libroot/posix/stdio: Remove unused portions.
[haiku.git] / src / system / libroot / posix / glibc / stdio-common / printf_fp.c
blob0abbed9e55937f58193cdfd2e019e6e562e374f6
1 /* Floating point output for `printf'.
2 Copyright (C) 1995-1999, 2000, 2001 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, write to the Free
18 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 02111-1307 USA. */
21 /* The gmp headers need some configuration frobs. */
22 #define HAVE_ALLOCA 1
24 #ifdef USE_IN_LIBIO
25 # include <libioP.h>
26 #else
27 # include <stdio.h>
28 #endif
29 #include <alloca.h>
30 #include <ctype.h>
31 #include <float.h>
32 #include <gmp-mparam.h>
33 #include <gmp.h>
34 #include <stdlib/gmp-impl.h>
35 #include <stdlib/longlong.h>
36 #include <stdlib/fpioconst.h>
37 #include <locale/localeinfo.h>
38 #include <limits.h>
39 #include <math.h>
40 #include <printf.h>
41 #include <string.h>
42 #include <unistd.h>
43 #include <stdlib.h>
44 #include <wchar.h>
46 #ifndef NDEBUG
47 # define NDEBUG /* Undefine this for debugging assertions. */
48 #endif
49 #include <assert.h>
51 /* This defines make it possible to use the same code for GNU C library and
52 the GNU I/O library. */
53 #ifdef USE_IN_LIBIO
54 # define PUT(f, s, n) _IO_sputn (f, s, n)
55 # define PAD(f, c, n) (wide ? _IO_wpadn (f, c, n) : _IO_padn (f, c, n))
56 /* We use this file GNU C library and GNU I/O library. So make
57 names equal. */
58 # undef putc
59 # define putc(c, f) (wide \
60 ? (int)_IO_putwc_unlocked (c, f) : _IO_putc_unlocked (c, f))
61 # define size_t _IO_size_t
62 # define FILE _IO_FILE
63 #else /* ! USE_IN_LIBIO */
64 # define PUT(f, s, n) fwrite (s, 1, n, f)
65 # define PAD(f, c, n) __printf_pad (f, c, n)
66 ssize_t __printf_pad __P ((FILE *, char pad, int n)); /* In vfprintf.c. */
67 #endif /* USE_IN_LIBIO */
69 /* Macros for doing the actual output. */
71 #define outchar(ch) \
72 do \
73 { \
74 register const int outc = (ch); \
75 if (putc (outc, fp) == EOF) \
76 return -1; \
77 ++done; \
78 } while (0)
80 #define PRINT(ptr, wptr, len) \
81 do \
82 { \
83 register size_t outlen = (len); \
84 if (len > 20) \
85 { \
86 if (PUT (fp, wide ? (const char *) wptr : ptr, outlen) != outlen) \
87 return -1; \
88 ptr += outlen; \
89 done += outlen; \
90 } \
91 else \
92 { \
93 if (wide) \
94 while (outlen-- > 0) \
95 outchar (*wptr++); \
96 else \
97 while (outlen-- > 0) \
98 outchar (*ptr++); \
99 } \
100 } while (0)
102 #define PADN(ch, len) \
103 do \
105 if (PAD (fp, ch, len) != len) \
106 return -1; \
107 done += len; \
109 while (0)
111 /* We use the GNU MP library to handle large numbers.
113 An MP variable occupies a varying number of entries in its array. We keep
114 track of this number for efficiency reasons. Otherwise we would always
115 have to process the whole array. */
116 #define MPN_VAR(name) mp_limb_t *name; mp_size_t name##size
118 #define MPN_ASSIGN(dst,src) \
119 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
120 #define MPN_GE(u,v) \
121 (u##size > v##size || (u##size == v##size && __mpn_cmp (u, v, u##size) >= 0))
123 extern int __isinfl (long double), __isnanl (long double);
125 extern mp_size_t __mpn_extract_double (mp_ptr res_ptr, mp_size_t size,
126 int *expt, int *is_neg,
127 double value);
128 extern mp_size_t __mpn_extract_long_double (mp_ptr res_ptr, mp_size_t size,
129 int *expt, int *is_neg,
130 long double value);
131 extern unsigned int __guess_grouping (unsigned int intdig_max,
132 const char *grouping);
135 static wchar_t *group_number (wchar_t *buf, wchar_t *bufend,
136 unsigned int intdig_no, const char *grouping,
137 wchar_t thousands_sep, int ngroups)
138 internal_function;
142 __printf_fp (FILE *fp,
143 const struct printf_info *info,
144 const void *const *args)
