1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
10 #include <linux/error-injection.h>
14 #include "transaction.h"
15 #include "print-tree.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
27 static struct kmem_cache
*btrfs_path_cachep
;
29 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_path
*path
, int level
);
31 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
32 const struct btrfs_key
*ins_key
, struct btrfs_path
*path
,
33 int data_size
, int extend
);
34 static int push_node_left(struct btrfs_trans_handle
*trans
,
35 struct extent_buffer
*dst
,
36 struct extent_buffer
*src
, int empty
);
37 static int balance_node_right(struct btrfs_trans_handle
*trans
,
38 struct extent_buffer
*dst_buf
,
39 struct extent_buffer
*src_buf
);
41 static const struct btrfs_csums
{
44 const char driver
[12];
46 [BTRFS_CSUM_TYPE_CRC32
] = { .size
= 4, .name
= "crc32c" },
47 [BTRFS_CSUM_TYPE_XXHASH
] = { .size
= 8, .name
= "xxhash64" },
48 [BTRFS_CSUM_TYPE_SHA256
] = { .size
= 32, .name
= "sha256" },
49 [BTRFS_CSUM_TYPE_BLAKE2
] = { .size
= 32, .name
= "blake2b",
50 .driver
= "blake2b-256" },
54 * The leaf data grows from end-to-front in the node. this returns the address
55 * of the start of the last item, which is the stop of the leaf data stack.
57 static unsigned int leaf_data_end(const struct extent_buffer
*leaf
)
59 u32 nr
= btrfs_header_nritems(leaf
);
62 return BTRFS_LEAF_DATA_SIZE(leaf
->fs_info
);
63 return btrfs_item_offset(leaf
, nr
- 1);
67 * Move data in a @leaf (using memmove, safe for overlapping ranges).
69 * @leaf: leaf that we're doing a memmove on
70 * @dst_offset: item data offset we're moving to
71 * @src_offset: item data offset were' moving from
72 * @len: length of the data we're moving
74 * Wrapper around memmove_extent_buffer() that takes into account the header on
75 * the leaf. The btrfs_item offset's start directly after the header, so we
76 * have to adjust any offsets to account for the header in the leaf. This
77 * handles that math to simplify the callers.
79 static inline void memmove_leaf_data(const struct extent_buffer
*leaf
,
80 unsigned long dst_offset
,
81 unsigned long src_offset
,
84 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(leaf
, 0) + dst_offset
,
85 btrfs_item_nr_offset(leaf
, 0) + src_offset
, len
);
89 * Copy item data from @src into @dst at the given @offset.
91 * @dst: destination leaf that we're copying into
92 * @src: source leaf that we're copying from
93 * @dst_offset: item data offset we're copying to
94 * @src_offset: item data offset were' copying from
95 * @len: length of the data we're copying
97 * Wrapper around copy_extent_buffer() that takes into account the header on
98 * the leaf. The btrfs_item offset's start directly after the header, so we
99 * have to adjust any offsets to account for the header in the leaf. This
100 * handles that math to simplify the callers.
102 static inline void copy_leaf_data(const struct extent_buffer
*dst
,
103 const struct extent_buffer
*src
,
104 unsigned long dst_offset
,
105 unsigned long src_offset
, unsigned long len
)
107 copy_extent_buffer(dst
, src
, btrfs_item_nr_offset(dst
, 0) + dst_offset
,
108 btrfs_item_nr_offset(src
, 0) + src_offset
, len
);
112 * Move items in a @leaf (using memmove).
114 * @dst: destination leaf for the items
115 * @dst_item: the item nr we're copying into
116 * @src_item: the item nr we're copying from
117 * @nr_items: the number of items to copy
119 * Wrapper around memmove_extent_buffer() that does the math to get the
120 * appropriate offsets into the leaf from the item numbers.
122 static inline void memmove_leaf_items(const struct extent_buffer
*leaf
,
123 int dst_item
, int src_item
, int nr_items
)
125 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(leaf
, dst_item
),
126 btrfs_item_nr_offset(leaf
, src_item
),
127 nr_items
* sizeof(struct btrfs_item
));
131 * Copy items from @src into @dst at the given @offset.
133 * @dst: destination leaf for the items
134 * @src: source leaf for the items
135 * @dst_item: the item nr we're copying into
136 * @src_item: the item nr we're copying from
137 * @nr_items: the number of items to copy
139 * Wrapper around copy_extent_buffer() that does the math to get the
140 * appropriate offsets into the leaf from the item numbers.
142 static inline void copy_leaf_items(const struct extent_buffer
*dst
,
143 const struct extent_buffer
*src
,
144 int dst_item
, int src_item
, int nr_items
)
146 copy_extent_buffer(dst
, src
, btrfs_item_nr_offset(dst
, dst_item
),
147 btrfs_item_nr_offset(src
, src_item
),
148 nr_items
* sizeof(struct btrfs_item
));
151 /* This exists for btrfs-progs usages. */
152 u16
btrfs_csum_type_size(u16 type
)
154 return btrfs_csums
[type
].size
;
157 int btrfs_super_csum_size(const struct btrfs_super_block
*s
)
159 u16 t
= btrfs_super_csum_type(s
);
161 * csum type is validated at mount time
163 return btrfs_csum_type_size(t
);
166 const char *btrfs_super_csum_name(u16 csum_type
)
168 /* csum type is validated at mount time */
169 return btrfs_csums
[csum_type
].name
;
173 * Return driver name if defined, otherwise the name that's also a valid driver
176 const char *btrfs_super_csum_driver(u16 csum_type
)
178 /* csum type is validated at mount time */
179 return btrfs_csums
[csum_type
].driver
[0] ?
180 btrfs_csums
[csum_type
].driver
:
181 btrfs_csums
[csum_type
].name
;
184 size_t __attribute_const__
btrfs_get_num_csums(void)
186 return ARRAY_SIZE(btrfs_csums
);
189 struct btrfs_path
*btrfs_alloc_path(void)
193 return kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path
*p
)
201 btrfs_release_path(p
);
202 kmem_cache_free(btrfs_path_cachep
, p
);
206 * path release drops references on the extent buffers in the path
207 * and it drops any locks held by this path
209 * It is safe to call this on paths that no locks or extent buffers held.
211 noinline
void btrfs_release_path(struct btrfs_path
*p
)
215 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
220 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
223 free_extent_buffer(p
->nodes
[i
]);
229 * We want the transaction abort to print stack trace only for errors where the
230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231 * caused by external factors.
233 bool __cold
abort_should_print_stack(int error
)
245 * safely gets a reference on the root node of a tree. A lock
246 * is not taken, so a concurrent writer may put a different node
247 * at the root of the tree. See btrfs_lock_root_node for the
250 * The extent buffer returned by this has a reference taken, so
251 * it won't disappear. It may stop being the root of the tree
252 * at any time because there are no locks held.
254 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
256 struct extent_buffer
*eb
;
260 eb
= rcu_dereference(root
->node
);
263 * RCU really hurts here, we could free up the root node because
264 * it was COWed but we may not get the new root node yet so do
265 * the inc_not_zero dance and if it doesn't work then
266 * synchronize_rcu and try again.
268 if (atomic_inc_not_zero(&eb
->refs
)) {
279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280 * just get put onto a simple dirty list. Transaction walks this list to make
281 * sure they get properly updated on disk.
283 static void add_root_to_dirty_list(struct btrfs_root
*root
)
285 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
287 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
288 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
291 spin_lock(&fs_info
->trans_lock
);
292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
293 /* Want the extent tree to be the last on the list */
294 if (btrfs_root_id(root
) == BTRFS_EXTENT_TREE_OBJECTID
)
295 list_move_tail(&root
->dirty_list
,
296 &fs_info
->dirty_cowonly_roots
);
298 list_move(&root
->dirty_list
,
299 &fs_info
->dirty_cowonly_roots
);
301 spin_unlock(&fs_info
->trans_lock
);
305 * used by snapshot creation to make a copy of a root for a tree with
306 * a given objectid. The buffer with the new root node is returned in
307 * cow_ret, and this func returns zero on success or a negative error code.
309 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
310 struct btrfs_root
*root
,
311 struct extent_buffer
*buf
,
312 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
314 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
315 struct extent_buffer
*cow
;
318 struct btrfs_disk_key disk_key
;
319 u64 reloc_src_root
= 0;
321 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
322 trans
->transid
!= fs_info
->running_transaction
->transid
);
323 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
324 trans
->transid
!= btrfs_get_root_last_trans(root
));
326 level
= btrfs_header_level(buf
);
328 btrfs_item_key(buf
, &disk_key
, 0);
330 btrfs_node_key(buf
, &disk_key
, 0);
332 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
333 reloc_src_root
= btrfs_header_owner(buf
);
334 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
335 &disk_key
, level
, buf
->start
, 0,
336 reloc_src_root
, BTRFS_NESTING_NEW_ROOT
);
340 copy_extent_buffer_full(cow
, buf
);
341 btrfs_set_header_bytenr(cow
, cow
->start
);
342 btrfs_set_header_generation(cow
, trans
->transid
);
343 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
344 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
345 BTRFS_HEADER_FLAG_RELOC
);
346 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
347 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
349 btrfs_set_header_owner(cow
, new_root_objectid
);
351 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
353 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
354 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
355 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
357 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
359 btrfs_tree_unlock(cow
);
360 free_extent_buffer(cow
);
361 btrfs_abort_transaction(trans
, ret
);
365 btrfs_mark_buffer_dirty(trans
, cow
);
371 * check if the tree block can be shared by multiple trees
373 bool btrfs_block_can_be_shared(struct btrfs_trans_handle
*trans
,
374 struct btrfs_root
*root
,
375 struct extent_buffer
*buf
)
377 const u64 buf_gen
= btrfs_header_generation(buf
);
380 * Tree blocks not in shareable trees and tree roots are never shared.
381 * If a block was allocated after the last snapshot and the block was
382 * not allocated by tree relocation, we know the block is not shared.
385 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
388 if (buf
== root
->node
)
391 if (buf_gen
> btrfs_root_last_snapshot(&root
->root_item
) &&
392 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
))
395 if (buf
!= root
->commit_root
)
399 * An extent buffer that used to be the commit root may still be shared
400 * because the tree height may have increased and it became a child of a
401 * higher level root. This can happen when snapshotting a subvolume
402 * created in the current transaction.
404 if (buf_gen
== trans
->transid
)
410 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
411 struct btrfs_root
*root
,
412 struct extent_buffer
*buf
,
413 struct extent_buffer
*cow
,
416 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
423 * Backrefs update rules:
425 * Always use full backrefs for extent pointers in tree block
426 * allocated by tree relocation.
428 * If a shared tree block is no longer referenced by its owner
429 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
430 * use full backrefs for extent pointers in tree block.
432 * If a tree block is been relocating
433 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
434 * use full backrefs for extent pointers in tree block.
435 * The reason for this is some operations (such as drop tree)
436 * are only allowed for blocks use full backrefs.
439 if (btrfs_block_can_be_shared(trans
, root
, buf
)) {
440 ret
= btrfs_lookup_extent_info(trans
, fs_info
, buf
->start
,
441 btrfs_header_level(buf
), 1,
442 &refs
, &flags
, NULL
);
445 if (unlikely(refs
== 0)) {
447 "found 0 references for tree block at bytenr %llu level %d root %llu",
448 buf
->start
, btrfs_header_level(buf
),
449 btrfs_root_id(root
));
451 btrfs_abort_transaction(trans
, ret
);
456 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
||
457 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
458 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
463 owner
= btrfs_header_owner(buf
);
464 if (unlikely(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
465 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))) {
467 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set",
468 buf
->start
, btrfs_header_level(buf
),
469 btrfs_root_id(root
), refs
, flags
);
471 btrfs_abort_transaction(trans
, ret
);
476 if ((owner
== btrfs_root_id(root
) ||
477 btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
) &&
478 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
479 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
483 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
) {
484 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
487 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
491 ret
= btrfs_set_disk_extent_flags(trans
, buf
,
492 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
497 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
)
498 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
500 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
505 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
506 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
)
507 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
509 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
512 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
516 btrfs_clear_buffer_dirty(trans
, buf
);
523 * does the dirty work in cow of a single block. The parent block (if
524 * supplied) is updated to point to the new cow copy. The new buffer is marked
525 * dirty and returned locked. If you modify the block it needs to be marked
528 * search_start -- an allocation hint for the new block
530 * empty_size -- a hint that you plan on doing more cow. This is the size in
531 * bytes the allocator should try to find free next to the block it returns.
532 * This is just a hint and may be ignored by the allocator.
534 int btrfs_force_cow_block(struct btrfs_trans_handle
*trans
,
535 struct btrfs_root
*root
,
536 struct extent_buffer
*buf
,
537 struct extent_buffer
*parent
, int parent_slot
,
538 struct extent_buffer
**cow_ret
,
539 u64 search_start
, u64 empty_size
,
540 enum btrfs_lock_nesting nest
)
542 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
543 struct btrfs_disk_key disk_key
;
544 struct extent_buffer
*cow
;
548 u64 parent_start
= 0;
549 u64 reloc_src_root
= 0;
554 btrfs_assert_tree_write_locked(buf
);
556 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
557 trans
->transid
!= fs_info
->running_transaction
->transid
);
558 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) &&
559 trans
->transid
!= btrfs_get_root_last_trans(root
));
561 level
= btrfs_header_level(buf
);
564 btrfs_item_key(buf
, &disk_key
, 0);
566 btrfs_node_key(buf
, &disk_key
, 0);
568 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
) {
570 parent_start
= parent
->start
;
571 reloc_src_root
= btrfs_header_owner(buf
);
573 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
574 btrfs_root_id(root
), &disk_key
, level
,
575 search_start
, empty_size
, reloc_src_root
, nest
);
579 /* cow is set to blocking by btrfs_init_new_buffer */
581 copy_extent_buffer_full(cow
, buf
);
582 btrfs_set_header_bytenr(cow
, cow
->start
);
583 btrfs_set_header_generation(cow
, trans
->transid
);
584 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
585 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
586 BTRFS_HEADER_FLAG_RELOC
);
587 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
)
588 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
590 btrfs_set_header_owner(cow
, btrfs_root_id(root
));
592 write_extent_buffer_fsid(cow
, fs_info
->fs_devices
->metadata_uuid
);
594 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
596 btrfs_abort_transaction(trans
, ret
);
597 goto error_unlock_cow
;
600 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
)) {
601 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
603 btrfs_abort_transaction(trans
, ret
);
604 goto error_unlock_cow
;
608 if (buf
== root
->node
) {
609 WARN_ON(parent
&& parent
!= buf
);
610 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
||
611 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
612 parent_start
= buf
->start
;
614 ret
= btrfs_tree_mod_log_insert_root(root
->node
, cow
, true);
616 btrfs_abort_transaction(trans
, ret
);
617 goto error_unlock_cow
;
619 atomic_inc(&cow
->refs
);
620 rcu_assign_pointer(root
->node
, cow
);
622 ret
= btrfs_free_tree_block(trans
, btrfs_root_id(root
), buf
,
623 parent_start
, last_ref
);
624 free_extent_buffer(buf
);
625 add_root_to_dirty_list(root
);
627 btrfs_abort_transaction(trans
, ret
);
628 goto error_unlock_cow
;
631 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
632 ret
= btrfs_tree_mod_log_insert_key(parent
, parent_slot
,
633 BTRFS_MOD_LOG_KEY_REPLACE
);
635 btrfs_abort_transaction(trans
, ret
);
636 goto error_unlock_cow
;
638 btrfs_set_node_blockptr(parent
, parent_slot
,
640 btrfs_set_node_ptr_generation(parent
, parent_slot
,
642 btrfs_mark_buffer_dirty(trans
, parent
);
644 ret
= btrfs_tree_mod_log_free_eb(buf
);
646 btrfs_abort_transaction(trans
, ret
);
647 goto error_unlock_cow
;
650 ret
= btrfs_free_tree_block(trans
, btrfs_root_id(root
), buf
,
651 parent_start
, last_ref
);
653 btrfs_abort_transaction(trans
, ret
);
654 goto error_unlock_cow
;
658 btrfs_tree_unlock(buf
);
659 free_extent_buffer_stale(buf
);
660 btrfs_mark_buffer_dirty(trans
, cow
);
665 btrfs_tree_unlock(cow
);
666 free_extent_buffer(cow
);
670 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
671 struct btrfs_root
*root
,
672 struct extent_buffer
*buf
)
674 if (btrfs_is_testing(root
->fs_info
))
677 /* Ensure we can see the FORCE_COW bit */
678 smp_mb__before_atomic();
681 * We do not need to cow a block if
682 * 1) this block is not created or changed in this transaction;
683 * 2) this block does not belong to TREE_RELOC tree;
684 * 3) the root is not forced COW.
