printf: Remove unused 'bprintf'
[drm/drm-misc.git] / drivers / mmc / host / sh_mmcif.c
blobce60cec26b985d7cf80369b6125ea73da658b561
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MMCIF eMMC driver.
5 * Copyright (C) 2010 Renesas Solutions Corp.
6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 */
9 /*
10 * The MMCIF driver is now processing MMC requests asynchronously, according
11 * to the Linux MMC API requirement.
13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
14 * data, and optional stop. To achieve asynchronous processing each of these
15 * stages is split into two halves: a top and a bottom half. The top half
16 * initialises the hardware, installs a timeout handler to handle completion
17 * timeouts, and returns. In case of the command stage this immediately returns
18 * control to the caller, leaving all further processing to run asynchronously.
19 * All further request processing is performed by the bottom halves.
21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
23 * request- and stage-specific handler methods.
25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
26 * invocation, or a timeout work run. In case of an error or a successful
27 * processing completion, the MMC core is informed and the request processing is
28 * finished. In case processing has to continue, i.e., if data has to be read
29 * from or written to the card, or if a stop command has to be sent, the next
30 * top half is called, which performs the necessary hardware handling and
31 * reschedules the timeout work. This returns the driver state machine into the
32 * bottom half waiting state.
35 #include <linux/bitops.h>
36 #include <linux/clk.h>
37 #include <linux/completion.h>
38 #include <linux/delay.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/dmaengine.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/core.h>
43 #include <linux/mmc/host.h>
44 #include <linux/mmc/mmc.h>
45 #include <linux/mmc/sdio.h>
46 #include <linux/mmc/slot-gpio.h>
47 #include <linux/mod_devicetable.h>
48 #include <linux/mutex.h>
49 #include <linux/pagemap.h>
50 #include <linux/platform_data/sh_mmcif.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/sh_dma.h>
55 #include <linux/spinlock.h>
56 #include <linux/module.h>
58 #define DRIVER_NAME "sh_mmcif"
60 /* CE_CMD_SET */
61 #define CMD_MASK 0x3f000000
62 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
63 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
64 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
65 #define CMD_SET_RBSY (1 << 21) /* R1b */
66 #define CMD_SET_CCSEN (1 << 20)
67 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
68 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
69 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
70 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
71 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
72 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
73 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
74 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
75 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
76 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
77 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
78 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
79 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
80 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
81 #define CMD_SET_CCSH (1 << 5)
82 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
83 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
84 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
85 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
87 /* CE_CMD_CTRL */
88 #define CMD_CTRL_BREAK (1 << 0)
90 /* CE_BLOCK_SET */
91 #define BLOCK_SIZE_MASK 0x0000ffff
93 /* CE_INT */
94 #define INT_CCSDE (1 << 29)
95 #define INT_CMD12DRE (1 << 26)
96 #define INT_CMD12RBE (1 << 25)
97 #define INT_CMD12CRE (1 << 24)
98 #define INT_DTRANE (1 << 23)
99 #define INT_BUFRE (1 << 22)
100 #define INT_BUFWEN (1 << 21)
101 #define INT_BUFREN (1 << 20)
102 #define INT_CCSRCV (1 << 19)
103 #define INT_RBSYE (1 << 17)
104 #define INT_CRSPE (1 << 16)
105 #define INT_CMDVIO (1 << 15)
106 #define INT_BUFVIO (1 << 14)
107 #define INT_WDATERR (1 << 11)
108 #define INT_RDATERR (1 << 10)
109 #define INT_RIDXERR (1 << 9)
110 #define INT_RSPERR (1 << 8)
111 #define INT_CCSTO (1 << 5)
112 #define INT_CRCSTO (1 << 4)
113 #define INT_WDATTO (1 << 3)
114 #define INT_RDATTO (1 << 2)
115 #define INT_RBSYTO (1 << 1)
116 #define INT_RSPTO (1 << 0)
117 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
118 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
119 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
120 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
122 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
123 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
124 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
126 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
128 /* CE_INT_MASK */
129 #define MASK_ALL 0x00000000
130 #define MASK_MCCSDE (1 << 29)
131 #define MASK_MCMD12DRE (1 << 26)
132 #define MASK_MCMD12RBE (1 << 25)
133 #define MASK_MCMD12CRE (1 << 24)
134 #define MASK_MDTRANE (1 << 23)
135 #define MASK_MBUFRE (1 << 22)
136 #define MASK_MBUFWEN (1 << 21)
137 #define MASK_MBUFREN (1 << 20)
138 #define MASK_MCCSRCV (1 << 19)
139 #define MASK_MRBSYE (1 << 17)
140 #define MASK_MCRSPE (1 << 16)
141 #define MASK_MCMDVIO (1 << 15)
142 #define MASK_MBUFVIO (1 << 14)
143 #define MASK_MWDATERR (1 << 11)
144 #define MASK_MRDATERR (1 << 10)
145 #define MASK_MRIDXERR (1 << 9)
146 #define MASK_MRSPERR (1 << 8)
147 #define MASK_MCCSTO (1 << 5)
148 #define MASK_MCRCSTO (1 << 4)
149 #define MASK_MWDATTO (1 << 3)
150 #define MASK_MRDATTO (1 << 2)
151 #define MASK_MRBSYTO (1 << 1)
152 #define MASK_MRSPTO (1 << 0)
154 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
155 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
156 MASK_MCRCSTO | MASK_MWDATTO | \
157 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
159 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
160 MASK_MBUFREN | MASK_MBUFWEN | \
161 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
162 MASK_MCMD12RBE | MASK_MCMD12CRE)
164 /* CE_HOST_STS1 */
165 #define STS1_CMDSEQ (1 << 31)
