1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Red Hat. All rights reserved.
5 * This file is released under the GPL.
9 #include "dm-bio-prison-v2.h"
10 #include "dm-bio-record.h"
11 #include "dm-cache-metadata.h"
12 #include "dm-io-tracker.h"
14 #include <linux/dm-io.h>
15 #include <linux/dm-kcopyd.h>
16 #include <linux/jiffies.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/rwsem.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
24 #define DM_MSG_PREFIX "cache"
26 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle
,
27 "A percentage of time allocated for copying to and/or from cache");
29 /*----------------------------------------------------------------*/
34 * oblock: index of an origin block
35 * cblock: index of a cache block
36 * promotion: movement of a block from origin to cache
37 * demotion: movement of a block from cache to origin
38 * migration: movement of a block between the origin and cache device,
42 /*----------------------------------------------------------------*/
45 * Represents a chunk of future work. 'input' allows continuations to pass
46 * values between themselves, typically error values.
49 struct work_struct ws
;
53 static inline void init_continuation(struct continuation
*k
,
54 void (*fn
)(struct work_struct
*))
56 INIT_WORK(&k
->ws
, fn
);
60 static inline void queue_continuation(struct workqueue_struct
*wq
,
61 struct continuation
*k
)
63 queue_work(wq
, &k
->ws
);
66 /*----------------------------------------------------------------*/
69 * The batcher collects together pieces of work that need a particular
70 * operation to occur before they can proceed (typically a commit).
74 * The operation that everyone is waiting for.
76 blk_status_t (*commit_op
)(void *context
);
80 * This is how bios should be issued once the commit op is complete
81 * (accounted_request).
83 void (*issue_op
)(struct bio
*bio
, void *context
);
87 * Queued work gets put on here after commit.
89 struct workqueue_struct
*wq
;
92 struct list_head work_items
;
94 struct work_struct commit_work
;
96 bool commit_scheduled
;
99 static void __commit(struct work_struct
*_ws
)
101 struct batcher
*b
= container_of(_ws
, struct batcher
, commit_work
);
103 struct list_head work_items
;
104 struct work_struct
*ws
, *tmp
;
105 struct continuation
*k
;
107 struct bio_list bios
;
109 INIT_LIST_HEAD(&work_items
);
110 bio_list_init(&bios
);
113 * We have to grab these before the commit_op to avoid a race
116 spin_lock_irq(&b
->lock
);
117 list_splice_init(&b
->work_items
, &work_items
);
118 bio_list_merge_init(&bios
, &b
->bios
);
119 b
->commit_scheduled
= false;
120 spin_unlock_irq(&b
->lock
);
122 r
= b
->commit_op(b
->commit_context
);
124 list_for_each_entry_safe(ws
, tmp
, &work_items
, entry
) {
125 k
= container_of(ws
, struct continuation
, ws
);
127 INIT_LIST_HEAD(&ws
->entry
); /* to avoid a WARN_ON */
128 queue_work(b
->wq
, ws
);
131 while ((bio
= bio_list_pop(&bios
))) {
136 b
->issue_op(bio
, b
->issue_context
);
140 static void batcher_init(struct batcher
*b
,
141 blk_status_t (*commit_op
)(void *),
142 void *commit_context
,
143 void (*issue_op
)(struct bio
*bio
, void *),
145 struct workqueue_struct
*wq
)
147 b
->commit_op
= commit_op
;
148 b
->commit_context
= commit_context
;
149 b
->issue_op
= issue_op
;
150 b
->issue_context
= issue_context
;
153 spin_lock_init(&b
->lock
);
154 INIT_LIST_HEAD(&b
->work_items
);
155 bio_list_init(&b
->bios
);
156 INIT_WORK(&b
->commit_work
, __commit
);
157 b
->commit_scheduled
= false;
160 static void async_commit(struct batcher
*b
)
162 queue_work(b
->wq
, &b
->commit_work
);
165 static void continue_after_commit(struct batcher
*b
, struct continuation
*k
)
167 bool commit_scheduled
;
169 spin_lock_irq(&b
->lock
);
170 commit_scheduled
= b
->commit_scheduled
;
171 list_add_tail(&k
->ws
.entry
, &b
->work_items
);
172 spin_unlock_irq(&b
->lock
);
174 if (commit_scheduled
)
179 * Bios are errored if commit failed.
181 static void issue_after_commit(struct batcher
*b
, struct bio
*bio
)
183 bool commit_scheduled
;
185 spin_lock_irq(&b
->lock
);
186 commit_scheduled
= b
->commit_scheduled
;
187 bio_list_add(&b
->bios
, bio
);
188 spin_unlock_irq(&b
->lock
);
190 if (commit_scheduled
)
195 * Call this if some urgent work is waiting for the commit to complete.
197 static void schedule_commit(struct batcher
*b
)
201 spin_lock_irq(&b
->lock
);
202 immediate
= !list_empty(&b
->work_items
) || !bio_list_empty(&b
->bios
);
203 b
->commit_scheduled
= true;
204 spin_unlock_irq(&b
->lock
);
211 * There are a couple of places where we let a bio run, but want to do some
212 * work before calling its endio function. We do this by temporarily
213 * changing the endio fn.
215 struct dm_hook_info
{
216 bio_end_io_t
*bi_end_io
;
219 static void dm_hook_bio(struct dm_hook_info
*h
, struct bio
*bio
,
220 bio_end_io_t
*bi_end_io
, void *bi_private
)
222 h
->bi_end_io
= bio
->bi_end_io
;
224 bio
->bi_end_io
= bi_end_io
;
225 bio
->bi_private
= bi_private
;
228 static void dm_unhook_bio(struct dm_hook_info
*h
, struct bio
*bio
)
230 bio
->bi_end_io
= h
->bi_end_io
;
233 /*----------------------------------------------------------------*/
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
240 * The block size of the device holding cache data must be
241 * between 32KB and 1GB.
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
246 enum cache_metadata_mode
{
247 CM_WRITE
, /* metadata may be changed */
248 CM_READ_ONLY
, /* metadata may not be changed */
254 * Data is written to cached blocks only. These blocks are marked
255 * dirty. If you lose the cache device you will lose data.
256 * Potential performance increase for both reads and writes.
261 * Data is written to both cache and origin. Blocks are never
262 * dirty. Potential performance benfit for reads only.
267 * A degraded mode useful for various cache coherency situations
268 * (eg, rolling back snapshots). Reads and writes always go to the
269 * origin. If a write goes to a cached oblock, then the cache
270 * block is invalidated.
275 struct cache_features
{
276 enum cache_metadata_mode mode
;
277 enum cache_io_mode io_mode
;
278 unsigned int metadata_version
;
279 bool discard_passdown
:1;
290 atomic_t copies_avoided
;
291 atomic_t cache_cell_clash
;
292 atomic_t commit_count
;
293 atomic_t discard_count
;
297 struct dm_target
*ti
;
301 * Fields for converting from sectors to blocks.
303 int sectors_per_block_shift
;
304 sector_t sectors_per_block
;
306 struct dm_cache_metadata
*cmd
;
309 * Metadata is written to this device.
311 struct dm_dev
*metadata_dev
;
314 * The slower of the two data devices. Typically a spindle.
316 struct dm_dev
*origin_dev
;
319 * The faster of the two data devices. Typically an SSD.
321 struct dm_dev
*cache_dev
;
324 * Size of the origin device in _complete_ blocks and native sectors.
326 dm_oblock_t origin_blocks
;
327 sector_t origin_sectors
;
330 * Size of the cache device in blocks.
332 dm_cblock_t cache_size
;
335 * Invalidation fields.
337 spinlock_t invalidation_lock
;
338 struct list_head invalidation_requests
;
340 sector_t migration_threshold
;
341 wait_queue_head_t migration_wait
;
342 atomic_t nr_allocated_migrations
;
345 * The number of in flight migrations that are performing
346 * background io. eg, promotion, writeback.
348 atomic_t nr_io_migrations
;
350 struct bio_list deferred_bios
;
352 struct rw_semaphore quiesce_lock
;
355 * origin_blocks entries, discarded if set.
357 dm_dblock_t discard_nr_blocks
;
358 unsigned long *discard_bitset
;
359 uint32_t discard_block_size
; /* a power of 2 times sectors per block */
362 * Rather than reconstructing the table line for the status we just
363 * save it and regurgitate.
365 unsigned int nr_ctr_args
;
366 const char **ctr_args
;
368 struct dm_kcopyd_client
*copier
;
369 struct work_struct deferred_bio_worker
;
370 struct work_struct migration_worker
;
371 struct workqueue_struct
*wq
;
372 struct delayed_work waker
;
373 struct dm_bio_prison_v2
*prison
;
376 * cache_size entries, dirty if set
378 unsigned long *dirty_bitset
;
381 unsigned int policy_nr_args
;
382 struct dm_cache_policy
*policy
;
385 * Cache features such as write-through.
387 struct cache_features features
;
389 struct cache_stats stats
;
391 bool need_tick_bio
:1;
394 bool commit_requested
:1;
395 bool loaded_mappings
:1;
396 bool loaded_discards
:1;
398 struct rw_semaphore background_work_lock
;
400 struct batcher committer
;
401 struct work_struct commit_ws
;
403 struct dm_io_tracker tracker
;
405 mempool_t migration_pool
;
410 struct per_bio_data
{
412 unsigned int req_nr
:2;
413 struct dm_bio_prison_cell_v2
*cell
;
414 struct dm_hook_info hook_info
;
418 struct dm_cache_migration
{
419 struct continuation k
;
422 struct policy_work
*op
;
423 struct bio
*overwrite_bio
;
424 struct dm_bio_prison_cell_v2
*cell
;
426 dm_cblock_t invalidate_cblock
;
427 dm_oblock_t invalidate_oblock
;
430 /*----------------------------------------------------------------*/
432 static bool writethrough_mode(struct cache
*cache
)
434 return cache
->features
.io_mode
== CM_IO_WRITETHROUGH
;
437 static bool writeback_mode(struct cache
*cache
)
439 return cache
->features
.io_mode
== CM_IO_WRITEBACK
;
442 static inline bool passthrough_mode(struct cache
*cache
)
444 return unlikely(cache
->features
.io_mode
== CM_IO_PASSTHROUGH
);
447 /*----------------------------------------------------------------*/
449 static void wake_deferred_bio_worker(struct cache
*cache
)
451 queue_work(cache
->wq
, &cache
->deferred_bio_worker
);
454 static void wake_migration_worker(struct cache
*cache
)
456 if (passthrough_mode(cache
))
459 queue_work(cache
->wq
, &cache
->migration_worker
);
462 /*----------------------------------------------------------------*/
464 static struct dm_bio_prison_cell_v2
*alloc_prison_cell(struct cache
*cache
)
466 return dm_bio_prison_alloc_cell_v2(cache
->prison
, GFP_NOIO
);
469 static void free_prison_cell(struct cache
*cache
, struct dm_bio_prison_cell_v2
*cell
)
471 dm_bio_prison_free_cell_v2(cache
->prison
, cell
);
474 static struct dm_cache_migration
*alloc_migration(struct cache
*cache
)
476 struct dm_cache_migration
*mg
;
478 mg
= mempool_alloc(&cache
->migration_pool
, GFP_NOIO
);
480 memset(mg
, 0, sizeof(*mg
));
483 atomic_inc(&cache
->nr_allocated_migrations
);
488 static void free_migration(struct dm_cache_migration
*mg
)
490 struct cache
*cache
= mg
->cache
;
492 if (atomic_dec_and_test(&cache
->nr_allocated_migrations
))
493 wake_up(&cache
->migration_wait
);
495 mempool_free(mg
, &cache
->migration_pool
);
498 /*----------------------------------------------------------------*/
500 static inline dm_oblock_t
oblock_succ(dm_oblock_t b
)
502 return to_oblock(from_oblock(b
) + 1ull);
505 static void build_key(dm_oblock_t begin
, dm_oblock_t end
, struct dm_cell_key_v2
*key
)
509 key
->block_begin
= from_oblock(begin
);
510 key
->block_end
= from_oblock(end
);
514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
515 * level 1 which prevents *both* READs and WRITEs.