146 /* The floating-point value to output. */
147 union
149 double dbl;
150 __long_double_t ldbl;
152 fpnum;
154 /* Locale-dependent representation of decimal point. */
155 const char *decimal;
156 wchar_t decimalwc;
158 /* Locale-dependent thousands separator and grouping specification. */
159 const char *thousands_sep = NULL;
160 wchar_t thousands_sepwc = 0;
161 const char *grouping;
163 /* "NaN" or "Inf" for the special cases. */
164 const char *special = NULL;
165 const wchar_t *wspecial = NULL;
167 /* We need just a few limbs for the input before shifting to the right
168 position. */
169 mp_limb_t fp_input[(LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB];
170 /* We need to shift the contents of fp_input by this amount of bits. */
171 int to_shift = 0;
173 /* The fraction of the floting-point value in question */
174 MPN_VAR(frac);
175 /* and the exponent. */
176 int exponent;
177 /* Sign of the exponent. */
178 int expsign = 0;
179 /* Sign of float number. */
180 int is_neg = 0;
182 /* Scaling factor. */
183 MPN_VAR(scale);
185 /* Temporary bignum value. */
186 MPN_VAR(tmp);
188 /* Digit which is result of last hack_digit() call. */
189 wchar_t digit;
191 /* The type of output format that will be used: 'e'/'E' or 'f'. */
192 int type;
194 /* Counter for number of written characters. */
195 int done = 0;
197 /* General helper (carry limb). */
198 mp_limb_t cy;
200 /* Nonzero if this is output on a wide character stream. */
201 int wide = info->wide;
203 wchar_t hack_digit_ret;
204 int hack_digit_callee;
206 while (0)
208 mp_limb_t hi;
210 hack_digit:
211 if (expsign != 0 && type == 'f' && exponent-- > 0)
212 hi = 0;
213 else if (scalesize == 0)
215 hi = frac[fracsize - 1];
216 cy = __mpn_mul_1 (frac, frac, fracsize - 1, 10);
217 frac[fracsize - 1] = cy;
219 else
221 if (fracsize < scalesize)
222 hi = 0;
223 else
225 hi = mpn_divmod (tmp, frac, fracsize, scale, scalesize);
226 tmp[fracsize - scalesize] = hi;
227 hi = tmp[0];
229 fracsize = scalesize;
230 while (fracsize != 0 && frac[fracsize - 1] == 0)
231 --fracsize;
232 if (fracsize == 0)
234 /* We're not prepared for an mpn variable with zero
235 limbs. */
236 fracsize = 1;
237 hack_digit_ret = L'0' + hi;
238 goto hack_digit_end;
242 cy = __mpn_mul_1 (frac, frac, fracsize, 10);
243 if (cy != 0)
244 frac[fracsize++] = cy;
247 hack_digit_ret = L'0' + hi;
248 hack_digit_end:
249 switch (hack_digit_callee)
251 case 1: goto hack_digit_callee1;
252 case 2: goto hack_digit_callee2;
253 case 3: goto hack_digit_callee3;
254 default: abort();
259 /* Figure out the decimal point character. */
260 if (info->extra == 0)
262 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
263 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
265 else
267 decimal = _NL_CURRENT (LC_MONETARY, MON_DECIMAL_POINT);
268 if (*decimal == '\0')
269 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
270 decimalwc = _NL_CURRENT_WORD (LC_MONETARY,
271 _NL_MONETARY_DECIMAL_POINT_WC);
272 if (decimalwc == L'\0')
273 decimalwc = _NL_CURRENT_WORD (LC_NUMERIC,
274 _NL_NUMERIC_DECIMAL_POINT_WC);
276 /* The decimal point character must not be zero. */
277 assert (*decimal != '\0');
278 assert (decimalwc != L'\0');
280 if (info->group)
282 if (info->extra == 0)
283 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
284 else
285 grouping = _NL_CURRENT (LC_MONETARY, MON_GROUPING);
287 if (*grouping <= 0 || *grouping == CHAR_MAX)
288 grouping = NULL;
289 else
291 /* Figure out the thousands separator character. */
292 if (wide)
294 if (info->extra == 0)
295 thousands_sepwc =
296 _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_THOUSANDS_SEP_WC);
297 else
298 thousands_sepwc =
299 _NL_CURRENT_WORD (LC_MONETARY,
300 _NL_MONETARY_THOUSANDS_SEP_WC);