167 /* CE_HOST_STS2 */
168 #define STS2_CRCSTE (1 << 31)
169 #define STS2_CRC16E (1 << 30)
170 #define STS2_AC12CRCE (1 << 29)
171 #define STS2_RSPCRC7E (1 << 28)
172 #define STS2_CRCSTEBE (1 << 27)
173 #define STS2_RDATEBE (1 << 26)
174 #define STS2_AC12REBE (1 << 25)
175 #define STS2_RSPEBE (1 << 24)
176 #define STS2_AC12IDXE (1 << 23)
177 #define STS2_RSPIDXE (1 << 22)
178 #define STS2_CCSTO (1 << 15)
179 #define STS2_RDATTO (1 << 14)
180 #define STS2_DATBSYTO (1 << 13)
181 #define STS2_CRCSTTO (1 << 12)
182 #define STS2_AC12BSYTO (1 << 11)
183 #define STS2_RSPBSYTO (1 << 10)
184 #define STS2_AC12RSPTO (1 << 9)
185 #define STS2_RSPTO (1 << 8)
186 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
187 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
188 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
189 STS2_DATBSYTO | STS2_CRCSTTO | \
190 STS2_AC12BSYTO | STS2_RSPBSYTO | \
191 STS2_AC12RSPTO | STS2_RSPTO)
193 #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */
194 #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */
195 #define CLKDEV_INIT 400000 /* 400 kHz */
197 enum sh_mmcif_state {
198 STATE_IDLE,
199 STATE_REQUEST,
200 STATE_IOS,
201 STATE_TIMEOUT,
204 enum sh_mmcif_wait_for {
205 MMCIF_WAIT_FOR_REQUEST,
206 MMCIF_WAIT_FOR_CMD,
207 MMCIF_WAIT_FOR_MREAD,
208 MMCIF_WAIT_FOR_MWRITE,
209 MMCIF_WAIT_FOR_READ,
210 MMCIF_WAIT_FOR_WRITE,
211 MMCIF_WAIT_FOR_READ_END,
212 MMCIF_WAIT_FOR_WRITE_END,
213 MMCIF_WAIT_FOR_STOP,
217 * difference for each SoC
219 struct sh_mmcif_host {
220 struct mmc_host *mmc;
221 struct mmc_request *mrq;
222 struct platform_device *pd;
223 struct clk *clk;
224 int bus_width;
225 unsigned char timing;
226 bool sd_error;
227 bool dying;
228 long timeout;
229 void __iomem *addr;
230 spinlock_t lock; /* protect sh_mmcif_host::state */
231 enum sh_mmcif_state state;
232 enum sh_mmcif_wait_for wait_for;
233 struct delayed_work timeout_work;
234 size_t blocksize;
235 struct sg_mapping_iter sg_miter;
236 bool power;
237 bool ccs_enable; /* Command Completion Signal support */
238 bool clk_ctrl2_enable;
239 struct mutex thread_lock;
240 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
242 /* DMA support */
243 struct dma_chan *chan_rx;
244 struct dma_chan *chan_tx;
245 struct completion dma_complete;
246 bool dma_active;
249 static const struct of_device_id sh_mmcif_of_match[] = {
250 { .compatible = "renesas,sh-mmcif" },
253 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
255 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
257 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
258 unsigned int reg, u32 val)
260 writel(val | readl(host->addr + reg), host->addr + reg);
263 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
264 unsigned int reg, u32 val)
266 writel(~val & readl(host->addr + reg), host->addr + reg);
269 static void sh_mmcif_dma_complete(void *arg)
271 struct sh_mmcif_host *host = arg;
272 struct mmc_request *mrq = host->mrq;
273 struct device *dev = sh_mmcif_host_to_dev(host);
275 dev_dbg(dev, "Command completed\n");
277 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
278 dev_name(dev)))
279 return;
281 complete(&host->dma_complete);
284 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
286 struct mmc_data *data = host->mrq->data;
287 struct scatterlist *sg = data->sg;
288 struct dma_async_tx_descriptor *desc = NULL;
289 struct dma_chan *chan = host->chan_rx;
290 struct device *dev = sh_mmcif_host_to_dev(host);
291 dma_cookie_t cookie = -EINVAL;
292 int ret;
294 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
295 DMA_FROM_DEVICE);
296 if (ret > 0) {
297 host->dma_active = true;
298 desc = dmaengine_prep_slave_sg(chan, sg, ret,
299 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
302 if (desc) {
303 desc->callback = sh_mmcif_dma_complete;
304 desc->callback_param = host;
305 cookie = dmaengine_submit(desc);
306 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
307 dma_async_issue_pending(chan);
309 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
310 __func__, data->sg_len, ret, cookie);
312 if (!desc) {
313 /* DMA failed, fall back to PIO */
314 if (ret >= 0)
315 ret = -EIO;
316 host->chan_rx = NULL;
317 host->dma_active = false;
318 dma_release_channel(chan);
319 /* Free the Tx channel too */
320 chan = host->chan_tx;
321 if (chan) {
322 host->chan_tx = NULL;
323 dma_release_channel(chan);
325 dev_warn(dev,
326 "DMA failed: %d, falling back to PIO\n", ret);
327 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
330 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
331 desc, cookie, data->sg_len);
334 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336 struct mmc_data *data = host->mrq->data;
337 struct scatterlist *sg = data->sg;
338 struct dma_async_tx_descriptor *desc = NULL;
339 struct dma_chan *chan = host->chan_tx;
340 struct device *dev = sh_mmcif_host_to_dev(host);
341 dma_cookie_t cookie = -EINVAL;
342 int ret;
344 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345 DMA_TO_DEVICE);
346 if (ret > 0) {
347 host->dma_active = true;
348 desc = dmaengine_prep_slave_sg(chan, sg, ret,
349 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
352 if (desc) {
353 desc->callback = sh_mmcif_dma_complete;
354 desc->callback_param = host;
355 cookie = dmaengine_submit(desc);
356 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357 dma_async_issue_pending(chan);
359 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
360 __func__, data->sg_len, ret, cookie);
362 if (!desc) {
363 /* DMA failed, fall back to PIO */
364 if (ret >= 0)
365 ret = -EIO;
366 host->chan_tx = NULL;
367 host->dma_active = false;
368 dma_release_channel(chan);
369 /* Free the Rx channel too */
370 chan = host->chan_rx;
371 if (chan) {
372 host->chan_rx = NULL;
373 dma_release_channel(chan);
375 dev_warn(dev,
376 "DMA failed: %d, falling back to PIO\n", ret);
377 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
380 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
381 desc, cookie);
384 static struct dma_chan *
385 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
387 dma_cap_mask_t mask;
389 dma_cap_zero(mask);
390 dma_cap_set(DMA_SLAVE, mask);
391 if (slave_id <= 0)
392 return NULL;
394 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
397 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