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
520 static unsigned int lock_level(struct bio
*bio
)
522 return bio_data_dir(bio
) == WRITE
?
524 READ_WRITE_LOCK_LEVEL
;
528 *--------------------------------------------------------------
530 *--------------------------------------------------------------
533 static struct per_bio_data
*get_per_bio_data(struct bio
*bio
)
535 struct per_bio_data
*pb
= dm_per_bio_data(bio
, sizeof(struct per_bio_data
));
541 static struct per_bio_data
*init_per_bio_data(struct bio
*bio
)
543 struct per_bio_data
*pb
= get_per_bio_data(bio
);
546 pb
->req_nr
= dm_bio_get_target_bio_nr(bio
);
553 /*----------------------------------------------------------------*/
555 static void defer_bio(struct cache
*cache
, struct bio
*bio
)
557 spin_lock_irq(&cache
->lock
);
558 bio_list_add(&cache
->deferred_bios
, bio
);
559 spin_unlock_irq(&cache
->lock
);
561 wake_deferred_bio_worker(cache
);
564 static void defer_bios(struct cache
*cache
, struct bio_list
*bios
)
566 spin_lock_irq(&cache
->lock
);
567 bio_list_merge_init(&cache
->deferred_bios
, bios
);
568 spin_unlock_irq(&cache
->lock
);
570 wake_deferred_bio_worker(cache
);
573 /*----------------------------------------------------------------*/
575 static bool bio_detain_shared(struct cache
*cache
, dm_oblock_t oblock
, struct bio
*bio
)
578 struct per_bio_data
*pb
;
579 struct dm_cell_key_v2 key
;
580 dm_oblock_t end
= to_oblock(from_oblock(oblock
) + 1ULL);
581 struct dm_bio_prison_cell_v2
*cell_prealloc
, *cell
;
583 cell_prealloc
= alloc_prison_cell(cache
); /* FIXME: allow wait if calling from worker */
585 build_key(oblock
, end
, &key
);
586 r
= dm_cell_get_v2(cache
->prison
, &key
, lock_level(bio
), bio
, cell_prealloc
, &cell
);
589 * Failed to get the lock.
591 free_prison_cell(cache
, cell_prealloc
);
595 if (cell
!= cell_prealloc
)
596 free_prison_cell(cache
, cell_prealloc
);
598 pb
= get_per_bio_data(bio
);
604 /*----------------------------------------------------------------*/
606 static bool is_dirty(struct cache
*cache
, dm_cblock_t b
)
608 return test_bit(from_cblock(b
), cache
->dirty_bitset
);
611 static void set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
613 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
614 atomic_inc(&cache
->nr_dirty
);
615 policy_set_dirty(cache
->policy
, cblock
);
620 * These two are called when setting after migrations to force the policy
621 * and dirty bitset to be in sync.
623 static void force_set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
625 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
))
626 atomic_inc(&cache
->nr_dirty
);
627 policy_set_dirty(cache
->policy
, cblock
);
630 static void force_clear_dirty(struct cache
*cache
, dm_cblock_t cblock
)
632 if (test_and_clear_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
633 if (atomic_dec_return(&cache
->nr_dirty
) == 0)
634 dm_table_event(cache
->ti
->table
);
637 policy_clear_dirty(cache
->policy
, cblock
);
640 /*----------------------------------------------------------------*/
642 static bool block_size_is_power_of_two(struct cache
*cache
)
644 return cache
->sectors_per_block_shift
>= 0;
647 static dm_block_t
block_div(dm_block_t b
, uint32_t n
)
654 static dm_block_t
oblocks_per_dblock(struct cache
*cache
)
656 dm_block_t oblocks
= cache
->discard_block_size
;
658 if (block_size_is_power_of_two(cache
))
659 oblocks
>>= cache
->sectors_per_block_shift
;
661 oblocks
= block_div(oblocks
, cache
->sectors_per_block
);
666 static dm_dblock_t
oblock_to_dblock(struct cache
*cache
, dm_oblock_t oblock
)
668 return to_dblock(block_div(from_oblock(oblock
),
669 oblocks_per_dblock(cache
)));
672 static void set_discard(struct cache
*cache
, dm_dblock_t b
)
674 BUG_ON(from_dblock(b
) >= from_dblock(cache
->discard_nr_blocks
));
675 atomic_inc(&cache
->stats
.discard_count
);
677 spin_lock_irq(&cache
->lock
);
678 set_bit(from_dblock(b
), cache
->discard_bitset
);
679 spin_unlock_irq(&cache
->lock
);
682 static void clear_discard(struct cache
*cache
, dm_dblock_t b
)
684 spin_lock_irq(&cache
->lock
);
685 clear_bit(from_dblock(b
), cache
->discard_bitset
);
686 spin_unlock_irq(&cache
->lock
);
689 static bool is_discarded(struct cache
*cache
, dm_dblock_t b
)
693 spin_lock_irq(&cache
->lock
);
694 r
= test_bit(from_dblock(b
), cache
->discard_bitset
);
695 spin_unlock_irq(&cache
->lock
);
700 static bool is_discarded_oblock(struct cache
*cache
, dm_oblock_t b
)
704 spin_lock_irq(&cache
->lock
);
705 r
= test_bit(from_dblock(oblock_to_dblock(cache
, b
)),
706 cache
->discard_bitset
);
707 spin_unlock_irq(&cache
->lock
);
713 * -------------------------------------------------------------
715 *--------------------------------------------------------------
717 static void remap_to_origin(struct cache
*cache
, struct bio
*bio
)
719 bio_set_dev(bio
, cache
->origin_dev
->bdev
);
722 static void remap_to_cache(struct cache
*cache
, struct bio
*bio
,
725 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
726 sector_t block
= from_cblock(cblock
);
728 bio_set_dev(bio
, cache
->cache_dev
->bdev
);
729 if (!block_size_is_power_of_two(cache
))
730 bio
->bi_iter
.bi_sector
=
731 (block
* cache
->sectors_per_block
) +
732 sector_div(bi_sector
, cache
->sectors_per_block
);
734 bio
->bi_iter
.bi_sector
=
735 (block
<< cache
->sectors_per_block_shift
) |
736 (bi_sector
& (cache
->sectors_per_block
- 1));
739 static void check_if_tick_bio_needed(struct cache
*cache
, struct bio
*bio
)
741 struct per_bio_data
*pb
;
743 spin_lock_irq(&cache
->lock
);
744 if (cache
->need_tick_bio
&& !op_is_flush(bio
->bi_opf
) &&
745 bio_op(bio
) != REQ_OP_DISCARD
) {
746 pb
= get_per_bio_data(bio
);
748 cache
->need_tick_bio
= false;
750 spin_unlock_irq(&cache
->lock
);
753 static void remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
756 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
757 check_if_tick_bio_needed(cache
, bio
);
758 remap_to_origin(cache
, bio
);
759 if (bio_data_dir(bio
) == WRITE
)
760 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
763 static void remap_to_cache_dirty(struct cache
*cache
, struct bio
*bio
,
764 dm_oblock_t oblock
, dm_cblock_t cblock
)
766 check_if_tick_bio_needed(cache
, bio
);
767 remap_to_cache(cache
, bio
, cblock
);
768 if (bio_data_dir(bio
) == WRITE
) {
769 set_dirty(cache
, cblock
);
770 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
774 static dm_oblock_t
get_bio_block(struct cache
*cache
, struct bio
*bio
)
776 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
778 if (!block_size_is_power_of_two(cache
))
779 (void) sector_div(block_nr
, cache
->sectors_per_block
);
781 block_nr
>>= cache
->sectors_per_block_shift
;
783 return to_oblock(block_nr
);
786 static bool accountable_bio(struct cache
*cache
, struct bio
*bio
)
788 return bio_op(bio
) != REQ_OP_DISCARD
;
791 static void accounted_begin(struct cache
*cache
, struct bio
*bio
)
793 struct per_bio_data
*pb
;
795 if (accountable_bio(cache
, bio
)) {
796 pb
= get_per_bio_data(bio
);
797 pb
->len
= bio_sectors(bio
);
798 dm_iot_io_begin(&cache
->tracker
, pb
->len
);
802 static void accounted_complete(struct cache
*cache
, struct bio
*bio
)
804 struct per_bio_data
*pb
= get_per_bio_data(bio
);
806 dm_iot_io_end(&cache
->tracker
, pb
->len
);
809 static void accounted_request(struct cache
*cache
, struct bio
*bio
)
811 accounted_begin(cache
, bio
);
812 dm_submit_bio_remap(bio
, NULL
);
815 static void issue_op(struct bio
*bio
, void *context
)
817 struct cache
*cache
= context
;
819 accounted_request(cache
, bio
);
823 * When running in writethrough mode we need to send writes to clean blocks
824 * to both the cache and origin devices. Clone the bio and send them in parallel.