302 else
304 if (info->extra == 0)
305 thousands_sep = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
306 else
307 thousands_sep = _NL_CURRENT (LC_MONETARY, MON_THOUSANDS_SEP);
310 if ((wide && thousands_sepwc == L'\0')
311 || (! wide && *thousands_sep == '\0'))
312 grouping = NULL;
313 else if (thousands_sepwc == L'\0')
314 /* If we are printing multibyte characters and there is a
315 multibyte representation for the thousands separator,
316 we must ensure the wide character thousands separator
317 is available, even if it is fake. */
318 thousands_sepwc = 0xfffffffe;
321 else
322 grouping = NULL;
324 /* Fetch the argument value. */
325 #ifndef __NO_LONG_DOUBLE_MATH
326 if (info->is_long_double && sizeof (long double) > sizeof (double))
328 fpnum.ldbl = *(const long double *) args[0];
330 /* Check for special values: not a number or infinity. */
331 if (__isnanl (fpnum.ldbl))
333 if (isupper (info->spec))
335 special = "NAN";
336 wspecial = L"NAN";
338 else
340 special = "nan";
341 wspecial = L"nan";
343 is_neg = 0;
345 else if (__isinfl (fpnum.ldbl))
347 if (isupper (info->spec))
349 special = "INF";
350 wspecial = L"INF";
352 else
354 special = "inf";
355 wspecial = L"inf";
357 is_neg = fpnum.ldbl < 0;
359 else
361 fracsize = __mpn_extract_long_double (fp_input,
362 (sizeof (fp_input) /
363 sizeof (fp_input[0])),
364 &exponent, &is_neg,
365 fpnum.ldbl);
366 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - LDBL_MANT_DIG;
369 else
370 #endif /* no long double */
372 fpnum.dbl = *(const double *) args[0];
374 /* Check for special values: not a number or infinity. */
375 if (__isnan (fpnum.dbl))
377 if (isupper (info->spec))
379 special = "NAN";
380 wspecial = L"NAN";
382 else
384 special = "nan";
385 wspecial = L"nan";
387 is_neg = 0;
389 else if (__isinf (fpnum.dbl))
391 if (isupper (info->spec))
393 special = "INF";
394 wspecial = L"INF";
396 else
398 special = "inf";
399 wspecial = L"inf";
401 is_neg = fpnum.dbl < 0;
403 else
405 fracsize = __mpn_extract_double (fp_input,
406 (sizeof (fp_input)
407 / sizeof (fp_input[0])),
408 &exponent, &is_neg, fpnum.dbl);
409 to_shift = 1 + fracsize * BITS_PER_MP_LIMB - DBL_MANT_DIG;
413 if (special)
415 int width = info->width;
417 if (is_neg || info->showsign || info->space)
418 --width;
419 width -= 3;
421 if (!info->left && width > 0)
422 PADN (' ', width);
424 if (is_neg)
425 outchar ('-');
426 else if (info->showsign)
427 outchar ('+');
428 else if (info->space)
429 outchar (' ');
431 PRINT (special, wspecial, 3);
433 if (info->left && width > 0)
434 PADN (' ', width);
436 return done;
440 /* We need three multiprecision variables. Now that we have the exponent
441 of the number we can allocate the needed memory. It would be more
442 efficient to use variables of the fixed maximum size but because this
443 would be really big it could lead to memory problems. */
445 mp_size_t bignum_size = ((ABS (exponent) + BITS_PER_MP_LIMB - 1)
446 / BITS_PER_MP_LIMB + 4) * sizeof (mp_limb_t);
447 frac = (mp_limb_t *) alloca (bignum_size);
448 tmp = (mp_limb_t *) alloca (bignum_size);
449 scale = (mp_limb_t *) alloca (bignum_size);
452 /* We now have to distinguish between numbers with positive and negative
453 exponents because the method used for the one is not applicable/efficient
454 for the other. */
455 scalesize = 0;
456 if (exponent > 2)
458 /* |FP| >= 8.0. */
459 int scaleexpo = 0;
460 int explog = LDBL_MAX_10_EXP_LOG;
461 int exp10 = 0;
462 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
463 int cnt_h, cnt_l, i;
465 if ((exponent + to_shift) % BITS_PER_MP_LIMB == 0)
467 MPN_COPY_DECR (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
468 fp_input, fracsize);
469 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
