssize_t vmci_transport_stream_enqueue(
1848 struct vsock_sock *vsk,
1849 struct msghdr *msg,
1850 size_t len)
1852 ssize_t err;
1854 err = vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1855 if (err < 0)
1856 err = -ENOMEM;
1858 return err;
1861 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1863 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1866 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1868 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1871 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1873 return vmci_trans(vsk)->consume_size;
1876 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1878 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1881 static int vmci_transport_notify_poll_in(
1882 struct vsock_sock *vsk,
1883 size_t target,
1884 bool *data_ready_now)
1886 return vmci_trans(vsk)->notify_ops->poll_in(
1887 &vsk->sk, target, data_ready_now);
1890 static int vmci_transport_notify_poll_out(
1891 struct vsock_sock *vsk,
1892 size_t target,
1893 bool *space_available_now)
1895 return vmci_trans(vsk)->notify_ops->poll_out(
1896 &vsk->sk, target, space_available_now);
1899 static int vmci_transport_notify_recv_init(
1900 struct vsock_sock *vsk,
1901 size_t target,
1902 struct vsock_transport_recv_notify_data *data)
1904 return vmci_trans(vsk)->notify_ops->recv_init(
1905 &vsk->sk, target,
1906 (struct vmci_transport_recv_notify_data *)data);
1909 static int vmci_transport_notify_recv_pre_block(
1910 struct vsock_sock *vsk,
1911 size_t target,
1912 struct vsock_transport_recv_notify_data *data)
1914 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1915 &vsk->sk, target,
1916 (struct vmci_transport_recv_notify_data *)data);
1919 static int vmci_transport_notify_recv_pre_dequeue(
1920 struct vsock_sock *vsk,
1921 size_t target,
1922 struct vsock_transport_recv_notify_data *data)
1924 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1925 &vsk->sk, target,
1926 (struct vmci_transport_recv_notify_data *)data);
1929 static int vmci_transport_notify_recv_post_dequeue(
1930 struct vsock_sock *vsk,
1931 size_t target,
1932 ssize_t copied,
1933 bool data_read,
1934 struct vsock_transport_recv_notify_data *data)
1936 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1937 &vsk->sk, target, copied, data_read,
1938 (struct vmci_transport_recv_notify_data *)data);
1941 static int vmci_transport_notify_send_init(
1942 struct vsock_sock *vsk,
1943 struct vsock_transport_send_notify_data *data)
1945 return vmci_trans(vsk)->notify_ops->send_init(
1946 &vsk->sk,
1947 (struct vmci_transport_send_notify_data *)data);
1950 static int vmci_transport_notify_send_pre_block(
1951 struct vsock_sock *vsk,
1952 struct vsock_transport_send_notify_data *data)
1954 return vmci_trans(vsk)->notify_ops->send_pre_block(
1955 &vsk->sk,
1956 (struct vmci_transport_send_notify_data *)data);
1959 static int vmci_transport_notify_send_pre_enqueue(
1960 struct vsock_sock *vsk,
1961 struct vsock_transport_send_notify_data *data)
1963 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1964 &vsk->sk,
1965 (struct vmci_transport_send_notify_data *)data);
1968 static int vmci_transport_notify_send_post_enqueue(
1969 struct vsock_sock *vsk,
1970 ssize_t written,
1971 struct vsock_transport_send_notify_data *data)
1973 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1974 &vsk->sk, written,
1975 (struct vmci_transport_send_notify_data *)data);
1978 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1980 if (PROTOCOL_OVERRIDE != -1) {
1981 if (PROTOCOL_OVERRIDE == 0)
1982 *old_pkt_proto = true;
1983 else
1984 *old_pkt_proto = false;
1986 pr_info("Proto override in use\n");
1987 return true;
1990 return false;
1993 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1994 u16 *proto,
1995 bool old_pkt_proto)
1997 struct vsock_sock *vsk = vsock_sk(sk);
1999 if (old_pkt_proto) {
2000 if (*proto != VSOCK_PROTO_INVALID) {
2001 pr_err("Can't set both an old and new protocol\n");
2002 return false;
2004 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2005 goto exit;
2008 switch (*proto) {
2009 case VSOCK_PROTO_PKT_ON_NOTIFY:
2010 vmci_trans(vsk)->notify_ops =
2011 &vmci_transport_notify_pkt_q_state_ops;
2012 break;
2013 default:
2014 pr_err("Unknown notify protocol version\n");
2015 return false;
2018 exit:
2019 vmci_trans(vsk)->notify_ops->socket_init(sk);
2020 return true;
2023 static u16 vmci_transport_new_proto_supported_versions(void)
2025 if (PROTOCOL_OVERRIDE != -1)