398 struct dma_chan *chan,
399 enum dma_transfer_direction direction)
401 struct resource *res;
402 struct dma_slave_config cfg = { 0, };
404 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
405 if (!res)
406 return -EINVAL;
408 cfg.direction = direction;
410 if (direction == DMA_DEV_TO_MEM) {
411 cfg.src_addr = res->start + MMCIF_CE_DATA;
412 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
413 } else {
414 cfg.dst_addr = res->start + MMCIF_CE_DATA;
415 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
418 return dmaengine_slave_config(chan, &cfg);
421 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
423 struct device *dev = sh_mmcif_host_to_dev(host);
424 host->dma_active = false;
426 /* We can only either use DMA for both Tx and Rx or not use it at all */
427 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
428 struct sh_mmcif_plat_data *pdata = dev->platform_data;
430 host->chan_tx = sh_mmcif_request_dma_pdata(host,
431 pdata->slave_id_tx);
432 host->chan_rx = sh_mmcif_request_dma_pdata(host,
433 pdata->slave_id_rx);
434 } else {
435 host->chan_tx = dma_request_chan(dev, "tx");
436 if (IS_ERR(host->chan_tx))
437 host->chan_tx = NULL;
438 host->chan_rx = dma_request_chan(dev, "rx");
439 if (IS_ERR(host->chan_rx))
440 host->chan_rx = NULL;
443 if (!host->chan_tx || !host->chan_rx ||
444 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
445 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
446 goto error;
448 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
449 host->chan_rx);
451 return;
453 error:
454 if (host->chan_tx)
455 dma_release_channel(host->chan_tx);
456 if (host->chan_rx)
457 dma_release_channel(host->chan_rx);
458 host->chan_tx = host->chan_rx = NULL;
461 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
463 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
464 /* Descriptors are freed automatically */
465 if (host->chan_tx) {
466 struct dma_chan *chan = host->chan_tx;
467 host->chan_tx = NULL;
468 dma_release_channel(chan);
470 if (host->chan_rx) {
471 struct dma_chan *chan = host->chan_rx;
472 host->chan_rx = NULL;
473 dma_release_channel(chan);
476 host->dma_active = false;
479 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
481 struct device *dev = sh_mmcif_host_to_dev(host);
482 struct sh_mmcif_plat_data *p = dev->platform_data;
483 bool sup_pclk = p ? p->sup_pclk : false;
484 unsigned int current_clk = clk_get_rate(host->clk);
485 unsigned int clkdiv;
487 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
488 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
490 if (!clk)
491 return;
493 if (host->clkdiv_map) {
494 unsigned int freq, best_freq, myclk, div, diff_min, diff;
495 int i;
497 clkdiv = 0;
498 diff_min = ~0;
499 best_freq = 0;
500 for (i = 31; i >= 0; i--) {
501 if (!((1 << i) & host->clkdiv_map))
502 continue;
505 * clk = parent_freq / div
506 * -> parent_freq = clk x div
509 div = 1 << (i + 1);
510 freq = clk_round_rate(host->clk, clk * div);
511 myclk = freq / div;
512 diff = (myclk > clk) ? myclk - clk : clk - myclk;
514 if (diff <= diff_min) {
515 best_freq = freq;
516 clkdiv = i;
517 diff_min = diff;
521 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
522 (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
524 clk_set_rate(host->clk, best_freq);
525 clkdiv = clkdiv << 16;
526 } else if (sup_pclk && clk == current_clk) {
527 clkdiv = CLK_SUP_PCLK;
528 } else {
529 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
532 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
533 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
536 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
538 u32 tmp;
540 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
542 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
543 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
544 if (host->ccs_enable)
545 tmp |= SCCSTO_29;
546 if (host->clk_ctrl2_enable)
547 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
548 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
549 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
550 /* byte swap on */
551 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
554 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
556 struct device *dev = sh_mmcif_host_to_dev(host);
557 u32 state1, state2;
558 int ret, timeout;
560 host->sd_error = false;
562 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
563 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
564 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
565 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
567 if (state1 & STS1_CMDSEQ) {
568 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
569 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
570 for (timeout = 10000; timeout; timeout--) {
571 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
572 & STS1_CMDSEQ))
573 break;
574 mdelay(1);
576 if (!timeout) {
577 dev_err(dev,
578 "Forced end of command sequence timeout err\n");
579 return -EIO;
581 sh_mmcif_sync_reset(host);
582 dev_dbg(dev, "Forced end of command sequence\n");
583 return -EIO;
586 if (state2 & STS2_CRC_ERR) {
587 dev_err(dev, " CRC error: state %u, wait %u\n",
588 host->state, host->wait_for);
589 ret = -EIO;
590 } else if (state2 & STS2_TIMEOUT_ERR) {
591 dev_err(dev, " Timeout: state %u, wait %u\n",
592 host->state, host->wait_for);
593 ret = -ETIMEDOUT;
594 } else {
595 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
596 host->state, host->wait_for);
597 ret = -EIO;
599 return ret;
602 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
603 struct mmc_request *mrq)
605 struct mmc_data *data = mrq->data;
607 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
608 BLOCK_SIZE_MASK) + 3;
610 sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
611 SG_MITER_TO_SG);
613 host->wait_for = MMCIF_WAIT_FOR_READ;
615 /* buf read enable */
616 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
619 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
621 struct sg_mapping_iter *sgm = &host->sg_miter;
622 struct device *dev = sh_mmcif_host_to_dev(host);
623 struct mmc_data *data = host->mrq->data;
624 u32 *p;
625 int i;
627 if (host->sd_error) {
628 sg_miter_stop(sgm);
629 data->error = sh_mmcif_error_manage(host);
