1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_trace.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_log_recover.h"
21 #include "xfs_error.h"
22 #include "xfs_inode.h"
24 #include "xfs_quota.h"
25 #include "xfs_alloc.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_rtbitmap.h"
32 * This is the number of entries in the l_buf_cancel_table used during
35 #define XLOG_BC_TABLE_SIZE 64
37 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
38 ((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
41 * This structure is used during recovery to record the buf log items which
42 * have been canceled and should not be replayed.
44 struct xfs_buf_cancel
{
48 struct list_head bc_list
;
51 static struct xfs_buf_cancel
*
52 xlog_find_buffer_cancelled(
57 struct list_head
*bucket
;
58 struct xfs_buf_cancel
*bcp
;
60 if (!log
->l_buf_cancel_table
)
63 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
64 list_for_each_entry(bcp
, bucket
, bc_list
) {
65 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
73 xlog_add_buffer_cancelled(
78 struct xfs_buf_cancel
*bcp
;
81 * If we find an existing cancel record, this indicates that the buffer
82 * was cancelled multiple times. To ensure that during pass 2 we keep
83 * the record in the table until we reach its last occurrence in the
84 * log, a reference count is kept to tell how many times we expect to
85 * see this record during the second pass.
87 bcp
= xlog_find_buffer_cancelled(log
, blkno
, len
);
93 bcp
= kmalloc(sizeof(struct xfs_buf_cancel
), GFP_KERNEL
| __GFP_NOFAIL
);
94 bcp
->bc_blkno
= blkno
;
97 list_add_tail(&bcp
->bc_list
, XLOG_BUF_CANCEL_BUCKET(log
, blkno
));
102 * Check if there is and entry for blkno, len in the buffer cancel record table.
105 xlog_is_buffer_cancelled(
110 return xlog_find_buffer_cancelled(log
, blkno
, len
) != NULL
;
114 * Check if there is and entry for blkno, len in the buffer cancel record table,
115 * and decremented the reference count on it if there is one.
117 * Remove the cancel record once the refcount hits zero, so that if the same
118 * buffer is re-used again after its last cancellation we actually replay the
119 * changes made at that point.
122 xlog_put_buffer_cancelled(
127 struct xfs_buf_cancel
*bcp
;
129 bcp
= xlog_find_buffer_cancelled(log
, blkno
, len
);
135 if (--bcp
->bc_refcount
== 0) {
136 list_del(&bcp
->bc_list
);
142 /* log buffer item recovery */
145 * Sort buffer items for log recovery. Most buffer items should end up on the
146 * buffer list and are recovered first, with the following exceptions:
148 * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
149 * might depend on the incor ecancellation record, and replaying a cancelled
150 * buffer item can remove the incore record.
152 * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
153 * we replay di_next_unlinked only after flushing the inode 'free' state
154 * to the inode buffer.
156 * See xlog_recover_reorder_trans for more details.
158 STATIC
enum xlog_recover_reorder
159 xlog_recover_buf_reorder(
160 struct xlog_recover_item
*item
)
162 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
164 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
)
165 return XLOG_REORDER_CANCEL_LIST
;
166 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
167 return XLOG_REORDER_INODE_BUFFER_LIST
;
168 return XLOG_REORDER_BUFFER_LIST
;
172 xlog_recover_buf_ra_pass2(
174 struct xlog_recover_item
*item
)
176 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
178 xlog_buf_readahead(log
, buf_f
->blf_blkno
, buf_f
->blf_len
, NULL
);
182 * Build up the table of buf cancel records so that we don't replay cancelled
183 * data in the second pass.