686 * What is forced COW:
687 * when we create snapshot during committing the transaction,
688 * after we've finished copying src root, we must COW the shared
689 * block to ensure the metadata consistency.
691 if (btrfs_header_generation(buf
) == trans
->transid
&&
692 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
693 !(btrfs_root_id(root
) != BTRFS_TREE_RELOC_OBJECTID
&&
694 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
695 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
701 * COWs a single block, see btrfs_force_cow_block() for the real work.
702 * This version of it has extra checks so that a block isn't COWed more than
703 * once per transaction, as long as it hasn't been written yet
705 int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
706 struct btrfs_root
*root
, struct extent_buffer
*buf
,
707 struct extent_buffer
*parent
, int parent_slot
,
708 struct extent_buffer
**cow_ret
,
709 enum btrfs_lock_nesting nest
)
711 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
715 if (unlikely(test_bit(BTRFS_ROOT_DELETING
, &root
->state
))) {
716 btrfs_abort_transaction(trans
, -EUCLEAN
);
718 "attempt to COW block %llu on root %llu that is being deleted",
719 buf
->start
, btrfs_root_id(root
));
724 * COWing must happen through a running transaction, which always
725 * matches the current fs generation (it's a transaction with a state
726 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
727 * into error state to prevent the commit of any transaction.
729 if (unlikely(trans
->transaction
!= fs_info
->running_transaction
||
730 trans
->transid
!= fs_info
->generation
)) {
731 btrfs_abort_transaction(trans
, -EUCLEAN
);
733 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu",
734 buf
->start
, btrfs_root_id(root
), trans
->transid
,
735 fs_info
->running_transaction
->transid
,
736 fs_info
->generation
);
740 if (!should_cow_block(trans
, root
, buf
)) {
745 search_start
= round_down(buf
->start
, SZ_1G
);
748 * Before CoWing this block for later modification, check if it's
749 * the subtree root and do the delayed subtree trace if needed.
751 * Also We don't care about the error, as it's handled internally.
753 btrfs_qgroup_trace_subtree_after_cow(trans
, root
, buf
);
754 ret
= btrfs_force_cow_block(trans
, root
, buf
, parent
, parent_slot
,
755 cow_ret
, search_start
, 0, nest
);
757 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
761 ALLOW_ERROR_INJECTION(btrfs_cow_block
, ERRNO
);
764 * same as comp_keys only with two btrfs_key's
766 int __pure
btrfs_comp_cpu_keys(const struct btrfs_key
*k1
, const struct btrfs_key
*k2
)
768 if (k1
->objectid
> k2
->objectid
)
770 if (k1
->objectid
< k2
->objectid
)
772 if (k1
->type
> k2
->type
)
774 if (k1
->type
< k2
->type
)
776 if (k1
->offset
> k2
->offset
)
778 if (k1
->offset
< k2
->offset
)
784 * Search for a key in the given extent_buffer.
786 * The lower boundary for the search is specified by the slot number @first_slot.
787 * Use a value of 0 to search over the whole extent buffer. Works for both
790 * The slot in the extent buffer is returned via @slot. If the key exists in the
791 * extent buffer, then @slot will point to the slot where the key is, otherwise
792 * it points to the slot where you would insert the key.
794 * Slot may point to the total number of items (i.e. one position beyond the last
795 * key) if the key is bigger than the last key in the extent buffer.
797 int btrfs_bin_search(struct extent_buffer
*eb
, int first_slot
,
798 const struct btrfs_key
*key
, int *slot
)
803 * Use unsigned types for the low and high slots, so that we get a more
804 * efficient division in the search loop below.
806 u32 low
= first_slot
;
807 u32 high
= btrfs_header_nritems(eb
);
809 const int key_size
= sizeof(struct btrfs_disk_key
);
811 if (unlikely(low
> high
)) {
812 btrfs_err(eb
->fs_info
,
813 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
814 __func__
, low
, high
, eb
->start
,
815 btrfs_header_owner(eb
), btrfs_header_level(eb
));
819 if (btrfs_header_level(eb
) == 0) {
820 p
= offsetof(struct btrfs_leaf
, items
);
821 item_size
= sizeof(struct btrfs_item
);
823 p
= offsetof(struct btrfs_node
, ptrs
);
824 item_size
= sizeof(struct btrfs_key_ptr
);
828 const int unit_size
= eb
->folio_size
;
830 unsigned long offset
;
831 struct btrfs_disk_key
*tmp
;
832 struct btrfs_disk_key unaligned
;
835 mid
= (low
+ high
) / 2;
836 offset
= p
+ mid
* item_size
;
837 oil
= get_eb_offset_in_folio(eb
, offset
);
839 if (oil
+ key_size
<= unit_size
) {
840 const unsigned long idx
= get_eb_folio_index(eb
, offset
);
841 char *kaddr
= folio_address(eb
->folios
[idx
]);
843 oil
= get_eb_offset_in_folio(eb
, offset
);
844 tmp
= (struct btrfs_disk_key
*)(kaddr
+ oil
);
846 read_extent_buffer(eb
, &unaligned
, offset
, key_size
);
850 ret
= btrfs_comp_keys(tmp
, key
);
865 static void root_add_used_bytes(struct btrfs_root
*root
)
867 spin_lock(&root
->accounting_lock
);
868 btrfs_set_root_used(&root
->root_item
,
869 btrfs_root_used(&root
->root_item
) + root
->fs_info
->nodesize
);
870 spin_unlock(&root
->accounting_lock
);
873 static void root_sub_used_bytes(struct btrfs_root
*root
)
875 spin_lock(&root
->accounting_lock
);
876 btrfs_set_root_used(&root
->root_item
,
877 btrfs_root_used(&root
->root_item
) - root
->fs_info
->nodesize
);
878 spin_unlock(&root
->accounting_lock
);
881 /* given a node and slot number, this reads the blocks it points to. The
882 * extent buffer is returned with a reference taken (but unlocked).
884 struct extent_buffer
*btrfs_read_node_slot(struct extent_buffer
*parent
,
887 int level
= btrfs_header_level(parent
);
888 struct btrfs_tree_parent_check check
= { 0 };
889 struct extent_buffer
*eb
;
891 if (slot
< 0 || slot
>= btrfs_header_nritems(parent
))
892 return ERR_PTR(-ENOENT
);
896 check
.level
= level
- 1;
897 check
.transid
= btrfs_node_ptr_generation(parent
, slot
);
898 check
.owner_root
= btrfs_header_owner(parent
);
899 check
.has_first_key
= true;
900 btrfs_node_key_to_cpu(parent
, &check
.first_key
, slot
);
902 eb
= read_tree_block(parent
->fs_info
, btrfs_node_blockptr(parent
, slot
),
906 if (!extent_buffer_uptodate(eb
)) {
907 free_extent_buffer(eb
);
908 return ERR_PTR(-EIO
);
915 * node level balancing, used to make sure nodes are in proper order for
916 * item deletion. We balance from the top down, so we have to make sure
917 * that a deletion won't leave an node completely empty later on.
919 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
920 struct btrfs_root
*root
,
921 struct btrfs_path
*path
, int level
)
923 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
924 struct extent_buffer
*right
= NULL
;
925 struct extent_buffer
*mid
;
926 struct extent_buffer
*left
= NULL
;
927 struct extent_buffer
*parent
= NULL
;
931 int orig_slot
= path
->slots
[level
];
936 mid
= path
->nodes
[level
];
938 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
);
939 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
941 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
943 if (level
< BTRFS_MAX_LEVEL
- 1) {
944 parent
= path
->nodes
[level
+ 1];
945 pslot
= path
->slots
[level
+ 1];
949 * deal with the case where there is only one pointer in the root
950 * by promoting the node below to a root
953 struct extent_buffer
*child
;
955 if (btrfs_header_nritems(mid
) != 1)
958 /* promote the child to a root */
959 child
= btrfs_read_node_slot(mid
, 0);
961 ret
= PTR_ERR(child
);
965 btrfs_tree_lock(child
);
966 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
,
969 btrfs_tree_unlock(child
);
970 free_extent_buffer(child
);
974 ret
= btrfs_tree_mod_log_insert_root(root
->node
, child
, true);
976 btrfs_tree_unlock(child
);
977 free_extent_buffer(child
);
978 btrfs_abort_transaction(trans
, ret
);
981 rcu_assign_pointer(root
->node
, child
);
983 add_root_to_dirty_list(root
);
984 btrfs_tree_unlock(child
);
986 path
->locks
[level
] = 0;
987 path
->nodes
[level
] = NULL
;
988 btrfs_clear_buffer_dirty(trans
, mid
);
989 btrfs_tree_unlock(mid
);
990 /* once for the path */
991 free_extent_buffer(mid
);
993 root_sub_used_bytes(root
);
994 ret
= btrfs_free_tree_block(trans
, btrfs_root_id(root
), mid
, 0, 1);
995 /* once for the root ptr */
996 free_extent_buffer_stale(mid
);
998 btrfs_abort_transaction(trans
, ret
);
1003 if (btrfs_header_nritems(mid
) >
1004 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 4)
1008 left
= btrfs_read_node_slot(parent
, pslot
- 1);
1010 ret
= PTR_ERR(left
);
1015 btrfs_tree_lock_nested(left
, BTRFS_NESTING_LEFT
);
1016 wret
= btrfs_cow_block(trans
, root
, left
,
1017 parent
, pslot
- 1, &left
,
1018 BTRFS_NESTING_LEFT_COW
);
1025 if (pslot
+ 1 < btrfs_header_nritems(parent
)) {
1026 right
= btrfs_read_node_slot(parent
, pslot
+ 1);
1027 if (IS_ERR(right
)) {
1028 ret
= PTR_ERR(right
);
1033 btrfs_tree_lock_nested(right
, BTRFS_NESTING_RIGHT
);
1034 wret
= btrfs_cow_block(trans
, root
, right
,
1035 parent
, pslot
+ 1, &right
,
1036 BTRFS_NESTING_RIGHT_COW
);
1043 /* first, try to make some room in the middle buffer */
1045 orig_slot
+= btrfs_header_nritems(left
);
1046 wret
= push_node_left(trans
, left
, mid
, 1);
1052 * then try to empty the right most buffer into the middle
1055 wret
= push_node_left(trans
, mid
, right
, 1);
1056 if (wret
< 0 && wret
!= -ENOSPC
)
1058 if (btrfs_header_nritems(right
) == 0) {
1059 btrfs_clear_buffer_dirty(trans
, right
);
1060 btrfs_tree_unlock(right
);
1061 ret
= btrfs_del_ptr(trans
, root
, path
, level
+ 1, pslot
+ 1);
1063 free_extent_buffer_stale(right
);
1067 root_sub_used_bytes(root
);
1068 ret
= btrfs_free_tree_block(trans
, btrfs_root_id(root
),
1070 free_extent_buffer_stale(right
);
1073 btrfs_abort_transaction(trans
, ret
);
1077 struct btrfs_disk_key right_key
;
1078 btrfs_node_key(right
, &right_key
, 0);
1079 ret
= btrfs_tree_mod_log_insert_key(parent
, pslot
+ 1,
1080 BTRFS_MOD_LOG_KEY_REPLACE
);
1082 btrfs_abort_transaction(trans
, ret
);
1085 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
1086 btrfs_mark_buffer_dirty(trans
, parent
);
1089 if (btrfs_header_nritems(mid
) == 1) {
1091 * we're not allowed to leave a node with one item in the
1092 * tree during a delete. A deletion from lower in the tree
1093 * could try to delete the only pointer in this node.
1094 * So, pull some keys from the left.
1095 * There has to be a left pointer at this point because
1096 * otherwise we would have pulled some pointers from the
1099 if (unlikely(!left
)) {
1101 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1102 parent
->start
, btrfs_header_level(parent
),
1103 mid
->start
, btrfs_root_id(root
));
1105 btrfs_abort_transaction(trans
, ret
);
1108 wret
= balance_node_right(trans
, mid
, left
);
1114 wret
= push_node_left(trans
, left
, mid
, 1);
1120 if (btrfs_header_nritems(mid
) == 0) {
1121 btrfs_clear_buffer_dirty(trans
, mid
);
1122 btrfs_tree_unlock(mid
);
1123 ret
= btrfs_del_ptr(trans
, root
, path
, level
+ 1, pslot
);
1125 free_extent_buffer_stale(mid
);
1129 root_sub_used_bytes(root
);
1130 ret
= btrfs_free_tree_block(trans
, btrfs_root_id(root
), mid
, 0, 1);
1131 free_extent_buffer_stale(mid
);
1134 btrfs_abort_transaction(trans
, ret
);
1138 /* update the parent key to reflect our changes */
1139 struct btrfs_disk_key mid_key
;
1140 btrfs_node_key(mid
, &mid_key
, 0);
1141 ret
= btrfs_tree_mod_log_insert_key(parent
, pslot
,
1142 BTRFS_MOD_LOG_KEY_REPLACE
);
1144 btrfs_abort_transaction(trans
, ret
);
1147 btrfs_set_node_key(parent
, &mid_key
, pslot
);
1148 btrfs_mark_buffer_dirty(trans
, parent
);
1151 /* update the path */
1153 if (btrfs_header_nritems(left
) > orig_slot
) {
1154 atomic_inc(&left
->refs
);
1155 /* left was locked after cow */
1156 path
->nodes
[level
] = left
;
1157 path
->slots
[level
+ 1] -= 1;
1158 path
->slots
[level
] = orig_slot
;
1160 btrfs_tree_unlock(mid
);
1161 free_extent_buffer(mid
);
1164 orig_slot
-= btrfs_header_nritems(left
);
1165 path
->slots
[level
] = orig_slot
;
1168 /* double check we haven't messed things up */
1170 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
1174 btrfs_tree_unlock(right
);
1175 free_extent_buffer(right
);
1178 if (path
->nodes
[level
] != left
)
1179 btrfs_tree_unlock(left
);
1180 free_extent_buffer(left
);
1185 /* Node balancing for insertion. Here we only split or push nodes around
1186 * when they are completely full. This is also done top down, so we
1187 * have to be pessimistic.
1189 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
1190 struct btrfs_root
*root
,
1191 struct btrfs_path
*path
, int level
)
1193 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1194 struct extent_buffer
*right
= NULL
;
1195 struct extent_buffer
*mid
;
1196 struct extent_buffer
*left
= NULL
;
1197 struct extent_buffer
*parent
= NULL
;
1201 int orig_slot
= path
->slots
[level
];
1206 mid
= path
->nodes
[level
];
1207 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1209 if (level
< BTRFS_MAX_LEVEL
- 1) {
1210 parent
= path
->nodes
[level
+ 1];
1211 pslot
= path
->slots
[level
+ 1];
1217 /* first, try to make some room in the middle buffer */
1221 left
= btrfs_read_node_slot(parent
, pslot
- 1);
1223 return PTR_ERR(left
);
1225 btrfs_tree_lock_nested(left
, BTRFS_NESTING_LEFT
);
1227 left_nr
= btrfs_header_nritems(left
);
1228 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
1231 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
1233 BTRFS_NESTING_LEFT_COW
);
1237 wret
= push_node_left(trans
, left
, mid
, 0);
1243 struct btrfs_disk_key disk_key
;
1244 orig_slot
+= left_nr
;
1245 btrfs_node_key(mid
, &disk_key
, 0);
1246 ret
= btrfs_tree_mod_log_insert_key(parent
, pslot
,
1247 BTRFS_MOD_LOG_KEY_REPLACE
);
1249 btrfs_tree_unlock(left
);
1250 free_extent_buffer(left
);
1251 btrfs_abort_transaction(trans
, ret
);
1254 btrfs_set_node_key(parent
, &disk_key
, pslot
);
1255 btrfs_mark_buffer_dirty(trans
, parent
);
1256 if (btrfs_header_nritems(left
) > orig_slot
) {
1257 path
->nodes
[level
] = left
;
1258 path
->slots
[level
+ 1] -= 1;
1259 path
->slots
[level
] = orig_slot
;
1260 btrfs_tree_unlock(mid
);
1261 free_extent_buffer(mid
);
1264 btrfs_header_nritems(left
);
1265 path
->slots
[level
] = orig_slot
;
1266 btrfs_tree_unlock(left
);
1267 free_extent_buffer(left
);
1271 btrfs_tree_unlock(left
);
1272 free_extent_buffer(left
);
1276 * then try to empty the right most buffer into the middle
1278 if (pslot
+ 1 < btrfs_header_nritems(parent
)) {
1281 right
= btrfs_read_node_slot(parent
, pslot
+ 1);
1283 return PTR_ERR(right
);
1285 btrfs_tree_lock_nested(right
, BTRFS_NESTING_RIGHT
);
1287 right_nr
= btrfs_header_nritems(right
);
1288 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 1) {
1291 ret
= btrfs_cow_block(trans
, root
, right
,
1293 &right
, BTRFS_NESTING_RIGHT_COW
);
1297 wret
= balance_node_right(trans
, right
, mid
);
1303 struct btrfs_disk_key disk_key
;
1305 btrfs_node_key(right
, &disk_key
, 0);
1306 ret
= btrfs_tree_mod_log_insert_key(parent
, pslot
+ 1,
1307 BTRFS_MOD_LOG_KEY_REPLACE
);
1309 btrfs_tree_unlock(right
);
1310 free_extent_buffer(right
);
1311 btrfs_abort_transaction(trans
, ret
);
1314 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
1315 btrfs_mark_buffer_dirty(trans
, parent
);
1317 if (btrfs_header_nritems(mid
) <= orig_slot
) {
1318 path
->nodes
[level
] = right
;
1319 path
->slots
[level
+ 1] += 1;
1320 path
->slots
[level
] = orig_slot
-
1321 btrfs_header_nritems(mid
);
1322 btrfs_tree_unlock(mid
);
1323 free_extent_buffer(mid
);
1325 btrfs_tree_unlock(right
);
1326 free_extent_buffer(right
);
1330 btrfs_tree_unlock(right
);
1331 free_extent_buffer(right
);
1337 * readahead one full node of leaves, finding things that are close
1338 * to the block in 'slot', and triggering ra on them.