826 static void remap_to_origin_and_cache(struct cache
*cache
, struct bio
*bio
,
827 dm_oblock_t oblock
, dm_cblock_t cblock
)
829 struct bio
*origin_bio
= bio_alloc_clone(cache
->origin_dev
->bdev
, bio
,
830 GFP_NOIO
, &cache
->bs
);
834 bio_chain(origin_bio
, bio
);
836 if (bio_data_dir(origin_bio
) == WRITE
)
837 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
838 submit_bio(origin_bio
);
840 remap_to_cache(cache
, bio
, cblock
);
844 *--------------------------------------------------------------
846 *--------------------------------------------------------------
848 static enum cache_metadata_mode
get_cache_mode(struct cache
*cache
)
850 return cache
->features
.mode
;
853 static const char *cache_device_name(struct cache
*cache
)
855 return dm_table_device_name(cache
->ti
->table
);
858 static void notify_mode_switch(struct cache
*cache
, enum cache_metadata_mode mode
)
860 static const char *descs
[] = {
866 dm_table_event(cache
->ti
->table
);
867 DMINFO("%s: switching cache to %s mode",
868 cache_device_name(cache
), descs
[(int)mode
]);
871 static void set_cache_mode(struct cache
*cache
, enum cache_metadata_mode new_mode
)
874 enum cache_metadata_mode old_mode
= get_cache_mode(cache
);
876 if (dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
)) {
877 DMERR("%s: unable to read needs_check flag, setting failure mode.",
878 cache_device_name(cache
));
882 if (new_mode
== CM_WRITE
&& needs_check
) {
883 DMERR("%s: unable to switch cache to write mode until repaired.",
884 cache_device_name(cache
));
885 if (old_mode
!= new_mode
)
888 new_mode
= CM_READ_ONLY
;
891 /* Never move out of fail mode */
892 if (old_mode
== CM_FAIL
)
898 dm_cache_metadata_set_read_only(cache
->cmd
);
902 dm_cache_metadata_set_read_write(cache
->cmd
);
906 cache
->features
.mode
= new_mode
;
908 if (new_mode
!= old_mode
)
909 notify_mode_switch(cache
, new_mode
);
912 static void abort_transaction(struct cache
*cache
)
914 const char *dev_name
= cache_device_name(cache
);
916 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
919 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
920 if (dm_cache_metadata_abort(cache
->cmd
)) {
921 DMERR("%s: failed to abort metadata transaction", dev_name
);
922 set_cache_mode(cache
, CM_FAIL
);
925 if (dm_cache_metadata_set_needs_check(cache
->cmd
)) {
926 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
927 set_cache_mode(cache
, CM_FAIL
);
931 static void metadata_operation_failed(struct cache
*cache
, const char *op
, int r
)
933 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
934 cache_device_name(cache
), op
, r
);
935 abort_transaction(cache
);
936 set_cache_mode(cache
, CM_READ_ONLY
);
939 /*----------------------------------------------------------------*/
941 static void load_stats(struct cache
*cache
)
943 struct dm_cache_statistics stats
;
945 dm_cache_metadata_get_stats(cache
->cmd
, &stats
);
946 atomic_set(&cache
->stats
.read_hit
, stats
.read_hits
);
947 atomic_set(&cache
->stats
.read_miss
, stats
.read_misses
);
948 atomic_set(&cache
->stats
.write_hit
, stats
.write_hits
);
949 atomic_set(&cache
->stats
.write_miss
, stats
.write_misses
);
952 static void save_stats(struct cache
*cache
)
954 struct dm_cache_statistics stats
;
956 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
959 stats
.read_hits
= atomic_read(&cache
->stats
.read_hit
);
960 stats
.read_misses
= atomic_read(&cache
->stats
.read_miss
);
961 stats
.write_hits
= atomic_read(&cache
->stats
.write_hit
);
962 stats
.write_misses
= atomic_read(&cache
->stats
.write_miss
);
964 dm_cache_metadata_set_stats(cache
->cmd
, &stats
);
967 static void update_stats(struct cache_stats
*stats
, enum policy_operation op
)
971 atomic_inc(&stats
->promotion
);
975 atomic_inc(&stats
->demotion
);
978 case POLICY_WRITEBACK
:
979 atomic_inc(&stats
->writeback
);
985 *---------------------------------------------------------------------
986 * Migration processing
988 * Migration covers moving data from the origin device to the cache, or
990 *---------------------------------------------------------------------
992 static void inc_io_migrations(struct cache
*cache
)
994 atomic_inc(&cache
->nr_io_migrations
);
997 static void dec_io_migrations(struct cache
*cache
)
999 atomic_dec(&cache
->nr_io_migrations
);
1002 static bool discard_or_flush(struct bio
*bio
)
1004 return bio_op(bio
) == REQ_OP_DISCARD
|| op_is_flush(bio
->bi_opf
);
1007 static void calc_discard_block_range(struct cache
*cache
, struct bio
*bio
,
1008 dm_dblock_t
*b
, dm_dblock_t
*e
)
1010 sector_t sb
= bio
->bi_iter
.bi_sector
;
1011 sector_t se
= bio_end_sector(bio
);
1013 *b
= to_dblock(dm_sector_div_up(sb
, cache
->discard_block_size
));
1015 if (se
- sb
< cache
->discard_block_size
)
1018 *e
= to_dblock(block_div(se
, cache
->discard_block_size
));
1021 /*----------------------------------------------------------------*/
1023 static void prevent_background_work(struct cache
*cache
)
1026 down_write(&cache
->background_work_lock
);
1030 static void allow_background_work(struct cache
*cache
)
1033 up_write(&cache
->background_work_lock
);
1037 static bool background_work_begin(struct cache
*cache
)
1042 r
= down_read_trylock(&cache
->background_work_lock
);
1048 static void background_work_end(struct cache
*cache
)
1051 up_read(&cache
->background_work_lock
);
1055 /*----------------------------------------------------------------*/
1057 static bool bio_writes_complete_block(struct cache
*cache
, struct bio
*bio
)
1059 return (bio_data_dir(bio
) == WRITE
) &&
1060 (bio
->bi_iter
.bi_size
== (cache
->sectors_per_block
<< SECTOR_SHIFT
));
1063 static bool optimisable_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
)
1065 return writeback_mode(cache
) &&
1066 (is_discarded_oblock(cache
, block
) || bio_writes_complete_block(cache
, bio
));
1069 static void quiesce(struct dm_cache_migration
*mg
,
1070 void (*continuation
)(struct work_struct
*))
1072 init_continuation(&mg
->k
, continuation
);
1073 dm_cell_quiesce_v2(mg
->cache
->prison
, mg
->cell
, &mg
->k
.ws
);
1076 static struct dm_cache_migration
*ws_to_mg(struct work_struct
*ws
)
1078 struct continuation
*k
= container_of(ws
, struct continuation
, ws
);
1080 return container_of(k
, struct dm_cache_migration
, k
);
1083 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
1085 struct dm_cache_migration
*mg
= container_of(context
, struct dm_cache_migration
, k
);
1087 if (read_err
|| write_err
)
1088 mg
->k
.input
= BLK_STS_IOERR
;
1090 queue_continuation(mg
->cache
->wq
, &mg
->k
);
1093 static void copy(struct dm_cache_migration
*mg
, bool promote
)
1095 struct dm_io_region o_region
, c_region
;
1096 struct cache
*cache
= mg
->cache
;
1098 o_region
.bdev
= cache
->origin_dev
->bdev
;
1099 o_region
.sector
= from_oblock(mg
->op
->oblock
) * cache
->sectors_per_block
;
1100 o_region
.count
= cache
->sectors_per_block
;
1102 c_region
.bdev
= cache
->cache_dev
->bdev
;
1103 c_region
.sector
= from_cblock(mg
->op
->cblock
) * cache
->sectors_per_block
;
1104 c_region
.count
= cache
->sectors_per_block
;
1107 dm_kcopyd_copy(cache
->copier
, &o_region
, 1, &c_region
, 0, copy_complete
, &mg
->k
);
1109 dm_kcopyd_copy(cache
->copier
, &c_region
, 1, &o_region
, 0, copy_complete
, &mg
->k
);
1112 static void bio_drop_shared_lock(struct cache
*cache
, struct bio
*bio
)
1114 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1116 if (pb
->cell
&& dm_cell_put_v2(cache
->prison
, pb
->cell
))
1117 free_prison_cell(cache
, pb
->cell
);
1121 static void overwrite_endio(struct bio
*bio
)
1123 struct dm_cache_migration
*mg
= bio
->bi_private
;
1124 struct cache
*cache
= mg
->cache
;
1125 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1127 dm_unhook_bio(&pb
->hook_info
, bio
);
1130 mg
->k
.input
= bio
->bi_status
;
1132 queue_continuation(cache
->wq
, &mg
->k
);
1135 static void overwrite(struct dm_cache_migration
*mg
,
1136 void (*continuation
)(struct work_struct
*))
1138 struct bio
*bio
= mg
->overwrite_bio
;
1139 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1141 dm_hook_bio(&pb
->hook_info
, bio
, overwrite_endio
, mg
);
1144 * The overwrite bio is part of the copy operation, as such it does
1145 * not set/clear discard or dirty flags.
1147 if (mg
->op
->op
== POLICY_PROMOTE
)
1148 remap_to_cache(mg
->cache
, bio
, mg
->op
->cblock
);
1150 remap_to_origin(mg
->cache
, bio
);
1152 init_continuation(&mg
->k
, continuation
);
1153 accounted_request(mg
->cache
, bio
);
1159 * 1) exclusive lock preventing WRITEs
1161 * 3) copy or issue overwrite bio
1162 * 4) upgrade to exclusive lock preventing READs and WRITEs
1164 * 6) update metadata and commit
1167 static void mg_complete(struct dm_cache_migration
*mg
, bool success
)
1169 struct bio_list bios
;
1170 struct cache
*cache
= mg
->cache
;
1171 struct policy_work
*op
= mg
->op
;
1172 dm_cblock_t cblock
= op
->cblock
;
1175 update_stats(&cache
->stats
, op
->op
);
1178 case POLICY_PROMOTE
:
1179 clear_discard(cache
, oblock_to_dblock(cache
, op
->oblock
));
1180 policy_complete_background_work(cache
->policy
, op
, success
);
1182 if (mg
->overwrite_bio
) {
1184 force_set_dirty(cache
, cblock
);
1185 else if (mg
->k
.input
)
1186 mg
->overwrite_bio
->bi_status
= mg
->k
.input
;
1188 mg
->overwrite_bio
->bi_status
= BLK_STS_IOERR
;
1189 bio_endio(mg
->overwrite_bio
);
1192 force_clear_dirty(cache
, cblock
);
1193 dec_io_migrations(cache
);
1199 * We clear dirty here to update the nr_dirty counter.
1202 force_clear_dirty(cache
, cblock
);
1203 policy_complete_background_work(cache
->policy
, op
, success
);
1204 dec_io_migrations(cache
);
1207 case POLICY_WRITEBACK
:
1209 force_clear_dirty(cache
, cblock
);
1210 policy_complete_background_work(cache
->policy
, op
, success
);
1211 dec_io_migrations(cache
);
1215 bio_list_init(&bios
);
1217 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1218 free_prison_cell(cache
, mg
->cell
);
1222 defer_bios(cache
, &bios
);
1223 wake_migration_worker(cache
);
1225 background_work_end(cache
);
1228 static void mg_success(struct work_struct
*ws
)
1230 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1232 mg_complete(mg
, mg
->k
.input
== 0);
1235 static void mg_update_metadata(struct work_struct
*ws
)
1238 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1239 struct cache
*cache
= mg
->cache
;
1240 struct policy_work
*op
= mg
->op
;
1243 case POLICY_PROMOTE
:
1244 r
= dm_cache_insert_mapping(cache
->cmd
, op
->cblock
, op
->oblock
);
1246 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1247 cache_device_name(cache
));
1248 metadata_operation_failed(cache
, "dm_cache_insert_mapping", r
);
1250 mg_complete(mg
, false);
1253 mg_complete(mg
, true);
1257 r
= dm_cache_remove_mapping(cache
->cmd
, op
->cblock
);
1259 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1260 cache_device_name(cache
));
1261 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1263 mg_complete(mg
, false);
1268 * It would be nice if we only had to commit when a REQ_FLUSH
1269 * comes through. But there's one scenario that we have to
1272 * - vblock x in a cache block
1274 * - cache block gets reallocated and over written
1277 * When we recover, because there was no commit the cache will
1278 * rollback to having the data for vblock x in the cache block.
1279 * But the cache block has since been overwritten, so it'll end
1280 * up pointing to data that was never in 'x' during the history
1283 * To avoid this issue we require a commit as part of the
1284 * demotion operation.
1286 init_continuation(&mg
->k
, mg_success
);
1287 continue_after_commit(&cache
->committer
, &mg
->k
);
1288 schedule_commit(&cache
->committer
);
1291 case POLICY_WRITEBACK
:
1292 mg_complete(mg
, true);
1297 static void mg_update_metadata_after_copy(struct work_struct
*ws
)
1299 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1302 * Did the copy succeed?
1305 mg_complete(mg
, false);
1307 mg_update_metadata(ws
);
1310 static void mg_upgrade_lock(struct work_struct
*ws
)
1313 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1316 * Did the copy succeed?