186 xlog_recover_buf_commit_pass1(
188 struct xlog_recover_item
*item
)
190 struct xfs_buf_log_format
*bf
= item
->ri_buf
[0].i_addr
;
192 if (!xfs_buf_log_check_iovec(&item
->ri_buf
[0])) {
193 xfs_err(log
->l_mp
, "bad buffer log item size (%d)",
194 item
->ri_buf
[0].i_len
);
195 return -EFSCORRUPTED
;
198 if (!(bf
->blf_flags
& XFS_BLF_CANCEL
))
199 trace_xfs_log_recover_buf_not_cancel(log
, bf
);
200 else if (xlog_add_buffer_cancelled(log
, bf
->blf_blkno
, bf
->blf_len
))
201 trace_xfs_log_recover_buf_cancel_add(log
, bf
);
203 trace_xfs_log_recover_buf_cancel_ref_inc(log
, bf
);
208 * Validate the recovered buffer is of the correct type and attach the
209 * appropriate buffer operations to them for writeback. Magic numbers are in a
211 * the first 16 bits of the buffer (inode buffer, dquot buffer),
212 * the first 32 bits of the buffer (most blocks),
213 * inside a struct xfs_da_blkinfo at the start of the buffer.
216 xlog_recover_validate_buf_type(
217 struct xfs_mount
*mp
,
219 struct xfs_buf_log_format
*buf_f
,
220 xfs_lsn_t current_lsn
)
222 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
226 char *warnmsg
= NULL
;
229 * We can only do post recovery validation on items on CRC enabled
230 * fielsystems as we need to know when the buffer was written to be able
231 * to determine if we should have replayed the item. If we replay old
232 * metadata over a newer buffer, then it will enter a temporarily
233 * inconsistent state resulting in verification failures. Hence for now
234 * just avoid the verification stage for non-crc filesystems
236 if (!xfs_has_crc(mp
))
239 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
240 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
241 magicda
= be16_to_cpu(info
->magic
);
242 switch (xfs_blft_from_flags(buf_f
)) {
243 case XFS_BLFT_BTREE_BUF
:
245 case XFS_ABTB_CRC_MAGIC
:
247 bp
->b_ops
= &xfs_bnobt_buf_ops
;
249 case XFS_ABTC_CRC_MAGIC
:
251 bp
->b_ops
= &xfs_cntbt_buf_ops
;
253 case XFS_IBT_CRC_MAGIC
:
255 bp
->b_ops
= &xfs_inobt_buf_ops
;
257 case XFS_FIBT_CRC_MAGIC
:
259 bp
->b_ops
= &xfs_finobt_buf_ops
;
261 case XFS_BMAP_CRC_MAGIC
:
263 bp
->b_ops
= &xfs_bmbt_buf_ops
;
265 case XFS_RMAP_CRC_MAGIC
:
266 bp
->b_ops
= &xfs_rmapbt_buf_ops
;
268 case XFS_REFC_CRC_MAGIC
:
269 bp
->b_ops
= &xfs_refcountbt_buf_ops
;
272 warnmsg
= "Bad btree block magic!";
276 case XFS_BLFT_AGF_BUF
:
277 if (magic32
!= XFS_AGF_MAGIC
) {
278 warnmsg
= "Bad AGF block magic!";
281 bp
->b_ops
= &xfs_agf_buf_ops
;
283 case XFS_BLFT_AGFL_BUF
:
284 if (magic32
!= XFS_AGFL_MAGIC
) {
285 warnmsg
= "Bad AGFL block magic!";
288 bp
->b_ops
= &xfs_agfl_buf_ops
;
290 case XFS_BLFT_AGI_BUF
:
291 if (magic32
!= XFS_AGI_MAGIC
) {
292 warnmsg
= "Bad AGI block magic!";
295 bp
->b_ops
= &xfs_agi_buf_ops
;
297 case XFS_BLFT_UDQUOT_BUF
:
298 case XFS_BLFT_PDQUOT_BUF
:
299 case XFS_BLFT_GDQUOT_BUF
:
300 #ifdef CONFIG_XFS_QUOTA
301 if (magic16
!= XFS_DQUOT_MAGIC
) {
302 warnmsg
= "Bad DQUOT block magic!";
305 bp
->b_ops
= &xfs_dquot_buf_ops
;
308 "Trying to recover dquots without QUOTA support built in!");
312 case XFS_BLFT_DINO_BUF
:
313 if (magic16
!= XFS_DINODE_MAGIC
) {
314 warnmsg
= "Bad INODE block magic!";
317 bp
->b_ops
= &xfs_inode_buf_ops
;
319 case XFS_BLFT_SYMLINK_BUF
:
320 if (magic32
!= XFS_SYMLINK_MAGIC
) {
321 warnmsg
= "Bad symlink block magic!";
324 bp
->b_ops
= &xfs_symlink_buf_ops
;
326 case XFS_BLFT_DIR_BLOCK_BUF
:
327 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