630 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
631 return false;
634 if (!sg_miter_next(sgm)) {
635 /* This should not happen on single blocks */
636 sg_miter_stop(sgm);
637 return false;
640 p = sgm->addr;
642 for (i = 0; i < host->blocksize / 4; i++)
643 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
645 sg_miter_stop(&host->sg_miter);
647 /* buffer read end */
648 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
649 host->wait_for = MMCIF_WAIT_FOR_READ_END;
651 return true;
654 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
655 struct mmc_request *mrq)
657 struct sg_mapping_iter *sgm = &host->sg_miter;
658 struct mmc_data *data = mrq->data;
660 if (!data->sg_len || !data->sg->length)
661 return;
663 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664 BLOCK_SIZE_MASK;
666 sg_miter_start(sgm, data->sg, data->sg_len,
667 SG_MITER_TO_SG);
669 /* Advance to the first sglist entry */
670 if (!sg_miter_next(sgm)) {
671 sg_miter_stop(sgm);
672 return;
675 host->wait_for = MMCIF_WAIT_FOR_MREAD;
677 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
680 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
682 struct sg_mapping_iter *sgm = &host->sg_miter;
683 struct device *dev = sh_mmcif_host_to_dev(host);
684 struct mmc_data *data = host->mrq->data;
685 u32 *p;
686 int i;
688 if (host->sd_error) {
689 sg_miter_stop(sgm);
690 data->error = sh_mmcif_error_manage(host);
691 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
692 return false;
695 p = sgm->addr;
697 for (i = 0; i < host->blocksize / 4; i++)
698 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
700 sgm->consumed = host->blocksize;
702 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
704 if (!sg_miter_next(sgm)) {
705 sg_miter_stop(sgm);
706 return false;
709 return true;
712 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
713 struct mmc_request *mrq)
715 struct mmc_data *data = mrq->data;
717 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
718 BLOCK_SIZE_MASK) + 3;
720 sg_miter_start(&host->sg_miter, data->sg, data->sg_len,
721 SG_MITER_FROM_SG);
723 host->wait_for = MMCIF_WAIT_FOR_WRITE;
725 /* buf write enable */
726 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
729 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
731 struct sg_mapping_iter *sgm = &host->sg_miter;
732 struct device *dev = sh_mmcif_host_to_dev(host);
733 struct mmc_data *data = host->mrq->data;
734 u32 *p;
735 int i;
737 if (host->sd_error) {
738 sg_miter_stop(sgm);
739 data->error = sh_mmcif_error_manage(host);
740 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
741 return false;
744 if (!sg_miter_next(sgm)) {
745 /* This should not happen on single blocks */
746 sg_miter_stop(sgm);
747 return false;
750 p = sgm->addr;
752 for (i = 0; i < host->blocksize / 4; i++)
753 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
755 sg_miter_stop(&host->sg_miter);
757 /* buffer write end */
758 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
759 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
761 return true;
764 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
765 struct mmc_request *mrq)
767 struct sg_mapping_iter *sgm = &host->sg_miter;
768 struct mmc_data *data = mrq->data;
770 if (!data->sg_len || !data->sg->length)
771 return;
773 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
774 BLOCK_SIZE_MASK;
776 sg_miter_start(sgm, data->sg, data->sg_len,
777 SG_MITER_FROM_SG);
779 /* Advance to the first sglist entry */
780 if (!sg_miter_next(sgm)) {
781 sg_miter_stop(sgm);
782 return;
785 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
787 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
790 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
792 struct sg_mapping_iter *sgm = &host->sg_miter;
793 struct device *dev = sh_mmcif_host_to_dev(host);
794 struct mmc_data *data = host->mrq->data;
795 u32 *p;
796 int i;
798 if (host->sd_error) {
799 sg_miter_stop(sgm);
800 data->error = sh_mmcif_error_manage(host);
801 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
802 return false;
805 p = sgm->addr;
807 for (i = 0; i < host->blocksize / 4; i++)
808 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
810 sgm->consumed = host->blocksize;
812 if (!sg_miter_next(sgm)) {
813 sg_miter_stop(sgm);
814 return false;
817 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
819 return true;
822 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
823 struct mmc_command *cmd)
825 if (cmd->flags & MMC_RSP_136) {
826 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
827 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
828 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
829 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
830 } else
831 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
834 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
835 struct mmc_command *cmd)
837 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
840 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
841 struct mmc_request *mrq)
843 struct device *dev = sh_mmcif_host_to_dev(host);
844 struct mmc_data *data = mrq->data;
845 struct mmc_command *cmd = mrq->cmd;
846 u32 opc = cmd->opcode;
847 u32 tmp = 0;
849 /* Response Type check */
850 switch (mmc_resp_type(cmd)) {
851 case MMC_RSP_NONE:
852 tmp |= CMD_SET_RTYP_NO;
853 break;
854 case MMC_RSP_R1:
855 case MMC_RSP_R3:
856 tmp |= CMD_SET_RTYP_6B;
857 break;
858 case MMC_RSP_R1B:
859 tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
860 break;
861 case MMC_RSP_R2:
862 tmp |= CMD_SET_RTYP_17B;
863 break;
864 default:
865 dev_err(dev, "Unsupported response type.\n");
866 break;
869 /* WDAT / DATW */
870 if (data) {
871 tmp |= CMD_SET_WDAT;
872 switch (host->bus_width) {
873 case MMC_BUS_WIDTH_1:
874 tmp |= CMD_SET_DATW_1;
875 break;
876 case MMC_BUS_WIDTH_4:
877 tmp |= CMD_SET_DATW_4;
878 break;
879 case MMC_BUS_WIDTH_8:
880 tmp |= CMD_SET_DATW_8;
881 break;
882 default:
883 dev_err(dev, "Unsupported bus width.\n");
884 break;
886 switch (host->timing) {
887 case MMC_TIMING_MMC_DDR52:
889 * MMC core will only set this timing, if the host
890 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
891 * capability. MMCIF implementations with this
892 * capability, e.g. sh73a0, will have to set it
893 * in their platform data.