2026 return PROTOCOL_OVERRIDE;
2028 return VSOCK_PROTO_ALL_SUPPORTED;
2031 static u32 vmci_transport_get_local_cid(void)
2033 return vmci_get_context_id();
2036 static struct vsock_transport vmci_transport = {
2037 .module = THIS_MODULE,
2038 .init = vmci_transport_socket_init,
2039 .destruct = vmci_transport_destruct,
2040 .release = vmci_transport_release,
2041 .connect = vmci_transport_connect,
2042 .dgram_bind = vmci_transport_dgram_bind,
2043 .dgram_dequeue = vmci_transport_dgram_dequeue,
2044 .dgram_enqueue = vmci_transport_dgram_enqueue,
2045 .dgram_allow = vmci_transport_dgram_allow,
2046 .stream_dequeue = vmci_transport_stream_dequeue,
2047 .stream_enqueue = vmci_transport_stream_enqueue,
2048 .stream_has_data = vmci_transport_stream_has_data,
2049 .stream_has_space = vmci_transport_stream_has_space,
2050 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2051 .stream_is_active = vmci_transport_stream_is_active,
2052 .stream_allow = vmci_transport_stream_allow,
2053 .notify_poll_in = vmci_transport_notify_poll_in,
2054 .notify_poll_out = vmci_transport_notify_poll_out,
2055 .notify_recv_init = vmci_transport_notify_recv_init,
2056 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2057 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2058 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2059 .notify_send_init = vmci_transport_notify_send_init,
2060 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2061 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2062 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2063 .shutdown = vmci_transport_shutdown,
2064 .get_local_cid = vmci_transport_get_local_cid,
2067 static bool vmci_check_transport(struct vsock_sock *vsk)
2069 return vsk->transport == &vmci_transport;
2072 static void vmci_vsock_transport_cb(bool is_host)
2074 int features;
2076 if (is_host)
2077 features = VSOCK_TRANSPORT_F_H2G;
2078 else
2079 features = VSOCK_TRANSPORT_F_G2H;
2081 vsock_core_register(&vmci_transport, features);
2084 static int __init vmci_transport_init(void)
2086 int err;
2088 /* Create the datagram handle that we will use to send and receive all
2089 * VSocket control messages for this context.
2091 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2092 VMCI_FLAG_ANYCID_DG_HND,
2093 vmci_transport_recv_stream_cb,
2094 NULL,
2095 &vmci_transport_stream_handle);
2096 if (err < VMCI_SUCCESS) {
2097 pr_err("Unable to create datagram handle. (%d)\n", err);
2098 return vmci_transport_error_to_vsock_error(err);
2100 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2101 vmci_transport_qp_resumed_cb,
2102 NULL, &vmci_transport_qp_resumed_sub_id);
2103 if (err < VMCI_SUCCESS) {
2104 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2105 err = vmci_transport_error_to_vsock_error(err);
2106 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2107 goto err_destroy_stream_handle;
2110 /* Register only with dgram feature, other features (H2G, G2H) will be
2111 * registered when the first host or guest becomes active.
2113 err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2114 if (err < 0)
2115 goto err_unsubscribe;
2117 err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2118 if (err < 0)
2119 goto err_unregister;
2121 return 0;
2123 err_unregister:
2124 vsock_core_unregister(&vmci_transport);
2125 err_unsubscribe:
2126 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2127 err_destroy_stream_handle:
2128 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2129 return err;
2131 module_init(vmci_transport_init);
2133 static void __exit vmci_transport_exit(void)
2135 cancel_work_sync(&vmci_transport_cleanup_work);
2136 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2138 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2139 if (vmci_datagram_destroy_handle(
2140 vmci_transport_stream_handle) != VMCI_SUCCESS)
2141 pr_err("Couldn't destroy datagram handle\n");
2142 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2145 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2146 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2147 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2150 vmci_register_vsock_callback(NULL);
2151 vsock_core_unregister(&vmci_transport);
2153 module_exit(vmci_transport_exit);
2155 MODULE_AUTHOR("VMware, Inc.");
2156 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2157 MODULE_VERSION("1.0.5.0-k");
2158 MODULE_LICENSE("GPL v2");
2159 MODULE_ALIAS("vmware_vsock");
2160 MODULE_ALIAS_NETPROTO(PF_VSOCK);