328 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
329 warnmsg
= "Bad dir block magic!";
332 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
334 case XFS_BLFT_DIR_DATA_BUF
:
335 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
336 magic32
!= XFS_DIR3_DATA_MAGIC
) {
337 warnmsg
= "Bad dir data magic!";
340 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
342 case XFS_BLFT_DIR_FREE_BUF
:
343 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
344 magic32
!= XFS_DIR3_FREE_MAGIC
) {
345 warnmsg
= "Bad dir3 free magic!";
348 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
350 case XFS_BLFT_DIR_LEAF1_BUF
:
351 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
352 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
353 warnmsg
= "Bad dir leaf1 magic!";
356 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
358 case XFS_BLFT_DIR_LEAFN_BUF
:
359 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
360 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
361 warnmsg
= "Bad dir leafn magic!";
364 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
366 case XFS_BLFT_DA_NODE_BUF
:
367 if (magicda
!= XFS_DA_NODE_MAGIC
&&
368 magicda
!= XFS_DA3_NODE_MAGIC
) {
369 warnmsg
= "Bad da node magic!";
372 bp
->b_ops
= &xfs_da3_node_buf_ops
;
374 case XFS_BLFT_ATTR_LEAF_BUF
:
375 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
376 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
377 warnmsg
= "Bad attr leaf magic!";
380 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
382 case XFS_BLFT_ATTR_RMT_BUF
:
383 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
384 warnmsg
= "Bad attr remote magic!";
387 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
389 case XFS_BLFT_SB_BUF
:
390 if (magic32
!= XFS_SB_MAGIC
) {
391 warnmsg
= "Bad SB block magic!";
394 bp
->b_ops
= &xfs_sb_buf_ops
;
397 case XFS_BLFT_RTBITMAP_BUF
:
398 if (xfs_has_rtgroups(mp
) && magic32
!= XFS_RTBITMAP_MAGIC
) {
399 warnmsg
= "Bad rtbitmap magic!";
402 bp
->b_ops
= xfs_rtblock_ops(mp
, XFS_RTGI_BITMAP
);
404 case XFS_BLFT_RTSUMMARY_BUF
:
405 if (xfs_has_rtgroups(mp
) && magic32
!= XFS_RTSUMMARY_MAGIC
) {
406 warnmsg
= "Bad rtsummary magic!";
409 bp
->b_ops
= xfs_rtblock_ops(mp
, XFS_RTGI_SUMMARY
);
411 #endif /* CONFIG_XFS_RT */
413 xfs_warn(mp
, "Unknown buffer type %d!",
414 xfs_blft_from_flags(buf_f
));
419 * Nothing else to do in the case of a NULL current LSN as this means
420 * the buffer is more recent than the change in the log and will be
423 if (current_lsn
== NULLCOMMITLSN
)
427 xfs_warn(mp
, warnmsg
);
432 * We must update the metadata LSN of the buffer as it is written out to
433 * ensure that older transactions never replay over this one and corrupt
434 * the buffer. This can occur if log recovery is interrupted at some
435 * point after the current transaction completes, at which point a
436 * subsequent mount starts recovery from the beginning.
438 * Write verifiers update the metadata LSN from log items attached to
439 * the buffer. Therefore, initialize a bli purely to carry the LSN to
443 struct xfs_buf_log_item
*bip
;
445 bp
->b_flags
|= _XBF_LOGRECOVERY
;
446 xfs_buf_item_init(bp
, mp
);
447 bip
= bp
->b_log_item
;
448 bip
->bli_item
.li_lsn
= current_lsn
;
453 * Perform a 'normal' buffer recovery. Each logged region of the
454 * buffer should be copied over the corresponding region in the
455 * given buffer. The bitmap in the buf log format structure indicates
456 * where to place the logged data.