471 else
473 cy = __mpn_lshift (frac + (exponent + to_shift) / BITS_PER_MP_LIMB,
474 fp_input, fracsize,
475 (exponent + to_shift) % BITS_PER_MP_LIMB);
476 fracsize += (exponent + to_shift) / BITS_PER_MP_LIMB;
477 if (cy)
478 frac[fracsize++] = cy;
480 MPN_ZERO (frac, (exponent + to_shift) / BITS_PER_MP_LIMB);
482 assert (powers > &_fpioconst_pow10[0]);
485 --powers;
487 /* The number of the product of two binary numbers with n and m
488 bits respectively has m+n or m+n-1 bits. */
489 if (exponent >= scaleexpo + powers->p_expo - 1)
491 if (scalesize == 0)
493 #ifndef __NO_LONG_DOUBLE_MATH
494 if (LDBL_MANT_DIG > _FPIO_CONST_OFFSET * BITS_PER_MP_LIMB
495 && info->is_long_double)
497 #define _FPIO_CONST_SHIFT \
498 (((LDBL_MANT_DIG + BITS_PER_MP_LIMB - 1) / BITS_PER_MP_LIMB) \
499 - _FPIO_CONST_OFFSET)
500 /* 64bit const offset is not enough for
501 IEEE quad long double. */
502 tmpsize = powers->arraysize + _FPIO_CONST_SHIFT;
503 memcpy (tmp + _FPIO_CONST_SHIFT,
504 &__tens[powers->arrayoff],
505 tmpsize * sizeof (mp_limb_t));
506 MPN_ZERO (tmp, _FPIO_CONST_SHIFT);
508 else
509 #endif
511 tmpsize = powers->arraysize;
512 memcpy (tmp, &__tens[powers->arrayoff],
513 tmpsize * sizeof (mp_limb_t));
516 else
518 cy = __mpn_mul (tmp, scale, scalesize,
519 &__tens[powers->arrayoff
520 + _FPIO_CONST_OFFSET],
521 powers->arraysize - _FPIO_CONST_OFFSET);
522 tmpsize = scalesize + powers->arraysize - _FPIO_CONST_OFFSET;
523 if (cy == 0)
524 --tmpsize;
527 if (MPN_GE (frac, tmp))
529 int cnt;
530 MPN_ASSIGN (scale, tmp);
531 count_leading_zeros (cnt, scale[scalesize - 1]);
532 scaleexpo = (scalesize - 2) * BITS_PER_MP_LIMB - cnt - 1;
533 exp10 |= 1 << explog;
536 --explog;
538 while (powers > &_fpioconst_pow10[0]);
539 exponent = exp10;
541 /* Optimize number representations. We want to represent the numbers
542 with the lowest number of bytes possible without losing any
543 bytes. Also the highest bit in the scaling factor has to be set
544 (this is a requirement of the MPN division routines). */
545 if (scalesize > 0)
547 /* Determine minimum number of zero bits at the end of
548 both numbers. */
549 for (i = 0; scale[i] == 0 && frac[i] == 0; i++)
552 /* Determine number of bits the scaling factor is misplaced. */
553 count_leading_zeros (cnt_h, scale[scalesize - 1]);
555 if (cnt_h == 0)
557 /* The highest bit of the scaling factor is already set. So
558 we only have to remove the trailing empty limbs. */
559 if (i > 0)
561 MPN_COPY_INCR (scale, scale + i, scalesize - i);
562 scalesize -= i;
563 MPN_COPY_INCR (frac, frac + i, fracsize - i);
564 fracsize -= i;
567 else
569 if (scale[i] != 0)
571 count_trailing_zeros (cnt_l, scale[i]);
572 if (frac[i] != 0)
574 int cnt_l2;
575 count_trailing_zeros (cnt_l2, frac[i]);
576 if (cnt_l2 < cnt_l)
577 cnt_l = cnt_l2;
580 else
581 count_trailing_zeros (cnt_l, frac[i]);
583 /* Now shift the numbers to their optimal position. */
584 if (i == 0 && BITS_PER_MP_LIMB - cnt_h > cnt_l)
586 /* We cannot save any memory. So just roll both numbers
587 so that the scaling factor has its highest bit set. */
589 (void) __mpn_lshift (scale, scale, scalesize, cnt_h);
590 cy = __mpn_lshift (frac, frac, fracsize, cnt_h);
591 if (cy != 0)
592 frac[fracsize++] = cy;
594 else if (BITS_PER_MP_LIMB - cnt_h <= cnt_l)
596 /* We can save memory by removing the trailing zero limbs
597 and by packing the non-zero limbs which gain another
598 free one. */
600 (void) __mpn_rshift (scale, scale + i, scalesize - i,
601 BITS_PER_MP_LIMB - cnt_h);
602 scalesize -= i + 1;
603 (void) __mpn_rshift (frac, frac + i, fracsize - i,
604 BITS_PER_MP_LIMB - cnt_h);
605 fracsize -= frac[fracsize - i - 1] == 0 ? i + 1 : i;
607 else
609 /* We can only save the memory of the limbs which are zero.
