1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/kernel/setup.c
5 * Copyright (C) 1995-2001 Russell King
6 * Copyright (C) 2012 ARM Ltd.
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/scs.h>
37 #include <asm/fixmap.h>
39 #include <asm/cputype.h>
40 #include <asm/daifflags.h>
42 #include <asm/cpufeature.h>
43 #include <asm/cpu_ops.h>
44 #include <asm/kasan.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/smp_plat.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlbflush.h>
52 #include <asm/traps.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/mmu_context.h>
57 static int num_standard_resources
;
58 static struct resource
*standard_resources
;
60 phys_addr_t __fdt_pointer __initdata
;
61 u64 mmu_enabled_at_boot __initdata
;
64 * Standard memory resources
66 static struct resource mem_res
[] = {
68 .name
= "Kernel code",
71 .flags
= IORESOURCE_SYSTEM_RAM
74 .name
= "Kernel data",
77 .flags
= IORESOURCE_SYSTEM_RAM
81 #define kernel_code mem_res[0]
82 #define kernel_data mem_res[1]
85 * The recorded values of x0 .. x3 upon kernel entry.
87 u64 __cacheline_aligned boot_args
[4];
89 void __init
smp_setup_processor_id(void)
91 u64 mpidr
= read_cpuid_mpidr() & MPIDR_HWID_BITMASK
;
92 set_cpu_logical_map(0, mpidr
);
94 pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
95 (unsigned long)mpidr
, read_cpuid_id());
98 bool arch_match_cpu_phys_id(int cpu
, u64 phys_id
)
100 return phys_id
== cpu_logical_map(cpu
);
103 struct mpidr_hash mpidr_hash
;
105 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
106 * level in order to build a linear index from an
107 * MPIDR value. Resulting algorithm is a collision
108 * free hash carried out through shifting and ORing
110 static void __init
smp_build_mpidr_hash(void)
112 u32 i
, affinity
, fs
[4], bits
[4], ls
;
115 * Pre-scan the list of MPIDRS and filter out bits that do
116 * not contribute to affinity levels, ie they never toggle.
118 for_each_possible_cpu(i
)
119 mask
|= (cpu_logical_map(i
) ^ cpu_logical_map(0));
120 pr_debug("mask of set bits %#llx\n", mask
);
122 * Find and stash the last and first bit set at all affinity levels to
123 * check how many bits are required to represent them.
125 for (i
= 0; i
< 4; i
++) {
126 affinity
= MPIDR_AFFINITY_LEVEL(mask
, i
);
128 * Find the MSB bit and LSB bits position
129 * to determine how many bits are required
130 * to express the affinity level.
133 fs
[i
] = affinity
? ffs(affinity
) - 1 : 0;
134 bits
[i
] = ls
- fs
[i
];
137 * An index can be created from the MPIDR_EL1 by isolating the
138 * significant bits at each affinity level and by shifting
139 * them in order to compress the 32 bits values space to a
140 * compressed set of values. This is equivalent to hashing
141 * the MPIDR_EL1 through shifting and ORing. It is a collision free
142 * hash though not minimal since some levels might contain a number
143 * of CPUs that is not an exact power of 2 and their bit
144 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
146 mpidr_hash
.shift_aff
[0] = MPIDR_LEVEL_SHIFT(0) + fs
[0];
147 mpidr_hash
.shift_aff
[1] = MPIDR_LEVEL_SHIFT(1) + fs
[1] - bits
[0];
148 mpidr_hash
.shift_aff
[2] = MPIDR_LEVEL_SHIFT(2) + fs
[2] -
150 mpidr_hash
.shift_aff
[3] = MPIDR_LEVEL_SHIFT(3) +
151 fs
[3] - (bits
[2] + bits
[1] + bits
[0]);
152 mpidr_hash
.mask
= mask
;
153 mpidr_hash
.bits
= bits
[3] + bits
[2] + bits
[1] + bits
[0];
154 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
155 mpidr_hash
.shift_aff
[0],
156 mpidr_hash
.shift_aff
[1],
157 mpidr_hash
.shift_aff
[2],
158 mpidr_hash
.shift_aff
[3],
162 * 4x is an arbitrary value used to warn on a hash table much bigger
163 * than expected on most systems.