1340 static void reada_for_search(struct btrfs_fs_info
*fs_info
,
1341 struct btrfs_path
*path
,
1342 int level
, int slot
, u64 objectid
)
1344 struct extent_buffer
*node
;
1345 struct btrfs_disk_key disk_key
;
1355 if (level
!= 1 && path
->reada
!= READA_FORWARD_ALWAYS
)
1358 if (!path
->nodes
[level
])
1361 node
= path
->nodes
[level
];
1364 * Since the time between visiting leaves is much shorter than the time
1365 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1366 * much IO at once (possibly random).
1368 if (path
->reada
== READA_FORWARD_ALWAYS
) {
1370 nread_max
= node
->fs_info
->nodesize
;
1372 nread_max
= SZ_128K
;
1377 search
= btrfs_node_blockptr(node
, slot
);
1378 blocksize
= fs_info
->nodesize
;
1379 if (path
->reada
!= READA_FORWARD_ALWAYS
) {
1380 struct extent_buffer
*eb
;
1382 eb
= find_extent_buffer(fs_info
, search
);
1384 free_extent_buffer(eb
);
1391 nritems
= btrfs_header_nritems(node
);
1395 if (path
->reada
== READA_BACK
) {
1399 } else if (path
->reada
== READA_FORWARD
||
1400 path
->reada
== READA_FORWARD_ALWAYS
) {
1405 if (path
->reada
== READA_BACK
&& objectid
) {
1406 btrfs_node_key(node
, &disk_key
, nr
);
1407 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
1410 search
= btrfs_node_blockptr(node
, nr
);
1411 if (path
->reada
== READA_FORWARD_ALWAYS
||
1412 (search
<= target
&& target
- search
<= 65536) ||
1413 (search
> target
&& search
- target
<= 65536)) {
1414 btrfs_readahead_node_child(node
, nr
);
1418 if (nread
> nread_max
|| nscan
> 32)
1423 static noinline
void reada_for_balance(struct btrfs_path
*path
, int level
)
1425 struct extent_buffer
*parent
;
1429 parent
= path
->nodes
[level
+ 1];
1433 nritems
= btrfs_header_nritems(parent
);
1434 slot
= path
->slots
[level
+ 1];
1437 btrfs_readahead_node_child(parent
, slot
- 1);
1438 if (slot
+ 1 < nritems
)
1439 btrfs_readahead_node_child(parent
, slot
+ 1);
1444 * when we walk down the tree, it is usually safe to unlock the higher layers
1445 * in the tree. The exceptions are when our path goes through slot 0, because
1446 * operations on the tree might require changing key pointers higher up in the
1449 * callers might also have set path->keep_locks, which tells this code to keep
1450 * the lock if the path points to the last slot in the block. This is part of
1451 * walking through the tree, and selecting the next slot in the higher block.
1453 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1454 * if lowest_unlock is 1, level 0 won't be unlocked
1456 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
1457 int lowest_unlock
, int min_write_lock_level
,
1458 int *write_lock_level
)
1461 int skip_level
= level
;
1462 bool check_skip
= true;
1464 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
1465 if (!path
->nodes
[i
])
1467 if (!path
->locks
[i
])
1471 if (path
->slots
[i
] == 0) {
1476 if (path
->keep_locks
) {
1479 nritems
= btrfs_header_nritems(path
->nodes
[i
]);
1480 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
1487 if (i
>= lowest_unlock
&& i
> skip_level
) {
1489 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
1491 if (write_lock_level
&&
1492 i
> min_write_lock_level
&&
1493 i
<= *write_lock_level
) {
1494 *write_lock_level
= i
- 1;
1501 * Helper function for btrfs_search_slot() and other functions that do a search
1502 * on a btree. The goal is to find a tree block in the cache (the radix tree at
1503 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1504 * its pages from disk.
1506 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1507 * whole btree search, starting again from the current root node.
1510 read_block_for_search(struct btrfs_root
*root
, struct btrfs_path
*p
,
1511 struct extent_buffer
**eb_ret
, int level
, int slot
,
1512 const struct btrfs_key
*key
)
1514 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1515 struct btrfs_tree_parent_check check
= { 0 };
1518 struct extent_buffer
*tmp
;
1523 unlock_up
= ((level
+ 1 < BTRFS_MAX_LEVEL
) && p
->locks
[level
+ 1]);
1524 blocknr
= btrfs_node_blockptr(*eb_ret
, slot
);
1525 gen
= btrfs_node_ptr_generation(*eb_ret
, slot
);
1526 parent_level
= btrfs_header_level(*eb_ret
);
1527 btrfs_node_key_to_cpu(*eb_ret
, &check
.first_key
, slot
);
1528 check
.has_first_key
= true;
1529 check
.level
= parent_level
- 1;
1530 check
.transid
= gen
;
1531 check
.owner_root
= btrfs_root_id(root
);
1534 * If we need to read an extent buffer from disk and we are holding locks
1535 * on upper level nodes, we unlock all the upper nodes before reading the
1536 * extent buffer, and then return -EAGAIN to the caller as it needs to
1537 * restart the search. We don't release the lock on the current level
1538 * because we need to walk this node to figure out which blocks to read.
1540 tmp
= find_extent_buffer(fs_info
, blocknr
);
1542 if (p
->reada
== READA_FORWARD_ALWAYS
)
1543 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
1545 /* first we do an atomic uptodate check */
1546 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
1548 * Do extra check for first_key, eb can be stale due to
1549 * being cached, read from scrub, or have multiple
1550 * parents (shared tree blocks).
1552 if (btrfs_verify_level_key(tmp
,
1553 parent_level
- 1, &check
.first_key
, gen
)) {
1554 free_extent_buffer(tmp
);
1562 free_extent_buffer(tmp
);
1567 btrfs_unlock_up_safe(p
, level
+ 1);
1569 /* now we're allowed to do a blocking uptodate check */
1570 ret
= btrfs_read_extent_buffer(tmp
, &check
);
1572 free_extent_buffer(tmp
);
1573 btrfs_release_path(p
);
1581 } else if (p
->nowait
) {
1586 btrfs_unlock_up_safe(p
, level
+ 1);
1592 if (p
->reada
!= READA_NONE
)
1593 reada_for_search(fs_info
, p
, level
, slot
, key
->objectid
);
1595 tmp
= read_tree_block(fs_info
, blocknr
, &check
);
1597 btrfs_release_path(p
);
1598 return PTR_ERR(tmp
);
1601 * If the read above didn't mark this buffer up to date,
1602 * it will never end up being up to date. Set ret to EIO now
1603 * and give up so that our caller doesn't loop forever
1606 if (!extent_buffer_uptodate(tmp
))
1613 free_extent_buffer(tmp
);
1614 btrfs_release_path(p
);
1621 * helper function for btrfs_search_slot. This does all of the checks
1622 * for node-level blocks and does any balancing required based on
1625 * If no extra work was required, zero is returned. If we had to
1626 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1630 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
1631 struct btrfs_root
*root
, struct btrfs_path
*p
,
1632 struct extent_buffer
*b
, int level
, int ins_len
,
1633 int *write_lock_level
)
1635 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1638 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
1639 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3) {
1641 if (*write_lock_level
< level
+ 1) {
1642 *write_lock_level
= level
+ 1;
1643 btrfs_release_path(p
);
1647 reada_for_balance(p
, level
);
1648 ret
= split_node(trans
, root
, p
, level
);
1650 b
= p
->nodes
[level
];
1651 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
1652 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) / 2) {
1654 if (*write_lock_level
< level
+ 1) {
1655 *write_lock_level
= level
+ 1;
1656 btrfs_release_path(p
);
1660 reada_for_balance(p
, level
);
1661 ret
= balance_level(trans
, root
, p
, level
);
1665 b
= p
->nodes
[level
];
1667 btrfs_release_path(p
);
1670 BUG_ON(btrfs_header_nritems(b
) == 1);
1675 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1676 u64 iobjectid
, u64 ioff
, u8 key_type
,
1677 struct btrfs_key
*found_key
)
1680 struct btrfs_key key
;
1681 struct extent_buffer
*eb
;
1686 key
.type
= key_type
;
1687 key
.objectid
= iobjectid
;
1690 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1694 eb
= path
->nodes
[0];
1695 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
1696 ret
= btrfs_next_leaf(fs_root
, path
);
1699 eb
= path
->nodes
[0];
1702 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
1703 if (found_key
->type
!= key
.type
||
1704 found_key
->objectid
!= key
.objectid
)
1710 static struct extent_buffer
*btrfs_search_slot_get_root(struct btrfs_root
*root
,
1711 struct btrfs_path
*p
,
1712 int write_lock_level
)
1714 struct extent_buffer
*b
;
1718 if (p
->search_commit_root
) {
1719 b
= root
->commit_root
;
1720 atomic_inc(&b
->refs
);
1721 level
= btrfs_header_level(b
);
1723 * Ensure that all callers have set skip_locking when
1724 * p->search_commit_root = 1.
1726 ASSERT(p
->skip_locking
== 1);
1731 if (p
->skip_locking
) {
1732 b
= btrfs_root_node(root
);
1733 level
= btrfs_header_level(b
);
1737 /* We try very hard to do read locks on the root */
1738 root_lock
= BTRFS_READ_LOCK
;
1741 * If the level is set to maximum, we can skip trying to get the read
1744 if (write_lock_level
< BTRFS_MAX_LEVEL
) {
1746 * We don't know the level of the root node until we actually
1747 * have it read locked
1750 b
= btrfs_try_read_lock_root_node(root
);
1754 b
= btrfs_read_lock_root_node(root
);
1756 level
= btrfs_header_level(b
);
1757 if (level
> write_lock_level
)
1760 /* Whoops, must trade for write lock */
1761 btrfs_tree_read_unlock(b
);
1762 free_extent_buffer(b
);
1765 b
= btrfs_lock_root_node(root
);
1766 root_lock
= BTRFS_WRITE_LOCK
;
1768 /* The level might have changed, check again */
1769 level
= btrfs_header_level(b
);
1773 * The root may have failed to write out at some point, and thus is no
1774 * longer valid, return an error in this case.
1776 if (!extent_buffer_uptodate(b
)) {
1778 btrfs_tree_unlock_rw(b
, root_lock
);
1779 free_extent_buffer(b
);
1780 return ERR_PTR(-EIO
);
1783 p
->nodes
[level
] = b
;
1784 if (!p
->skip_locking
)
1785 p
->locks
[level
] = root_lock
;
1787 * Callers are responsible for dropping b's references.
1793 * Replace the extent buffer at the lowest level of the path with a cloned
1794 * version. The purpose is to be able to use it safely, after releasing the
1795 * commit root semaphore, even if relocation is happening in parallel, the
1796 * transaction used for relocation is committed and the extent buffer is
1797 * reallocated in the next transaction.
1799 * This is used in a context where the caller does not prevent transaction
1800 * commits from happening, either by holding a transaction handle or holding
1801 * some lock, while it's doing searches through a commit root.
1802 * At the moment it's only used for send operations.
1804 static int finish_need_commit_sem_search(struct btrfs_path
*path
)
1806 const int i
= path
->lowest_level
;
1807 const int slot
= path
->slots
[i
];
1808 struct extent_buffer
*lowest
= path
->nodes
[i
];
1809 struct extent_buffer
*clone
;
1811 ASSERT(path
->need_commit_sem
);
1816 lockdep_assert_held_read(&lowest
->fs_info
->commit_root_sem
);
1818 clone
= btrfs_clone_extent_buffer(lowest
);
1822 btrfs_release_path(path
);
1823 path
->nodes
[i
] = clone
;
1824 path
->slots
[i
] = slot
;
1829 static inline int search_for_key_slot(struct extent_buffer
*eb
,
1830 int search_low_slot
,
1831 const struct btrfs_key
*key
,
1836 * If a previous call to btrfs_bin_search() on a parent node returned an
1837 * exact match (prev_cmp == 0), we can safely assume the target key will
1838 * always be at slot 0 on lower levels, since each key pointer
1839 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1840 * subtree it points to. Thus we can skip searching lower levels.
1842 if (prev_cmp
== 0) {
1847 return btrfs_bin_search(eb
, search_low_slot
, key
, slot
);
1850 static int search_leaf(struct btrfs_trans_handle
*trans
,
1851 struct btrfs_root
*root
,
1852 const struct btrfs_key
*key
,
1853 struct btrfs_path
*path
,
1857 struct extent_buffer
*leaf
= path
->nodes
[0];
1858 int leaf_free_space
= -1;
1859 int search_low_slot
= 0;
1861 bool do_bin_search
= true;
1864 * If we are doing an insertion, the leaf has enough free space and the
1865 * destination slot for the key is not slot 0, then we can unlock our
1866 * write lock on the parent, and any other upper nodes, before doing the
1867 * binary search on the leaf (with search_for_key_slot()), allowing other
1868 * tasks to lock the parent and any other upper nodes.
1872 * Cache the leaf free space, since we will need it later and it
1873 * will not change until then.
1875 leaf_free_space
= btrfs_leaf_free_space(leaf
);
1878 * !path->locks[1] means we have a single node tree, the leaf is
1879 * the root of the tree.
1881 if (path
->locks
[1] && leaf_free_space
>= ins_len
) {
1882 struct btrfs_disk_key first_key
;
1884 ASSERT(btrfs_header_nritems(leaf
) > 0);
1885 btrfs_item_key(leaf
, &first_key
, 0);
1888 * Doing the extra comparison with the first key is cheap,
1889 * taking into account that the first key is very likely
1890 * already in a cache line because it immediately follows
1891 * the extent buffer's header and we have recently accessed
1892 * the header's level field.
1894 ret
= btrfs_comp_keys(&first_key
, key
);
1897 * The first key is smaller than the key we want
1898 * to insert, so we are safe to unlock all upper
1899 * nodes and we have to do the binary search.
1901 * We do use btrfs_unlock_up_safe() and not
1902 * unlock_up() because the later does not unlock
1903 * nodes with a slot of 0 - we can safely unlock
1904 * any node even if its slot is 0 since in this
1905 * case the key does not end up at slot 0 of the
1906 * leaf and there's no need to split the leaf.
1908 btrfs_unlock_up_safe(path
, 1);
1909 search_low_slot
= 1;
1912 * The first key is >= then the key we want to
1913 * insert, so we can skip the binary search as
1914 * the target key will be at slot 0.
1916 * We can not unlock upper nodes when the key is
1917 * less than the first key, because we will need
1918 * to update the key at slot 0 of the parent node
1919 * and possibly of other upper nodes too.