610 The non-zero parts occupy the same number of limbs. */
612 (void) __mpn_rshift (scale, scale + (i - 1),
613 scalesize - (i - 1),
614 BITS_PER_MP_LIMB - cnt_h);
615 scalesize -= i;
616 (void) __mpn_rshift (frac, frac + (i - 1),
617 fracsize - (i - 1),
618 BITS_PER_MP_LIMB - cnt_h);
619 fracsize -= frac[fracsize - (i - 1) - 1] == 0 ? i : i - 1;
624 else if (exponent < 0)
626 /* |FP| < 1.0. */
627 int exp10 = 0;
628 int explog = LDBL_MAX_10_EXP_LOG;
629 const struct mp_power *powers = &_fpioconst_pow10[explog + 1];
630 mp_size_t used_limbs = fracsize - 1;
632 /* Now shift the input value to its right place. */
633 cy = __mpn_lshift (frac, fp_input, fracsize, to_shift);
634 frac[fracsize++] = cy;
635 assert (cy == 1 || (frac[fracsize - 2] == 0 && frac[0] == 0));
637 expsign = 1;
638 exponent = -exponent;
640 assert (powers != &_fpioconst_pow10[0]);
643 --powers;
645 if (exponent >= powers->m_expo)
647 int i, incr, cnt_h, cnt_l;
648 mp_limb_t topval[2];
650 /* The __mpn_mul function expects the first argument to be
651 bigger than the second. */
652 if (fracsize < powers->arraysize - _FPIO_CONST_OFFSET)
653 cy = __mpn_mul (tmp, &__tens[powers->arrayoff
654 + _FPIO_CONST_OFFSET],
655 powers->arraysize - _FPIO_CONST_OFFSET,
656 frac, fracsize);
657 else
658 cy = __mpn_mul (tmp, frac, fracsize,
659 &__tens[powers->arrayoff + _FPIO_CONST_OFFSET],
660 powers->arraysize - _FPIO_CONST_OFFSET);
661 tmpsize = fracsize + powers->arraysize - _FPIO_CONST_OFFSET;
662 if (cy == 0)
663 --tmpsize;
665 count_leading_zeros (cnt_h, tmp[tmpsize - 1]);
666 incr = (tmpsize - fracsize) * BITS_PER_MP_LIMB
667 + BITS_PER_MP_LIMB - 1 - cnt_h;
669 assert (incr <= powers->p_expo);
671 /* If we increased the exponent by exactly 3 we have to test
672 for overflow. This is done by comparing with 10 shifted
673 to the right position. */
674 if (incr == exponent + 3)
676 if (cnt_h <= BITS_PER_MP_LIMB - 4)
678 topval[0] = 0;
679 topval[1]
680 = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4 - cnt_h);
682 else
684 topval[0] = ((mp_limb_t) 10) << (BITS_PER_MP_LIMB - 4);
685 topval[1] = 0;
686 (void) __mpn_lshift (topval, topval, 2,
687 BITS_PER_MP_LIMB - cnt_h);
691 /* We have to be careful when multiplying the last factor.
692 If the result is greater than 1.0 be have to test it
693 against 10.0. If it is greater or equal to 10.0 the
694 multiplication was not valid. This is because we cannot
695 determine the number of bits in the result in advance. */
696 if (incr < exponent + 3
697 || (incr == exponent + 3 &&
698 (tmp[tmpsize - 1] < topval[1]
699 || (tmp[tmpsize - 1] == topval[1]
700 && tmp[tmpsize - 2] < topval[0]))))
702 /* The factor is right. Adapt binary and decimal
703 exponents. */
704 exponent -= incr;
705 exp10 |= 1 << explog;
707 /* If this factor yields a number greater or equal to
708 1.0, we must not shift the non-fractional digits down. */
709 if (exponent < 0)
710 cnt_h += -exponent;
712 /* Now we optimize the number representation. */
713 for (i = 0; tmp[i] == 0; ++i);
714 if (cnt_h == BITS_PER_MP_LIMB - 1)
716 MPN_COPY (frac, tmp + i, tmpsize - i);
717 fracsize = tmpsize - i;
719 else
721 count_trailing_zeros (cnt_l, tmp[i]);
723 /* Now shift the numbers to their optimal position. */
724 if (i == 0 && BITS_PER_MP_LIMB - 1 - cnt_h > cnt_l)
726 /* We cannot save any memory. Just roll the
727 number so that the leading digit is in a
728 separate limb. */
730 cy = __mpn_lshift (frac, tmp, tmpsize, cnt_h + 1);
731 fracsize = tmpsize + 1;
732 frac[fracsize - 1] = cy;
734 else if (BITS_PER_MP_LIMB - 1 - cnt_h <= cnt_l)
736 (void) __mpn_rshift (frac, tmp + i, tmpsize - i,
737 BITS_PER_MP_LIMB - 1 - cnt_h);
738 fracsize = tmpsize - i;
740 else
742 /* We can only save the memory of the limbs which
743 are zero. The non-zero parts occupy the same
744 number of limbs. */
746 (void) __mpn_rshift (frac, tmp + (i - 1),
747 tmpsize - (i - 1),
748 BITS_PER_MP_LIMB - 1 - cnt_h);
749 fracsize = tmpsize - (i - 1);
752 used_limbs = fracsize - 1;
755 --explog;
757 while (powers != &_fpioconst_pow10[1] && exponent > 0);
758 /* All factors but 10^-1 are tested now. */
759 if (exponent > 0)
761 int cnt_l;
763 cy = __mpn_mul_1 (tmp, frac, fracsize, 10);
764 tmpsize = fracsize;