1319 mg_complete(mg
, false);
1323 * Now we want the lock to prevent both reads and writes.
1325 r
= dm_cell_lock_promote_v2(mg
->cache
->prison
, mg
->cell
,
1326 READ_WRITE_LOCK_LEVEL
);
1328 mg_complete(mg
, false);
1331 quiesce(mg
, mg_update_metadata
);
1334 mg_update_metadata(ws
);
1338 static void mg_full_copy(struct work_struct
*ws
)
1340 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1341 struct cache
*cache
= mg
->cache
;
1342 struct policy_work
*op
= mg
->op
;
1343 bool is_policy_promote
= (op
->op
== POLICY_PROMOTE
);
1345 if ((!is_policy_promote
&& !is_dirty(cache
, op
->cblock
)) ||
1346 is_discarded_oblock(cache
, op
->oblock
)) {
1347 mg_upgrade_lock(ws
);
1351 init_continuation(&mg
->k
, mg_upgrade_lock
);
1352 copy(mg
, is_policy_promote
);
1355 static void mg_copy(struct work_struct
*ws
)
1357 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1359 if (mg
->overwrite_bio
) {
1361 * No exclusive lock was held when we last checked if the bio
1362 * was optimisable. So we have to check again in case things
1363 * have changed (eg, the block may no longer be discarded).
1365 if (!optimisable_bio(mg
->cache
, mg
->overwrite_bio
, mg
->op
->oblock
)) {
1367 * Fallback to a real full copy after doing some tidying up.
1369 bool rb
= bio_detain_shared(mg
->cache
, mg
->op
->oblock
, mg
->overwrite_bio
);
1371 BUG_ON(rb
); /* An exclusive lock must _not_ be held for this block */
1372 mg
->overwrite_bio
= NULL
;
1373 inc_io_migrations(mg
->cache
);
1379 * It's safe to do this here, even though it's new data
1380 * because all IO has been locked out of the block.
1382 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1383 * so _not_ using mg_upgrade_lock() as continutation.
1385 overwrite(mg
, mg_update_metadata_after_copy
);
1391 static int mg_lock_writes(struct dm_cache_migration
*mg
)
1394 struct dm_cell_key_v2 key
;
1395 struct cache
*cache
= mg
->cache
;
1396 struct dm_bio_prison_cell_v2
*prealloc
;
1398 prealloc
= alloc_prison_cell(cache
);
1401 * Prevent writes to the block, but allow reads to continue.
1402 * Unless we're using an overwrite bio, in which case we lock
1405 build_key(mg
->op
->oblock
, oblock_succ(mg
->op
->oblock
), &key
);
1406 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1407 mg
->overwrite_bio
? READ_WRITE_LOCK_LEVEL
: WRITE_LOCK_LEVEL
,
1408 prealloc
, &mg
->cell
);
1410 free_prison_cell(cache
, prealloc
);
1411 mg_complete(mg
, false);
1415 if (mg
->cell
!= prealloc
)
1416 free_prison_cell(cache
, prealloc
);
1421 quiesce(mg
, mg_copy
);
1426 static int mg_start(struct cache
*cache
, struct policy_work
*op
, struct bio
*bio
)
1428 struct dm_cache_migration
*mg
;
1430 if (!background_work_begin(cache
)) {
1431 policy_complete_background_work(cache
->policy
, op
, false);
1435 mg
= alloc_migration(cache
);
1438 mg
->overwrite_bio
= bio
;
1441 inc_io_migrations(cache
);
1443 return mg_lock_writes(mg
);
1447 *--------------------------------------------------------------
1448 * invalidation processing
1449 *--------------------------------------------------------------
1452 static void invalidate_complete(struct dm_cache_migration
*mg
, bool success
)
1454 struct bio_list bios
;
1455 struct cache
*cache
= mg
->cache
;
1457 bio_list_init(&bios
);
1458 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1459 free_prison_cell(cache
, mg
->cell
);
1461 if (!success
&& mg
->overwrite_bio
)
1462 bio_io_error(mg
->overwrite_bio
);
1465 defer_bios(cache
, &bios
);
1467 background_work_end(cache
);
1470 static void invalidate_completed(struct work_struct
*ws
)
1472 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1474 invalidate_complete(mg
, !mg
->k
.input
);
1477 static int invalidate_cblock(struct cache
*cache
, dm_cblock_t cblock
)
1481 r
= policy_invalidate_mapping(cache
->policy
, cblock
);
1483 r
= dm_cache_remove_mapping(cache
->cmd
, cblock
);
1485 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1486 cache_device_name(cache
));
1487 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1490 } else if (r
== -ENODATA
) {
1492 * Harmless, already unmapped.
1497 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache
));
1502 static void invalidate_remove(struct work_struct
*ws
)
1505 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1506 struct cache
*cache
= mg
->cache
;
1508 r
= invalidate_cblock(cache
, mg
->invalidate_cblock
);
1510 invalidate_complete(mg
, false);
1514 init_continuation(&mg
->k
, invalidate_completed
);
1515 continue_after_commit(&cache
->committer
, &mg
->k
);
1516 remap_to_origin_clear_discard(cache
, mg
->overwrite_bio
, mg
->invalidate_oblock
);
1517 mg
->overwrite_bio
= NULL
;
1518 schedule_commit(&cache
->committer
);
1521 static int invalidate_lock(struct dm_cache_migration
*mg
)
1524 struct dm_cell_key_v2 key
;
1525 struct cache
*cache
= mg
->cache
;
1526 struct dm_bio_prison_cell_v2
*prealloc
;
1528 prealloc
= alloc_prison_cell(cache
);
1530 build_key(mg
->invalidate_oblock
, oblock_succ(mg
->invalidate_oblock
), &key
);
1531 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1532 READ_WRITE_LOCK_LEVEL
, prealloc
, &mg
->cell
);
1534 free_prison_cell(cache
, prealloc
);
1535 invalidate_complete(mg
, false);
1539 if (mg
->cell
!= prealloc
)
1540 free_prison_cell(cache
, prealloc
);
1543 quiesce(mg
, invalidate_remove
);
1547 * We can't call invalidate_remove() directly here because we
1548 * might still be in request context.
1550 init_continuation(&mg
->k
, invalidate_remove
);
1551 queue_work(cache
->wq
, &mg
->k
.ws
);
1557 static int invalidate_start(struct cache
*cache
, dm_cblock_t cblock
,
1558 dm_oblock_t oblock
, struct bio
*bio
)
1560 struct dm_cache_migration
*mg
;
1562 if (!background_work_begin(cache
))
1565 mg
= alloc_migration(cache
);
1567 mg
->overwrite_bio
= bio
;
1568 mg
->invalidate_cblock
= cblock
;
1569 mg
->invalidate_oblock
= oblock
;
1571 return invalidate_lock(mg
);
1575 *--------------------------------------------------------------
1577 *--------------------------------------------------------------
1585 static enum busy
spare_migration_bandwidth(struct cache
*cache
)
1587 bool idle
= dm_iot_idle_for(&cache
->tracker
, HZ
);
1588 sector_t current_volume
= (atomic_read(&cache
->nr_io_migrations
) + 1) *
1589 cache
->sectors_per_block
;
1591 if (idle
&& current_volume
<= cache
->migration_threshold
)
1597 static void inc_hit_counter(struct cache
*cache
, struct bio
*bio
)
1599 atomic_inc(bio_data_dir(bio
) == READ
?
1600 &cache
->stats
.read_hit
: &cache
->stats
.write_hit
);
1603 static void inc_miss_counter(struct cache
*cache
, struct bio
*bio
)
1605 atomic_inc(bio_data_dir(bio
) == READ
?
1606 &cache
->stats
.read_miss
: &cache
->stats
.write_miss
);
1609 /*----------------------------------------------------------------*/
1611 static int map_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
,
1612 bool *commit_needed
)
1615 bool rb
, background_queued
;
1618 *commit_needed
= false;
1620 rb
= bio_detain_shared(cache
, block
, bio
);
1623 * An exclusive lock is held for this block, so we have to
1624 * wait. We set the commit_needed flag so the current
1625 * transaction will be committed asap, allowing this lock
1628 *commit_needed
= true;
1629 return DM_MAPIO_SUBMITTED
;
1632 data_dir
= bio_data_dir(bio
);
1634 if (optimisable_bio(cache
, bio
, block
)) {
1635 struct policy_work
*op
= NULL
;
1637 r
= policy_lookup_with_work(cache
->policy
, block
, &cblock
, data_dir
, true, &op
);
1638 if (unlikely(r
&& r
!= -ENOENT
)) {
1639 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1640 cache_device_name(cache
), r
);
1642 return DM_MAPIO_SUBMITTED
;
1645 if (r
== -ENOENT
&& op
) {
1646 bio_drop_shared_lock(cache
, bio
);
1647 BUG_ON(op
->op
!= POLICY_PROMOTE
);
1648 mg_start(cache
, op
, bio
);
1649 return DM_MAPIO_SUBMITTED
;
1652 r
= policy_lookup(cache
->policy
, block
, &cblock
, data_dir
, false, &background_queued
);
1653 if (unlikely(r
&& r
!= -ENOENT
)) {
1654 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1655 cache_device_name(cache
), r
);
1657 return DM_MAPIO_SUBMITTED
;
1660 if (background_queued
)
1661 wake_migration_worker(cache
);
1665 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1670 inc_miss_counter(cache
, bio
);
1671 if (pb
->req_nr
== 0) {
1672 accounted_begin(cache
, bio
);
1673 remap_to_origin_clear_discard(cache
, bio
, block
);
1676 * This is a duplicate writethrough io that is no
1677 * longer needed because the block has been demoted.
1680 return DM_MAPIO_SUBMITTED
;
1686 inc_hit_counter(cache
, bio
);
1689 * Passthrough always maps to the origin, invalidating any
1690 * cache blocks that are written to.
1692 if (passthrough_mode(cache
)) {
1693 if (bio_data_dir(bio
) == WRITE
) {
1694 bio_drop_shared_lock(cache
, bio
);
1695 atomic_inc(&cache
->stats
.demotion
);
1696 invalidate_start(cache
, cblock
, block
, bio
);
1698 remap_to_origin_clear_discard(cache
, bio
, block
);
1700 if (bio_data_dir(bio
) == WRITE
&& writethrough_mode(cache
) &&
1701 !is_dirty(cache
, cblock
)) {
1702 remap_to_origin_and_cache(cache
, bio
, block
, cblock
);
1703 accounted_begin(cache
, bio
);
1705 remap_to_cache_dirty(cache
, bio
, block
, cblock
);
1710 * dm core turns FUA requests into a separate payload and FLUSH req.
1712 if (bio
->bi_opf
& REQ_FUA
) {
1714 * issue_after_commit will call accounted_begin a second time. So
1715 * we call accounted_complete() to avoid double accounting.
1717 accounted_complete(cache
, bio
);
1718 issue_after_commit(&cache
->committer
, bio
);
1719 *commit_needed
= true;
1720 return DM_MAPIO_SUBMITTED
;
1723 return DM_MAPIO_REMAPPED
;
1726 static bool process_bio(struct cache
*cache
, struct bio
*bio
)
1730 if (map_bio(cache
, bio
, get_bio_block(cache
, bio
), &commit_needed
) == DM_MAPIO_REMAPPED
)
1731 dm_submit_bio_remap(bio
, NULL
);
1733 return commit_needed
;
1737 * A non-zero return indicates read_only or fail_io mode.