895 tmp |= CMD_SET_DARS;
896 break;
899 /* DWEN */
900 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
901 tmp |= CMD_SET_DWEN;
902 /* CMLTE/CMD12EN */
903 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
904 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
905 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
906 data->blocks << 16);
908 /* RIDXC[1:0] check bits */
909 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
910 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
911 tmp |= CMD_SET_RIDXC_BITS;
912 /* RCRC7C[1:0] check bits */
913 if (opc == MMC_SEND_OP_COND)
914 tmp |= CMD_SET_CRC7C_BITS;
915 /* RCRC7C[1:0] internal CRC7 */
916 if (opc == MMC_ALL_SEND_CID ||
917 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
918 tmp |= CMD_SET_CRC7C_INTERNAL;
920 return (opc << 24) | tmp;
923 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
924 struct mmc_request *mrq, u32 opc)
926 struct device *dev = sh_mmcif_host_to_dev(host);
928 switch (opc) {
929 case MMC_READ_MULTIPLE_BLOCK:
930 sh_mmcif_multi_read(host, mrq);
931 return 0;
932 case MMC_WRITE_MULTIPLE_BLOCK:
933 sh_mmcif_multi_write(host, mrq);
934 return 0;
935 case MMC_WRITE_BLOCK:
936 sh_mmcif_single_write(host, mrq);
937 return 0;
938 case MMC_READ_SINGLE_BLOCK:
939 case MMC_SEND_EXT_CSD:
940 sh_mmcif_single_read(host, mrq);
941 return 0;
942 default:
943 dev_err(dev, "Unsupported CMD%d\n", opc);
944 return -EINVAL;
948 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
949 struct mmc_request *mrq)
951 struct mmc_command *cmd = mrq->cmd;
952 u32 opc;
953 u32 mask = 0;
954 unsigned long flags;
956 if (cmd->flags & MMC_RSP_BUSY)
957 mask = MASK_START_CMD | MASK_MRBSYE;
958 else
959 mask = MASK_START_CMD | MASK_MCRSPE;
961 if (host->ccs_enable)
962 mask |= MASK_MCCSTO;
964 if (mrq->data) {
965 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
966 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
967 mrq->data->blksz);
969 opc = sh_mmcif_set_cmd(host, mrq);
971 if (host->ccs_enable)
972 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
973 else
974 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
975 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
976 /* set arg */
977 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
978 /* set cmd */
979 spin_lock_irqsave(&host->lock, flags);
980 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
982 host->wait_for = MMCIF_WAIT_FOR_CMD;
983 schedule_delayed_work(&host->timeout_work, host->timeout);
984 spin_unlock_irqrestore(&host->lock, flags);
987 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
988 struct mmc_request *mrq)
990 struct device *dev = sh_mmcif_host_to_dev(host);
992 switch (mrq->cmd->opcode) {
993 case MMC_READ_MULTIPLE_BLOCK:
994 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
995 break;
996 case MMC_WRITE_MULTIPLE_BLOCK:
997 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
998 break;
999 default:
1000 dev_err(dev, "unsupported stop cmd\n");
1001 mrq->stop->error = sh_mmcif_error_manage(host);
1002 return;
1005 host->wait_for = MMCIF_WAIT_FOR_STOP;
1008 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1010 struct sh_mmcif_host *host = mmc_priv(mmc);
1011 struct device *dev = sh_mmcif_host_to_dev(host);
1012 unsigned long flags;
1014 spin_lock_irqsave(&host->lock, flags);
1015 if (host->state != STATE_IDLE) {
1016 dev_dbg(dev, "%s() rejected, state %u\n",
1017 __func__, host->state);
1018 spin_unlock_irqrestore(&host->lock, flags);
1019 mrq->cmd->error = -EAGAIN;
1020 mmc_request_done(mmc, mrq);
1021 return;
1024 host->state = STATE_REQUEST;
1025 spin_unlock_irqrestore(&host->lock, flags);
1027 host->mrq = mrq;
1029 sh_mmcif_start_cmd(host, mrq);
1032 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1034 struct device *dev = sh_mmcif_host_to_dev(host);
1036 if (host->mmc->f_max) {
1037 unsigned int f_max, f_min = 0, f_min_old;
1039 f_max = host->mmc->f_max;
1040 for (f_min_old = f_max; f_min_old > 2;) {
1041 f_min = clk_round_rate(host->clk, f_min_old / 2);
1042 if (f_min == f_min_old)
1043 break;
1044 f_min_old = f_min;
1048 * This driver assumes this SoC is R-Car Gen2 or later
1050 host->clkdiv_map = 0x3ff;
1052 host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1053 host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1054 } else {
1055 unsigned int clk = clk_get_rate(host->clk);
1057 host->mmc->f_max = clk / 2;
1058 host->mmc->f_min = clk / 512;
1061 dev_dbg(dev, "clk max/min = %d/%d\n",
1062 host->mmc->f_max, host->mmc->f_min);
1065 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1067 struct sh_mmcif_host *host = mmc_priv(mmc);
1068 struct device *dev = sh_mmcif_host_to_dev(host);
1069 unsigned long flags;
1071 spin_lock_irqsave(&host->lock, flags);
1072 if (host->state != STATE_IDLE) {