1920 * If the key matches the first key, then we can
1921 * unlock all the upper nodes, using
1922 * btrfs_unlock_up_safe() instead of unlock_up()
1926 btrfs_unlock_up_safe(path
, 1);
1928 * ret is already 0 or 1, matching the result of
1929 * a btrfs_bin_search() call, so there is no need
1932 do_bin_search
= false;
1938 if (do_bin_search
) {
1939 ret
= search_for_key_slot(leaf
, search_low_slot
, key
,
1940 prev_cmp
, &path
->slots
[0]);
1947 * Item key already exists. In this case, if we are allowed to
1948 * insert the item (for example, in dir_item case, item key
1949 * collision is allowed), it will be merged with the original
1950 * item. Only the item size grows, no new btrfs item will be
1951 * added. If search_for_extension is not set, ins_len already
1952 * accounts the size btrfs_item, deduct it here so leaf space
1953 * check will be correct.
1955 if (ret
== 0 && !path
->search_for_extension
) {
1956 ASSERT(ins_len
>= sizeof(struct btrfs_item
));
1957 ins_len
-= sizeof(struct btrfs_item
);
1960 ASSERT(leaf_free_space
>= 0);
1962 if (leaf_free_space
< ins_len
) {
1965 err
= split_leaf(trans
, root
, key
, path
, ins_len
,
1968 if (WARN_ON(err
> 0))
1979 * Look for a key in a tree and perform necessary modifications to preserve
1982 * @trans: Handle of transaction, used when modifying the tree
1983 * @p: Holds all btree nodes along the search path
1984 * @root: The root node of the tree
1985 * @key: The key we are looking for
1986 * @ins_len: Indicates purpose of search:
1987 * >0 for inserts it's size of item inserted (*)
1989 * 0 for plain searches, not modifying the tree
1991 * (*) If size of item inserted doesn't include
1992 * sizeof(struct btrfs_item), then p->search_for_extension must
1994 * @cow: boolean should CoW operations be performed. Must always be 1
1995 * when modifying the tree.
1997 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1998 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2000 * If @key is found, 0 is returned and you can find the item in the leaf level
2001 * of the path (level 0)
2003 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2004 * points to the slot where it should be inserted
2006 * If an error is encountered while searching the tree a negative error number
2009 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2010 const struct btrfs_key
*key
, struct btrfs_path
*p
,
2011 int ins_len
, int cow
)
2013 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2014 struct extent_buffer
*b
;
2019 int lowest_unlock
= 1;
2020 /* everything at write_lock_level or lower must be write locked */
2021 int write_lock_level
= 0;
2022 u8 lowest_level
= 0;
2023 int min_write_lock_level
;
2028 lowest_level
= p
->lowest_level
;
2029 WARN_ON(lowest_level
&& ins_len
> 0);
2030 WARN_ON(p
->nodes
[0] != NULL
);
2031 BUG_ON(!cow
&& ins_len
);
2034 * For now only allow nowait for read only operations. There's no
2035 * strict reason why we can't, we just only need it for reads so it's
2036 * only implemented for reads.
2038 ASSERT(!p
->nowait
|| !cow
);
2043 /* when we are removing items, we might have to go up to level
2044 * two as we update tree pointers Make sure we keep write
2045 * for those levels as well
2047 write_lock_level
= 2;
2048 } else if (ins_len
> 0) {
2050 * for inserting items, make sure we have a write lock on
2051 * level 1 so we can update keys
2053 write_lock_level
= 1;
2057 write_lock_level
= -1;
2059 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2060 write_lock_level
= BTRFS_MAX_LEVEL
;
2062 min_write_lock_level
= write_lock_level
;
2064 if (p
->need_commit_sem
) {
2065 ASSERT(p
->search_commit_root
);
2067 if (!down_read_trylock(&fs_info
->commit_root_sem
))
2070 down_read(&fs_info
->commit_root_sem
);
2076 b
= btrfs_search_slot_get_root(root
, p
, write_lock_level
);
2085 level
= btrfs_header_level(b
);
2088 bool last_level
= (level
== (BTRFS_MAX_LEVEL
- 1));
2091 * if we don't really need to cow this block
2092 * then we don't want to set the path blocking,
2093 * so we test it here
2095 if (!should_cow_block(trans
, root
, b
))
2099 * must have write locks on this node and the
2102 if (level
> write_lock_level
||
2103 (level
+ 1 > write_lock_level
&&
2104 level
+ 1 < BTRFS_MAX_LEVEL
&&
2105 p
->nodes
[level
+ 1])) {
2106 write_lock_level
= level
+ 1;
2107 btrfs_release_path(p
);
2112 err
= btrfs_cow_block(trans
, root
, b
, NULL
, 0,
2116 err
= btrfs_cow_block(trans
, root
, b
,
2117 p
->nodes
[level
+ 1],
2118 p
->slots
[level
+ 1], &b
,
2126 p
->nodes
[level
] = b
;
2129 * we have a lock on b and as long as we aren't changing
2130 * the tree, there is no way to for the items in b to change.
2131 * It is safe to drop the lock on our parent before we
2132 * go through the expensive btree search on b.
2134 * If we're inserting or deleting (ins_len != 0), then we might
2135 * be changing slot zero, which may require changing the parent.
2136 * So, we can't drop the lock until after we know which slot
2137 * we're operating on.
2139 if (!ins_len
&& !p
->keep_locks
) {
2142 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2143 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2150 ASSERT(write_lock_level
>= 1);
2152 ret
= search_leaf(trans
, root
, key
, p
, ins_len
, prev_cmp
);
2153 if (!p
->search_for_split
)
2154 unlock_up(p
, level
, lowest_unlock
,
2155 min_write_lock_level
, NULL
);
2159 ret
= search_for_key_slot(b
, 0, key
, prev_cmp
, &slot
);
2164 if (ret
&& slot
> 0) {
2168 p
->slots
[level
] = slot
;
2169 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
, ins_len
,
2177 b
= p
->nodes
[level
];
2178 slot
= p
->slots
[level
];
2181 * Slot 0 is special, if we change the key we have to update
2182 * the parent pointer which means we must have a write lock on
2185 if (slot
== 0 && ins_len
&& write_lock_level
< level
+ 1) {
2186 write_lock_level
= level
+ 1;
2187 btrfs_release_path(p
);
2191 unlock_up(p
, level
, lowest_unlock
, min_write_lock_level
,
2194 if (level
== lowest_level
) {
2200 err
= read_block_for_search(root
, p
, &b
, level
, slot
, key
);
2208 if (!p
->skip_locking
) {
2209 level
= btrfs_header_level(b
);
2211 btrfs_maybe_reset_lockdep_class(root
, b
);
2213 if (level
<= write_lock_level
) {
2215 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2218 if (!btrfs_try_tree_read_lock(b
)) {
2219 free_extent_buffer(b
);
2224 btrfs_tree_read_lock(b
);
2226 p
->locks
[level
] = BTRFS_READ_LOCK
;
2228 p
->nodes
[level
] = b
;
2233 if (ret
< 0 && !p
->skip_release_on_error
)
2234 btrfs_release_path(p
);
2236 if (p
->need_commit_sem
) {
2239 ret2
= finish_need_commit_sem_search(p
);
2240 up_read(&fs_info
->commit_root_sem
);
2247 ALLOW_ERROR_INJECTION(btrfs_search_slot
, ERRNO
);
2250 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2251 * current state of the tree together with the operations recorded in the tree
2252 * modification log to search for the key in a previous version of this tree, as
2253 * denoted by the time_seq parameter.
2255 * Naturally, there is no support for insert, delete or cow operations.
2257 * The resulting path and return value will be set up as if we called
2258 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2260 int btrfs_search_old_slot(struct btrfs_root
*root
, const struct btrfs_key
*key
,
2261 struct btrfs_path
*p
, u64 time_seq
)
2263 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2264 struct extent_buffer
*b
;
2269 int lowest_unlock
= 1;
2270 u8 lowest_level
= 0;
2272 lowest_level
= p
->lowest_level
;
2273 WARN_ON(p
->nodes
[0] != NULL
);
2276 if (p
->search_commit_root
) {
2278 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2282 b
= btrfs_get_old_root(root
, time_seq
);
2287 level
= btrfs_header_level(b
);
2288 p
->locks
[level
] = BTRFS_READ_LOCK
;
2293 level
= btrfs_header_level(b
);
2294 p
->nodes
[level
] = b
;
2297 * we have a lock on b and as long as we aren't changing
2298 * the tree, there is no way to for the items in b to change.
2299 * It is safe to drop the lock on our parent before we
2300 * go through the expensive btree search on b.
2302 btrfs_unlock_up_safe(p
, level
+ 1);
2304 ret
= btrfs_bin_search(b
, 0, key
, &slot
);
2309 p
->slots
[level
] = slot
;
2310 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2314 if (ret
&& slot
> 0) {
2318 p
->slots
[level
] = slot
;
2319 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
2321 if (level
== lowest_level
) {
2327 err
= read_block_for_search(root
, p
, &b
, level
, slot
, key
);
2335 level
= btrfs_header_level(b
);
2336 btrfs_tree_read_lock(b
);
2337 b
= btrfs_tree_mod_log_rewind(fs_info
, p
, b
, time_seq
);
2342 p
->locks
[level
] = BTRFS_READ_LOCK
;
2343 p
->nodes
[level
] = b
;
2348 btrfs_release_path(p
);
2354 * Search the tree again to find a leaf with smaller keys.
2355 * Returns 0 if it found something.
2356 * Returns 1 if there are no smaller keys.
2357 * Returns < 0 on error.
2359 * This may release the path, and so you may lose any locks held at the
2362 static int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
2364 struct btrfs_key key
;
2365 struct btrfs_key orig_key
;
2366 struct btrfs_disk_key found_key
;
2369 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
2372 if (key
.offset
> 0) {
2374 } else if (key
.type
> 0) {
2376 key
.offset
= (u64
)-1;
2377 } else if (key
.objectid
> 0) {
2380 key
.offset
= (u64
)-1;
2385 btrfs_release_path(path
);
2386 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2391 * Previous key not found. Even if we were at slot 0 of the leaf we had
2392 * before releasing the path and calling btrfs_search_slot(), we now may
2393 * be in a slot pointing to the same original key - this can happen if
2394 * after we released the path, one of more items were moved from a
2395 * sibling leaf into the front of the leaf we had due to an insertion
2396 * (see push_leaf_right()).
2397 * If we hit this case and our slot is > 0 and just decrement the slot
2398 * so that the caller does not process the same key again, which may or
2399 * may not break the caller, depending on its logic.
2401 if (path
->slots
[0] < btrfs_header_nritems(path
->nodes
[0])) {
2402 btrfs_item_key(path
->nodes
[0], &found_key
, path
->slots
[0]);
2403 ret
= btrfs_comp_keys(&found_key
, &orig_key
);
2405 if (path
->slots
[0] > 0) {
2410 * At slot 0, same key as before, it means orig_key is
2411 * the lowest, leftmost, key in the tree. We're done.
2417 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
2418 ret
= btrfs_comp_keys(&found_key
, &key
);
2420 * We might have had an item with the previous key in the tree right
2421 * before we released our path. And after we released our path, that
2422 * item might have been pushed to the first slot (0) of the leaf we
2423 * were holding due to a tree balance. Alternatively, an item with the
2424 * previous key can exist as the only element of a leaf (big fat item).
2425 * Therefore account for these 2 cases, so that our callers (like
2426 * btrfs_previous_item) don't miss an existing item with a key matching
2427 * the previous key we computed above.
2435 * helper to use instead of search slot if no exact match is needed but
2436 * instead the next or previous item should be returned.
2437 * When find_higher is true, the next higher item is returned, the next lower
2439 * When return_any and find_higher are both true, and no higher item is found,
2440 * return the next lower instead.
2441 * When return_any is true and find_higher is false, and no lower item is found,
2442 * return the next higher instead.
2443 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2446 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
2447 const struct btrfs_key
*key
,
2448 struct btrfs_path
*p
, int find_higher
,
2452 struct extent_buffer
*leaf
;
2455 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2459 * a return value of 1 means the path is at the position where the
2460 * item should be inserted. Normally this is the next bigger item,
2461 * but in case the previous item is the last in a leaf, path points
2462 * to the first free slot in the previous leaf, i.e. at an invalid
2468 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2469 ret
= btrfs_next_leaf(root
, p
);
2475 * no higher item found, return the next
2480 btrfs_release_path(p
);
2484 if (p
->slots
[0] == 0) {
2485 ret
= btrfs_prev_leaf(root
, p
);
2490 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
2497 * no lower item found, return the next
2502 btrfs_release_path(p
);
2512 * Execute search and call btrfs_previous_item to traverse backwards if the item
2515 * Return 0 if found, 1 if not found and < 0 if error.
2517 int btrfs_search_backwards(struct btrfs_root
*root
, struct btrfs_key
*key
,
2518 struct btrfs_path
*path
)
2522 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
2524 ret
= btrfs_previous_item(root
, path
, key
->objectid
, key
->type
);
2527 btrfs_item_key_to_cpu(path
->nodes
[0], key
, path
->slots
[0]);
2533 * Search for a valid slot for the given path.
2535 * @root: The root node of the tree.
2536 * @key: Will contain a valid item if found.
2537 * @path: The starting point to validate the slot.
2539 * Return: 0 if the item is valid
2543 int btrfs_get_next_valid_item(struct btrfs_root
*root
, struct btrfs_key
*key
,
2544 struct btrfs_path
*path
)
2546 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2549 ret
= btrfs_next_leaf(root
, path
);
2554 btrfs_item_key_to_cpu(path
->nodes
[0], key
, path
->slots
[0]);
2559 * adjust the pointers going up the tree, starting at level
2560 * making sure the right key of each node is points to 'key'.
2561 * This is used after shifting pointers to the left, so it stops
2562 * fixing up pointers when a given leaf/node is not in slot 0 of the
2566 static void fixup_low_keys(struct btrfs_trans_handle
*trans
,
2567 const struct btrfs_path
*path
,
2568 const struct btrfs_disk_key
*key
, int level
)
2571 struct extent_buffer
*t
;
2574 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2575 int tslot
= path
->slots
[i
];
2577 if (!path
->nodes
[i
])
2580 ret
= btrfs_tree_mod_log_insert_key(t
, tslot
,
2581 BTRFS_MOD_LOG_KEY_REPLACE
);
2583 btrfs_set_node_key(t
, key
, tslot
);
2584 btrfs_mark_buffer_dirty(trans
, path
->nodes
[i
]);
2593 * This function isn't completely safe. It's the caller's responsibility
2594 * that the new key won't break the order
2596 void btrfs_set_item_key_safe(struct btrfs_trans_handle
*trans
,
2597 const struct btrfs_path
*path
,
2598 const struct btrfs_key
*new_key
)
2600 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2601 struct btrfs_disk_key disk_key
;
2602 struct extent_buffer
*eb
;
2605 eb
= path
->nodes
[0];
2606 slot
= path
->slots
[0];
2608 btrfs_item_key(eb
, &disk_key
, slot
- 1);
2609 if (unlikely(btrfs_comp_keys(&disk_key
, new_key
) >= 0)) {
2610 btrfs_print_leaf(eb
);
2612 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2613 slot
, btrfs_disk_key_objectid(&disk_key
),
2614 btrfs_disk_key_type(&disk_key
),
2615 btrfs_disk_key_offset(&disk_key
),
2616 new_key
->objectid
, new_key
->type
,
2621 if (slot
< btrfs_header_nritems(eb
) - 1) {
2622 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
2623 if (unlikely(btrfs_comp_keys(&disk_key
, new_key
) <= 0)) {
2624 btrfs_print_leaf(eb
);
2626 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2627 slot
, btrfs_disk_key_objectid(&disk_key
),
2628 btrfs_disk_key_type(&disk_key
),
2629 btrfs_disk_key_offset(&disk_key
),
2630 new_key
->objectid
, new_key
->type
,
2636 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
2637 btrfs_set_item_key(eb
, &disk_key
, slot
);
2638 btrfs_mark_buffer_dirty(trans
, eb
);
2640 fixup_low_keys(trans
, path
, &disk_key
, 1);
2644 * Check key order of two sibling extent buffers.
2646 * Return true if something is wrong.
2647 * Return false if everything is fine.