1739 static int commit(struct cache
*cache
, bool clean_shutdown
)
1743 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1746 atomic_inc(&cache
->stats
.commit_count
);
1747 r
= dm_cache_commit(cache
->cmd
, clean_shutdown
);
1749 metadata_operation_failed(cache
, "dm_cache_commit", r
);
1755 * Used by the batcher.
1757 static blk_status_t
commit_op(void *context
)
1759 struct cache
*cache
= context
;
1761 if (dm_cache_changed_this_transaction(cache
->cmd
))
1762 return errno_to_blk_status(commit(cache
, false));
1767 /*----------------------------------------------------------------*/
1769 static bool process_flush_bio(struct cache
*cache
, struct bio
*bio
)
1771 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1774 remap_to_origin(cache
, bio
);
1776 remap_to_cache(cache
, bio
, 0);
1778 issue_after_commit(&cache
->committer
, bio
);
1782 static bool process_discard_bio(struct cache
*cache
, struct bio
*bio
)
1787 * FIXME: do we need to lock the region? Or can we just assume the
1788 * user wont be so foolish as to issue discard concurrently with
1791 calc_discard_block_range(cache
, bio
, &b
, &e
);
1793 set_discard(cache
, b
);
1794 b
= to_dblock(from_dblock(b
) + 1);
1797 if (cache
->features
.discard_passdown
) {
1798 remap_to_origin(cache
, bio
);
1799 dm_submit_bio_remap(bio
, NULL
);
1806 static void process_deferred_bios(struct work_struct
*ws
)
1808 struct cache
*cache
= container_of(ws
, struct cache
, deferred_bio_worker
);
1810 bool commit_needed
= false;
1811 struct bio_list bios
;
1814 bio_list_init(&bios
);
1816 spin_lock_irq(&cache
->lock
);
1817 bio_list_merge_init(&bios
, &cache
->deferred_bios
);
1818 spin_unlock_irq(&cache
->lock
);
1820 while ((bio
= bio_list_pop(&bios
))) {
1821 if (bio
->bi_opf
& REQ_PREFLUSH
)
1822 commit_needed
= process_flush_bio(cache
, bio
) || commit_needed
;
1824 else if (bio_op(bio
) == REQ_OP_DISCARD
)
1825 commit_needed
= process_discard_bio(cache
, bio
) || commit_needed
;
1828 commit_needed
= process_bio(cache
, bio
) || commit_needed
;
1833 schedule_commit(&cache
->committer
);
1837 *--------------------------------------------------------------
1839 *--------------------------------------------------------------
1841 static void requeue_deferred_bios(struct cache
*cache
)
1844 struct bio_list bios
;
1846 bio_list_init(&bios
);
1847 bio_list_merge_init(&bios
, &cache
->deferred_bios
);
1849 while ((bio
= bio_list_pop(&bios
))) {
1850 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
1857 * We want to commit periodically so that not too much
1858 * unwritten metadata builds up.
1860 static void do_waker(struct work_struct
*ws
)
1862 struct cache
*cache
= container_of(to_delayed_work(ws
), struct cache
, waker
);
1864 policy_tick(cache
->policy
, true);
1865 wake_migration_worker(cache
);
1866 schedule_commit(&cache
->committer
);
1867 queue_delayed_work(cache
->wq
, &cache
->waker
, COMMIT_PERIOD
);
1870 static void check_migrations(struct work_struct
*ws
)
1873 struct policy_work
*op
;
1874 struct cache
*cache
= container_of(ws
, struct cache
, migration_worker
);
1878 b
= spare_migration_bandwidth(cache
);
1880 r
= policy_get_background_work(cache
->policy
, b
== IDLE
, &op
);
1885 DMERR_LIMIT("%s: policy_background_work failed",
1886 cache_device_name(cache
));
1890 r
= mg_start(cache
, op
, NULL
);
1899 *--------------------------------------------------------------
1901 *--------------------------------------------------------------
1905 * This function gets called on the error paths of the constructor, so we
1906 * have to cope with a partially initialised struct.
1908 static void destroy(struct cache
*cache
)
1912 mempool_exit(&cache
->migration_pool
);
1915 dm_bio_prison_destroy_v2(cache
->prison
);
1917 cancel_delayed_work_sync(&cache
->waker
);
1919 destroy_workqueue(cache
->wq
);
1921 if (cache
->dirty_bitset
)
1922 free_bitset(cache
->dirty_bitset
);
1924 if (cache
->discard_bitset
)
1925 free_bitset(cache
->discard_bitset
);
1928 dm_kcopyd_client_destroy(cache
->copier
);
1931 dm_cache_metadata_close(cache
->cmd
);
1933 if (cache
->metadata_dev
)
1934 dm_put_device(cache
->ti
, cache
->metadata_dev
);
1936 if (cache
->origin_dev
)
1937 dm_put_device(cache
->ti
, cache
->origin_dev
);
1939 if (cache
->cache_dev
)
1940 dm_put_device(cache
->ti
, cache
->cache_dev
);
1943 dm_cache_policy_destroy(cache
->policy
);
1945 for (i
= 0; i
< cache
->nr_ctr_args
; i
++)
1946 kfree(cache
->ctr_args
[i
]);
1947 kfree(cache
->ctr_args
);
1949 bioset_exit(&cache
->bs
);
1954 static void cache_dtr(struct dm_target
*ti
)
1956 struct cache
*cache
= ti
->private;
1961 static sector_t
get_dev_size(struct dm_dev
*dev
)
1963 return bdev_nr_sectors(dev
->bdev
);
1966 /*----------------------------------------------------------------*/
1969 * Construct a cache device mapping.
1971 * cache <metadata dev> <cache dev> <origin dev> <block size>
1972 * <#feature args> [<feature arg>]*
1973 * <policy> <#policy args> [<policy arg>]*
1975 * metadata dev : fast device holding the persistent metadata
1976 * cache dev : fast device holding cached data blocks
1977 * origin dev : slow device holding original data blocks
1978 * block size : cache unit size in sectors
1980 * #feature args : number of feature arguments passed
1981 * feature args : writethrough. (The default is writeback.)
1983 * policy : the replacement policy to use
1984 * #policy args : an even number of policy arguments corresponding
1985 * to key/value pairs passed to the policy
1986 * policy args : key/value pairs passed to the policy
1987 * E.g. 'sequential_threshold 1024'
1988 * See cache-policies.txt for details.
1990 * Optional feature arguments are:
1991 * writethrough : write through caching that prohibits cache block
1992 * content from being different from origin block content.
1993 * Without this argument, the default behaviour is to write
1994 * back cache block contents later for performance reasons,
1995 * so they may differ from the corresponding origin blocks.
1998 struct dm_target
*ti
;
2000 struct dm_dev
*metadata_dev
;
2002 struct dm_dev
*cache_dev
;
2003 sector_t cache_sectors
;
2005 struct dm_dev
*origin_dev
;
2006 sector_t origin_sectors
;
2008 uint32_t block_size
;
2010 const char *policy_name
;
2012 const char **policy_argv
;
2014 struct cache_features features
;
2017 static void destroy_cache_args(struct cache_args
*ca
)
2019 if (ca
->metadata_dev
)
2020 dm_put_device(ca
->ti
, ca
->metadata_dev
);
2023 dm_put_device(ca
->ti
, ca
->cache_dev
);
2026 dm_put_device(ca
->ti
, ca
->origin_dev
);
2031 static bool at_least_one_arg(struct dm_arg_set
*as
, char **error
)
2034 *error
= "Insufficient args";
2041 static int parse_metadata_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2045 sector_t metadata_dev_size
;
2047 if (!at_least_one_arg(as
, error
))
2050 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
),
2051 BLK_OPEN_READ
| BLK_OPEN_WRITE
, &ca
->metadata_dev
);
2053 *error
= "Error opening metadata device";
2057 metadata_dev_size
= get_dev_size(ca
->metadata_dev
);
2058 if (metadata_dev_size
> DM_CACHE_METADATA_MAX_SECTORS_WARNING
)
2059 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2060 ca
->metadata_dev
->bdev
, THIN_METADATA_MAX_SECTORS
);
2065 static int parse_cache_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2070 if (!at_least_one_arg(as
, error
))
2073 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
),
2074 BLK_OPEN_READ
| BLK_OPEN_WRITE
, &ca
->cache_dev
);
2076 *error
= "Error opening cache device";
2079 ca
->cache_sectors
= get_dev_size(ca
->cache_dev
);
2084 static int parse_origin_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2089 if (!at_least_one_arg(as
, error
))
2092 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
),
2093 BLK_OPEN_READ
| BLK_OPEN_WRITE
, &ca
->origin_dev
);
2095 *error
= "Error opening origin device";
2099 ca
->origin_sectors
= get_dev_size(ca
->origin_dev
);
2100 if (ca
->ti
->len
> ca
->origin_sectors
) {
2101 *error
= "Device size larger than cached device";
2108 static int parse_block_size(struct cache_args
*ca
, struct dm_arg_set
*as
,
2111 unsigned long block_size
;
2113 if (!at_least_one_arg(as
, error
))
2116 if (kstrtoul(dm_shift_arg(as
), 10, &block_size
) || !block_size
||
2117 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2118 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2119 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2120 *error
= "Invalid data block size";
2124 if (block_size
> ca
->cache_sectors
) {
2125 *error
= "Data block size is larger than the cache device";
2129 ca
->block_size
= block_size
;
2134 static void init_features(struct cache_features
*cf
)
2136 cf
->mode
= CM_WRITE
;
2137 cf
->io_mode
= CM_IO_WRITEBACK
;
2138 cf
->metadata_version
= 1;
2139 cf
->discard_passdown
= true;
2142 static int parse_features(struct cache_args
*ca
, struct dm_arg_set
*as
,
2145 static const struct dm_arg _args
[] = {
2146 {0, 3, "Invalid number of cache feature arguments"},
2149 int r
, mode_ctr
= 0;
2152 struct cache_features
*cf
= &ca
->features
;
2156 r
= dm_read_arg_group(_args
, as
, &argc
, error
);
2161 arg
= dm_shift_arg(as
);
2163 if (!strcasecmp(arg
, "writeback")) {
2164 cf
->io_mode
= CM_IO_WRITEBACK
;
2168 else if (!strcasecmp(arg
, "writethrough")) {
2169 cf
->io_mode
= CM_IO_WRITETHROUGH
;
2173 else if (!strcasecmp(arg
, "passthrough")) {
2174 cf
->io_mode
= CM_IO_PASSTHROUGH
;
2178 else if (!strcasecmp(arg
, "metadata2"))
2179 cf
->metadata_version
= 2;
2181 else if (!strcasecmp(arg
, "no_discard_passdown"))
2182 cf
->discard_passdown
= false;
2185 *error
= "Unrecognised cache feature requested";
2191 *error
= "Duplicate cache io_mode features requested";
2198 static int parse_policy(struct cache_args
*ca
, struct dm_arg_set
*as
,
2201 static const struct dm_arg _args
[] = {
2202 {0, 1024, "Invalid number of policy arguments"},
2207 if (!at_least_one_arg(as
, error
))
2210 ca
->policy_name
= dm_shift_arg(as
);
2212 r
= dm_read_arg_group(_args
, as
, &ca
->policy_argc
, error
);
2216 ca
->policy_argv
= (const char **)as
->argv
;
2217 dm_consume_args(as
, ca
->policy_argc
);
2222 static int parse_cache_args(struct cache_args
*ca
, int argc
, char **argv
,
2226 struct dm_arg_set as
;
2231 r
= parse_metadata_dev(ca
, &as
, error
);
2235 r
= parse_cache_dev(ca
, &as
, error
);
2239 r
= parse_origin_dev(ca
, &as
, error
);
2243 r
= parse_block_size(ca
, &as
, error
);
2247 r
= parse_features(ca
, &as
, error
);
2251 r
= parse_policy(ca
, &as
, error
);
2258 /*----------------------------------------------------------------*/
2260 static struct kmem_cache
*migration_cache
;
2262 #define NOT_CORE_OPTION 1
2264 static int process_config_option(struct cache
*cache
, const char *key
, const char *value
)
2268 if (!strcasecmp(key
, "migration_threshold")) {
2269 if (kstrtoul(value
, 10, &tmp
))
2272 cache
->migration_threshold
= tmp
;
2276 return NOT_CORE_OPTION
;
2279 static int set_config_value(struct cache
*cache
, const char *key
, const char *value
)
2281 int r
= process_config_option(cache
, key
, value
);
2283 if (r
== NOT_CORE_OPTION
)
2284 r
= policy_set_config_value(cache
->policy
, key
, value
);
2287 DMWARN("bad config value for %s: %s", key
, value
);
2292 static int set_config_values(struct cache
*cache
, int argc
, const char **argv
)
2297 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2302 r
= set_config_value(cache
, argv
[0], argv
[1]);
2313 static int create_cache_policy(struct cache
*cache
, struct cache_args
*ca
,
2316 struct dm_cache_policy
*p
= dm_cache_policy_create(ca
->policy_name
,
2318 cache
->origin_sectors
,
2319 cache
->sectors_per_block
);
2321 *error
= "Error creating cache's policy";
2325 BUG_ON(!cache
->policy
);
2331 * We want the discard block size to be at least the size of the cache
2332 * block size and have no more than 2^14 discard blocks across the origin.