165 if (mpidr_hash_size() > 4 * num_possible_cpus())
166 pr_warn("Large number of MPIDR hash buckets detected\n");
169 static void __init
setup_machine_fdt(phys_addr_t dt_phys
)
172 void *dt_virt
= fixmap_remap_fdt(dt_phys
, &size
, PAGE_KERNEL
);
176 memblock_reserve(dt_phys
, size
);
178 if (!dt_virt
|| !early_init_dt_scan(dt_virt
)) {
180 "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
181 "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
182 "\nPlease check your bootloader.",
186 * Note that in this _really_ early stage we cannot even BUG()
187 * or oops, so the least terrible thing to do is cpu_relax(),
188 * or else we could end-up printing non-initialized data, etc.
194 /* Early fixups are done, map the FDT as read-only now */
195 fixmap_remap_fdt(dt_phys
, &size
, PAGE_KERNEL_RO
);
197 name
= of_flat_dt_get_machine_name();
201 pr_info("Machine model: %s\n", name
);
202 dump_stack_set_arch_desc("%s (DT)", name
);
205 static void __init
request_standard_resources(void)
207 struct memblock_region
*region
;
208 struct resource
*res
;
212 kernel_code
.start
= __pa_symbol(_stext
);
213 kernel_code
.end
= __pa_symbol(__init_begin
- 1);
214 kernel_data
.start
= __pa_symbol(_sdata
);
215 kernel_data
.end
= __pa_symbol(_end
- 1);
216 insert_resource(&iomem_resource
, &kernel_code
);
217 insert_resource(&iomem_resource
, &kernel_data
);
219 num_standard_resources
= memblock
.memory
.cnt
;
220 res_size
= num_standard_resources
* sizeof(*standard_resources
);
221 standard_resources
= memblock_alloc(res_size
, SMP_CACHE_BYTES
);
222 if (!standard_resources
)
223 panic("%s: Failed to allocate %zu bytes\n", __func__
, res_size
);
225 for_each_mem_region(region
) {
226 res
= &standard_resources
[i
++];
227 if (memblock_is_nomap(region
)) {
228 res
->name
= "reserved";
229 res
->flags
= IORESOURCE_MEM
;
230 res
->start
= __pfn_to_phys(memblock_region_reserved_base_pfn(region
));
231 res
->end
= __pfn_to_phys(memblock_region_reserved_end_pfn(region
)) - 1;
233 res
->name
= "System RAM";
234 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
235 res
->start
= __pfn_to_phys(memblock_region_memory_base_pfn(region
));
236 res
->end
= __pfn_to_phys(memblock_region_memory_end_pfn(region
)) - 1;
239 insert_resource(&iomem_resource
, res
);
243 static int __init
reserve_memblock_reserved_regions(void)
247 for (i
= 0; i
< num_standard_resources
; ++i
) {
248 struct resource
*mem
= &standard_resources
[i
];
249 phys_addr_t r_start
, r_end
, mem_size
= resource_size(mem
);
251 if (!memblock_is_region_reserved(mem
->start
, mem_size
))
254 for_each_reserved_mem_range(j
, &r_start
, &r_end
) {
255 resource_size_t start
, end
;
257 start
= max(PFN_PHYS(PFN_DOWN(r_start
)), mem
->start
);
258 end
= min(PFN_PHYS(PFN_UP(r_end
)) - 1, mem
->end
);
260 if (start
> mem
->end
|| end
< mem
->start
)
263 reserve_region_with_split(mem
, start
, end
, "reserved");
269 arch_initcall(reserve_memblock_reserved_regions
);
271 u64 __cpu_logical_map
[NR_CPUS
] = { [0 ... NR_CPUS
-1] = INVALID_HWID
};
273 u64
cpu_logical_map(unsigned int cpu
)
275 return __cpu_logical_map
[cpu
];
278 void __init __no_sanitize_address
setup_arch(char **cmdline_p
)
280 setup_initial_init_mm(_stext
, _etext
, _edata
, _end
);
282 *cmdline_p
= boot_command_line
;
287 early_ioremap_init();
289 setup_machine_fdt(__fdt_pointer
);
292 * Initialise the static keys early as they may be enabled by the
293 * cpufeature code and early parameters.