1073 dev_dbg(dev, "%s() rejected, state %u\n",
1074 __func__, host->state);
1075 spin_unlock_irqrestore(&host->lock, flags);
1076 return;
1079 host->state = STATE_IOS;
1080 spin_unlock_irqrestore(&host->lock, flags);
1082 switch (ios->power_mode) {
1083 case MMC_POWER_UP:
1084 if (!IS_ERR(mmc->supply.vmmc))
1085 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1086 if (!host->power) {
1087 clk_prepare_enable(host->clk);
1088 pm_runtime_get_sync(dev);
1089 sh_mmcif_sync_reset(host);
1090 sh_mmcif_request_dma(host);
1091 host->power = true;
1093 break;
1094 case MMC_POWER_OFF:
1095 if (!IS_ERR(mmc->supply.vmmc))
1096 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1097 if (host->power) {
1098 sh_mmcif_clock_control(host, 0);
1099 sh_mmcif_release_dma(host);
1100 pm_runtime_put(dev);
1101 clk_disable_unprepare(host->clk);
1102 host->power = false;
1104 break;
1105 case MMC_POWER_ON:
1106 sh_mmcif_clock_control(host, ios->clock);
1107 break;
1110 host->timing = ios->timing;
1111 host->bus_width = ios->bus_width;
1112 host->state = STATE_IDLE;
1115 static const struct mmc_host_ops sh_mmcif_ops = {
1116 .request = sh_mmcif_request,
1117 .set_ios = sh_mmcif_set_ios,
1118 .get_cd = mmc_gpio_get_cd,
1121 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1123 struct mmc_command *cmd = host->mrq->cmd;
1124 struct mmc_data *data = host->mrq->data;
1125 struct device *dev = sh_mmcif_host_to_dev(host);
1126 long time;
1128 if (host->sd_error) {
1129 switch (cmd->opcode) {
1130 case MMC_ALL_SEND_CID:
1131 case MMC_SELECT_CARD:
1132 case MMC_APP_CMD:
1133 cmd->error = -ETIMEDOUT;
1134 break;
1135 default:
1136 cmd->error = sh_mmcif_error_manage(host);
1137 break;
1139 dev_dbg(dev, "CMD%d error %d\n",
1140 cmd->opcode, cmd->error);
1141 host->sd_error = false;
1142 return false;
1144 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1145 cmd->error = 0;
1146 return false;
1149 sh_mmcif_get_response(host, cmd);
1151 if (!data)
1152 return false;
1155 * Completion can be signalled from DMA callback and error, so, have to
1156 * reset here, before setting .dma_active
1158 init_completion(&host->dma_complete);
1160 if (data->flags & MMC_DATA_READ) {
1161 if (host->chan_rx)
1162 sh_mmcif_start_dma_rx(host);
1163 } else {
1164 if (host->chan_tx)
1165 sh_mmcif_start_dma_tx(host);
1168 if (!host->dma_active) {
1169 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1170 return !data->error;
1173 /* Running in the IRQ thread, can sleep */
1174 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1175 host->timeout);
1177 if (data->flags & MMC_DATA_READ)
1178 dma_unmap_sg(host->chan_rx->device->dev,
1179 data->sg, data->sg_len,
1180 DMA_FROM_DEVICE);
1181 else
1182 dma_unmap_sg(host->chan_tx->device->dev,
1183 data->sg, data->sg_len,
1184 DMA_TO_DEVICE);
1186 if (host->sd_error) {
1187 dev_err(host->mmc->parent,
1188 "Error IRQ while waiting for DMA completion!\n");
1189 /* Woken up by an error IRQ: abort DMA */
1190 data->error = sh_mmcif_error_manage(host);
1191 } else if (!time) {
1192 dev_err(host->mmc->parent, "DMA timeout!\n");
1193 data->error = -ETIMEDOUT;
1194 } else if (time < 0) {
1195 dev_err(host->mmc->parent,
1196 "wait_for_completion_...() error %ld!\n", time);
1197 data->error = time;
1199 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1200 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1201 host->dma_active = false;
1203 if (data->error) {
1204 data->bytes_xfered = 0;
1205 /* Abort DMA */
1206 if (data->flags & MMC_DATA_READ)
1207 dmaengine_terminate_sync(host->chan_rx);
1208 else
1209 dmaengine_terminate_sync(host->chan_tx);
1212 return false;
1215 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1217 struct sh_mmcif_host *host = dev_id;
1218 struct mmc_request *mrq;
1219 struct device *dev = sh_mmcif_host_to_dev(host);
1220 bool wait = false;
1221 unsigned long flags;
1222 int wait_work;
1224 spin_lock_irqsave(&host->lock, flags);
1225 wait_work = host->wait_for;
1226 spin_unlock_irqrestore(&host->lock, flags);
1228 cancel_delayed_work_sync(&host->timeout_work);
1230 mutex_lock(&host->thread_lock);
1232 mrq = host->mrq;
1233 if (!mrq) {
1234 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1235 host->state, host->wait_for);
1236 mutex_unlock(&host->thread_lock);
1237 return IRQ_HANDLED;
1241 * All handlers return true, if processing continues, and false, if the
1242 * request has to be completed - successfully or not
1244 switch (wait_work) {
1245 case MMCIF_WAIT_FOR_REQUEST:
1246 /* We're too late, the timeout has already kicked in */
1247 mutex_unlock(&host->thread_lock);
1248 return IRQ_HANDLED;
1249 case MMCIF_WAIT_FOR_CMD:
1250 /* Wait for data? */
1251 wait = sh_mmcif_end_cmd(host);
1252 break;
1253 case MMCIF_WAIT_FOR_MREAD:
