1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/kernel/process.c
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43 #include <linux/stacktrace.h>
45 #include <asm/alternative.h>
46 #include <asm/arch_timer.h>
47 #include <asm/compat.h>
48 #include <asm/cpufeature.h>
49 #include <asm/cacheflush.h>
51 #include <asm/fpsimd.h>
52 #include <asm/mmu_context.h>
54 #include <asm/processor.h>
55 #include <asm/pointer_auth.h>
56 #include <asm/stacktrace.h>
57 #include <asm/switch_to.h>
58 #include <asm/system_misc.h>
60 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
61 #include <linux/stackprotector.h>
62 unsigned long __stack_chk_guard __ro_after_init
;
63 EXPORT_SYMBOL(__stack_chk_guard
);
67 * Function pointers to optional machine specific functions
69 void (*pm_power_off
)(void);
70 EXPORT_SYMBOL_GPL(pm_power_off
);
72 #ifdef CONFIG_HOTPLUG_CPU
73 void __noreturn
arch_cpu_idle_dead(void)
80 * Called by kexec, immediately prior to machine_kexec().
82 * This must completely disable all secondary CPUs; simply causing those CPUs
83 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
84 * kexec'd kernel to use any and all RAM as it sees fit, without having to
85 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
86 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
88 void machine_shutdown(void)
90 smp_shutdown_nonboot_cpus(reboot_cpu
);
94 * Halting simply requires that the secondary CPUs stop performing any
95 * activity (executing tasks, handling interrupts). smp_send_stop()
98 void machine_halt(void)
106 * Power-off simply requires that the secondary CPUs stop performing any
107 * activity (executing tasks, handling interrupts). smp_send_stop()
108 * achieves this. When the system power is turned off, it will take all CPUs
111 void machine_power_off(void)
115 do_kernel_power_off();
119 * Restart requires that the secondary CPUs stop performing any activity
120 * while the primary CPU resets the system. Systems with multiple CPUs must
121 * provide a HW restart implementation, to ensure that all CPUs reset at once.
122 * This is required so that any code running after reset on the primary CPU
123 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
124 * executing pre-reset code, and using RAM that the primary CPU's code wishes
125 * to use. Implementing such co-ordination would be essentially impossible.
127 void machine_restart(char *cmd
)
129 /* Disable interrupts first */
134 * UpdateCapsule() depends on the system being reset via
137 if (efi_enabled(EFI_RUNTIME_SERVICES
))
138 efi_reboot(reboot_mode
, NULL
);
140 /* Now call the architecture specific reboot code. */
141 do_kernel_restart(cmd
);
144 * Whoops - the architecture was unable to reboot.
146 printk("Reboot failed -- System halted\n");
150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
151 static const char *const btypes
[] = {
159 static void print_pstate(struct pt_regs
*regs
)
161 u64 pstate
= regs
->pstate
;
163 if (compat_user_mode(regs
)) {
164 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
166 pstate
& PSR_AA32_N_BIT
? 'N' : 'n',
167 pstate
& PSR_AA32_Z_BIT
? 'Z' : 'z',
168 pstate
& PSR_AA32_C_BIT
? 'C' : 'c',
169 pstate
& PSR_AA32_V_BIT
? 'V' : 'v',
170 pstate
& PSR_AA32_Q_BIT
? 'Q' : 'q',
171 pstate
& PSR_AA32_T_BIT
? "T32" : "A32",
172 pstate
& PSR_AA32_E_BIT
? "BE" : "LE",
173 pstate
& PSR_AA32_A_BIT
? 'A' : 'a',
174 pstate
& PSR_AA32_I_BIT
? 'I' : 'i',
175 pstate
& PSR_AA32_F_BIT
? 'F' : 'f',
176 pstate
& PSR_AA32_DIT_BIT
? '+' : '-',
177 pstate
& PSR_AA32_SSBS_BIT
? '+' : '-');
179 const char *btype_str
= btypes
[(pstate
& PSR_BTYPE_MASK
) >>
182 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
184 pstate
& PSR_N_BIT
? 'N' : 'n',
185 pstate
& PSR_Z_BIT
? 'Z' : 'z',
186 pstate
& PSR_C_BIT
? 'C' : 'c',
187 pstate
& PSR_V_BIT
? 'V' : 'v',
188 pstate
& PSR_D_BIT
? 'D' : 'd',
189 pstate
& PSR_A_BIT
? 'A' : 'a',
190 pstate
& PSR_I_BIT
? 'I' : 'i',
191 pstate
& PSR_F_BIT
? 'F' : 'f',
192 pstate