459 xlog_recover_do_reg_buffer(
460 struct xfs_mount
*mp
,
461 struct xlog_recover_item
*item
,
463 struct xfs_buf_log_format
*buf_f
,
464 xfs_lsn_t current_lsn
)
470 const size_t size_disk_dquot
= sizeof(struct xfs_disk_dquot
);
472 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
475 i
= 1; /* 0 is the buf format structure */
477 bit
= xfs_next_bit(buf_f
->blf_data_map
,
478 buf_f
->blf_map_size
, bit
);
481 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
482 buf_f
->blf_map_size
, bit
);
484 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
485 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
486 ASSERT(BBTOB(bp
->b_length
) >=
487 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
490 * The dirty regions logged in the buffer, even though
491 * contiguous, may span multiple chunks. This is because the
492 * dirty region may span a physical page boundary in a buffer
493 * and hence be split into two separate vectors for writing into
494 * the log. Hence we need to trim nbits back to the length of
495 * the current region being copied out of the log.
497 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
498 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
501 * Do a sanity check if this is a dquot buffer. Just checking
502 * the first dquot in the buffer should do. XXXThis is
503 * probably a good thing to do for other buf types also.
506 if (buf_f
->blf_flags
&
507 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
508 if (item
->ri_buf
[i
].i_addr
== NULL
) {
510 "XFS: NULL dquot in %s.", __func__
);
513 if (item
->ri_buf
[i
].i_len
< size_disk_dquot
) {
515 "XFS: dquot too small (%d) in %s.",
516 item
->ri_buf
[i
].i_len
, __func__
);
519 fa
= xfs_dquot_verify(mp
, item
->ri_buf
[i
].i_addr
, -1);
522 "dquot corrupt at %pS trying to replay into block 0x%llx",
523 fa
, xfs_buf_daddr(bp
));
528 memcpy(xfs_buf_offset(bp
,
529 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
530 item
->ri_buf
[i
].i_addr
, /* source */
531 nbits
<<XFS_BLF_SHIFT
); /* length */
537 /* Shouldn't be any more regions */
538 ASSERT(i
== item
->ri_total
);
540 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, current_lsn
);
544 * Perform a dquot buffer recovery.
545 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
546 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
547 * Else, treat it as a regular buffer and do recovery.
549 * Return false if the buffer was tossed and true if we recovered the buffer to
550 * indicate to the caller if the buffer needs writing.
553 xlog_recover_do_dquot_buffer(
554 struct xfs_mount
*mp
,
556 struct xlog_recover_item
*item
,
558 struct xfs_buf_log_format
*buf_f
)
562 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
565 * Filesystems are required to send in quota flags at mount time.
571 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
572 type
|= XFS_DQTYPE_USER
;
573 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
574 type
|= XFS_DQTYPE_PROJ
;
575 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
576 type
|= XFS_DQTYPE_GROUP
;
578 * This type of quotas was turned off, so ignore this buffer
580 if (log
->l_quotaoffs_flag
& type
)
583 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, NULLCOMMITLSN
);
588 * Perform recovery for a buffer full of inodes. In these buffers, the only
589 * data which should be recovered is that which corresponds to the
590 * di_next_unlinked pointers in the on disk inode structures. The rest of the
591 * data for the inodes is always logged through the inodes themselves rather
592 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
594 * The only time when buffers full of inodes are fully recovered is when the
595 * buffer is full of newly allocated inodes. In this case the buffer will
596 * not be marked as an inode buffer and so will be sent to
597 * xlog_recover_do_reg_buffer() below during recovery.
600 xlog_recover_do_inode_buffer(
601 struct xfs_mount
*mp
,
602 struct xlog_recover_item
*item
,
604 struct xfs_buf_log_format
*buf_f
)
610 int reg_buf_offset
= 0;
611 int reg_buf_bytes
= 0;
612 int next_unlinked_offset
;
614 xfs_agino_t
*logged_nextp
;
615 xfs_agino_t
*buffer_nextp
;
617 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
620 * Post recovery validation only works properly on CRC enabled
624 bp
->b_ops
= &xfs_inode_buf_ops
;
626 inodes_per_buf
= BBTOB(bp
->b_length
) >> mp
->m_sb
.sb_inodelog
;
627 for (i
= 0; i
< inodes_per_buf
; i
++) {
628 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
629 offsetof(struct xfs_dinode
, di_next_unlinked
);
631 while (next_unlinked_offset
>=
632 (reg_buf_offset
+ reg_buf_bytes
)) {
634 * The next di_next_unlinked field is beyond
635 * the current logged region. Find the next
636 * logged region that contains or is beyond
637 * the current di_next_unlinked field.