1254 /* Wait for more data? */
1255 wait = sh_mmcif_mread_block(host);
1256 break;
1257 case MMCIF_WAIT_FOR_READ:
1258 /* Wait for data end? */
1259 wait = sh_mmcif_read_block(host);
1260 break;
1261 case MMCIF_WAIT_FOR_MWRITE:
1262 /* Wait data to write? */
1263 wait = sh_mmcif_mwrite_block(host);
1264 break;
1265 case MMCIF_WAIT_FOR_WRITE:
1266 /* Wait for data end? */
1267 wait = sh_mmcif_write_block(host);
1268 break;
1269 case MMCIF_WAIT_FOR_STOP:
1270 if (host->sd_error) {
1271 mrq->stop->error = sh_mmcif_error_manage(host);
1272 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1273 break;
1275 sh_mmcif_get_cmd12response(host, mrq->stop);
1276 mrq->stop->error = 0;
1277 break;
1278 case MMCIF_WAIT_FOR_READ_END:
1279 case MMCIF_WAIT_FOR_WRITE_END:
1280 if (host->sd_error) {
1281 mrq->data->error = sh_mmcif_error_manage(host);
1282 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1284 break;
1285 default:
1286 BUG();
1289 if (wait) {
1290 schedule_delayed_work(&host->timeout_work, host->timeout);
1291 /* Wait for more data */
1292 mutex_unlock(&host->thread_lock);
1293 return IRQ_HANDLED;
1296 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1297 struct mmc_data *data = mrq->data;
1298 if (!mrq->cmd->error && data && !data->error)
1299 data->bytes_xfered =
1300 data->blocks * data->blksz;
1302 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1303 sh_mmcif_stop_cmd(host, mrq);
1304 if (!mrq->stop->error) {
1305 schedule_delayed_work(&host->timeout_work, host->timeout);
1306 mutex_unlock(&host->thread_lock);
1307 return IRQ_HANDLED;
1312 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1313 host->state = STATE_IDLE;
1314 host->mrq = NULL;
1315 mmc_request_done(host->mmc, mrq);
1317 mutex_unlock(&host->thread_lock);
1319 return IRQ_HANDLED;
1322 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1324 struct sh_mmcif_host *host = dev_id;
1325 struct device *dev = sh_mmcif_host_to_dev(host);
1326 u32 state, mask;
1328 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1329 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1330 if (host->ccs_enable)
1331 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1332 else
1333 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1334 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1336 if (state & ~MASK_CLEAN)
1337 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1338 state);
1340 if (state & INT_ERR_STS || state & ~INT_ALL) {
1341 host->sd_error = true;
1342 dev_dbg(dev, "int err state = 0x%08x\n", state);
1344 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1345 if (!host->mrq)
1346 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1347 if (!host->dma_active)
1348 return IRQ_WAKE_THREAD;
1349 else if (host->sd_error)
1350 sh_mmcif_dma_complete(host);
1351 } else {
1352 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1355 return IRQ_HANDLED;
1358 static void sh_mmcif_timeout_work(struct work_struct *work)
1360 struct delayed_work *d = to_delayed_work(work);
1361 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1362 struct mmc_request *mrq = host->mrq;
1363 struct device *dev = sh_mmcif_host_to_dev(host);
1364 unsigned long flags;
1366 if (host->dying)
1367 /* Don't run after mmc_remove_host() */
1368 return;
1370 spin_lock_irqsave(&host->lock, flags);
1371 if (host->state == STATE_IDLE) {
1372 spin_unlock_irqrestore(&host->lock, flags);
1373 return;
1376 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1377 host->wait_for, mrq->cmd->opcode);
1379 host->state = STATE_TIMEOUT;
1380 spin_unlock_irqrestore(&host->lock, flags);
1383 * Handle races with cancel_delayed_work(), unless
1384 * cancel_delayed_work_sync() is used
1386 switch (host->wait_for) {
1387 case MMCIF_WAIT_FOR_CMD:
1388 mrq->cmd->error = sh_mmcif_error_manage(host);
1389 break;
1390 case MMCIF_WAIT_FOR_STOP:
1391 mrq->stop->error = sh_mmcif_error_manage(host);
1392 break;
1393 case MMCIF_WAIT_FOR_MREAD:
1394 case MMCIF_WAIT_FOR_MWRITE:
1395 case MMCIF_WAIT_FOR_READ:
1396 case MMCIF_WAIT_FOR_WRITE:
1397 case MMCIF_WAIT_FOR_READ_END:
1398 case MMCIF_WAIT_FOR_WRITE_END:
1399 mrq->data->error = sh_mmcif_error_manage(host);
1400 break;
1401 default:
1402 BUG();
1405 host->state = STATE_IDLE;
1406 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1407 host->mrq = NULL;
1408 mmc_request_done(host->mmc, mrq);
1411 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1413 struct device *dev = sh_mmcif_host_to_dev(host);
1414 struct sh_mmcif_plat_data *pd = dev->platform_data;
1415 struct mmc_host *mmc = host->mmc;
1417 mmc_regulator_get_supply(mmc);
1419 if (!pd)
1420 return;
1422 if (!mmc->ocr_avail)
1423 mmc->ocr_avail = pd->ocr;
1424 else if (pd->ocr)
1425 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1428 static int sh_mmcif_probe(struct platform_device *pdev)