& PSR_PAN_BIT
? '+' : '-',
193 pstate
& PSR_UAO_BIT
? '+' : '-',
194 pstate
& PSR_TCO_BIT
? '+' : '-',
195 pstate
& PSR_DIT_BIT
? '+' : '-',
196 pstate
& PSR_SSBS_BIT
? '+' : '-',
201 void __show_regs(struct pt_regs
*regs
)
206 if (compat_user_mode(regs
)) {
207 lr
= regs
->compat_lr
;
208 sp
= regs
->compat_sp
;
216 show_regs_print_info(KERN_DEFAULT
);
219 if (!user_mode(regs
)) {
220 printk("pc : %pS\n", (void *)regs
->pc
);
221 printk("lr : %pS\n", (void *)ptrauth_strip_kernel_insn_pac(lr
));
223 printk("pc : %016llx\n", regs
->pc
);
224 printk("lr : %016llx\n", lr
);
227 printk("sp : %016llx\n", sp
);
229 if (system_uses_irq_prio_masking())
230 printk("pmr_save: %08llx\n", regs
->pmr_save
);
235 printk("x%-2d: %016llx", i
, regs
->regs
[i
]);
238 pr_cont(" x%-2d: %016llx", i
, regs
->regs
[i
]);
244 void show_regs(struct pt_regs
*regs
)
247 dump_backtrace(regs
, NULL
, KERN_DEFAULT
);
250 static void tls_thread_flush(void)
252 write_sysreg(0, tpidr_el0
);
253 if (system_supports_tpidr2())
254 write_sysreg_s(0, SYS_TPIDR2_EL0
);
256 if (is_compat_task()) {
257 current
->thread
.uw
.tp_value
= 0;
260 * We need to ensure ordering between the shadow state and the
261 * hardware state, so that we don't corrupt the hardware state
262 * with a stale shadow state during context switch.
265 write_sysreg(0, tpidrro_el0
);
269 static void flush_tagged_addr_state(void)
271 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI
))
272 clear_thread_flag(TIF_TAGGED_ADDR
);
275 static void flush_poe(void)
277 if (!system_supports_poe())
280 write_sysreg_s(POR_EL0_INIT
, SYS_POR_EL0
);
283 void flush_thread(void)
285 fpsimd_flush_thread();
287 flush_ptrace_hw_breakpoint(current
);
288 flush_tagged_addr_state();
292 void arch_release_task_struct(struct task_struct
*tsk
)
294 fpsimd_release_task(tsk
);
297 int arch_dup_task_struct(struct task_struct
*dst
, struct task_struct
*src
)
300 fpsimd_preserve_current_state();
304 * Detach src's sve_state (if any) from dst so that it does not
305 * get erroneously used or freed prematurely. dst's copies
306 * will be allocated on demand later on if dst uses SVE.
307 * For consistency, also clear TIF_SVE here: this could be done
308 * later in copy_process(), but to avoid tripping up future
309 * maintainers it is best not to leave TIF flags and buffers in
310 * an inconsistent state, even temporarily.
312 dst
->thread
.sve_state
= NULL
;
313 clear_tsk_thread_flag(dst
, TIF_SVE
);
316 * In the unlikely event that we create a new thread with ZA
317 * enabled we should retain the ZA and ZT state so duplicate
318 * it here. This may be shortly freed if we exec() or if
319 * CLONE_SETTLS but it's simpler to do it here. To avoid
320 * confusing the rest of the code ensure that we have a
321 * sve_state allocated whenever sme_state is allocated.
323 if (thread_za_enabled(&src
->thread
)) {
324 dst
->thread
.sve_state
= kzalloc(sve_state_size(src
),
326 if (!dst
->thread
.sve_state
)
329 dst
->thread
.sme_state
= kmemdup(src
->thread
.sme_state
,
332 if (!dst
->thread
.sme_state
) {
333 kfree(dst
->thread
.sve_state
);
334 dst
->thread
.sve_state
= NULL
;
338 dst
->thread
.sme_state
= NULL
;
339 clear_tsk_thread_flag(dst
, TIF_SME
);
342 dst
->thread
.fp_type
= FP_STATE_FPSIMD
;
344 /* clear any pending asynchronous tag fault raised by the parent */
345 clear_tsk_thread_flag(dst
, TIF_MTE_ASYNC_FAULT
);
350 asmlinkage
void ret_from_fork(void) asm("ret_from_fork");
352 int copy_thread(struct task_struct
*p
, const struct kernel_clone_args
*args
)
354 unsigned long clone_flags
= args
->flags
;
355 unsigned long stack_start
= args
->stack
;
356 unsigned long tls
= args
->tls
;
357 struct pt_regs
*childregs
= task_pt_regs(p
);
359 memset(&p
->thread
.cpu_context
, 0, sizeof(struct cpu_context
));
362 * In case p was allocated the same task_struct pointer as some
363 * other recently-exited task, make sure p is disassociated from
364 * any cpu that may have run that now-exited task recently.