2649 * Tree-checker only works inside one tree block, thus the following
2650 * corruption can not be detected by tree-checker:
2652 * Leaf @left | Leaf @right
2653 * --------------------------------------------------------------
2654 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 |
2656 * Key f6 in leaf @left itself is valid, but not valid when the next
2657 * key in leaf @right is 7.
2658 * This can only be checked at tree block merge time.
2659 * And since tree checker has ensured all key order in each tree block
2660 * is correct, we only need to bother the last key of @left and the first
2663 static bool check_sibling_keys(const struct extent_buffer
*left
,
2664 const struct extent_buffer
*right
)
2666 struct btrfs_key left_last
;
2667 struct btrfs_key right_first
;
2668 int level
= btrfs_header_level(left
);
2669 int nr_left
= btrfs_header_nritems(left
);
2670 int nr_right
= btrfs_header_nritems(right
);
2672 /* No key to check in one of the tree blocks */
2673 if (!nr_left
|| !nr_right
)
2677 btrfs_node_key_to_cpu(left
, &left_last
, nr_left
- 1);
2678 btrfs_node_key_to_cpu(right
, &right_first
, 0);
2680 btrfs_item_key_to_cpu(left
, &left_last
, nr_left
- 1);
2681 btrfs_item_key_to_cpu(right
, &right_first
, 0);
2684 if (unlikely(btrfs_comp_cpu_keys(&left_last
, &right_first
) >= 0)) {
2685 btrfs_crit(left
->fs_info
, "left extent buffer:");
2686 btrfs_print_tree(left
, false);
2687 btrfs_crit(left
->fs_info
, "right extent buffer:");
2688 btrfs_print_tree(right
, false);
2689 btrfs_crit(left
->fs_info
,
2690 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2691 left_last
.objectid
, left_last
.type
,
2692 left_last
.offset
, right_first
.objectid
,
2693 right_first
.type
, right_first
.offset
);
2700 * try to push data from one node into the next node left in the
2703 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2704 * error, and > 0 if there was no room in the left hand block.
2706 static int push_node_left(struct btrfs_trans_handle
*trans
,
2707 struct extent_buffer
*dst
,
2708 struct extent_buffer
*src
, int empty
)
2710 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2716 src_nritems
= btrfs_header_nritems(src
);
2717 dst_nritems
= btrfs_header_nritems(dst
);
2718 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
2719 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2720 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2722 if (!empty
&& src_nritems
<= 8)
2725 if (push_items
<= 0)
2729 push_items
= min(src_nritems
, push_items
);
2730 if (push_items
< src_nritems
) {
2731 /* leave at least 8 pointers in the node if
2732 * we aren't going to empty it
2734 if (src_nritems
- push_items
< 8) {
2735 if (push_items
<= 8)
2741 push_items
= min(src_nritems
- 8, push_items
);
2743 /* dst is the left eb, src is the middle eb */
2744 if (check_sibling_keys(dst
, src
)) {
2746 btrfs_abort_transaction(trans
, ret
);
2749 ret
= btrfs_tree_mod_log_eb_copy(dst
, src
, dst_nritems
, 0, push_items
);
2751 btrfs_abort_transaction(trans
, ret
);
2754 copy_extent_buffer(dst
, src
,
2755 btrfs_node_key_ptr_offset(dst
, dst_nritems
),
2756 btrfs_node_key_ptr_offset(src
, 0),
2757 push_items
* sizeof(struct btrfs_key_ptr
));
2759 if (push_items
< src_nritems
) {
2761 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2762 * don't need to do an explicit tree mod log operation for it.
2764 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(src
, 0),
2765 btrfs_node_key_ptr_offset(src
, push_items
),
2766 (src_nritems
- push_items
) *
2767 sizeof(struct btrfs_key_ptr
));
2769 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2770 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2771 btrfs_mark_buffer_dirty(trans
, src
);
2772 btrfs_mark_buffer_dirty(trans
, dst
);
2778 * try to push data from one node into the next node right in the
2781 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2782 * error, and > 0 if there was no room in the right hand block.
2784 * this will only push up to 1/2 the contents of the left node over
2786 static int balance_node_right(struct btrfs_trans_handle
*trans
,
2787 struct extent_buffer
*dst
,
2788 struct extent_buffer
*src
)
2790 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2797 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
2798 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
2800 src_nritems
= btrfs_header_nritems(src
);
2801 dst_nritems
= btrfs_header_nritems(dst
);
2802 push_items
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - dst_nritems
;
2803 if (push_items
<= 0)
2806 if (src_nritems
< 4)
2809 max_push
= src_nritems
/ 2 + 1;
2810 /* don't try to empty the node */
2811 if (max_push
>= src_nritems
)
2814 if (max_push
< push_items
)
2815 push_items
= max_push
;
2817 /* dst is the right eb, src is the middle eb */
2818 if (check_sibling_keys(src
, dst
)) {
2820 btrfs_abort_transaction(trans
, ret
);
2825 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2826 * need to do an explicit tree mod log operation for it.
2828 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(dst
, push_items
),
2829 btrfs_node_key_ptr_offset(dst
, 0),
2831 sizeof(struct btrfs_key_ptr
));
2833 ret
= btrfs_tree_mod_log_eb_copy(dst
, src
, 0, src_nritems
- push_items
,
2836 btrfs_abort_transaction(trans
, ret
);
2839 copy_extent_buffer(dst
, src
,
2840 btrfs_node_key_ptr_offset(dst
, 0),
2841 btrfs_node_key_ptr_offset(src
, src_nritems
- push_items
),
2842 push_items
* sizeof(struct btrfs_key_ptr
));
2844 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
2845 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
2847 btrfs_mark_buffer_dirty(trans
, src
);
2848 btrfs_mark_buffer_dirty(trans
, dst
);
2854 * helper function to insert a new root level in the tree.
2855 * A new node is allocated, and a single item is inserted to
2856 * point to the existing root
2858 * returns zero on success or < 0 on failure.
2860 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
2861 struct btrfs_root
*root
,
2862 struct btrfs_path
*path
, int level
)
2865 struct extent_buffer
*lower
;
2866 struct extent_buffer
*c
;
2867 struct extent_buffer
*old
;
2868 struct btrfs_disk_key lower_key
;
2871 BUG_ON(path
->nodes
[level
]);
2872 BUG_ON(path
->nodes
[level
-1] != root
->node
);
2874 lower
= path
->nodes
[level
-1];
2876 btrfs_item_key(lower
, &lower_key
, 0);
2878 btrfs_node_key(lower
, &lower_key
, 0);
2880 c
= btrfs_alloc_tree_block(trans
, root
, 0, btrfs_root_id(root
),
2881 &lower_key
, level
, root
->node
->start
, 0,
2882 0, BTRFS_NESTING_NEW_ROOT
);
2886 root_add_used_bytes(root
);
2888 btrfs_set_header_nritems(c
, 1);
2889 btrfs_set_node_key(c
, &lower_key
, 0);
2890 btrfs_set_node_blockptr(c
, 0, lower
->start
);
2891 lower_gen
= btrfs_header_generation(lower
);
2892 WARN_ON(lower_gen
!= trans
->transid
);
2894 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
2896 btrfs_mark_buffer_dirty(trans
, c
);
2899 ret
= btrfs_tree_mod_log_insert_root(root
->node
, c
, false);
2903 ret2
= btrfs_free_tree_block(trans
, btrfs_root_id(root
), c
, 0, 1);
2905 btrfs_abort_transaction(trans
, ret2
);
2906 btrfs_tree_unlock(c
);
2907 free_extent_buffer(c
);
2910 rcu_assign_pointer(root
->node
, c
);
2912 /* the super has an extra ref to root->node */
2913 free_extent_buffer(old
);
2915 add_root_to_dirty_list(root
);
2916 atomic_inc(&c
->refs
);
2917 path
->nodes
[level
] = c
;
2918 path
->locks
[level
] = BTRFS_WRITE_LOCK
;
2919 path
->slots
[level
] = 0;
2924 * worker function to insert a single pointer in a node.
2925 * the node should have enough room for the pointer already
2927 * slot and level indicate where you want the key to go, and
2928 * blocknr is the block the key points to.
2930 static int insert_ptr(struct btrfs_trans_handle
*trans
,
2931 const struct btrfs_path
*path
,
2932 const struct btrfs_disk_key
*key
, u64 bytenr
,
2933 int slot
, int level
)
2935 struct extent_buffer
*lower
;
2939 BUG_ON(!path
->nodes
[level
]);
2940 btrfs_assert_tree_write_locked(path
->nodes
[level
]);
2941 lower
= path
->nodes
[level
];
2942 nritems
= btrfs_header_nritems(lower
);
2943 BUG_ON(slot
> nritems
);
2944 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(trans
->fs_info
));
2945 if (slot
!= nritems
) {
2947 ret
= btrfs_tree_mod_log_insert_move(lower
, slot
+ 1,
2948 slot
, nritems
- slot
);
2950 btrfs_abort_transaction(trans
, ret
);
2954 memmove_extent_buffer(lower
,
2955 btrfs_node_key_ptr_offset(lower
, slot
+ 1),
2956 btrfs_node_key_ptr_offset(lower
, slot
),
2957 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
2960 ret
= btrfs_tree_mod_log_insert_key(lower
, slot
,
2961 BTRFS_MOD_LOG_KEY_ADD
);
2963 btrfs_abort_transaction(trans
, ret
);
2967 btrfs_set_node_key(lower
, key
, slot
);
2968 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
2969 WARN_ON(trans
->transid
== 0);
2970 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
2971 btrfs_set_header_nritems(lower
, nritems
+ 1);
2972 btrfs_mark_buffer_dirty(trans
, lower
);
2978 * split the node at the specified level in path in two.
2979 * The path is corrected to point to the appropriate node after the split
2981 * Before splitting this tries to make some room in the node by pushing
2982 * left and right, if either one works, it returns right away.
2984 * returns 0 on success and < 0 on failure
2986 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
2987 struct btrfs_root
*root
,
2988 struct btrfs_path
*path
, int level
)
2990 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2991 struct extent_buffer
*c
;
2992 struct extent_buffer
*split
;
2993 struct btrfs_disk_key disk_key
;
2998 c
= path
->nodes
[level
];
2999 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3000 if (c
== root
->node
) {
3002 * trying to split the root, lets make a new one
3004 * tree mod log: We don't log_removal old root in
3005 * insert_new_root, because that root buffer will be kept as a
3006 * normal node. We are going to log removal of half of the
3007 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3008 * holding a tree lock on the buffer, which is why we cannot
3009 * race with other tree_mod_log users.
3011 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3015 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3016 c
= path
->nodes
[level
];
3017 if (!ret
&& btrfs_header_nritems(c
) <
3018 BTRFS_NODEPTRS_PER_BLOCK(fs_info
) - 3)
3024 c_nritems
= btrfs_header_nritems(c
);
3025 mid
= (c_nritems
+ 1) / 2;
3026 btrfs_node_key(c
, &disk_key
, mid
);
3028 split
= btrfs_alloc_tree_block(trans
, root
, 0, btrfs_root_id(root
),
3029 &disk_key
, level
, c
->start
, 0,
3030 0, BTRFS_NESTING_SPLIT
);
3032 return PTR_ERR(split
);
3034 root_add_used_bytes(root
);
3035 ASSERT(btrfs_header_level(c
) == level
);
3037 ret
= btrfs_tree_mod_log_eb_copy(split
, c
, 0, mid
, c_nritems
- mid
);
3039 btrfs_tree_unlock(split
);
3040 free_extent_buffer(split
);
3041 btrfs_abort_transaction(trans
, ret
);
3044 copy_extent_buffer(split
, c
,
3045 btrfs_node_key_ptr_offset(split
, 0),
3046 btrfs_node_key_ptr_offset(c
, mid
),
3047 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3048 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3049 btrfs_set_header_nritems(c
, mid
);
3051 btrfs_mark_buffer_dirty(trans
, c
);
3052 btrfs_mark_buffer_dirty(trans
, split
);
3054 ret
= insert_ptr(trans
, path
, &disk_key
, split
->start
,
3055 path
->slots
[level
+ 1] + 1, level
+ 1);
3057 btrfs_tree_unlock(split
);
3058 free_extent_buffer(split
);
3062 if (path
->slots
[level
] >= mid
) {
3063 path
->slots
[level
] -= mid
;
3064 btrfs_tree_unlock(c
);
3065 free_extent_buffer(c
);
3066 path
->nodes
[level
] = split
;
3067 path
->slots
[level
+ 1] += 1;
3069 btrfs_tree_unlock(split
);
3070 free_extent_buffer(split
);
3076 * how many bytes are required to store the items in a leaf. start
3077 * and nr indicate which items in the leaf to check. This totals up the
3078 * space used both by the item structs and the item data
3080 static int leaf_space_used(const struct extent_buffer
*l
, int start
, int nr
)
3083 int nritems
= btrfs_header_nritems(l
);
3084 int end
= min(nritems
, start
+ nr
) - 1;
3088 data_len
= btrfs_item_offset(l
, start
) + btrfs_item_size(l
, start
);
3089 data_len
= data_len
- btrfs_item_offset(l
, end
);
3090 data_len
+= sizeof(struct btrfs_item
) * nr
;
3091 WARN_ON(data_len
< 0);
3096 * The space between the end of the leaf items and
3097 * the start of the leaf data. IOW, how much room
3098 * the leaf has left for both items and data
3100 int btrfs_leaf_free_space(const struct extent_buffer
*leaf
)
3102 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3103 int nritems
= btrfs_header_nritems(leaf
);
3106 ret
= BTRFS_LEAF_DATA_SIZE(fs_info
) - leaf_space_used(leaf
, 0, nritems
);
3109 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3111 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info
),
3112 leaf_space_used(leaf
, 0, nritems
), nritems
);
3118 * min slot controls the lowest index we're willing to push to the
3119 * right. We'll push up to and including min_slot, but no lower
3121 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3122 struct btrfs_path
*path
,
3123 int data_size
, int empty
,
3124 struct extent_buffer
*right
,
3125 int free_space
, u32 left_nritems
,
3128 struct btrfs_fs_info
*fs_info
= right
->fs_info
;
3129 struct extent_buffer
*left
= path
->nodes
[0];
3130 struct extent_buffer
*upper
= path
->nodes
[1];
3131 struct btrfs_map_token token
;
3132 struct btrfs_disk_key disk_key
;
3145 nr
= max_t(u32
, 1, min_slot
);
3147 if (path
->slots
[0] >= left_nritems
)
3148 push_space
+= data_size
;
3150 slot
= path
->slots
[1];
3151 i
= left_nritems
- 1;
3153 if (!empty
&& push_items
> 0) {
3154 if (path
->slots
[0] > i
)
3156 if (path
->slots
[0] == i
) {
3157 int space
= btrfs_leaf_free_space(left
);
3159 if (space
+ push_space
* 2 > free_space
)
3164 if (path
->slots
[0] == i
)
3165 push_space
+= data_size
;
3167 this_item_size
= btrfs_item_size(left
, i
);
3168 if (this_item_size
+ sizeof(struct btrfs_item
) +
3169 push_space
> free_space
)
3173 push_space
+= this_item_size
+ sizeof(struct btrfs_item
);
3179 if (push_items
== 0)
3182 WARN_ON(!empty
&& push_items
== left_nritems
);
3184 /* push left to right */
3185 right_nritems
= btrfs_header_nritems(right
);
3187 push_space
= btrfs_item_data_end(left
, left_nritems
- push_items
);
3188 push_space
-= leaf_data_end(left
);
3190 /* make room in the right data area */
3191 data_end
= leaf_data_end(right
);
3192 memmove_leaf_data(right
, data_end
- push_space
, data_end
,
3193 BTRFS_LEAF_DATA_SIZE(fs_info
) - data_end
);
3195 /* copy from the left data area */
3196 copy_leaf_data(right
, left
, BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3197 leaf_data_end(left
), push_space
);
3199 memmove_leaf_items(right
, push_items
, 0, right_nritems
);
3201 /* copy the items from left to right */
3202 copy_leaf_items(right
, left
, 0, left_nritems
- push_items
, push_items
);
3204 /* update the item pointers */
3205 btrfs_init_map_token(&token
, right
);
3206 right_nritems
+= push_items
;
3207 btrfs_set_header_nritems(right
, right_nritems
);
3208 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3209 for (i
= 0; i
< right_nritems
; i
++) {
3210 push_space
-= btrfs_token_item_size(&token
, i
);
3211 btrfs_set_token_item_offset(&token
, i
, push_space
);
3214 left_nritems
-= push_items
;
3215 btrfs_set_header_nritems(left
, left_nritems
);
3218 btrfs_mark_buffer_dirty(trans
, left
);
3220 btrfs_clear_buffer_dirty(trans
, left
);
3222 btrfs_mark_buffer_dirty(trans
, right
);
3224 btrfs_item_key(right
, &disk_key
, 0);
3225 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3226 btrfs_mark_buffer_dirty(trans
, upper
);
3228 /* then fixup the leaf pointer in the path */
3229 if (path
->slots
[0] >= left_nritems
) {
3230 path
->slots
[0] -= left_nritems
;
3231 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3232 btrfs_clear_buffer_dirty(trans
, path
->nodes
[0]);
3233 btrfs_tree_unlock(path
->nodes
[0]);
3234 free_extent_buffer(path
->nodes
[0]);
3235 path
->nodes
[0] = right
;
3236 path
->slots
[1] += 1;
3238 btrfs_tree_unlock(right
);
3239 free_extent_buffer(right
);
3244 btrfs_tree_unlock(right
);
3245 free_extent_buffer(right
);
3250 * push some data in the path leaf to the right, trying to free up at
3251 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3253 * returns 1 if the push failed because the other node didn't have enough
3254 * room, 0 if everything worked out and < 0 if there were major errors.