1430 int ret = 0, irq[2];
1431 struct mmc_host *mmc;
1432 struct sh_mmcif_host *host;
1433 struct device *dev = &pdev->dev;
1434 struct sh_mmcif_plat_data *pd = dev->platform_data;
1435 void __iomem *reg;
1436 const char *name;
1438 irq[0] = platform_get_irq(pdev, 0);
1439 irq[1] = platform_get_irq_optional(pdev, 1);
1440 if (irq[0] < 0)
1441 return irq[0];
1443 reg = devm_platform_ioremap_resource(pdev, 0);
1444 if (IS_ERR(reg))
1445 return PTR_ERR(reg);
1447 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1448 if (!mmc)
1449 return -ENOMEM;
1451 ret = mmc_of_parse(mmc);
1452 if (ret < 0)
1453 goto err_host;
1455 host = mmc_priv(mmc);
1456 host->mmc = mmc;
1457 host->addr = reg;
1458 host->timeout = msecs_to_jiffies(10000);
1459 host->ccs_enable = true;
1460 host->clk_ctrl2_enable = false;
1462 host->pd = pdev;
1464 spin_lock_init(&host->lock);
1466 mmc->ops = &sh_mmcif_ops;
1467 sh_mmcif_init_ocr(host);
1469 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1470 mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1471 mmc->max_busy_timeout = 10000;
1473 if (pd && pd->caps)
1474 mmc->caps |= pd->caps;
1475 mmc->max_segs = 32;
1476 mmc->max_blk_size = 512;
1477 mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1478 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1479 mmc->max_seg_size = mmc->max_req_size;
1481 platform_set_drvdata(pdev, host);
1483 host->clk = devm_clk_get(dev, NULL);
1484 if (IS_ERR(host->clk)) {
1485 ret = PTR_ERR(host->clk);
1486 dev_err(dev, "cannot get clock: %d\n", ret);
1487 goto err_host;
1490 ret = clk_prepare_enable(host->clk);
1491 if (ret < 0)
1492 goto err_host;
1494 sh_mmcif_clk_setup(host);
1496 pm_runtime_enable(dev);
1497 host->power = false;
1499 ret = pm_runtime_get_sync(dev);
1500 if (ret < 0)
1501 goto err_clk;
1503 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1505 sh_mmcif_sync_reset(host);
1506 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1508 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1509 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1510 sh_mmcif_irqt, 0, name, host);
1511 if (ret) {
1512 dev_err(dev, "request_irq error (%s)\n", name);
1513 goto err_clk;
1515 if (irq[1] >= 0) {
1516 ret = devm_request_threaded_irq(dev, irq[1],
1517 sh_mmcif_intr, sh_mmcif_irqt,
1518 0, "sh_mmc:int", host);
1519 if (ret) {
1520 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1521 goto err_clk;
1525 mutex_init(&host->thread_lock);
1527 ret = mmc_add_host(mmc);
1528 if (ret < 0)
1529 goto err_clk;
1531 dev_pm_qos_expose_latency_limit(dev, 100);
1533 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1534 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1535 clk_get_rate(host->clk) / 1000000UL);
1537 pm_runtime_put(dev);
1538 clk_disable_unprepare(host->clk);
1539 return ret;
1541 err_clk:
1542 clk_disable_unprepare(host->clk);
1543 pm_runtime_put_sync(dev);
1544 pm_runtime_disable(dev);
1545 err_host:
1546 mmc_free_host(mmc);
1547 return ret;
1550 static void sh_mmcif_remove(struct platform_device *pdev)
1552 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1554 host->dying = true;
1555 clk_prepare_enable(host->clk);
1556 pm_runtime_get_sync(&pdev->dev);
1558 dev_pm_qos_hide_latency_limit(&pdev->dev);
1560 mmc_remove_host(host->mmc);
1561 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1564 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1565 * mmc_remove_host() call above. But swapping order doesn't help either
1566 * (a query on the linux-mmc mailing list didn't bring any replies).
1568 cancel_delayed_work_sync(&host->timeout_work);
1570 clk_disable_unprepare(host->clk);
1571 mmc_free_host(host->mmc);
1572 pm_runtime_put_sync(&pdev->dev);
1573 pm_runtime_disable(&pdev->dev);
1576 #ifdef CONFIG_PM_SLEEP
1577 static int sh_mmcif_suspend(struct device *dev)
1579 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1581 pm_runtime_get_sync(dev);
1582 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1583 pm_runtime_put(dev);
1585 return 0;
1588 static int sh_mmcif_resume(struct device *dev)
1590 return 0;
1592 #endif
1594 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1595 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1598 static struct platform_driver sh_mmcif_driver = {
1599 .probe = sh_mmcif_probe,
1600 .remove = sh_mmcif_remove,
1601 .driver = {
1602 .name = DRIVER_NAME,
1603 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1604 .pm = &sh_mmcif_dev_pm_ops,
1605 .of_match_table = sh_mmcif_of_match,
1609 module_platform_driver(sh_mmcif_driver);
1611 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1612 MODULE_LICENSE("GPL v2");
1613 MODULE_ALIAS("platform:" DRIVER_NAME);
1614 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");