765 assert (cy == 0 || tmp[tmpsize - 1] < 20);
767 count_trailing_zeros (cnt_l, tmp[0]);
768 if (cnt_l < MIN (4, exponent))
770 cy = __mpn_lshift (frac, tmp, tmpsize,
771 BITS_PER_MP_LIMB - MIN (4, exponent));
772 if (cy != 0)
773 frac[tmpsize++] = cy;
775 else
776 (void) __mpn_rshift (frac, tmp, tmpsize, MIN (4, exponent));
777 fracsize = tmpsize;
778 exp10 |= 1;
779 assert (frac[fracsize - 1] < 10);
781 exponent = exp10;
783 else
785 /* This is a special case. We don't need a factor because the
786 numbers are in the range of 0.0 <= fp < 8.0. We simply
787 shift it to the right place and divide it by 1.0 to get the
788 leading digit. (Of course this division is not really made.) */
789 assert (0 <= exponent && exponent < 3 &&
790 exponent + to_shift < BITS_PER_MP_LIMB);
792 /* Now shift the input value to its right place. */
793 cy = __mpn_lshift (frac, fp_input, fracsize, (exponent + to_shift));
794 frac[fracsize++] = cy;
795 exponent = 0;
799 int width = info->width;
800 wchar_t *wbuffer, *wstartp, *wcp;
801 int buffer_malloced;
802 int chars_needed;
803 int expscale;
804 int intdig_max, intdig_no = 0;
805 int fracdig_min, fracdig_max, fracdig_no = 0;
806 int dig_max;
807 int significant;
808 int ngroups = 0;
810 if (_tolower (info->spec) == 'e')
812 type = info->spec;
813 intdig_max = 1;
814 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
815 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
816 /* d . ddd e +- ddd */
817 dig_max = INT_MAX; /* Unlimited. */
818 significant = 1; /* Does not matter here. */
820 else if (info->spec == 'f')
822 type = 'f';
823 fracdig_min = fracdig_max = info->prec < 0 ? 6 : info->prec;
824 if (expsign == 0)
826 intdig_max = exponent + 1;
827 /* This can be really big! */ /* XXX Maybe malloc if too big? */
828 chars_needed = exponent + 1 + 1 + fracdig_max;
830 else
832 intdig_max = 1;
833 chars_needed = 1 + 1 + fracdig_max;
835 dig_max = INT_MAX; /* Unlimited. */
836 significant = 1; /* Does not matter here. */
838 else
840 dig_max = info->prec < 0 ? 6 : (info->prec == 0 ? 1 : info->prec);
841 if ((expsign == 0 && exponent >= dig_max)
842 || (expsign != 0 && exponent > 4))
844 if ('g' - 'G' == 'e' - 'E')
845 type = 'E' + (info->spec - 'G');
846 else
847 type = isupper (info->spec) ? 'E' : 'e';
848 fracdig_max = dig_max - 1;
849 intdig_max = 1;
850 chars_needed = 1 + 1 + fracdig_max + 1 + 1 + 4;
852 else
854 type = 'f';
855 intdig_max = expsign == 0 ? exponent + 1 : 0;
856 fracdig_max = dig_max - intdig_max;
857 /* We need space for the significant digits and perhaps
858 for leading zeros when < 1.0. The number of leading
859 zeros can be as many as would be required for
860 exponential notation with a negative two-digit
861 exponent, which is 4. */
862 chars_needed = dig_max + 1 + 4;
864 fracdig_min = info->alt ? fracdig_max : 0;
865 significant = 0; /* We count significant digits. */
868 if (grouping)
870 /* Guess the number of groups we will make, and thus how
871 many spaces we need for separator characters. */
872 ngroups = __guess_grouping (intdig_max, grouping);
873 chars_needed += ngroups;
876 /* Allocate buffer for output. We need two more because while rounding
877 it is possible that we need two more characters in front of all the
878 other output. If the amount of memory we have to allocate is too
879 large use `malloc' instead of `alloca'. */
880 buffer_malloced = chars_needed > 5000;
881 if (buffer_malloced)
883 wbuffer = (wchar_t *) malloc ((2 + chars_needed) * sizeof (wchar_t));
884 if (wbuffer == NULL)
885 /* Signal an error to the caller. */
886 return -1;
888 else
889 wbuffer = (wchar_t *) alloca ((2 + chars_needed) * sizeof (wchar_t));
890 wcp = wstartp = wbuffer + 2; /* Let room for rounding. */
892 /* Do the real work: put digits in allocated buffer. */
893 if (expsign == 0 || type != 'f')
895 assert (expsign == 0 || intdig_max == 1);
896 while (intdig_no < intdig_max)
898 ++intdig_no;
899 hack_digit_callee = 1;
900 goto hack_digit;
901 hack_digit_callee1:
902 *wcp++ = hack_digit_ret;
904 significant = 1;
905 if (info->alt
906 || fracdig_min > 0
907 || (fracdig_max > 0 && (fracsize > 1 || frac[0] != 0)))
908 *wcp++ = decimalwc;
910 else
912 /* |fp| < 1.0 and the selected type is 'f', so put "0."