365 * Otherwise we could erroneously skip reloading the FPSIMD
368 fpsimd_flush_task_state(p
);
370 ptrauth_thread_init_kernel(p
);
372 if (likely(!args
->fn
)) {
373 *childregs
= *current_pt_regs();
374 childregs
->regs
[0] = 0;
377 * Read the current TLS pointer from tpidr_el0 as it may be
378 * out-of-sync with the saved value.
380 *task_user_tls(p
) = read_sysreg(tpidr_el0
);
381 if (system_supports_tpidr2())
382 p
->thread
.tpidr2_el0
= read_sysreg_s(SYS_TPIDR2_EL0
);
384 if (system_supports_poe())
385 p
->thread
.por_el0
= read_sysreg_s(SYS_POR_EL0
);
388 if (is_compat_thread(task_thread_info(p
)))
389 childregs
->compat_sp
= stack_start
;
391 childregs
->sp
= stack_start
;
395 * If a TLS pointer was passed to clone, use it for the new
396 * thread. We also reset TPIDR2 if it's in use.
398 if (clone_flags
& CLONE_SETTLS
) {
399 p
->thread
.uw
.tp_value
= tls
;
400 p
->thread
.tpidr2_el0
= 0;
404 * A kthread has no context to ERET to, so ensure any buggy
405 * ERET is treated as an illegal exception return.
407 * When a user task is created from a kthread, childregs will
408 * be initialized by start_thread() or start_compat_thread().
410 memset(childregs
, 0, sizeof(struct pt_regs
));
411 childregs
->pstate
= PSR_MODE_EL1h
| PSR_IL_BIT
;
413 p
->thread
.cpu_context
.x19
= (unsigned long)args
->fn
;
414 p
->thread
.cpu_context
.x20
= (unsigned long)args
->fn_arg
;
416 p
->thread
.cpu_context
.pc
= (unsigned long)ret_from_fork
;
417 p
->thread
.cpu_context
.sp
= (unsigned long)childregs
;
419 * For the benefit of the unwinder, set up childregs->stackframe
420 * as the final frame for the new task.
422 p
->thread
.cpu_context
.fp
= (unsigned long)childregs
->stackframe
;
424 ptrace_hw_copy_thread(p
);
429 void tls_preserve_current_state(void)
431 *task_user_tls(current
) = read_sysreg(tpidr_el0
);
432 if (system_supports_tpidr2() && !is_compat_task())
433 current
->thread
.tpidr2_el0
= read_sysreg_s(SYS_TPIDR2_EL0
);
436 static void tls_thread_switch(struct task_struct
*next
)
438 tls_preserve_current_state();
440 if (is_compat_thread(task_thread_info(next
)))
441 write_sysreg(next
->thread
.uw
.tp_value
, tpidrro_el0
);
442 else if (!arm64_kernel_unmapped_at_el0())
443 write_sysreg(0, tpidrro_el0
);
445 write_sysreg(*task_user_tls(next
), tpidr_el0
);
446 if (system_supports_tpidr2())
447 write_sysreg_s(next
->thread
.tpidr2_el0
, SYS_TPIDR2_EL0
);
451 * Force SSBS state on context-switch, since it may be lost after migrating
452 * from a CPU which treats the bit as RES0 in a heterogeneous system.
454 static void ssbs_thread_switch(struct task_struct
*next
)
457 * Nothing to do for kernel threads, but 'regs' may be junk
458 * (e.g. idle task) so check the flags and bail early.
460 if (unlikely(next
->flags
& PF_KTHREAD
))
464 * If all CPUs implement the SSBS extension, then we just need to
465 * context-switch the PSTATE field.
467 if (alternative_has_cap_unlikely(ARM64_SSBS
))
470 spectre_v4_enable_task_mitigation(next
);
474 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
475 * shadow copy so that we can restore this upon entry from userspace.
477 * This is *only* for exception entry from EL0, and is not valid until we
478 * __switch_to() a user task.
480 DEFINE_PER_CPU(struct task_struct
*, __entry_task
);
482 static void entry_task_switch(struct task_struct
*next
)
484 __this_cpu_write(__entry_task
, next
);
488 * Handle sysreg updates for ARM erratum 1418040 which affects the 32bit view of
489 * CNTVCT, various other errata which require trapping all CNTVCT{,_EL0}
490 * accesses and prctl(PR_SET_TSC). Ensure access is disabled iff a workaround is
491 * required or PR_TSC_SIGSEGV is set.