2334 #define MAX_DISCARD_BLOCKS (1 << 14)
2336 static bool too_many_discard_blocks(sector_t discard_block_size
,
2337 sector_t origin_size
)
2339 (void) sector_div(origin_size
, discard_block_size
);
2341 return origin_size
> MAX_DISCARD_BLOCKS
;
2344 static sector_t
calculate_discard_block_size(sector_t cache_block_size
,
2345 sector_t origin_size
)
2347 sector_t discard_block_size
= cache_block_size
;
2350 while (too_many_discard_blocks(discard_block_size
, origin_size
))
2351 discard_block_size
*= 2;
2353 return discard_block_size
;
2356 static void set_cache_size(struct cache
*cache
, dm_cblock_t size
)
2358 dm_block_t nr_blocks
= from_cblock(size
);
2360 if (nr_blocks
> (1 << 20) && cache
->cache_size
!= size
)
2361 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2362 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2363 "Please consider increasing the cache block size to reduce the overall cache block count.",
2364 (unsigned long long) nr_blocks
);
2366 cache
->cache_size
= size
;
2369 #define DEFAULT_MIGRATION_THRESHOLD 2048
2371 static int cache_create(struct cache_args
*ca
, struct cache
**result
)
2374 char **error
= &ca
->ti
->error
;
2375 struct cache
*cache
;
2376 struct dm_target
*ti
= ca
->ti
;
2377 dm_block_t origin_blocks
;
2378 struct dm_cache_metadata
*cmd
;
2379 bool may_format
= ca
->features
.mode
== CM_WRITE
;
2381 cache
= kzalloc(sizeof(*cache
), GFP_KERNEL
);
2386 ti
->private = cache
;
2387 ti
->accounts_remapped_io
= true;
2388 ti
->num_flush_bios
= 2;
2389 ti
->flush_supported
= true;
2391 ti
->num_discard_bios
= 1;
2392 ti
->discards_supported
= true;
2394 ti
->per_io_data_size
= sizeof(struct per_bio_data
);
2396 cache
->features
= ca
->features
;
2397 if (writethrough_mode(cache
)) {
2398 /* Create bioset for writethrough bios issued to origin */
2399 r
= bioset_init(&cache
->bs
, BIO_POOL_SIZE
, 0, 0);
2404 cache
->metadata_dev
= ca
->metadata_dev
;
2405 cache
->origin_dev
= ca
->origin_dev
;
2406 cache
->cache_dev
= ca
->cache_dev
;
2408 ca
->metadata_dev
= ca
->origin_dev
= ca
->cache_dev
= NULL
;
2410 origin_blocks
= cache
->origin_sectors
= ca
->origin_sectors
;
2411 origin_blocks
= block_div(origin_blocks
, ca
->block_size
);
2412 cache
->origin_blocks
= to_oblock(origin_blocks
);
2414 cache
->sectors_per_block
= ca
->block_size
;
2415 if (dm_set_target_max_io_len(ti
, cache
->sectors_per_block
)) {
2420 if (ca
->block_size
& (ca
->block_size
- 1)) {
2421 dm_block_t cache_size
= ca
->cache_sectors
;
2423 cache
->sectors_per_block_shift
= -1;
2424 cache_size
= block_div(cache_size
, ca
->block_size
);
2425 set_cache_size(cache
, to_cblock(cache_size
));
2427 cache
->sectors_per_block_shift
= __ffs(ca
->block_size
);
2428 set_cache_size(cache
, to_cblock(ca
->cache_sectors
>> cache
->sectors_per_block_shift
));
2431 r
= create_cache_policy(cache
, ca
, error
);
2435 cache
->policy_nr_args
= ca
->policy_argc
;
2436 cache
->migration_threshold
= DEFAULT_MIGRATION_THRESHOLD
;
2438 r
= set_config_values(cache
, ca
->policy_argc
, ca
->policy_argv
);
2440 *error
= "Error setting cache policy's config values";
2444 cmd
= dm_cache_metadata_open(cache
->metadata_dev
->bdev
,
2445 ca
->block_size
, may_format
,
2446 dm_cache_policy_get_hint_size(cache
->policy
),
2447 ca
->features
.metadata_version
);
2449 *error
= "Error creating metadata object";
2454 set_cache_mode(cache
, CM_WRITE
);
2455 if (get_cache_mode(cache
) != CM_WRITE
) {
2456 *error
= "Unable to get write access to metadata, please check/repair metadata.";
2461 if (passthrough_mode(cache
)) {
2464 r
= dm_cache_metadata_all_clean(cache
->cmd
, &all_clean
);
2466 *error
= "dm_cache_metadata_all_clean() failed";
2471 *error
= "Cannot enter passthrough mode unless all blocks are clean";
2476 policy_allow_migrations(cache
->policy
, false);
2479 spin_lock_init(&cache
->lock
);
2480 bio_list_init(&cache
->deferred_bios
);
2481 atomic_set(&cache
->nr_allocated_migrations
, 0);
2482 atomic_set(&cache
->nr_io_migrations
, 0);
2483 init_waitqueue_head(&cache
->migration_wait
);
2486 atomic_set(&cache
->nr_dirty
, 0);
2487 cache
->dirty_bitset
= alloc_bitset(from_cblock(cache
->cache_size
));
2488 if (!cache
->dirty_bitset
) {
2489 *error
= "could not allocate dirty bitset";
2492 clear_bitset(cache
->dirty_bitset
, from_cblock(cache
->cache_size
));
2494 cache
->discard_block_size
=
2495 calculate_discard_block_size(cache
->sectors_per_block
,
2496 cache
->origin_sectors
);
2497 cache
->discard_nr_blocks
= to_dblock(dm_sector_div_up(cache
->origin_sectors
,
2498 cache
->discard_block_size
));
2499 cache
->discard_bitset
= alloc_bitset(from_dblock(cache
->discard_nr_blocks
));
2500 if (!cache
->discard_bitset
) {
2501 *error
= "could not allocate discard bitset";
2504 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
2506 cache
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2507 if (IS_ERR(cache
->copier
)) {
2508 *error
= "could not create kcopyd client";
2509 r
= PTR_ERR(cache
->copier
);
2513 cache
->wq
= alloc_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
, 0);
2515 *error
= "could not create workqueue for metadata object";
2518 INIT_WORK(&cache
->deferred_bio_worker
, process_deferred_bios
);
2519 INIT_WORK(&cache
->migration_worker
, check_migrations
);
2520 INIT_DELAYED_WORK(&cache
->waker
, do_waker
);
2522 cache
->prison
= dm_bio_prison_create_v2(cache
->wq
);
2523 if (!cache
->prison
) {
2524 *error
= "could not create bio prison";
2528 r
= mempool_init_slab_pool(&cache
->migration_pool
, MIGRATION_POOL_SIZE
,
2531 *error
= "Error creating cache's migration mempool";
2535 cache
->need_tick_bio
= true;
2536 cache
->sized
= false;
2537 cache
->invalidate
= false;
2538 cache
->commit_requested
= false;
2539 cache
->loaded_mappings
= false;
2540 cache
->loaded_discards
= false;
2544 atomic_set(&cache
->stats
.demotion
, 0);
2545 atomic_set(&cache
->stats
.promotion
, 0);
2546 atomic_set(&cache
->stats
.copies_avoided
, 0);
2547 atomic_set(&cache
->stats
.cache_cell_clash
, 0);
2548 atomic_set(&cache
->stats
.commit_count
, 0);
2549 atomic_set(&cache
->stats
.discard_count
, 0);
2551 spin_lock_init(&cache
->invalidation_lock
);
2552 INIT_LIST_HEAD(&cache
->invalidation_requests
);
2554 batcher_init(&cache
->committer
, commit_op
, cache
,
2555 issue_op
, cache
, cache
->wq
);
2556 dm_iot_init(&cache
->tracker
);
2558 init_rwsem(&cache
->background_work_lock
);
2559 prevent_background_work(cache
);
2568 static int copy_ctr_args(struct cache
*cache
, int argc
, const char **argv
)
2573 copy
= kcalloc(argc
, sizeof(*copy
), GFP_KERNEL
);
2576 for (i
= 0; i
< argc
; i
++) {
2577 copy
[i
] = kstrdup(argv
[i
], GFP_KERNEL
);
2586 cache
->nr_ctr_args
= argc
;
2587 cache
->ctr_args
= copy
;
2592 static int cache_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
2595 struct cache_args
*ca
;
2596 struct cache
*cache
= NULL
;
2598 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2600 ti
->error
= "Error allocating memory for cache";
2605 r
= parse_cache_args(ca
, argc
, argv
, &ti
->error
);
2609 r
= cache_create(ca
, &cache
);
2613 r
= copy_ctr_args(cache
, argc
- 3, (const char **)argv
+ 3);
2619 ti
->private = cache
;
2621 destroy_cache_args(ca
);
2625 /*----------------------------------------------------------------*/
2627 static int cache_map(struct dm_target
*ti
, struct bio
*bio
)
2629 struct cache
*cache
= ti
->private;
2633 dm_oblock_t block
= get_bio_block(cache
, bio
);
2635 init_per_bio_data(bio
);
2636 if (unlikely(from_oblock(block
) >= from_oblock(cache
->origin_blocks
))) {
2638 * This can only occur if the io goes to a partial block at
2639 * the end of the origin device. We don't cache these.
2640 * Just remap to the origin and carry on.