913 in the buffer. */
914 *wcp++ = L'0';
915 --exponent;
916 *wcp++ = decimalwc;
919 /* Generate the needed number of fractional digits. */
920 while (fracdig_no < fracdig_min
921 || (fracdig_no < fracdig_max && (fracsize > 1 || frac[0] != 0)))
923 ++fracdig_no;
924 hack_digit_callee = 2;
925 goto hack_digit;
926 hack_digit_callee2:
927 *wcp = hack_digit_ret;
928 if (*wcp != L'0')
929 significant = 1;
930 else if (significant == 0)
932 ++fracdig_max;
933 if (fracdig_min > 0)
934 ++fracdig_min;
936 ++wcp;
939 /* Do rounding. */
940 hack_digit_callee = 3;
941 goto hack_digit;
942 hack_digit_callee3:
943 digit = hack_digit_ret;
944 if (digit > L'4')
946 wchar_t *wtp = wcp;
948 if (digit == L'5'
949 && ((*(wcp - 1) != decimalwc && (*(wcp - 1) & 1) == 0)
950 || ((*(wcp - 1) == decimalwc && (*(wcp - 2) & 1) == 0))))
952 /* This is the critical case. */
953 if (fracsize == 1 && frac[0] == 0)
954 /* Rest of the number is zero -> round to even.
955 (IEEE 754-1985 4.1 says this is the default rounding.) */
956 goto do_expo;
957 else if (scalesize == 0)
959 /* Here we have to see whether all limbs are zero since no
960 normalization happened. */
961 size_t lcnt = fracsize;
962 while (lcnt >= 1 && frac[lcnt - 1] == 0)
963 --lcnt;
964 if (lcnt == 0)
965 /* Rest of the number is zero -> round to even.
966 (IEEE 754-1985 4.1 says this is the default rounding.) */
967 goto do_expo;
971 if (fracdig_no > 0)
973 /* Process fractional digits. Terminate if not rounded or
974 radix character is reached. */
975 while (*--wtp != decimalwc && *wtp == L'9')
976 *wtp = '0';
977 if (*wtp != decimalwc)
978 /* Round up. */
979 (*wtp)++;
982 if (fracdig_no == 0 || *wtp == decimalwc)
984 /* Round the integer digits. */
985 if (*(wtp - 1) == decimalwc)
986 --wtp;
988 while (--wtp >= wstartp && *wtp == L'9')
989 *wtp = L'0';
991 if (wtp >= wstartp)
992 /* Round up. */
993 (*wtp)++;
994 else
995 /* It is more critical. All digits were 9's. */
997 if (type != 'f')
999 *wstartp = '1';
1000 exponent += expsign == 0 ? 1 : -1;
1002 else if (intdig_no == dig_max)
1004 /* This is the case where for type %g the number fits
1005 really in the range for %f output but after rounding
1006 the number of digits is too big. */
1007 *--wstartp = decimalwc;
1008 *--wstartp = L'1';
1010 if (info->alt || fracdig_no > 0)
1012 /* Overwrite the old radix character. */
1013 wstartp[intdig_no + 2] = L'0';
1014 ++fracdig_no;
1017 fracdig_no += intdig_no;
1018 intdig_no = 1;
1019 fracdig_max = intdig_max - intdig_no;
1020 ++exponent;
1021 /* Now we must print the exponent. */
1022 type = isupper (info->spec) ? 'E' : 'e';
1024 else
1026 /* We can simply add another another digit before the
1027 radix. */
1028 *--wstartp = L'1';
1029 ++intdig_no;
1032 /* While rounding the number of digits can change.