640 bit
= xfs_next_bit(buf_f
->blf_data_map
,
641 buf_f
->blf_map_size
, bit
);
644 * If there are no more logged regions in the
645 * buffer, then we're done.
650 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
651 buf_f
->blf_map_size
, bit
);
653 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
654 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
659 * If the current logged region starts after the current
660 * di_next_unlinked field, then move on to the next
661 * di_next_unlinked field.
663 if (next_unlinked_offset
< reg_buf_offset
)
666 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
667 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
668 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <= BBTOB(bp
->b_length
));
671 * The current logged region contains a copy of the
672 * current di_next_unlinked field. Extract its value
673 * and copy it to the buffer copy.
675 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
676 next_unlinked_offset
- reg_buf_offset
;
677 if (XFS_IS_CORRUPT(mp
, *logged_nextp
== 0)) {
679 "Bad inode buffer log record (ptr = "PTR_FMT
", bp = "PTR_FMT
"). "
680 "Trying to replay bad (0) inode di_next_unlinked field.",
682 return -EFSCORRUPTED
;
685 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
686 *buffer_nextp
= *logged_nextp
;
689 * If necessary, recalculate the CRC in the on-disk inode. We
690 * have to leave the inode in a consistent state for whoever
693 xfs_dinode_calc_crc(mp
,
694 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
702 * Update the in-memory superblock and perag structures from the primary SB
705 * This is required because transactions running after growfs may require the
706 * updated values to be set in a previous fully commit transaction.
709 xlog_recover_do_primary_sb_buffer(
710 struct xfs_mount
*mp
,
711 struct xlog_recover_item
*item
,
713 struct xfs_buf_log_format
*buf_f
,
714 xfs_lsn_t current_lsn
)
716 struct xfs_dsb
*dsb
= bp
->b_addr
;
717 xfs_agnumber_t orig_agcount
= mp
->m_sb
.sb_agcount
;
718 xfs_rgnumber_t orig_rgcount
= mp
->m_sb
.sb_rgcount
;
721 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, current_lsn
);
723 if (orig_agcount
== 0) {
724 xfs_alert(mp
, "Trying to grow file system without AGs");
725 return -EFSCORRUPTED
;
729 * Update the in-core super block from the freshly recovered on-disk one.
731 xfs_sb_from_disk(&mp
->m_sb
, dsb
);
733 if (mp
->m_sb
.sb_agcount
< orig_agcount
) {
734 xfs_alert(mp
, "Shrinking AG count in log recovery not supported");
735 return -EFSCORRUPTED
;
737 if (mp
->m_sb
.sb_rgcount
< orig_rgcount
) {
739 "Shrinking rtgroup count in log recovery not supported");
740 return -EFSCORRUPTED
;
744 * If the last AG was grown or shrunk, we also need to update the
745 * length in the in-core perag structure and values depending on it.
747 error
= xfs_update_last_ag_size(mp
, orig_agcount
);
752 * If the last rtgroup was grown or shrunk, we also need to update the
753 * length in the in-core rtgroup structure and values depending on it.
754 * Ignore this on any filesystem with zero rtgroups.
756 if (orig_rgcount
> 0) {
757 error
= xfs_update_last_rtgroup_size(mp
, orig_rgcount
);
763 * Initialize the new perags, and also update various block and inode
764 * allocator setting based off the number of AGs or total blocks.