2642 remap_to_origin(cache
, bio
);
2643 accounted_begin(cache
, bio
);
2644 return DM_MAPIO_REMAPPED
;
2647 if (discard_or_flush(bio
)) {
2648 defer_bio(cache
, bio
);
2649 return DM_MAPIO_SUBMITTED
;
2652 r
= map_bio(cache
, bio
, block
, &commit_needed
);
2654 schedule_commit(&cache
->committer
);
2659 static int cache_end_io(struct dm_target
*ti
, struct bio
*bio
, blk_status_t
*error
)
2661 struct cache
*cache
= ti
->private;
2662 unsigned long flags
;
2663 struct per_bio_data
*pb
= get_per_bio_data(bio
);
2666 policy_tick(cache
->policy
, false);
2668 spin_lock_irqsave(&cache
->lock
, flags
);
2669 cache
->need_tick_bio
= true;
2670 spin_unlock_irqrestore(&cache
->lock
, flags
);
2673 bio_drop_shared_lock(cache
, bio
);
2674 accounted_complete(cache
, bio
);
2676 return DM_ENDIO_DONE
;
2679 static int write_dirty_bitset(struct cache
*cache
)
2683 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2686 r
= dm_cache_set_dirty_bits(cache
->cmd
, from_cblock(cache
->cache_size
), cache
->dirty_bitset
);
2688 metadata_operation_failed(cache
, "dm_cache_set_dirty_bits", r
);
2693 static int write_discard_bitset(struct cache
*cache
)
2697 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2700 r
= dm_cache_discard_bitset_resize(cache
->cmd
, cache
->discard_block_size
,
2701 cache
->discard_nr_blocks
);
2703 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache
));
2704 metadata_operation_failed(cache
, "dm_cache_discard_bitset_resize", r
);
2708 for (i
= 0; i
< from_dblock(cache
->discard_nr_blocks
); i
++) {
2709 r
= dm_cache_set_discard(cache
->cmd
, to_dblock(i
),
2710 is_discarded(cache
, to_dblock(i
)));
2712 metadata_operation_failed(cache
, "dm_cache_set_discard", r
);
2720 static int write_hints(struct cache
*cache
)
2724 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2727 r
= dm_cache_write_hints(cache
->cmd
, cache
->policy
);
2729 metadata_operation_failed(cache
, "dm_cache_write_hints", r
);
2737 * returns true on success
2739 static bool sync_metadata(struct cache
*cache
)
2743 r1
= write_dirty_bitset(cache
);
2745 DMERR("%s: could not write dirty bitset", cache_device_name(cache
));
2747 r2
= write_discard_bitset(cache
);
2749 DMERR("%s: could not write discard bitset", cache_device_name(cache
));
2753 r3
= write_hints(cache
);
2755 DMERR("%s: could not write hints", cache_device_name(cache
));
2758 * If writing the above metadata failed, we still commit, but don't
2759 * set the clean shutdown flag. This will effectively force every
2760 * dirty bit to be set on reload.
2762 r4
= commit(cache
, !r1
&& !r2
&& !r3
);
2764 DMERR("%s: could not write cache metadata", cache_device_name(cache
));
2766 return !r1
&& !r2
&& !r3
&& !r4
;
2769 static void cache_postsuspend(struct dm_target
*ti
)
2771 struct cache
*cache
= ti
->private;
2773 prevent_background_work(cache
);
2774 BUG_ON(atomic_read(&cache
->nr_io_migrations
));
2776 cancel_delayed_work_sync(&cache
->waker
);
2777 drain_workqueue(cache
->wq
);
2778 WARN_ON(cache
->tracker
.in_flight
);
2781 * If it's a flush suspend there won't be any deferred bios, so this
2784 requeue_deferred_bios(cache
);
2786 if (get_cache_mode(cache
) == CM_WRITE
)
2787 (void) sync_metadata(cache
);
2790 static int load_mapping(void *context
, dm_oblock_t oblock
, dm_cblock_t cblock
,
2791 bool dirty
, uint32_t hint
, bool hint_valid
)
2793 struct cache
*cache
= context
;
2796 set_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2797 atomic_inc(&cache
->nr_dirty
);
2799 clear_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2801 return policy_load_mapping(cache
->policy
, oblock
, cblock
, dirty
, hint
, hint_valid
);
2805 * The discard block size in the on disk metadata is not
2806 * necessarily the same as we're currently using. So we have to
2807 * be careful to only set the discarded attribute if we know it
2808 * covers a complete block of the new size.
2810 struct discard_load_info
{
2811 struct cache
*cache
;
2814 * These blocks are sized using the on disk dblock size, rather
2815 * than the current one.
2817 dm_block_t block_size
;
2818 dm_block_t discard_begin
, discard_end
;
2821 static void discard_load_info_init(struct cache
*cache
,
2822 struct discard_load_info
*li
)
2825 li
->discard_begin
= li
->discard_end
= 0;
2828 static void set_discard_range(struct discard_load_info
*li
)
2832 if (li
->discard_begin
== li
->discard_end
)
2836 * Convert to sectors.
2838 b
= li
->discard_begin
* li
->block_size
;
2839 e
= li
->discard_end
* li
->block_size
;
2842 * Then convert back to the current dblock size.
2844 b
= dm_sector_div_up(b
, li
->cache
->discard_block_size
);
2845 sector_div(e
, li
->cache
->discard_block_size
);
2848 * The origin may have shrunk, so we need to check we're still in
2851 if (e
> from_dblock(li
->cache
->discard_nr_blocks
))
2852 e
= from_dblock(li
->cache
->discard_nr_blocks
);
2855 set_discard(li
->cache
, to_dblock(b
));
2858 static int load_discard(void *context
, sector_t discard_block_size
,
2859 dm_dblock_t dblock
, bool discard
)
2861 struct discard_load_info
*li
= context
;
2863 li
->block_size
= discard_block_size
;
2866 if (from_dblock(dblock
) == li
->discard_end
)
2868 * We're already in a discard range, just extend it.
2870 li
->discard_end
= li
->discard_end
+ 1ULL;
2874 * Emit the old range and start a new one.
2876 set_discard_range(li
);
2877 li
->discard_begin
= from_dblock(dblock
);
2878 li
->discard_end
= li
->discard_begin
+ 1ULL;
2881 set_discard_range(li
);
2882 li
->discard_begin
= li
->discard_end
= 0;
2888 static dm_cblock_t
get_cache_dev_size(struct cache
*cache
)
2890 sector_t size
= get_dev_size(cache
->cache_dev
);
2891 (void) sector_div(size
, cache
->sectors_per_block
);
2892 return to_cblock(size
);
2895 static bool can_resize(struct cache
*cache
, dm_cblock_t new_size
)
2897 if (from_cblock(new_size
) > from_cblock(cache
->cache_size
)) {
2899 DMERR("%s: unable to extend cache due to missing cache table reload",
2900 cache_device_name(cache
));
2906 * We can't drop a dirty block when shrinking the cache.
2908 while (from_cblock(new_size
) < from_cblock(cache
->cache_size
)) {
2909 new_size
= to_cblock(from_cblock(new_size
) + 1);
2910 if (is_dirty(cache
, new_size
)) {
2911 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2912 cache_device_name(cache
),
2913 (unsigned long long) from_cblock(new_size
));
2921 static int resize_cache_dev(struct cache
*cache
, dm_cblock_t new_size
)
2925 r
= dm_cache_resize(cache
->cmd
, new_size
);
2927 DMERR("%s: could not resize cache metadata", cache_device_name(cache
));
2928 metadata_operation_failed(cache
, "dm_cache_resize", r
);
2932 set_cache_size(cache
, new_size
);
2937 static int cache_preresume(struct dm_target
*ti
)
2940 struct cache
*cache
= ti
->private;
2941 dm_cblock_t csize
= get_cache_dev_size(cache
);
2944 * Check to see if the cache has resized.
2946 if (!cache
->sized
) {
2947 r
= resize_cache_dev(cache
, csize
);
2951 cache
->sized
= true;
2953 } else if (csize
!= cache
->cache_size
) {
2954 if (!can_resize(cache
, csize
))
2957 r
= resize_cache_dev(cache
, csize
);
2962 if (!cache
->loaded_mappings
) {
2963 r
= dm_cache_load_mappings(cache
->cmd
, cache
->policy
,
2964 load_mapping
, cache
);
2966 DMERR("%s: could not load cache mappings", cache_device_name(cache
));
2967 metadata_operation_failed(cache
, "dm_cache_load_mappings", r
);
2971 cache
->loaded_mappings
= true;
2974 if (!cache
->loaded_discards
) {
2975 struct discard_load_info li
;
2978 * The discard bitset could have been resized, or the
2979 * discard block size changed. To be safe we start by
2980 * setting every dblock to not discarded.