1033 If the number now exceeds the limits remove some
1034 fractional digits. */
1035 if (intdig_no + fracdig_no > dig_max)
1037 wcp -= intdig_no + fracdig_no - dig_max;
1038 fracdig_no -= intdig_no + fracdig_no - dig_max;
1044 do_expo:
1045 /* Now remove unnecessary '0' at the end of the string. */
1046 while (fracdig_no > fracdig_min && *(wcp - 1) == L'0')
1048 --wcp;
1049 --fracdig_no;
1051 /* If we eliminate all fractional digits we perhaps also can remove
1052 the radix character. */
1053 if (fracdig_no == 0 && !info->alt && *(wcp - 1) == decimalwc)
1054 --wcp;
1056 if (grouping)
1057 /* Add in separator characters, overwriting the same buffer. */
1058 wcp = group_number (wstartp, wcp, intdig_no, grouping, thousands_sepwc,
1059 ngroups);
1061 /* Write the exponent if it is needed. */
1062 if (type != 'f')
1064 *wcp++ = (wchar_t) type;
1065 *wcp++ = expsign ? L'-' : L'+';
1067 /* Find the magnitude of the exponent. */
1068 expscale = 10;
1069 while (expscale <= exponent)
1070 expscale *= 10;
1072 if (exponent < 10)
1073 /* Exponent always has at least two digits. */
1074 *wcp++ = L'0';
1075 else
1078 expscale /= 10;
1079 *wcp++ = L'0' + (exponent / expscale);
1080 exponent %= expscale;
1082 while (expscale > 10);
1083 *wcp++ = L'0' + exponent;
1086 /* Compute number of characters which must be filled with the padding
1087 character. */
1088 if (is_neg || info->showsign || info->space)
1089 --width;
1090 width -= wcp - wstartp;
1092 if (!info->left && info->pad != '0' && width > 0)
1093 PADN (info->pad, width);
1095 if (is_neg)
1096 outchar ('-');
1097 else if (info->showsign)
1098 outchar ('+');
1099 else if (info->space)
1100 outchar (' ');
1102 if (!info->left && info->pad == '0' && width > 0)
1103 PADN ('0', width);
1106 char *buffer = NULL;
1107 char *cp = NULL;
1108 char *tmpptr;
1110 if (! wide)
1112 /* Create the single byte string. */
1113 size_t decimal_len;
1114 size_t thousands_sep_len;
1115 wchar_t *copywc;
1117 decimal_len = strlen (decimal);
1119 if (thousands_sep == NULL)
1120 thousands_sep_len = 0;
1121 else
1122 thousands_sep_len = strlen (thousands_sep);
1124 if (buffer_malloced)
1126 buffer = (char *) malloc (2 + chars_needed + decimal_len
1127 + ngroups * thousands_sep_len);
1128 if (buffer == NULL)
1129 /* Signal an error to the caller. */
1130 return -1;
1132 else
1133 buffer = (char *) alloca (2 + chars_needed + decimal_len
1134 + ngroups * thousands_sep_len);
1136 /* Now copy the wide character string. Since the character
1137 (except for the decimal point and thousands separator) must
1138 be coming from the ASCII range we can esily convert the
1139 string without mapping tables. */
1140 for (cp = buffer, copywc = wstartp; copywc < wcp; ++copywc)
1141 if (*copywc == decimalwc)
1142 cp = (char *) __mempcpy (cp, decimal, decimal_len);
1143 else if (*copywc == thousands_sepwc)
1144 cp = (char *) __mempcpy (cp, thousands_sep, thousands_sep_len);
1145 else
1146 *cp++ = (char) *copywc;
1149 tmpptr = buffer;
1150 PRINT (tmpptr, wstartp, wide ? wcp - wstartp : cp - tmpptr);
1152 /* Free the memory if necessary. */
1153 if (buffer_malloced)
1155 free (buffer);
1156 free (wbuffer);
1160 if (info->left && width > 0)
1161 PADN (info->pad, width);
1163 return done;
1166 /* Return the number of extra grouping characters that will be inserted
1167 into a number with INTDIG_MAX integer digits. */
1169 unsigned int
1170 __guess_grouping (unsigned int intdig_max, const char *grouping)
1172 unsigned int groups;
1174 /* We treat all negative values like CHAR_MAX. */
1176 if (*grouping == CHAR_MAX || *grouping <= 0)
1177 /* No grouping should be done. */
1178 return 0;
1180 groups = 0;
1181 while (intdig_max > (unsigned int) *grouping)
1183 ++groups;
1184 intdig_max -= *grouping++;
1186 if (*grouping == CHAR_MAX
1187 #if CHAR_MIN < 0
1188 || *grouping < 0
1189 #endif
1191 /* No more grouping should be done. */
1192 break;
1193 else if (*grouping == 0)
1195 /* Same grouping repeats. */
1196 groups += (intdig_max - 1) / grouping[-1];
1197 break;
1201 return groups;
1204 /* Group the INTDIG_NO integer digits of the number in [BUF,BUFEND).
1205 There is guaranteed enough space past BUFEND to extend it.
1206 Return the new end of buffer. */
1208 static wchar_t *
1209 internal_function
1210 group_number (wchar_t *buf, wchar_t *bufend, unsigned int intdig_no,
1211 const char *grouping, wchar_t thousands_sep, int ngroups)
1213 wchar_t *p;
1215 if (ngroups == 0)
1216 return bufend;
1218 /* Move the fractional part down. */
1219 __wmemmove (buf + intdig_no + ngroups, buf + intdig_no,
1220 bufend - (buf + intdig_no));
1222 p = buf + intdig_no + ngroups - 1;
1225 unsigned int len = *grouping++;
1227 *p-- = buf[--intdig_no];
1228 while (--len > 0);
1229 *p-- = thousands_sep;
1231 if (*grouping == CHAR_MAX
1232 #if CHAR_MIN < 0
1233 || *grouping < 0
1234 #endif
1236 /* No more grouping should be done. */
1237 break;
1238 else if (*grouping == 0)
1239 /* Same grouping repeats. */
1240 --grouping;
1241 } while (intdig_no > (unsigned int) *grouping);
1243 /* Copy the remaining ungrouped digits. */
1245 *p-- = buf[--intdig_no];
1246 while (p > buf);
1248 return bufend + ngroups;