765 * Because of the latter this also needs to happen if the agcount did
768 error
= xfs_initialize_perag(mp
, orig_agcount
, mp
->m_sb
.sb_agcount
,
769 mp
->m_sb
.sb_dblocks
, &mp
->m_maxagi
);
771 xfs_warn(mp
, "Failed recovery per-ag init: %d", error
);
774 mp
->m_alloc_set_aside
= xfs_alloc_set_aside(mp
);
776 error
= xfs_initialize_rtgroups(mp
, orig_rgcount
, mp
->m_sb
.sb_rgcount
,
777 mp
->m_sb
.sb_rextents
);
779 xfs_warn(mp
, "Failed recovery rtgroup init: %d", error
);
786 * V5 filesystems know the age of the buffer on disk being recovered. We can
787 * have newer objects on disk than we are replaying, and so for these cases we
788 * don't want to replay the current change as that will make the buffer contents
789 * temporarily invalid on disk.
791 * The magic number might not match the buffer type we are going to recover
792 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
793 * extract the LSN of the existing object in the buffer based on it's current
794 * magic number. If we don't recognise the magic number in the buffer, then
795 * return a LSN of -1 so that the caller knows it was an unrecognised block and
796 * so can recover the buffer.
798 * Note: we cannot rely solely on magic number matches to determine that the
799 * buffer has a valid LSN - we also need to verify that it belongs to this
800 * filesystem, so we need to extract the object's LSN and compare it to that
801 * which we read from the superblock. If the UUIDs don't match, then we've got a
802 * stale metadata block from an old filesystem instance that we need to recover
806 xlog_recover_get_buf_lsn(
807 struct xfs_mount
*mp
,
809 struct xfs_buf_log_format
*buf_f
)
814 void *blk
= bp
->b_addr
;
819 /* v4 filesystems always recover immediately */
820 if (!xfs_has_crc(mp
))
821 goto recover_immediately
;
824 * realtime bitmap and summary file blocks do not have magic numbers or
825 * UUIDs, so we must recover them immediately.
827 blft
= xfs_blft_from_flags(buf_f
);
828 if (!xfs_has_rtgroups(mp
) && (blft
== XFS_BLFT_RTBITMAP_BUF
||
829 blft
== XFS_BLFT_RTSUMMARY_BUF
))
830 goto recover_immediately
;
832 magic32
= be32_to_cpu(*(__be32
*)blk
);
834 case XFS_RTSUMMARY_MAGIC
:
835 case XFS_RTBITMAP_MAGIC
: {
836 struct xfs_rtbuf_blkinfo
*hdr
= blk
;
838 lsn
= be64_to_cpu(hdr
->rt_lsn
);
839 uuid
= &hdr
->rt_uuid
;
842 case XFS_ABTB_CRC_MAGIC
:
843 case XFS_ABTC_CRC_MAGIC
:
846 case XFS_RMAP_CRC_MAGIC
:
847 case XFS_REFC_CRC_MAGIC
:
848 case XFS_FIBT_CRC_MAGIC
:
850 case XFS_IBT_CRC_MAGIC
:
851 case XFS_IBT_MAGIC
: {
852 struct xfs_btree_block
*btb
= blk
;
854 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
855 uuid
= &btb
->bb_u
.s
.bb_uuid
;
858 case XFS_BMAP_CRC_MAGIC
:
859 case XFS_BMAP_MAGIC
: {
860 struct xfs_btree_block
*btb
= blk
;
862 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
863 uuid
= &btb
->bb_u
.l
.bb_uuid
;
867 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
868 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
871 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
872 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
875 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
876 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
878 case XFS_SYMLINK_MAGIC
:
879 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
880 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
882 case XFS_DIR3_BLOCK_MAGIC
:
883 case XFS_DIR3_DATA_MAGIC
:
884 case XFS_DIR3_FREE_MAGIC
:
885 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
886 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
888 case XFS_ATTR3_RMT_MAGIC
:
890 * Remote attr blocks are written synchronously, rather than
891 * being logged. That means they do not contain a valid LSN
892 * (i.e. transactionally ordered) in them, and hence any time we
893 * see a buffer to replay over the top of a remote attribute
894 * block we should simply do so.
896 goto recover_immediately
;
899 * superblock uuids are magic. We may or may not have a
900 * sb_meta_uuid on disk, but it will be set in the in-core
901 * superblock. We set the uuid pointer for verification
902 * according to the superblock feature mask to ensure we check
903 * the relevant UUID in the superblock.