493 static void update_cntkctl_el1(struct task_struct
*next
)
495 struct thread_info
*ti
= task_thread_info(next
);
497 if (test_ti_thread_flag(ti
, TIF_TSC_SIGSEGV
) ||
498 has_erratum_handler(read_cntvct_el0
) ||
499 (IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040
) &&
500 this_cpu_has_cap(ARM64_WORKAROUND_1418040
) &&
501 is_compat_thread(ti
)))
502 sysreg_clear_set(cntkctl_el1
, ARCH_TIMER_USR_VCT_ACCESS_EN
, 0);
504 sysreg_clear_set(cntkctl_el1
, 0, ARCH_TIMER_USR_VCT_ACCESS_EN
);
507 static void cntkctl_thread_switch(struct task_struct
*prev
,
508 struct task_struct
*next
)
510 if ((read_ti_thread_flags(task_thread_info(prev
)) &
511 (_TIF_32BIT
| _TIF_TSC_SIGSEGV
)) !=
512 (read_ti_thread_flags(task_thread_info(next
)) &
513 (_TIF_32BIT
| _TIF_TSC_SIGSEGV
)))
514 update_cntkctl_el1(next
);
517 static int do_set_tsc_mode(unsigned int val
)
521 if (val
== PR_TSC_SIGSEGV
)
523 else if (val
== PR_TSC_ENABLE
)
529 update_thread_flag(TIF_TSC_SIGSEGV
, tsc_sigsegv
);
530 update_cntkctl_el1(current
);
536 static void permission_overlay_switch(struct task_struct
*next
)
538 if (!system_supports_poe())
541 current
->thread
.por_el0
= read_sysreg_s(SYS_POR_EL0
);
542 if (current
->thread
.por_el0
!= next
->thread
.por_el0
) {
543 write_sysreg_s(next
->thread
.por_el0
, SYS_POR_EL0
);
548 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
549 * this function must be called with preemption disabled and the update to
550 * sctlr_user must be made in the same preemption disabled block so that
551 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
553 void update_sctlr_el1(u64 sctlr
)
556 * EnIA must not be cleared while in the kernel as this is necessary for
557 * in-kernel PAC. It will be cleared on kernel exit if needed.
559 sysreg_clear_set(sctlr_el1
, SCTLR_USER_MASK
& ~SCTLR_ELx_ENIA
, sctlr
);
561 /* ISB required for the kernel uaccess routines when setting TCF0. */
568 __notrace_funcgraph __sched
569 struct task_struct
*__switch_to(struct task_struct
*prev
,
570 struct task_struct
*next
)
572 struct task_struct
*last
;
574 fpsimd_thread_switch(next
);
575 tls_thread_switch(next
);
576 hw_breakpoint_thread_switch(next
);
577 contextidr_thread_switch(next
);
578 entry_task_switch(next
);
579 ssbs_thread_switch(next
);
580 cntkctl_thread_switch(prev
, next
);
581 ptrauth_thread_switch_user(next
);
582 permission_overlay_switch(next
);
585 * Complete any pending TLB or cache maintenance on this CPU in case
586 * the thread migrates to a different CPU.
587 * This full barrier is also required by the membarrier system
593 * MTE thread switching must happen after the DSB above to ensure that
594 * any asynchronous tag check faults have been logged in the TFSR*_EL1
597 mte_thread_switch(next
);
598 /* avoid expensive SCTLR_EL1 accesses if no change */
599 if (prev
->thread
.sctlr_user
!= next
->thread
.sctlr_user
)
600 update_sctlr_el1(next
->thread
.sctlr_user
);
602 /* the actual thread switch */
603 last
= cpu_switch_to(prev
, next
);
613 static bool get_wchan_cb(void *arg
, unsigned long pc
)
615 struct wchan_info
*wchan_info
= arg
;
617 if (!in_sched_functions(pc
)) {
621 return wchan_info
->count
++ < 16;
624 unsigned long __get_wchan(struct task_struct
*p
)
626 struct wchan_info wchan_info
= {
631 if (!try_get_task_stack(p
))
634 arch_stack_walk(get_wchan_cb
, &wchan_info
, p
, NULL
);
638 return wchan_info
.pc
;
641 unsigned long arch_align_stack(unsigned long sp
)
643 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
644 sp
-= get_random_u32_below(PAGE_SIZE
);
649 int compat_elf_check_arch(const struct elf32_hdr
*hdr
)
651 if (!system_supports_32bit_el0())
654 if ((hdr
)->e_machine
!= EM_ARM
)
657 if (!((hdr
)->e_flags
& EF_ARM_EABI_MASK
))
661 * Prevent execve() of a 32-bit program from a deadline task
662 * if the restricted affinity mask would be inadmissible on an
665 return !static_branch_unlikely(&arm64_mismatched_32bit_el0
) ||
666 !dl_task_check_affinity(current
, system_32bit_el0_cpumask());
671 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
673 void arch_setup_new_exec(void)
675 unsigned long mmflags
= 0;
677 if (is_compat_task()) {
678 mmflags
= MMCF_AARCH32
;
681 * Restrict the CPU affinity mask for a 32-bit task so that
682 * it contains only 32-bit-capable CPUs.