2982 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
2984 discard_load_info_init(cache
, &li
);
2985 r
= dm_cache_load_discards(cache
->cmd
, load_discard
, &li
);
2987 DMERR("%s: could not load origin discards", cache_device_name(cache
));
2988 metadata_operation_failed(cache
, "dm_cache_load_discards", r
);
2991 set_discard_range(&li
);
2993 cache
->loaded_discards
= true;
2999 static void cache_resume(struct dm_target
*ti
)
3001 struct cache
*cache
= ti
->private;
3003 cache
->need_tick_bio
= true;
3004 allow_background_work(cache
);
3005 do_waker(&cache
->waker
.work
);
3008 static void emit_flags(struct cache
*cache
, char *result
,
3009 unsigned int maxlen
, ssize_t
*sz_ptr
)
3011 ssize_t sz
= *sz_ptr
;
3012 struct cache_features
*cf
= &cache
->features
;
3013 unsigned int count
= (cf
->metadata_version
== 2) + !cf
->discard_passdown
+ 1;
3015 DMEMIT("%u ", count
);
3017 if (cf
->metadata_version
== 2)
3018 DMEMIT("metadata2 ");
3020 if (writethrough_mode(cache
))
3021 DMEMIT("writethrough ");
3023 else if (passthrough_mode(cache
))
3024 DMEMIT("passthrough ");
3026 else if (writeback_mode(cache
))
3027 DMEMIT("writeback ");
3031 DMERR("%s: internal error: unknown io mode: %d",
3032 cache_device_name(cache
), (int) cf
->io_mode
);
3035 if (!cf
->discard_passdown
)
3036 DMEMIT("no_discard_passdown ");
3044 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3045 * <cache block size> <#used cache blocks>/<#total cache blocks>
3046 * <#read hits> <#read misses> <#write hits> <#write misses>
3047 * <#demotions> <#promotions> <#dirty>
3048 * <#features> <features>*
3049 * <#core args> <core args>
3050 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3052 static void cache_status(struct dm_target
*ti
, status_type_t type
,
3053 unsigned int status_flags
, char *result
, unsigned int maxlen
)
3058 dm_block_t nr_free_blocks_metadata
= 0;
3059 dm_block_t nr_blocks_metadata
= 0;
3060 char buf
[BDEVNAME_SIZE
];
3061 struct cache
*cache
= ti
->private;
3062 dm_cblock_t residency
;
3066 case STATUSTYPE_INFO
:
3067 if (get_cache_mode(cache
) == CM_FAIL
) {
3072 /* Commit to ensure statistics aren't out-of-date */
3073 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3074 (void) commit(cache
, false);
3076 r
= dm_cache_get_free_metadata_block_count(cache
->cmd
, &nr_free_blocks_metadata
);
3078 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3079 cache_device_name(cache
), r
);
3083 r
= dm_cache_get_metadata_dev_size(cache
->cmd
, &nr_blocks_metadata
);
3085 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3086 cache_device_name(cache
), r
);
3090 residency
= policy_residency(cache
->policy
);
3092 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3093 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE
,
3094 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3095 (unsigned long long)nr_blocks_metadata
,
3096 (unsigned long long)cache
->sectors_per_block
,
3097 (unsigned long long) from_cblock(residency
),
3098 (unsigned long long) from_cblock(cache
->cache_size
),
3099 (unsigned int) atomic_read(&cache
->stats
.read_hit
),
3100 (unsigned int) atomic_read(&cache
->stats
.read_miss
),
3101 (unsigned int) atomic_read(&cache
->stats
.write_hit
),
3102 (unsigned int) atomic_read(&cache
->stats
.write_miss
),
3103 (unsigned int) atomic_read(&cache
->stats
.demotion
),
3104 (unsigned int) atomic_read(&cache
->stats
.promotion
),
3105 (unsigned long) atomic_read(&cache
->nr_dirty
));
3107 emit_flags(cache
, result
, maxlen
, &sz
);
3109 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache
->migration_threshold
);
3111 DMEMIT("%s ", dm_cache_policy_get_name(cache
->policy
));
3113 r
= policy_emit_config_values(cache
->policy
, result
, maxlen
, &sz
);
3115 DMERR("%s: policy_emit_config_values returned %d",
3116 cache_device_name(cache
), r
);
3119 if (get_cache_mode(cache
) == CM_READ_ONLY
)
3124 r
= dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
);
3126 if (r
|| needs_check
)
3127 DMEMIT("needs_check ");
3133 case STATUSTYPE_TABLE
:
3134 format_dev_t(buf
, cache
->metadata_dev
->bdev
->bd_dev
);
3136 format_dev_t(buf
, cache
->cache_dev
->bdev
->bd_dev
);
3138 format_dev_t(buf
, cache
->origin_dev
->bdev
->bd_dev
);
3141 for (i
= 0; i
< cache
->nr_ctr_args
- 1; i
++)
3142 DMEMIT(" %s", cache
->ctr_args
[i
]);
3143 if (cache
->nr_ctr_args
)
3144 DMEMIT(" %s", cache
->ctr_args
[cache
->nr_ctr_args
- 1]);
3147 case STATUSTYPE_IMA
:
3148 DMEMIT_TARGET_NAME_VERSION(ti
->type
);
3149 if (get_cache_mode(cache
) == CM_FAIL
)
3150 DMEMIT(",metadata_mode=fail");
3151 else if (get_cache_mode(cache
) == CM_READ_ONLY
)
3152 DMEMIT(",metadata_mode=ro");
3154 DMEMIT(",metadata_mode=rw");
3156 format_dev_t(buf
, cache
->metadata_dev
->bdev
->bd_dev
);
3157 DMEMIT(",cache_metadata_device=%s", buf
);
3158 format_dev_t(buf
, cache
->cache_dev
->bdev
->bd_dev
);
3159 DMEMIT(",cache_device=%s", buf
);
3160 format_dev_t(buf
, cache
->origin_dev
->bdev
->bd_dev
);
3161 DMEMIT(",cache_origin_device=%s", buf
);
3162 DMEMIT(",writethrough=%c", writethrough_mode(cache
) ? 'y' : 'n');
3163 DMEMIT(",writeback=%c", writeback_mode(cache
) ? 'y' : 'n');
3164 DMEMIT(",passthrough=%c", passthrough_mode(cache
) ? 'y' : 'n');
3165 DMEMIT(",metadata2=%c", cache
->features
.metadata_version
== 2 ? 'y' : 'n');
3166 DMEMIT(",no_discard_passdown=%c", cache
->features
.discard_passdown
? 'n' : 'y');
3178 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3179 * the one-past-the-end value.
3181 struct cblock_range
{
3187 * A cache block range can take two forms:
3189 * i) A single cblock, eg. '3456'
3190 * ii) A begin and end cblock with a dash between, eg. 123-234
3192 static int parse_cblock_range(struct cache
*cache
, const char *str
,
3193 struct cblock_range
*result
)
3200 * Try and parse form (ii) first.
3202 r
= sscanf(str
, "%llu-%llu%c", &b
, &e
, &dummy
);
3205 result
->begin
= to_cblock(b
);
3206 result
->end
= to_cblock(e
);
3211 * That didn't work, try form (i).
3213 r
= sscanf(str
, "%llu%c", &b
, &dummy
);
3216 result
->begin
= to_cblock(b
);
3217 result
->end
= to_cblock(from_cblock(result
->begin
) + 1u);
3221 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache
), str
);
3225 static int validate_cblock_range(struct cache
*cache
, struct cblock_range
*range
)
3227 uint64_t b
= from_cblock(range
->begin
);
3228 uint64_t e
= from_cblock(range
->end
);
3229 uint64_t n
= from_cblock(cache
->cache_size
);
3232 DMERR("%s: begin cblock out of range: %llu >= %llu",
3233 cache_device_name(cache
), b
, n
);
3238 DMERR("%s: end cblock out of range: %llu > %llu",
3239 cache_device_name(cache
), e
, n
);
3244 DMERR("%s: invalid cblock range: %llu >= %llu",
3245 cache_device_name(cache
), b
, e
);
3252 static inline dm_cblock_t
cblock_succ(dm_cblock_t b
)
3254 return to_cblock(from_cblock(b
) + 1);
3257 static int request_invalidation(struct cache
*cache
, struct cblock_range
*range
)
3262 * We don't need to do any locking here because we know we're in
3263 * passthrough mode. There's is potential for a race between an
3264 * invalidation triggered by an io and an invalidation message. This
3265 * is harmless, we must not worry if the policy call fails.
3267 while (range
->begin
!= range
->end
) {
3268 r
= invalidate_cblock(cache
, range
->begin
);
3272 range
->begin
= cblock_succ(range
->begin
);
3275 cache
->commit_requested
= true;
3279 static int process_invalidate_cblocks_message(struct cache
*cache
, unsigned int count
,
3280 const char **cblock_ranges
)
3284 struct cblock_range range
;
3286 if (!passthrough_mode(cache
)) {
3287 DMERR("%s: cache has to be in passthrough mode for invalidation",
3288 cache_device_name(cache
));
3292 for (i
= 0; i
< count
; i
++) {
3293 r
= parse_cblock_range(cache
, cblock_ranges
[i
], &range
);
3297 r
= validate_cblock_range(cache
, &range
);
3302 * Pass begin and end origin blocks to the worker and wake it.
3304 r
= request_invalidation(cache
, &range
);
3316 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3318 * The key migration_threshold is supported by the cache target core.
3320 static int cache_message(struct dm_target
*ti
, unsigned int argc
, char **argv
,
3321 char *result
, unsigned int maxlen
)
3323 struct cache
*cache
= ti
->private;
3328 if (get_cache_mode(cache
) >= CM_READ_ONLY
) {
3329 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3330 cache_device_name(cache
));
3334 if (!strcasecmp(argv
[0], "invalidate_cblocks"))
3335 return process_invalidate_cblocks_message(cache
, argc
- 1, (const char **) argv
+ 1);
3340 return set_config_value(cache
, argv
[0], argv
[1]);
3343 static int cache_iterate_devices(struct dm_target
*ti
,
3344 iterate_devices_callout_fn fn
, void *data
)
3347 struct cache
*cache
= ti
->private;
3349 r
= fn(ti
, cache
->cache_dev
, 0, get_dev_size(cache
->cache_dev
), data
);
3351 r
= fn(ti
, cache
->origin_dev
, 0, ti
->len
, data
);
3357 * If discard_passdown was enabled verify that the origin device
3358 * supports discards. Disable discard_passdown if not.
3360 static void disable_passdown_if_not_supported(struct cache
*cache
)
3362 struct block_device
*origin_bdev
= cache
->origin_dev
->bdev
;
3363 struct queue_limits
*origin_limits
= &bdev_get_queue(origin_bdev
)->limits
;
3364 const char *reason
= NULL
;
3366 if (!cache
->features
.discard_passdown
)
3369 if (!bdev_max_discard_sectors(origin_bdev
))
3370 reason
= "discard unsupported";
3372 else if (origin_limits
->max_discard_sectors
< cache
->sectors_per_block
)
3373 reason
= "max discard sectors smaller than a block";
3376 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3377 origin_bdev
, reason
);
3378 cache
->features
.discard_passdown
= false;
3382 static void set_discard_limits(struct cache
*cache
, struct queue_limits
*limits
)
3384 struct block_device
*origin_bdev
= cache
->origin_dev
->bdev
;
3385 struct queue_limits
*origin_limits
= &bdev_get_queue(origin_bdev
)->limits
;
3387 if (!cache
->features
.discard_passdown
) {
3388 /* No passdown is done so setting own virtual limits */
3389 limits
->max_hw_discard_sectors
= min_t(sector_t
, cache
->discard_block_size
* 1024,
3390 cache
->origin_sectors
);
3391 limits
->discard_granularity
= cache
->discard_block_size
<< SECTOR_SHIFT
;
3396 * cache_iterate_devices() is stacking both origin and fast device limits
3397 * but discards aren't passed to fast device, so inherit origin's limits.
3399 limits
->max_hw_discard_sectors
= origin_limits
->max_hw_discard_sectors
;
3400 limits
->discard_granularity
= origin_limits
->discard_granularity
;
3401 limits
->discard_alignment
= origin_limits
->discard_alignment
;
3404 static void cache_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3406 struct cache
*cache
= ti
->private;
3407 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3410 * If the system-determined stacked limits are compatible with the
3411 * cache's blocksize (io_opt is a factor) do not override them.
3413 if (io_opt_sectors
< cache
->sectors_per_block
||
3414 do_div(io_opt_sectors
, cache
->sectors_per_block
)) {
3415 limits
->io_min
= cache
->sectors_per_block
<< SECTOR_SHIFT
;
3416 limits
->io_opt
= cache
->sectors_per_block
<< SECTOR_SHIFT
;
3419 disable_passdown_if_not_supported(cache
);
3420 set_discard_limits(cache
, limits
);
3423 /*----------------------------------------------------------------*/
3425 static struct target_type cache_target
= {
3427 .version
= {2, 2, 0},
3428 .module
= THIS_MODULE
,
3432 .end_io
= cache_end_io
,
3433 .postsuspend
= cache_postsuspend
,
3434 .preresume
= cache_preresume
,
3435 .resume
= cache_resume
,
3436 .status
= cache_status
,
3437 .message
= cache_message
,
3438 .iterate_devices
= cache_iterate_devices
,
3439 .io_hints
= cache_io_hints
,
3442 static int __init
dm_cache_init(void)
3446 migration_cache
= KMEM_CACHE(dm_cache_migration
, 0);
3447 if (!migration_cache
)
3450 r
= dm_register_target(&cache_target
);
3452 kmem_cache_destroy(migration_cache
);
3459 static void __exit
dm_cache_exit(void)
3461 dm_unregister_target(&cache_target
);
3462 kmem_cache_destroy(migration_cache
);
3465 module_init(dm_cache_init
);
3466 module_exit(dm_cache_exit
);
3468 MODULE_DESCRIPTION(DM_NAME
" cache target");
3469 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3470 MODULE_LICENSE("GPL");