905 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
906 if (xfs_has_metauuid(mp
))
907 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
909 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
915 if (lsn
!= (xfs_lsn_t
)-1) {
916 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
917 goto recover_immediately
;
921 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
923 case XFS_DIR3_LEAF1_MAGIC
:
924 case XFS_DIR3_LEAFN_MAGIC
:
925 case XFS_ATTR3_LEAF_MAGIC
:
926 case XFS_DA3_NODE_MAGIC
:
927 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
928 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
934 if (lsn
!= (xfs_lsn_t
)-1) {
935 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
936 goto recover_immediately
;
941 * We do individual object checks on dquot and inode buffers as they
942 * have their own individual LSN records. Also, we could have a stale
943 * buffer here, so we have to at least recognise these buffer types.
945 * A notd complexity here is inode unlinked list processing - it logs
946 * the inode directly in the buffer, but we don't know which inodes have
947 * been modified, and there is no global buffer LSN. Hence we need to
948 * recover all inode buffer types immediately. This problem will be
949 * fixed by logical logging of the unlinked list modifications.
951 magic16
= be16_to_cpu(*(__be16
*)blk
);
953 case XFS_DQUOT_MAGIC
:
954 case XFS_DINODE_MAGIC
:
955 goto recover_immediately
;
960 /* unknown buffer contents, recover immediately */
963 return (xfs_lsn_t
)-1;
968 * This routine replays a modification made to a buffer at runtime.
969 * There are actually two types of buffer, regular and inode, which
970 * are handled differently. Inode buffers are handled differently
971 * in that we only recover a specific set of data from them, namely
972 * the inode di_next_unlinked fields. This is because all other inode
973 * data is actually logged via inode records and any data we replay
974 * here which overlaps that may be stale.
976 * When meta-data buffers are freed at run time we log a buffer item
977 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
978 * of the buffer in the log should not be replayed at recovery time.
979 * This is so that if the blocks covered by the buffer are reused for
980 * file data before we crash we don't end up replaying old, freed
981 * meta-data into a user's file.
983 * To handle the cancellation of buffer log items, we make two passes
984 * over the log during recovery. During the first we build a table of
985 * those buffers which have been cancelled, and during the second we
986 * only replay those buffers which do not have corresponding cancel
987 * records in the table. See xlog_recover_buf_pass[1,2] above
988 * for more details on the implementation of the table of cancel records.
991 xlog_recover_buf_commit_pass2(
993 struct list_head
*buffer_list
,
994 struct xlog_recover_item
*item
,
995 xfs_lsn_t current_lsn
)
997 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
998 struct xfs_mount
*mp
= log
->l_mp
;
1005 * In this pass we only want to recover all the buffers which have
1006 * not been cancelled and are not cancellation buffers themselves.
1008 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1009 if (xlog_put_buffer_cancelled(log
, buf_f
->blf_blkno
,
1014 if (xlog_is_buffer_cancelled(log
, buf_f
->blf_blkno
,
1019 trace_xfs_log_recover_buf_recover(log
, buf_f
);
1022 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
1023 buf_flags
|= XBF_UNMAPPED
;
1025 error
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
1026 buf_flags
, &bp
, NULL
);
1031 * Recover the buffer only if we get an LSN from it and it's less than
1032 * the lsn of the transaction we are replaying.
1034 * Note that we have to be extremely careful of readahead here.
1035 * Readahead does not attach verfiers to the buffers so if we don't
1036 * actually do any replay after readahead because of the LSN we found
1037 * in the buffer if more recent than that current transaction then we
1038 * need to attach the verifier directly. Failure to do so can lead to
1039 * future recovery actions (e.g. EFI and unlinked list recovery) can
1040 * operate on the buffers and they won't get the verifier attached. This
1041 * can lead to blocks on disk having the correct content but a stale
1044 * It is safe to assume these clean buffers are currently up to date.