684 * From the perspective of the task, this looks similar to
685 * what would happen if the 64-bit-only CPUs were hot-unplugged
686 * at the point of execve(), although we try a bit harder to
687 * honour the cpuset hierarchy.
689 if (static_branch_unlikely(&arm64_mismatched_32bit_el0
))
690 force_compatible_cpus_allowed_ptr(current
);
691 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0
)) {
692 relax_compatible_cpus_allowed_ptr(current
);
695 current
->mm
->context
.flags
= mmflags
;
696 ptrauth_thread_init_user();
697 mte_thread_init_user();
698 do_set_tsc_mode(PR_TSC_ENABLE
);
700 if (task_spec_ssb_noexec(current
)) {
701 arch_prctl_spec_ctrl_set(current
, PR_SPEC_STORE_BYPASS
,
706 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
708 * Control the relaxed ABI allowing tagged user addresses into the kernel.
710 static unsigned int tagged_addr_disabled
;
712 long set_tagged_addr_ctrl(struct task_struct
*task
, unsigned long arg
)
714 unsigned long valid_mask
= PR_TAGGED_ADDR_ENABLE
;
715 struct thread_info
*ti
= task_thread_info(task
);
717 if (is_compat_thread(ti
))
720 if (system_supports_mte())
721 valid_mask
|= PR_MTE_TCF_SYNC
| PR_MTE_TCF_ASYNC \
724 if (arg
& ~valid_mask
)
728 * Do not allow the enabling of the tagged address ABI if globally
729 * disabled via sysctl abi.tagged_addr_disabled.
731 if (arg
& PR_TAGGED_ADDR_ENABLE
&& tagged_addr_disabled
)
734 if (set_mte_ctrl(task
, arg
) != 0)
737 update_ti_thread_flag(ti
, TIF_TAGGED_ADDR
, arg
& PR_TAGGED_ADDR_ENABLE
);
742 long get_tagged_addr_ctrl(struct task_struct
*task
)
745 struct thread_info
*ti
= task_thread_info(task
);
747 if (is_compat_thread(ti
))
750 if (test_ti_thread_flag(ti
, TIF_TAGGED_ADDR
))
751 ret
= PR_TAGGED_ADDR_ENABLE
;
753 ret
|= get_mte_ctrl(task
);
759 * Global sysctl to disable the tagged user addresses support. This control
760 * only prevents the tagged address ABI enabling via prctl() and does not
761 * disable it for tasks that already opted in to the relaxed ABI.
764 static struct ctl_table tagged_addr_sysctl_table
[] = {
766 .procname
= "tagged_addr_disabled",
768 .data
= &tagged_addr_disabled
,
769 .maxlen
= sizeof(int),
770 .proc_handler
= proc_dointvec_minmax
,
771 .extra1
= SYSCTL_ZERO
,
772 .extra2
= SYSCTL_ONE
,
776 static int __init
tagged_addr_init(void)
778 if (!register_sysctl("abi", tagged_addr_sysctl_table
))
783 core_initcall(tagged_addr_init
);
784 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
786 #ifdef CONFIG_BINFMT_ELF
787 int arch_elf_adjust_prot(int prot
, const struct arch_elf_state
*state
,
788 bool has_interp
, bool is_interp
)
791 * For dynamically linked executables the interpreter is
792 * responsible for setting PROT_BTI on everything except
795 if (is_interp
!= has_interp
)
798 if (!(state
->flags
& ARM64_ELF_BTI
))
801 if (prot
& PROT_EXEC
)
808 int get_tsc_mode(unsigned long adr
)
812 if (is_compat_task())
815 if (test_thread_flag(TIF_TSC_SIGSEGV
))
816 val
= PR_TSC_SIGSEGV
;
820 return put_user(val
, (unsigned int __user
*)adr
);
823 int set_tsc_mode(unsigned int val
)
825 if (is_compat_task())
828 return do_set_tsc_mode(val
);