2 <?xml-stylesheet type="text/xsl" href="referencedata.xsl"?>
4 <Bool Name="Error parsing mdp file">false</Bool>
5 <String Name="OutputMdpFile">
6 ; VARIOUS PREPROCESSING OPTIONS
7 ; Preprocessor information: use cpp syntax.
8 ; e.g.: -I/home/joe/doe -I/home/mary/roe
10 ; e.g.: -DPOSRES -DFLEXIBLE (note these variable names are case sensitive)
13 ; RUN CONTROL PARAMETERS
15 ; Start time and timestep in ps
19 ; For exact run continuation or redoing part of a run
21 ; Part index is updated automatically on checkpointing (keeps files separate)
23 ; Multiple time-stepping
25 ; mode for center of mass motion removal
27 ; number of steps for center of mass motion removal
29 ; group(s) for center of mass motion removal
32 ; LANGEVIN DYNAMICS OPTIONS
33 ; Friction coefficient (amu/ps) and random seed
37 ; ENERGY MINIMIZATION OPTIONS
38 ; Force tolerance and initial step-size
41 ; Max number of iterations in relax-shells
43 ; Step size (ps^2) for minimization of flexible constraints
45 ; Frequency of steepest descents steps when doing CG
49 ; TEST PARTICLE INSERTION OPTIONS
52 ; OUTPUT CONTROL OPTIONS
53 ; Output frequency for coords (x), velocities (v) and forces (f)
57 ; Output frequency for energies to log file and energy file
61 ; Output frequency and precision for .xtc file
62 nstxout-compressed = 0
63 compressed-x-precision = 1000
64 ; This selects the subset of atoms for the compressed
65 ; trajectory file. You can select multiple groups. By
66 ; default, all atoms will be written.
68 ; Selection of energy groups
71 ; NEIGHBORSEARCHING PARAMETERS
72 ; cut-off scheme (Verlet: particle based cut-offs)
73 cutoff-scheme = Verlet
74 ; nblist update frequency
76 ; Periodic boundary conditions: xyz, no, xy
78 periodic-molecules = no
79 ; Allowed energy error due to the Verlet buffer in kJ/mol/ps per atom,
80 ; a value of -1 means: use rlist
81 verlet-buffer-tolerance = 0.005
84 ; long-range cut-off for switched potentials
86 ; OPTIONS FOR ELECTROSTATICS AND VDW
87 ; Method for doing electrostatics
89 coulomb-modifier = Potential-shift-Verlet
92 ; Relative dielectric constant for the medium and the reaction field
95 ; Method for doing Van der Waals
97 vdw-modifier = Potential-shift-Verlet
101 ; Apply long range dispersion corrections for Energy and Pressure
103 ; Extension of the potential lookup tables beyond the cut-off
105 ; Separate tables between energy group pairs
107 ; Spacing for the PME/PPPM FFT grid
108 fourierspacing = 0.12
109 ; FFT grid size, when a value is 0 fourierspacing will be used
113 ; EWALD/PME/PPPM parameters
116 ewald-rtol-lj = 0.001
117 lj-pme-comb-rule = Geometric
120 implicit-solvent = no
122 ; OPTIONS FOR WEAK COUPLING ALGORITHMS
123 ; Temperature coupling
127 print-nose-hoover-chain-variables = no
128 ; Groups to couple separately
130 ; Time constant (ps) and reference temperature (K)
135 pcoupltype = Isotropic
137 ; Time constant (ps), compressibility (1/bar) and reference P (bar)
141 ; Scaling of reference coordinates, No, All or COM
142 refcoord-scaling = No
144 ; OPTIONS FOR QMMM calculations
146 ; Groups treated Quantum Mechanically
166 ; Scale factor for MM charges
167 MMChargeScaleFactor = 1
169 ; SIMULATED ANNEALING
170 ; Type of annealing for each temperature group (no/single/periodic)
172 ; Number of time points to use for specifying annealing in each group
174 ; List of times at the annealing points for each group
176 ; Temp. at each annealing point, for each group.
179 ; GENERATE VELOCITIES FOR STARTUP RUN
186 ; Type of constraint algorithm
187 constraint-algorithm = Lincs
188 ; Do not constrain the start configuration
190 ; Use successive overrelaxation to reduce the number of shake iterations
192 ; Relative tolerance of shake
194 ; Highest order in the expansion of the constraint coupling matrix
196 ; Number of iterations in the final step of LINCS. 1 is fine for
197 ; normal simulations, but use 2 to conserve energy in NVE runs.
198 ; For energy minimization with constraints it should be 4 to 8.
200 ; Lincs will write a warning to the stderr if in one step a bond
201 ; rotates over more degrees than
203 ; Convert harmonic bonds to morse potentials
206 ; ENERGY GROUP EXCLUSIONS
207 ; Pairs of energy groups for which all non-bonded interactions are excluded
211 ; Number of walls, type, atom types, densities and box-z scale factor for Ewald
226 ; Enforced rotation: No or Yes
229 ; Group to display and/or manipulate in interactive MD session
232 ; NMR refinement stuff
233 ; Distance restraints type: No, Simple or Ensemble
235 ; Force weighting of pairs in one distance restraint: Conservative or Equal
236 disre-weighting = Conservative
237 ; Use sqrt of the time averaged times the instantaneous violation
241 ; Output frequency for pair distances to energy file
243 ; Orientation restraints: No or Yes
245 ; Orientation restraints force constant and tau for time averaging
249 ; Output frequency for trace(SD) and S to energy file
252 ; Free energy variables
255 couple-lambda0 = vdw-q
256 couple-lambda1 = vdw-q
259 init-lambda-state = -1
268 temperature-lambdas =
269 calc-lambda-neighbors = 1
270 init-lambda-weights =
271 dhdl-print-energy = no
277 separate-dhdl-file = yes
278 dhdl-derivatives = yes
280 dh_hist_spacing = 0.1
282 ; Non-equilibrium MD stuff
290 ; simulated tempering variables
291 simulated-tempering = no
292 simulated-tempering-scaling = geometric
296 ; Ion/water position swapping for computational electrophysiology setups
297 ; Swap positions along direction: no, X, Y, Z
301 ; User defined thingies
313 ; Format for electric-field-x, etc. is: four real variables:
314 ; amplitude (V/nm), frequency omega (1/ps), time for the pulse peak (ps),
315 ; and sigma (ps) width of the pulse. Omega = 0 means static field,
316 ; sigma = 0 means no pulse, leaving the field to be a cosine function.
317 electric-field-x = 0 0 0 0
318 electric-field-y = 0 0 0 0
319 electric-field-z = 0 0 0 0
321 ; Density guided simulation
322 density-guided-simulation-active = false