3256 * this will push starting from min_slot to the end of the leaf. It won't
3257 * push any slot lower than min_slot
3259 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3260 *root
, struct btrfs_path
*path
,
3261 int min_data_size
, int data_size
,
3262 int empty
, u32 min_slot
)
3264 struct extent_buffer
*left
= path
->nodes
[0];
3265 struct extent_buffer
*right
;
3266 struct extent_buffer
*upper
;
3272 if (!path
->nodes
[1])
3275 slot
= path
->slots
[1];
3276 upper
= path
->nodes
[1];
3277 if (slot
>= btrfs_header_nritems(upper
) - 1)
3280 btrfs_assert_tree_write_locked(path
->nodes
[1]);
3282 right
= btrfs_read_node_slot(upper
, slot
+ 1);
3284 return PTR_ERR(right
);
3286 btrfs_tree_lock_nested(right
, BTRFS_NESTING_RIGHT
);
3288 free_space
= btrfs_leaf_free_space(right
);
3289 if (free_space
< data_size
)
3292 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3293 slot
+ 1, &right
, BTRFS_NESTING_RIGHT_COW
);
3297 left_nritems
= btrfs_header_nritems(left
);
3298 if (left_nritems
== 0)
3301 if (check_sibling_keys(left
, right
)) {
3303 btrfs_abort_transaction(trans
, ret
);
3304 btrfs_tree_unlock(right
);
3305 free_extent_buffer(right
);
3308 if (path
->slots
[0] == left_nritems
&& !empty
) {
3309 /* Key greater than all keys in the leaf, right neighbor has
3310 * enough room for it and we're not emptying our leaf to delete
3311 * it, therefore use right neighbor to insert the new item and
3312 * no need to touch/dirty our left leaf. */
3313 btrfs_tree_unlock(left
);
3314 free_extent_buffer(left
);
3315 path
->nodes
[0] = right
;
3321 return __push_leaf_right(trans
, path
, min_data_size
, empty
, right
,
3322 free_space
, left_nritems
, min_slot
);
3324 btrfs_tree_unlock(right
);
3325 free_extent_buffer(right
);
3330 * push some data in the path leaf to the left, trying to free up at
3331 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3333 * max_slot can put a limit on how far into the leaf we'll push items. The
3334 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3337 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3338 struct btrfs_path
*path
, int data_size
,
3339 int empty
, struct extent_buffer
*left
,
3340 int free_space
, u32 right_nritems
,
3343 struct btrfs_fs_info
*fs_info
= left
->fs_info
;
3344 struct btrfs_disk_key disk_key
;
3345 struct extent_buffer
*right
= path
->nodes
[0];
3349 u32 old_left_nritems
;
3353 u32 old_left_item_size
;
3354 struct btrfs_map_token token
;
3357 nr
= min(right_nritems
, max_slot
);
3359 nr
= min(right_nritems
- 1, max_slot
);
3361 for (i
= 0; i
< nr
; i
++) {
3362 if (!empty
&& push_items
> 0) {
3363 if (path
->slots
[0] < i
)
3365 if (path
->slots
[0] == i
) {
3366 int space
= btrfs_leaf_free_space(right
);
3368 if (space
+ push_space
* 2 > free_space
)
3373 if (path
->slots
[0] == i
)
3374 push_space
+= data_size
;
3376 this_item_size
= btrfs_item_size(right
, i
);
3377 if (this_item_size
+ sizeof(struct btrfs_item
) + push_space
>
3382 push_space
+= this_item_size
+ sizeof(struct btrfs_item
);
3385 if (push_items
== 0) {
3389 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3391 /* push data from right to left */
3392 copy_leaf_items(left
, right
, btrfs_header_nritems(left
), 0, push_items
);
3394 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
) -
3395 btrfs_item_offset(right
, push_items
- 1);
3397 copy_leaf_data(left
, right
, leaf_data_end(left
) - push_space
,
3398 btrfs_item_offset(right
, push_items
- 1), push_space
);
3399 old_left_nritems
= btrfs_header_nritems(left
);
3400 BUG_ON(old_left_nritems
<= 0);
3402 btrfs_init_map_token(&token
, left
);
3403 old_left_item_size
= btrfs_item_offset(left
, old_left_nritems
- 1);
3404 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3407 ioff
= btrfs_token_item_offset(&token
, i
);
3408 btrfs_set_token_item_offset(&token
, i
,
3409 ioff
- (BTRFS_LEAF_DATA_SIZE(fs_info
) - old_left_item_size
));
3411 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3413 /* fixup right node */
3414 if (push_items
> right_nritems
)
3415 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3418 if (push_items
< right_nritems
) {
3419 push_space
= btrfs_item_offset(right
, push_items
- 1) -
3420 leaf_data_end(right
);
3421 memmove_leaf_data(right
,
3422 BTRFS_LEAF_DATA_SIZE(fs_info
) - push_space
,
3423 leaf_data_end(right
), push_space
);
3425 memmove_leaf_items(right
, 0, push_items
,
3426 btrfs_header_nritems(right
) - push_items
);
3429 btrfs_init_map_token(&token
, right
);
3430 right_nritems
-= push_items
;
3431 btrfs_set_header_nritems(right
, right_nritems
);
3432 push_space
= BTRFS_LEAF_DATA_SIZE(fs_info
);
3433 for (i
= 0; i
< right_nritems
; i
++) {
3434 push_space
= push_space
- btrfs_token_item_size(&token
, i
);
3435 btrfs_set_token_item_offset(&token
, i
, push_space
);
3438 btrfs_mark_buffer_dirty(trans
, left
);
3440 btrfs_mark_buffer_dirty(trans
, right
);
3442 btrfs_clear_buffer_dirty(trans
, right
);
3444 btrfs_item_key(right
, &disk_key
, 0);
3445 fixup_low_keys(trans
, path
, &disk_key
, 1);
3447 /* then fixup the leaf pointer in the path */
3448 if (path
->slots
[0] < push_items
) {
3449 path
->slots
[0] += old_left_nritems
;
3450 btrfs_tree_unlock(path
->nodes
[0]);
3451 free_extent_buffer(path
->nodes
[0]);
3452 path
->nodes
[0] = left
;
3453 path
->slots
[1] -= 1;
3455 btrfs_tree_unlock(left
);
3456 free_extent_buffer(left
);
3457 path
->slots
[0] -= push_items
;
3459 BUG_ON(path
->slots
[0] < 0);
3462 btrfs_tree_unlock(left
);
3463 free_extent_buffer(left
);
3468 * push some data in the path leaf to the left, trying to free up at
3469 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3471 * max_slot can put a limit on how far into the leaf we'll push items. The
3472 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3475 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3476 *root
, struct btrfs_path
*path
, int min_data_size
,
3477 int data_size
, int empty
, u32 max_slot
)
3479 struct extent_buffer
*right
= path
->nodes
[0];
3480 struct extent_buffer
*left
;
3486 slot
= path
->slots
[1];
3489 if (!path
->nodes
[1])
3492 right_nritems
= btrfs_header_nritems(right
);
3493 if (right_nritems
== 0)
3496 btrfs_assert_tree_write_locked(path
->nodes
[1]);
3498 left
= btrfs_read_node_slot(path
->nodes
[1], slot
- 1);
3500 return PTR_ERR(left
);
3502 btrfs_tree_lock_nested(left
, BTRFS_NESTING_LEFT
);
3504 free_space
= btrfs_leaf_free_space(left
);
3505 if (free_space
< data_size
) {
3510 ret
= btrfs_cow_block(trans
, root
, left
,
3511 path
->nodes
[1], slot
- 1, &left
,
3512 BTRFS_NESTING_LEFT_COW
);
3514 /* we hit -ENOSPC, but it isn't fatal here */
3520 if (check_sibling_keys(left
, right
)) {
3522 btrfs_abort_transaction(trans
, ret
);
3525 return __push_leaf_left(trans
, path
, min_data_size
, empty
, left
,
3526 free_space
, right_nritems
, max_slot
);
3528 btrfs_tree_unlock(left
);
3529 free_extent_buffer(left
);
3534 * split the path's leaf in two, making sure there is at least data_size
3535 * available for the resulting leaf level of the path.
3537 static noinline
int copy_for_split(struct btrfs_trans_handle
*trans
,
3538 struct btrfs_path
*path
,
3539 struct extent_buffer
*l
,
3540 struct extent_buffer
*right
,
3541 int slot
, int mid
, int nritems
)
3543 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3548 struct btrfs_disk_key disk_key
;
3549 struct btrfs_map_token token
;
3551 nritems
= nritems
- mid
;
3552 btrfs_set_header_nritems(right
, nritems
);
3553 data_copy_size
= btrfs_item_data_end(l
, mid
) - leaf_data_end(l
);
3555 copy_leaf_items(right
, l
, 0, mid
, nritems
);
3557 copy_leaf_data(right
, l
, BTRFS_LEAF_DATA_SIZE(fs_info
) - data_copy_size
,
3558 leaf_data_end(l
), data_copy_size
);
3560 rt_data_off
= BTRFS_LEAF_DATA_SIZE(fs_info
) - btrfs_item_data_end(l
, mid
);
3562 btrfs_init_map_token(&token
, right
);
3563 for (i
= 0; i
< nritems
; i
++) {
3566 ioff
= btrfs_token_item_offset(&token
, i
);
3567 btrfs_set_token_item_offset(&token
, i
, ioff
+ rt_data_off
);
3570 btrfs_set_header_nritems(l
, mid
);
3571 btrfs_item_key(right
, &disk_key
, 0);
3572 ret
= insert_ptr(trans
, path
, &disk_key
, right
->start
, path
->slots
[1] + 1, 1);
3576 btrfs_mark_buffer_dirty(trans
, right
);
3577 btrfs_mark_buffer_dirty(trans
, l
);
3578 BUG_ON(path
->slots
[0] != slot
);
3581 btrfs_tree_unlock(path
->nodes
[0]);
3582 free_extent_buffer(path
->nodes
[0]);
3583 path
->nodes
[0] = right
;
3584 path
->slots
[0] -= mid
;
3585 path
->slots
[1] += 1;
3587 btrfs_tree_unlock(right
);
3588 free_extent_buffer(right
);
3591 BUG_ON(path
->slots
[0] < 0);
3597 * double splits happen when we need to insert a big item in the middle
3598 * of a leaf. A double split can leave us with 3 mostly empty leaves:
3599 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3602 * We avoid this by trying to push the items on either side of our target
3603 * into the adjacent leaves. If all goes well we can avoid the double split
3606 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
3607 struct btrfs_root
*root
,
3608 struct btrfs_path
*path
,
3615 int space_needed
= data_size
;
3617 slot
= path
->slots
[0];
3618 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
3619 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
3622 * try to push all the items after our slot into the
3625 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
3632 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3634 * our goal is to get our slot at the start or end of a leaf. If
3635 * we've done so we're done
3637 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
3640 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
3643 /* try to push all the items before our slot into the next leaf */
3644 slot
= path
->slots
[0];
3645 space_needed
= data_size
;
3647 space_needed
-= btrfs_leaf_free_space(path
->nodes
[0]);
3648 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
3661 * split the path's leaf in two, making sure there is at least data_size
3662 * available for the resulting leaf level of the path.
3664 * returns 0 if all went well and < 0 on failure.
3666 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
3667 struct btrfs_root
*root
,
3668 const struct btrfs_key
*ins_key
,
3669 struct btrfs_path
*path
, int data_size
,
3672 struct btrfs_disk_key disk_key
;
3673 struct extent_buffer
*l
;
3677 struct extent_buffer
*right
;
3678 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3682 int num_doubles
= 0;
3683 int tried_avoid_double
= 0;
3686 slot
= path
->slots
[0];
3687 if (extend
&& data_size
+ btrfs_item_size(l
, slot
) +
3688 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(fs_info
))
3691 /* first try to make some room by pushing left and right */
3692 if (data_size
&& path
->nodes
[1]) {
3693 int space_needed
= data_size
;
3695 if (slot
< btrfs_header_nritems(l
))
3696 space_needed
-= btrfs_leaf_free_space(l
);
3698 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
3699 space_needed
, 0, 0);
3703 space_needed
= data_size
;
3705 space_needed
-= btrfs_leaf_free_space(l
);
3706 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
3707 space_needed
, 0, (u32
)-1);
3713 /* did the pushes work? */
3714 if (btrfs_leaf_free_space(l
) >= data_size
)
3718 if (!path
->nodes
[1]) {
3719 ret
= insert_new_root(trans
, root
, path
, 1);
3726 slot
= path
->slots
[0];
3727 nritems
= btrfs_header_nritems(l
);
3728 mid
= (nritems
+ 1) / 2;
3732 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
3733 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
3734 if (slot
>= nritems
) {
3738 if (mid
!= nritems
&&
3739 leaf_space_used(l
, mid
, nritems
- mid
) +
3740 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
3741 if (data_size
&& !tried_avoid_double
)
3742 goto push_for_double
;
3748 if (leaf_space_used(l
, 0, mid
) + data_size
>
3749 BTRFS_LEAF_DATA_SIZE(fs_info
)) {
3750 if (!extend
&& data_size
&& slot
== 0) {
3752 } else if ((extend
|| !data_size
) && slot
== 0) {
3756 if (mid
!= nritems
&&
3757 leaf_space_used(l
, mid
, nritems
- mid
) +
3758 data_size
> BTRFS_LEAF_DATA_SIZE(fs_info
)) {
3759 if (data_size
&& !tried_avoid_double
)
3760 goto push_for_double
;
3768 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
3770 btrfs_item_key(l
, &disk_key
, mid
);
3773 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3774 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3775 * subclasses, which is 8 at the time of this patch, and we've maxed it
3776 * out. In the future we could add a
3777 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3778 * use BTRFS_NESTING_NEW_ROOT.
3780 right
= btrfs_alloc_tree_block(trans
, root
, 0, btrfs_root_id(root
),
3781 &disk_key
, 0, l
->start
, 0, 0,
3782 num_doubles
? BTRFS_NESTING_NEW_ROOT
:
3783 BTRFS_NESTING_SPLIT
);
3785 return PTR_ERR(right
);
3787 root_add_used_bytes(root
);
3791 btrfs_set_header_nritems(right
, 0);
3792 ret
= insert_ptr(trans
, path
, &disk_key
,
3793 right
->start
, path
->slots
[1] + 1, 1);
3795 btrfs_tree_unlock(right
);
3796 free_extent_buffer(right
);
3799 btrfs_tree_unlock(path
->nodes
[0]);
3800 free_extent_buffer(path
->nodes
[0]);
3801 path
->nodes
[0] = right
;
3803 path
->slots
[1] += 1;
3805 btrfs_set_header_nritems(right
, 0);
3806 ret
= insert_ptr(trans
, path
, &disk_key
,
3807 right
->start
, path
->slots
[1], 1);
3809 btrfs_tree_unlock(right
);
3810 free_extent_buffer(right
);
3813 btrfs_tree_unlock(path
->nodes
[0]);
3814 free_extent_buffer(path
->nodes
[0]);
3815 path
->nodes
[0] = right
;
3817 if (path
->slots
[1] == 0)
3818 fixup_low_keys(trans
, path
, &disk_key
, 1);
3821 * We create a new leaf 'right' for the required ins_len and
3822 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3823 * the content of ins_len to 'right'.