301 * The primary CPU enters the kernel with all DAIF exceptions masked.
303 * We must unmask Debug and SError before preemption or scheduling is
304 * possible to ensure that these are consistently unmasked across
305 * threads, and we want to unmask SError as soon as possible after
306 * initializing earlycon so that we can report any SErrors immediately.
308 * IRQ and FIQ will be unmasked after the root irqchip has been
309 * detected and initialized.
311 local_daif_restore(DAIF_PROCCTX_NOIRQ
);
314 * TTBR0 is only used for the identity mapping at this stage. Make it
315 * point to zero page to avoid speculatively fetching new entries.
317 cpu_uninstall_idmap();
322 if (!efi_enabled(EFI_BOOT
)) {
323 if ((u64
)_text
% MIN_KIMG_ALIGN
)
324 pr_warn(FW_BUG
"Kernel image misaligned at boot, please fix your bootloader!");
325 WARN_TAINT(mmu_enabled_at_boot
, TAINT_FIRMWARE_WORKAROUND
,
326 FW_BUG
"Booted with MMU enabled!");
329 arm64_memblock_init();
333 acpi_table_upgrade();
335 /* Parse the ACPI tables for possible boot-time configuration */
336 acpi_boot_table_init();
339 unflatten_device_tree();
345 request_standard_resources();
347 early_ioremap_reset();
356 smp_build_mpidr_hash();
358 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
360 * Make sure init_thread_info.ttbr0 always generates translation
361 * faults in case uaccess_enable() is inadvertently called by the init
364 init_task
.thread_info
.ttbr0
= phys_to_ttbr(__pa_symbol(reserved_pg_dir
));
367 if (boot_args
[1] || boot_args
[2] || boot_args
[3]) {
368 pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
369 "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
370 "This indicates a broken bootloader or old kernel\n",
371 boot_args
[1], boot_args
[2], boot_args
[3]);
375 static inline bool cpu_can_disable(unsigned int cpu
)
377 #ifdef CONFIG_HOTPLUG_CPU
378 const struct cpu_operations
*ops
= get_cpu_ops(cpu
);
380 if (ops
&& ops
->cpu_can_disable
)
381 return ops
->cpu_can_disable(cpu
);
386 bool arch_cpu_is_hotpluggable(int num
)
388 return cpu_can_disable(num
);
391 static void dump_kernel_offset(void)
393 const unsigned long offset
= kaslr_offset();
395 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE
) && offset
> 0) {
396 pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
397 offset
, KIMAGE_VADDR
);
398 pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET
);
400 pr_emerg("Kernel Offset: disabled\n");
404 static int arm64_panic_block_dump(struct notifier_block
*self
,
405 unsigned long v
, void *p
)
407 dump_kernel_offset();
413 static struct notifier_block arm64_panic_block
= {
414 .notifier_call
= arm64_panic_block_dump
417 static int __init
register_arm64_panic_block(void)
419 atomic_notifier_chain_register(&panic_notifier_list
,
423 device_initcall(register_arm64_panic_block
);
425 static int __init
check_mmu_enabled_at_boot(void)
427 if (!efi_enabled(EFI_BOOT
) && mmu_enabled_at_boot
)
428 panic("Non-EFI boot detected with MMU and caches enabled");
431 device_initcall_sync(check_mmu_enabled_at_boot
);