1045 * If the buffer is dirtied by a later transaction being replayed, then
1046 * the verifier will be reset to match whatever recover turns that
1049 lsn
= xlog_recover_get_buf_lsn(mp
, bp
, buf_f
);
1050 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
1051 trace_xfs_log_recover_buf_skip(log
, buf_f
);
1052 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, NULLCOMMITLSN
);
1055 * We're skipping replay of this buffer log item due to the log
1056 * item LSN being behind the ondisk buffer. Verify the buffer
1057 * contents since we aren't going to run the write verifier.
1060 bp
->b_ops
->verify_read(bp
);
1061 error
= bp
->b_error
;
1066 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1067 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
1070 } else if (buf_f
->blf_flags
&
1071 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
1074 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
1077 } else if ((xfs_blft_from_flags(buf_f
) & XFS_BLFT_SB_BUF
) &&
1078 xfs_buf_daddr(bp
) == 0) {
1079 error
= xlog_recover_do_primary_sb_buffer(mp
, item
, bp
, buf_f
,
1084 /* Update the rt superblock if we have one. */
1085 if (xfs_has_rtsb(mp
) && mp
->m_rtsb_bp
) {
1086 struct xfs_buf
*rtsb_bp
= mp
->m_rtsb_bp
;
1088 xfs_buf_lock(rtsb_bp
);
1089 xfs_buf_hold(rtsb_bp
);
1090 xfs_update_rtsb(rtsb_bp
, bp
);
1091 rtsb_bp
->b_flags
|= _XBF_LOGRECOVERY
;
1092 xfs_buf_delwri_queue(rtsb_bp
, buffer_list
);
1093 xfs_buf_relse(rtsb_bp
);
1096 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, current_lsn
);
1100 * Perform delayed write on the buffer. Asynchronous writes will be
1101 * slower when taking into account all the buffers to be flushed.
1103 * Also make sure that only inode buffers with good sizes stay in
1104 * the buffer cache. The kernel moves inodes in buffers of 1 block
1105 * or inode_cluster_size bytes, whichever is bigger. The inode
1106 * buffers in the log can be a different size if the log was generated
1107 * by an older kernel using unclustered inode buffers or a newer kernel
1108 * running with a different inode cluster size. Regardless, if
1109 * the inode buffer size isn't max(blocksize, inode_cluster_size)
1110 * for *our* value of inode_cluster_size, then we need to keep
1111 * the buffer out of the buffer cache so that the buffer won't
1112 * overlap with future reads of those inodes.
1114 if (XFS_DINODE_MAGIC
==
1115 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
1116 (BBTOB(bp
->b_length
) != M_IGEO(log
->l_mp
)->inode_cluster_size
)) {
1118 error
= xfs_bwrite(bp
);
1120 ASSERT(bp
->b_mount
== mp
);
1121 bp
->b_flags
|= _XBF_LOGRECOVERY
;
1122 xfs_buf_delwri_queue(bp
, buffer_list
);
1129 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
1133 const struct xlog_recover_item_ops xlog_buf_item_ops
= {
1134 .item_type
= XFS_LI_BUF
,
1135 .reorder
= xlog_recover_buf_reorder
,
1136 .ra_pass2
= xlog_recover_buf_ra_pass2
,
1137 .commit_pass1
= xlog_recover_buf_commit_pass1
,
1138 .commit_pass2
= xlog_recover_buf_commit_pass2
,
1143 xlog_check_buf_cancel_table(
1148 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
1149 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
1154 xlog_alloc_buf_cancel_table(
1160 ASSERT(log
->l_buf_cancel_table
== NULL
);
1162 p
= kmalloc_array(XLOG_BC_TABLE_SIZE
, sizeof(struct list_head
),
1167 log
->l_buf_cancel_table
= p
;
1168 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
1169 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
1175 xlog_free_buf_cancel_table(
1180 if (!log
->l_buf_cancel_table
)
1183 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++) {
1184 struct xfs_buf_cancel
*bc
;
1186 while ((bc
= list_first_entry_or_null(
1187 &log
->l_buf_cancel_table
[i
],
1188 struct xfs_buf_cancel
, bc_list
))) {
1189 list_del(&bc
->bc_list
);
1194 kfree(log
->l_buf_cancel_table
);
1195 log
->l_buf_cancel_table
= NULL
;