3828 ret
= copy_for_split(trans
, path
, l
, right
, slot
, mid
, nritems
);
3830 btrfs_tree_unlock(right
);
3831 free_extent_buffer(right
);
3836 BUG_ON(num_doubles
!= 0);
3844 push_for_double_split(trans
, root
, path
, data_size
);
3845 tried_avoid_double
= 1;
3846 if (btrfs_leaf_free_space(path
->nodes
[0]) >= data_size
)
3851 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
3852 struct btrfs_root
*root
,
3853 struct btrfs_path
*path
, int ins_len
)
3855 struct btrfs_key key
;
3856 struct extent_buffer
*leaf
;
3857 struct btrfs_file_extent_item
*fi
;
3862 leaf
= path
->nodes
[0];
3863 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3865 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
3866 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
3868 if (btrfs_leaf_free_space(leaf
) >= ins_len
)
3871 item_size
= btrfs_item_size(leaf
, path
->slots
[0]);
3872 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3873 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3874 struct btrfs_file_extent_item
);
3875 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
3877 btrfs_release_path(path
);
3879 path
->keep_locks
= 1;
3880 path
->search_for_split
= 1;
3881 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
3882 path
->search_for_split
= 0;
3889 leaf
= path
->nodes
[0];
3890 /* if our item isn't there, return now */
3891 if (item_size
!= btrfs_item_size(leaf
, path
->slots
[0]))
3894 /* the leaf has changed, it now has room. return now */
3895 if (btrfs_leaf_free_space(path
->nodes
[0]) >= ins_len
)
3898 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3899 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3900 struct btrfs_file_extent_item
);
3901 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
3905 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
3909 path
->keep_locks
= 0;
3910 btrfs_unlock_up_safe(path
, 1);
3913 path
->keep_locks
= 0;
3917 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
3918 struct btrfs_path
*path
,
3919 const struct btrfs_key
*new_key
,
3920 unsigned long split_offset
)
3922 struct extent_buffer
*leaf
;
3923 int orig_slot
, slot
;
3928 struct btrfs_disk_key disk_key
;
3930 leaf
= path
->nodes
[0];
3932 * Shouldn't happen because the caller must have previously called
3933 * setup_leaf_for_split() to make room for the new item in the leaf.
3935 if (WARN_ON(btrfs_leaf_free_space(leaf
) < sizeof(struct btrfs_item
)))
3938 orig_slot
= path
->slots
[0];
3939 orig_offset
= btrfs_item_offset(leaf
, path
->slots
[0]);
3940 item_size
= btrfs_item_size(leaf
, path
->slots
[0]);
3942 buf
= kmalloc(item_size
, GFP_NOFS
);
3946 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
3947 path
->slots
[0]), item_size
);
3949 slot
= path
->slots
[0] + 1;
3950 nritems
= btrfs_header_nritems(leaf
);
3951 if (slot
!= nritems
) {
3952 /* shift the items */
3953 memmove_leaf_items(leaf
, slot
+ 1, slot
, nritems
- slot
);
3956 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3957 btrfs_set_item_key(leaf
, &disk_key
, slot
);
3959 btrfs_set_item_offset(leaf
, slot
, orig_offset
);
3960 btrfs_set_item_size(leaf
, slot
, item_size
- split_offset
);
3962 btrfs_set_item_offset(leaf
, orig_slot
,
3963 orig_offset
+ item_size
- split_offset
);
3964 btrfs_set_item_size(leaf
, orig_slot
, split_offset
);
3966 btrfs_set_header_nritems(leaf
, nritems
+ 1);
3968 /* write the data for the start of the original item */
3969 write_extent_buffer(leaf
, buf
,
3970 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
3973 /* write the data for the new item */
3974 write_extent_buffer(leaf
, buf
+ split_offset
,
3975 btrfs_item_ptr_offset(leaf
, slot
),
3976 item_size
- split_offset
);
3977 btrfs_mark_buffer_dirty(trans
, leaf
);
3979 BUG_ON(btrfs_leaf_free_space(leaf
) < 0);
3985 * This function splits a single item into two items,
3986 * giving 'new_key' to the new item and splitting the
3987 * old one at split_offset (from the start of the item).
3989 * The path may be released by this operation. After
3990 * the split, the path is pointing to the old item. The
3991 * new item is going to be in the same node as the old one.
3993 * Note, the item being split must be smaller enough to live alone on
3994 * a tree block with room for one extra struct btrfs_item
3996 * This allows us to split the item in place, keeping a lock on the
3997 * leaf the entire time.
3999 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4000 struct btrfs_root
*root
,
4001 struct btrfs_path
*path
,
4002 const struct btrfs_key
*new_key
,
4003 unsigned long split_offset
)
4006 ret
= setup_leaf_for_split(trans
, root
, path
,
4007 sizeof(struct btrfs_item
));
4011 ret
= split_item(trans
, path
, new_key
, split_offset
);
4016 * make the item pointed to by the path smaller. new_size indicates
4017 * how small to make it, and from_end tells us if we just chop bytes
4018 * off the end of the item or if we shift the item to chop bytes off
4021 void btrfs_truncate_item(struct btrfs_trans_handle
*trans
,
4022 const struct btrfs_path
*path
, u32 new_size
, int from_end
)
4025 struct extent_buffer
*leaf
;
4027 unsigned int data_end
;
4028 unsigned int old_data_start
;
4029 unsigned int old_size
;
4030 unsigned int size_diff
;
4032 struct btrfs_map_token token
;
4034 leaf
= path
->nodes
[0];
4035 slot
= path
->slots
[0];
4037 old_size
= btrfs_item_size(leaf
, slot
);
4038 if (old_size
== new_size
)
4041 nritems
= btrfs_header_nritems(leaf
);
4042 data_end
= leaf_data_end(leaf
);
4044 old_data_start
= btrfs_item_offset(leaf
, slot
);
4046 size_diff
= old_size
- new_size
;
4049 BUG_ON(slot
>= nritems
);
4052 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4054 /* first correct the data pointers */
4055 btrfs_init_map_token(&token
, leaf
);
4056 for (i
= slot
; i
< nritems
; i
++) {
4059 ioff
= btrfs_token_item_offset(&token
, i
);
4060 btrfs_set_token_item_offset(&token
, i
, ioff
+ size_diff
);
4063 /* shift the data */
4065 memmove_leaf_data(leaf
, data_end
+ size_diff
, data_end
,
4066 old_data_start
+ new_size
- data_end
);
4068 struct btrfs_disk_key disk_key
;
4071 btrfs_item_key(leaf
, &disk_key
, slot
);
4073 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4075 struct btrfs_file_extent_item
*fi
;
4077 fi
= btrfs_item_ptr(leaf
, slot
,
4078 struct btrfs_file_extent_item
);
4079 fi
= (struct btrfs_file_extent_item
*)(
4080 (unsigned long)fi
- size_diff
);
4082 if (btrfs_file_extent_type(leaf
, fi
) ==
4083 BTRFS_FILE_EXTENT_INLINE
) {
4084 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4085 memmove_extent_buffer(leaf
, ptr
,
4087 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4091 memmove_leaf_data(leaf
, data_end
+ size_diff
, data_end
,
4092 old_data_start
- data_end
);
4094 offset
= btrfs_disk_key_offset(&disk_key
);
4095 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4096 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4098 fixup_low_keys(trans
, path
, &disk_key
, 1);
4101 btrfs_set_item_size(leaf
, slot
, new_size
);
4102 btrfs_mark_buffer_dirty(trans
, leaf
);
4104 if (btrfs_leaf_free_space(leaf
) < 0) {
4105 btrfs_print_leaf(leaf
);
4111 * make the item pointed to by the path bigger, data_size is the added size.
4113 void btrfs_extend_item(struct btrfs_trans_handle
*trans
,
4114 const struct btrfs_path
*path
, u32 data_size
)
4117 struct extent_buffer
*leaf
;
4119 unsigned int data_end
;
4120 unsigned int old_data
;
4121 unsigned int old_size
;
4123 struct btrfs_map_token token
;
4125 leaf
= path
->nodes
[0];
4127 nritems
= btrfs_header_nritems(leaf
);
4128 data_end
= leaf_data_end(leaf
);
4130 if (btrfs_leaf_free_space(leaf
) < data_size
) {
4131 btrfs_print_leaf(leaf
);
4134 slot
= path
->slots
[0];
4135 old_data
= btrfs_item_data_end(leaf
, slot
);
4138 if (slot
>= nritems
) {
4139 btrfs_print_leaf(leaf
);
4140 btrfs_crit(leaf
->fs_info
, "slot %d too large, nritems %d",
4146 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4148 /* first correct the data pointers */
4149 btrfs_init_map_token(&token
, leaf
);
4150 for (i
= slot
; i
< nritems
; i
++) {
4153 ioff
= btrfs_token_item_offset(&token
, i
);
4154 btrfs_set_token_item_offset(&token
, i
, ioff
- data_size
);
4157 /* shift the data */
4158 memmove_leaf_data(leaf
, data_end
- data_size
, data_end
,
4159 old_data
- data_end
);
4161 data_end
= old_data
;
4162 old_size
= btrfs_item_size(leaf
, slot
);
4163 btrfs_set_item_size(leaf
, slot
, old_size
+ data_size
);
4164 btrfs_mark_buffer_dirty(trans
, leaf
);
4166 if (btrfs_leaf_free_space(leaf
) < 0) {
4167 btrfs_print_leaf(leaf
);
4173 * Make space in the node before inserting one or more items.
4175 * @trans: transaction handle
4176 * @root: root we are inserting items to
4177 * @path: points to the leaf/slot where we are going to insert new items
4178 * @batch: information about the batch of items to insert
4180 * Main purpose is to save stack depth by doing the bulk of the work in a
4181 * function that doesn't call btrfs_search_slot
4183 static void setup_items_for_insert(struct btrfs_trans_handle
*trans
,
4184 struct btrfs_root
*root
, struct btrfs_path
*path
,
4185 const struct btrfs_item_batch
*batch
)
4187 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4190 unsigned int data_end
;
4191 struct btrfs_disk_key disk_key
;
4192 struct extent_buffer
*leaf
;
4194 struct btrfs_map_token token
;
4198 * Before anything else, update keys in the parent and other ancestors
4199 * if needed, then release the write locks on them, so that other tasks
4200 * can use them while we modify the leaf.
4202 if (path
->slots
[0] == 0) {
4203 btrfs_cpu_key_to_disk(&disk_key
, &batch
->keys
[0]);
4204 fixup_low_keys(trans
, path
, &disk_key
, 1);
4206 btrfs_unlock_up_safe(path
, 1);
4208 leaf
= path
->nodes
[0];
4209 slot
= path
->slots
[0];
4211 nritems
= btrfs_header_nritems(leaf
);
4212 data_end
= leaf_data_end(leaf
);
4213 total_size
= batch
->total_data_size
+ (batch
->nr
* sizeof(struct btrfs_item
));
4215 if (btrfs_leaf_free_space(leaf
) < total_size
) {
4216 btrfs_print_leaf(leaf
);
4217 btrfs_crit(fs_info
, "not enough freespace need %u have %d",
4218 total_size
, btrfs_leaf_free_space(leaf
));
4222 btrfs_init_map_token(&token
, leaf
);
4223 if (slot
!= nritems
) {
4224 unsigned int old_data
= btrfs_item_data_end(leaf
, slot
);
4226 if (old_data
< data_end
) {
4227 btrfs_print_leaf(leaf
);
4229 "item at slot %d with data offset %u beyond data end of leaf %u",
4230 slot
, old_data
, data_end
);
4234 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4236 /* first correct the data pointers */
4237 for (i
= slot
; i
< nritems
; i
++) {
4240 ioff
= btrfs_token_item_offset(&token
, i
);
4241 btrfs_set_token_item_offset(&token
, i
,
4242 ioff
- batch
->total_data_size
);
4244 /* shift the items */
4245 memmove_leaf_items(leaf
, slot
+ batch
->nr
, slot
, nritems
- slot
);
4247 /* shift the data */
4248 memmove_leaf_data(leaf
, data_end
- batch
->total_data_size
,
4249 data_end
, old_data
- data_end
);
4250 data_end
= old_data
;
4253 /* setup the item for the new data */
4254 for (i
= 0; i
< batch
->nr
; i
++) {
4255 btrfs_cpu_key_to_disk(&disk_key
, &batch
->keys
[i
]);
4256 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4257 data_end
-= batch
->data_sizes
[i
];
4258 btrfs_set_token_item_offset(&token
, slot
+ i
, data_end
);
4259 btrfs_set_token_item_size(&token
, slot
+ i
, batch
->data_sizes
[i
]);
4262 btrfs_set_header_nritems(leaf
, nritems
+ batch
->nr
);
4263 btrfs_mark_buffer_dirty(trans
, leaf
);
4265 if (btrfs_leaf_free_space(leaf
) < 0) {
4266 btrfs_print_leaf(leaf
);
4272 * Insert a new item into a leaf.
4274 * @trans: Transaction handle.
4275 * @root: The root of the btree.
4276 * @path: A path pointing to the target leaf and slot.
4277 * @key: The key of the new item.
4278 * @data_size: The size of the data associated with the new key.
4280 void btrfs_setup_item_for_insert(struct btrfs_trans_handle
*trans
,
4281 struct btrfs_root
*root
,
4282 struct btrfs_path
*path
,
4283 const struct btrfs_key
*key
,
4286 struct btrfs_item_batch batch
;
4289 batch
.data_sizes
= &data_size
;
4290 batch
.total_data_size
= data_size
;
4293 setup_items_for_insert(trans
, root
, path
, &batch
);
4297 * Given a key and some data, insert items into the tree.
4298 * This does all the path init required, making room in the tree if needed.
4300 * Returns: 0 on success
4301 * -EEXIST if the first key already exists
4302 * < 0 on other errors
4304 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4305 struct btrfs_root
*root
,
4306 struct btrfs_path
*path
,
4307 const struct btrfs_item_batch
*batch
)
4313 total_size
= batch
->total_data_size
+ (batch
->nr
* sizeof(struct btrfs_item
));
4314 ret
= btrfs_search_slot(trans
, root
, &batch
->keys
[0], path
, total_size
, 1);
4320 slot
= path
->slots
[0];
4323 setup_items_for_insert(trans
, root
, path
, batch
);
4328 * Given a key and some data, insert an item into the tree.
4329 * This does all the path init required, making room in the tree if needed.
4331 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4332 const struct btrfs_key
*cpu_key
, void *data
,
4336 struct btrfs_path
*path
;
4337 struct extent_buffer
*leaf
;
4340 path
= btrfs_alloc_path();
4343 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4345 leaf
= path
->nodes
[0];
4346 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4347 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4348 btrfs_mark_buffer_dirty(trans
, leaf
);
4350 btrfs_free_path(path
);
4355 * This function duplicates an item, giving 'new_key' to the new item.
4356 * It guarantees both items live in the same tree leaf and the new item is
4357 * contiguous with the original item.
4359 * This allows us to split a file extent in place, keeping a lock on the leaf
4362 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4363 struct btrfs_root
*root
,
4364 struct btrfs_path
*path
,
4365 const struct btrfs_key
*new_key
)
4367 struct extent_buffer
*leaf
;
4371 leaf
= path
->nodes
[0];
4372 item_size
= btrfs_item_size(leaf
, path
->slots
[0]);
4373 ret
= setup_leaf_for_split(trans
, root
, path
,
4374 item_size
+ sizeof(struct btrfs_item
));
4379 btrfs_setup_item_for_insert(trans
, root
, path
, new_key
, item_size
);
4380 leaf
= path
->nodes
[0];
4381 memcpy_extent_buffer(leaf
,
4382 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4383 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4389 * delete the pointer from a given node.
4391 * the tree should have been previously balanced so the deletion does not
4394 * This is exported for use inside btrfs-progs, don't un-export it.
4396 int btrfs_del_ptr(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4397 struct btrfs_path
*path
, int level
, int slot
)
4399 struct extent_buffer
*parent
= path
->nodes
[level
];
4403 nritems
= btrfs_header_nritems(parent
);
4404 if (slot
!= nritems
- 1) {
4406 ret
= btrfs_tree_mod_log_insert_move(parent
, slot
,
4407 slot
+ 1, nritems
- slot
- 1);
4409 btrfs_abort_transaction(trans
, ret
);
4413 memmove_extent_buffer(parent
,
4414 btrfs_node_key_ptr_offset(parent
, slot
),
4415 btrfs_node_key_ptr_offset(parent
, slot
+ 1),
4416 sizeof(struct btrfs_key_ptr
) *
4417 (nritems
- slot
- 1));
4419 ret
= btrfs_tree_mod_log_insert_key(parent
, slot
,
4420 BTRFS_MOD_LOG_KEY_REMOVE
);
4422 btrfs_abort_transaction(trans
, ret
);
4428 btrfs_set_header_nritems(parent
, nritems
);
4429 if (nritems
== 0 && parent
== root
->node
) {
4430 BUG_ON(btrfs_header_level(root
->node
) != 1);
4431 /* just turn the root into a leaf and break */
4432 btrfs_set_header_level(root
->node
, 0);
4433 } else if (slot
== 0) {
4434 struct btrfs_disk_key disk_key
;
4436 btrfs_node_key(parent
, &disk_key
, 0);
4437 fixup_low_keys(trans
, path
, &disk_key
, level
+ 1);
4439 btrfs_mark_buffer_dirty(trans
, parent
);
4444 * a helper function to delete the leaf pointed to by path->slots[1] and
4447 * This deletes the pointer in path->nodes[1] and frees the leaf
4448 * block extent. zero is returned if it all worked out, < 0 otherwise.
4450 * The path must have already been setup for deleting the leaf, including
4451 * all the proper balancing. path->nodes[1] must be locked.
4453 static noinline
int btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4454 struct btrfs_root
*root
,
4455 struct btrfs_path
*path
,
4456 struct extent_buffer
*leaf
)
4460 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4461 ret
= btrfs_del_ptr(trans
, root
, path
, 1, path
->slots
[1]);
4466 * btrfs_free_extent is expensive, we want to make sure we
4467 * aren't holding any locks when we call it
4469 btrfs_unlock_up_safe(path
, 0);
4471 root_sub_used_bytes(root
);
4473 atomic_inc(&leaf
->refs
);
4474 ret
= btrfs_free_tree_block(trans
, btrfs_root_id(root
), leaf
, 0, 1);
4475 free_extent_buffer_stale(leaf
);
4477 btrfs_abort_transaction(trans
, ret
);
4482 * delete the item at the leaf level in path. If that empties
4483 * the leaf, remove it from the tree
4485 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4486 struct btrfs_path
*path
, int slot
, int nr
)
4488 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4489 struct extent_buffer
*leaf
;
4494 leaf
= path
->nodes
[0];
4495 nritems
= btrfs_header_nritems(leaf
);
4497 if (slot
+ nr
!= nritems
) {
4498 const u32 last_off
= btrfs_item_offset(leaf
, slot
+ nr
- 1);
4499 const int data_end
= leaf_data_end(leaf
);
4500 struct btrfs_map_token token
;
4504 for (i
= 0; i
< nr
; i
++)
4505 dsize
+= btrfs_item_size(leaf
, slot
+ i
);
4507 memmove_leaf_data(leaf
, data_end
+ dsize
, data_end
,
4508 last_off
- data_end
);
4510 btrfs_init_map_token(&token
, leaf
);
4511 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4514 ioff
= btrfs_token_item_offset(&token
, i
);
4515 btrfs_set_token_item_offset(&token
, i
, ioff
+ dsize
);
4518 memmove_leaf_items(leaf
, slot
, slot
+ nr
, nritems
- slot
- nr
);
4520 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4523 /* delete the leaf if we've emptied it */
4525 if (leaf
== root
->node
) {
4526 btrfs_set_header_level(leaf
, 0);
4528 btrfs_clear_buffer_dirty(trans
, leaf
);
4529 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
4534 int used
= leaf_space_used(leaf
, 0, nritems
);
4536 struct btrfs_disk_key disk_key
;
4538 btrfs_item_key(leaf
, &disk_key
, 0);
4539 fixup_low_keys(trans
, path
, &disk_key
, 1);
4543 * Try to delete the leaf if it is mostly empty. We do this by
4544 * trying to move all its items into its left and right neighbours.
4545 * If we can't move all the items, then we don't delete it - it's
4546 * not ideal, but future insertions might fill the leaf with more
4547 * items, or items from other leaves might be moved later into our
4548 * leaf due to deletions on those leaves.
4550 if (used
< BTRFS_LEAF_DATA_SIZE(fs_info
) / 3) {
4553 /* push_leaf_left fixes the path.
4554 * make sure the path still points to our leaf
4555 * for possible call to btrfs_del_ptr below
4557 slot
= path
->slots
[1];
4558 atomic_inc(&leaf
->refs
);
4560 * We want to be able to at least push one item to the
4561 * left neighbour leaf, and that's the first item.
4563 min_push_space
= sizeof(struct btrfs_item
) +
4564 btrfs_item_size(leaf
, 0);
4565 wret
= push_leaf_left(trans
, root
, path
, 0,
4566 min_push_space
, 1, (u32
)-1);
4567 if (wret
< 0 && wret
!= -ENOSPC
)
4570 if (path
->nodes
[0] == leaf
&&
4571 btrfs_header_nritems(leaf
)) {
4573 * If we were not able to push all items from our
4574 * leaf to its left neighbour, then attempt to
4575 * either push all the remaining items to the
4576 * right neighbour or none. There's no advantage
4577 * in pushing only some items, instead of all, as
4578 * it's pointless to end up with a leaf having
4579 * too few items while the neighbours can be full
4582 nritems
= btrfs_header_nritems(leaf
);
4583 min_push_space
= leaf_space_used(leaf
, 0, nritems
);
4584 wret
= push_leaf_right(trans
, root
, path
, 0,
4585 min_push_space
, 1, 0);
4586 if (wret
< 0 && wret
!= -ENOSPC
)
4590 if (btrfs_header_nritems(leaf
) == 0) {
4591 path
->slots
[1] = slot
;
4592 ret
= btrfs_del_leaf(trans
, root
, path
, leaf
);
4595 free_extent_buffer(leaf
);
4598 /* if we're still in the path, make sure
4599 * we're dirty. Otherwise, one of the
4600 * push_leaf functions must have already
4601 * dirtied this buffer
4603 if (path
->nodes
[0] == leaf
)
4604 btrfs_mark_buffer_dirty(trans
, leaf
);
4605 free_extent_buffer(leaf
);
4608 btrfs_mark_buffer_dirty(trans
, leaf
);
4615 * A helper function to walk down the tree starting at min_key, and looking
4616 * for nodes or leaves that are have a minimum transaction id.
4617 * This is used by the btree defrag code, and tree logging
4619 * This does not cow, but it does stuff the starting key it finds back
4620 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4621 * key and get a writable path.
4623 * This honors path->lowest_level to prevent descent past a given level
4626 * min_trans indicates the oldest transaction that you are interested
4627 * in walking through. Any nodes or leaves older than min_trans are
4628 * skipped over (without reading them).
4630 * returns zero if something useful was found, < 0 on error and 1 if there
4631 * was nothing in the tree that matched the search criteria.
4633 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
4634 struct btrfs_path
*path
,
4637 struct extent_buffer
*cur
;
4638 struct btrfs_key found_key
;
4644 int keep_locks
= path
->keep_locks
;
4646 ASSERT(!path
->nowait
);
4647 path
->keep_locks
= 1;
4649 cur
= btrfs_read_lock_root_node(root
);
4650 level
= btrfs_header_level(cur
);
4651 WARN_ON(path
->nodes
[level
]);
4652 path
->nodes
[level
] = cur
;
4653 path
->locks
[level
] = BTRFS_READ_LOCK
;
4655 if (btrfs_header_generation(cur
) < min_trans
) {
4660 nritems
= btrfs_header_nritems(cur
);
4661 level
= btrfs_header_level(cur
);
4662 sret
= btrfs_bin_search(cur
, 0, min_key
, &slot
);
4668 /* at the lowest level, we're done, setup the path and exit */
4669 if (level
== path
->lowest_level
) {
4670 if (slot
>= nritems
)
4673 path
->slots
[level
] = slot
;
4674 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
4677 if (sret
&& slot
> 0)
4680 * check this node pointer against the min_trans parameters.
4681 * If it is too old, skip to the next one.
4683 while (slot
< nritems
) {
4686 gen
= btrfs_node_ptr_generation(cur
, slot
);
4687 if (gen
< min_trans
) {
4695 * we didn't find a candidate key in this node, walk forward
4696 * and find another one
4698 if (slot
>= nritems
) {
4699 path
->slots
[level
] = slot
;
4700 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
4703 btrfs_release_path(path
);
4709 /* save our key for returning back */
4710 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
4711 path
->slots
[level
] = slot
;
4712 if (level
== path
->lowest_level
) {
4716 cur
= btrfs_read_node_slot(cur
, slot
);
4722 btrfs_tree_read_lock(cur
);
4724 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
4725 path
->nodes
[level
- 1] = cur
;
4726 unlock_up(path
, level
, 1, 0, NULL
);
4729 path
->keep_locks
= keep_locks
;
4731 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
4732 memcpy(min_key
, &found_key
, sizeof(found_key
));
4738 * this is similar to btrfs_next_leaf, but does not try to preserve
4739 * and fixup the path. It looks for and returns the next key in the
4740 * tree based on the current path and the min_trans parameters.
4742 * 0 is returned if another key is found, < 0 if there are any errors
4743 * and 1 is returned if there are no higher keys in the tree
4745 * path->keep_locks should be set to 1 on the search made before
4746 * calling this function.
4748 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
4749 struct btrfs_key
*key
, int level
, u64 min_trans
)
4752 struct extent_buffer
*c
;
4754 WARN_ON(!path
->keep_locks
&& !path
->skip_locking
);
4755 while (level
< BTRFS_MAX_LEVEL
) {
4756 if (!path
->nodes
[level
])
4759 slot
= path
->slots
[level
] + 1;
4760 c
= path
->nodes
[level
];
4762 if (slot
>= btrfs_header_nritems(c
)) {
4765 struct btrfs_key cur_key
;
4766 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
4767 !path
->nodes
[level
+ 1])
4770 if (path
->locks
[level
+ 1] || path
->skip_locking
) {
4775 slot
= btrfs_header_nritems(c
) - 1;
4777 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
4779 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
4781 orig_lowest
= path
->lowest_level
;
4782 btrfs_release_path(path
);
4783 path
->lowest_level
= level
;
4784 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
4786 path
->lowest_level
= orig_lowest
;
4790 c
= path
->nodes
[level
];
4791 slot
= path
->slots
[level
];
4798 btrfs_item_key_to_cpu(c
, key
, slot
);
4800 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
4802 if (gen
< min_trans
) {
4806 btrfs_node_key_to_cpu(c
, key
, slot
);
4813 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
4818 struct extent_buffer
*c
;
4819 struct extent_buffer
*next
;
4820 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4821 struct btrfs_key key
;
4822 bool need_commit_sem
= false;
4828 * The nowait semantics are used only for write paths, where we don't
4829 * use the tree mod log and sequence numbers.
4832 ASSERT(!path
->nowait
);
4834 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4838 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
4842 btrfs_release_path(path
);
4844 path
->keep_locks
= 1;
4847 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
4849 if (path
->need_commit_sem
) {
4850 path
->need_commit_sem
= 0;
4851 need_commit_sem
= true;
4853 if (!down_read_trylock(&fs_info
->commit_root_sem
)) {
4858 down_read(&fs_info
->commit_root_sem
);
4861 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4863 path
->keep_locks
= 0;
4868 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4870 * by releasing the path above we dropped all our locks. A balance
4871 * could have added more items next to the key that used to be
4872 * at the very end of the block. So, check again here and
4873 * advance the path if there are now more items available.
4875 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
4882 * So the above check misses one case:
4883 * - after releasing the path above, someone has removed the item that
4884 * used to be at the very end of the block, and balance between leafs
4885 * gets another one with bigger key.offset to replace it.
4887 * This one should be returned as well, or we can get leaf corruption
4888 * later(esp. in __btrfs_drop_extents()).
4890 * And a bit more explanation about this check,
4891 * with ret > 0, the key isn't found, the path points to the slot
4892 * where it should be inserted, so the path->slots[0] item must be the
4895 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
4900 while (level
< BTRFS_MAX_LEVEL
) {
4901 if (!path
->nodes
[level
]) {
4906 slot
= path
->slots
[level
] + 1;
4907 c
= path
->nodes
[level
];
4908 if (slot
>= btrfs_header_nritems(c
)) {
4910 if (level
== BTRFS_MAX_LEVEL
) {
4919 * Our current level is where we're going to start from, and to
4920 * make sure lockdep doesn't complain we need to drop our locks
4921 * and nodes from 0 to our current level.
4923 for (i
= 0; i
< level
; i
++) {
4924 if (path
->locks
[level
]) {
4925 btrfs_tree_read_unlock(path
->nodes
[i
]);
4928 free_extent_buffer(path
->nodes
[i
]);
4929 path
->nodes
[i
] = NULL
;
4933 ret
= read_block_for_search(root
, path
, &next
, level
,
4935 if (ret
== -EAGAIN
&& !path
->nowait
)
4939 btrfs_release_path(path
);
4943 if (!path
->skip_locking
) {
4944 ret
= btrfs_try_tree_read_lock(next
);
4945 if (!ret
&& path
->nowait
) {
4949 if (!ret
&& time_seq
) {
4951 * If we don't get the lock, we may be racing
4952 * with push_leaf_left, holding that lock while
4953 * itself waiting for the leaf we've currently
4954 * locked. To solve this situation, we give up
4955 * on our lock and cycle.
4957 free_extent_buffer(next
);
4958 btrfs_release_path(path
);
4963 btrfs_tree_read_lock(next
);
4967 path
->slots
[level
] = slot
;
4970 path
->nodes
[level
] = next
;
4971 path
->slots
[level
] = 0;
4972 if (!path
->skip_locking
)
4973 path
->locks
[level
] = BTRFS_READ_LOCK
;
4977 ret
= read_block_for_search(root
, path
, &next
, level
,
4979 if (ret
== -EAGAIN
&& !path
->nowait
)
4983 btrfs_release_path(path
);
4987 if (!path
->skip_locking
) {
4989 if (!btrfs_try_tree_read_lock(next
)) {
4994 btrfs_tree_read_lock(next
);
5000 unlock_up(path
, 0, 1, 0, NULL
);
5001 if (need_commit_sem
) {
5004 path
->need_commit_sem
= 1;
5005 ret2
= finish_need_commit_sem_search(path
);
5006 up_read(&fs_info
->commit_root_sem
);
5014 int btrfs_next_old_item(struct btrfs_root
*root
, struct btrfs_path
*path
, u64 time_seq
)
5017 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0]))
5018 return btrfs_next_old_leaf(root
, path
, time_seq
);
5023 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5024 * searching until it gets past min_objectid or finds an item of 'type'
5026 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5028 int btrfs_previous_item(struct btrfs_root
*root
,
5029 struct btrfs_path
*path
, u64 min_objectid
,
5032 struct btrfs_key found_key
;
5033 struct extent_buffer
*leaf
;
5038 if (path
->slots
[0] == 0) {
5039 ret
= btrfs_prev_leaf(root
, path
);
5045 leaf
= path
->nodes
[0];
5046 nritems
= btrfs_header_nritems(leaf
);
5049 if (path
->slots
[0] == nritems
)
5052 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5053 if (found_key
.objectid
< min_objectid
)
5055 if (found_key
.type
== type
)
5057 if (found_key
.objectid
== min_objectid
&&
5058 found_key
.type
< type
)
5065 * search in extent tree to find a previous Metadata/Data extent item with
5068 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5070 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5071 struct btrfs_path
*path
, u64 min_objectid
)
5073 struct btrfs_key found_key
;
5074 struct extent_buffer
*leaf
;
5079 if (path
->slots
[0] == 0) {
5080 ret
= btrfs_prev_leaf(root
, path
);
5086 leaf
= path
->nodes
[0];
5087 nritems
= btrfs_header_nritems(leaf
);
5090 if (path
->slots
[0] == nritems
)
5093 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5094 if (found_key
.objectid
< min_objectid
)
5096 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5097 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5099 if (found_key
.objectid
== min_objectid
&&
5100 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)
5106 int __init
btrfs_ctree_init(void)
5108 btrfs_path_cachep
= KMEM_CACHE(btrfs_path
, 0);
5109 if (!btrfs_path_cachep
)
5114 void __cold
btrfs_ctree_exit(void)
5116 kmem_cache_destroy(btrfs_path_cachep
);