2 * linux/arch/x86-64/kernel/setup.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Nov 2001 Dave Jones <davej@suse.de>
7 * Forked from i386 setup code.
11 * This file handles the architecture-dependent parts of initialization
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
18 #include <linux/stddef.h>
19 #include <linux/unistd.h>
20 #include <linux/ptrace.h>
21 #include <linux/slab.h>
22 #include <linux/user.h>
23 #include <linux/a.out.h>
24 #include <linux/screen_info.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/init.h>
28 #include <linux/initrd.h>
29 #include <linux/highmem.h>
30 #include <linux/bootmem.h>
31 #include <linux/module.h>
32 #include <asm/processor.h>
33 #include <linux/console.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/root_dev.h>
37 #include <linux/pci.h>
38 #include <linux/acpi.h>
39 #include <linux/kallsyms.h>
40 #include <linux/edd.h>
41 #include <linux/mmzone.h>
42 #include <linux/kexec.h>
43 #include <linux/cpufreq.h>
44 #include <linux/dmi.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/ctype.h>
49 #include <asm/uaccess.h>
50 #include <asm/system.h>
55 #include <video/edid.h>
58 #include <asm/mpspec.h>
59 #include <asm/mmu_context.h>
60 #include <asm/bootsetup.h>
61 #include <asm/proto.h>
62 #include <asm/setup.h>
63 #include <asm/mach_apic.h>
65 #include <asm/sections.h>
72 struct cpuinfo_x86 boot_cpu_data __read_mostly
;
73 EXPORT_SYMBOL(boot_cpu_data
);
75 unsigned long mmu_cr4_features
;
78 EXPORT_SYMBOL(acpi_disabled
);
80 extern int __initdata acpi_ht
;
81 extern acpi_interrupt_flags acpi_sci_flags
;
82 int __initdata acpi_force
= 0;
85 int acpi_numa __initdata
;
87 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
90 unsigned long saved_video_mode
;
96 char dmi_alloc_data
[DMI_MAX_DATA
];
101 struct screen_info screen_info
;
102 EXPORT_SYMBOL(screen_info
);
103 struct sys_desc_table_struct
{
104 unsigned short length
;
105 unsigned char table
[0];
108 struct edid_info edid_info
;
109 EXPORT_SYMBOL_GPL(edid_info
);
112 extern int root_mountflags
;
114 char command_line
[COMMAND_LINE_SIZE
];
116 struct resource standard_io_resources
[] = {
117 { .name
= "dma1", .start
= 0x00, .end
= 0x1f,
118 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
119 { .name
= "pic1", .start
= 0x20, .end
= 0x21,
120 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
121 { .name
= "timer0", .start
= 0x40, .end
= 0x43,
122 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
123 { .name
= "timer1", .start
= 0x50, .end
= 0x53,
124 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
125 { .name
= "keyboard", .start
= 0x60, .end
= 0x6f,
126 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
127 { .name
= "dma page reg", .start
= 0x80, .end
= 0x8f,
128 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
129 { .name
= "pic2", .start
= 0xa0, .end
= 0xa1,
130 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
131 { .name
= "dma2", .start
= 0xc0, .end
= 0xdf,
132 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
},
133 { .name
= "fpu", .start
= 0xf0, .end
= 0xff,
134 .flags
= IORESOURCE_BUSY
| IORESOURCE_IO
}
137 #define STANDARD_IO_RESOURCES \
138 (sizeof standard_io_resources / sizeof standard_io_resources[0])
140 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
142 struct resource data_resource
= {
143 .name
= "Kernel data",
146 .flags
= IORESOURCE_RAM
,
148 struct resource code_resource
= {
149 .name
= "Kernel code",
152 .flags
= IORESOURCE_RAM
,
155 #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
157 static struct resource system_rom_resource
= {
158 .name
= "System ROM",
161 .flags
= IORESOURCE_ROM
,
164 static struct resource extension_rom_resource
= {
165 .name
= "Extension ROM",
168 .flags
= IORESOURCE_ROM
,
171 static struct resource adapter_rom_resources
[] = {
172 { .name
= "Adapter ROM", .start
= 0xc8000, .end
= 0,
173 .flags
= IORESOURCE_ROM
},
174 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
175 .flags
= IORESOURCE_ROM
},
176 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
177 .flags
= IORESOURCE_ROM
},
178 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
179 .flags
= IORESOURCE_ROM
},
180 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
181 .flags
= IORESOURCE_ROM
},
182 { .name
= "Adapter ROM", .start
= 0, .end
= 0,
183 .flags
= IORESOURCE_ROM
}
186 #define ADAPTER_ROM_RESOURCES \
187 (sizeof adapter_rom_resources / sizeof adapter_rom_resources[0])
189 static struct resource video_rom_resource
= {
193 .flags
= IORESOURCE_ROM
,
196 static struct resource video_ram_resource
= {
197 .name
= "Video RAM area",
200 .flags
= IORESOURCE_RAM
,
203 #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
205 static int __init
romchecksum(unsigned char *rom
, unsigned long length
)
207 unsigned char *p
, sum
= 0;
209 for (p
= rom
; p
< rom
+ length
; p
++)
214 static void __init
probe_roms(void)
216 unsigned long start
, length
, upper
;
221 upper
= adapter_rom_resources
[0].start
;
222 for (start
= video_rom_resource
.start
; start
< upper
; start
+= 2048) {
223 rom
= isa_bus_to_virt(start
);
224 if (!romsignature(rom
))
227 video_rom_resource
.start
= start
;
229 /* 0 < length <= 0x7f * 512, historically */
230 length
= rom
[2] * 512;
232 /* if checksum okay, trust length byte */
233 if (length
&& romchecksum(rom
, length
))
234 video_rom_resource
.end
= start
+ length
- 1;
236 request_resource(&iomem_resource
, &video_rom_resource
);
240 start
= (video_rom_resource
.end
+ 1 + 2047) & ~2047UL;
245 request_resource(&iomem_resource
, &system_rom_resource
);
246 upper
= system_rom_resource
.start
;
248 /* check for extension rom (ignore length byte!) */
249 rom
= isa_bus_to_virt(extension_rom_resource
.start
);
250 if (romsignature(rom
)) {
251 length
= extension_rom_resource
.end
- extension_rom_resource
.start
+ 1;
252 if (romchecksum(rom
, length
)) {
253 request_resource(&iomem_resource
, &extension_rom_resource
);
254 upper
= extension_rom_resource
.start
;
258 /* check for adapter roms on 2k boundaries */
259 for (i
= 0; i
< ADAPTER_ROM_RESOURCES
&& start
< upper
; start
+= 2048) {
260 rom
= isa_bus_to_virt(start
);
261 if (!romsignature(rom
))
264 /* 0 < length <= 0x7f * 512, historically */
265 length
= rom
[2] * 512;
267 /* but accept any length that fits if checksum okay */
268 if (!length
|| start
+ length
> upper
|| !romchecksum(rom
, length
))
271 adapter_rom_resources
[i
].start
= start
;
272 adapter_rom_resources
[i
].end
= start
+ length
- 1;
273 request_resource(&iomem_resource
, &adapter_rom_resources
[i
]);
275 start
= adapter_rom_resources
[i
++].end
& ~2047UL;
279 /* Check for full argument with no trailing characters */
280 static int fullarg(char *p
, char *arg
)
283 return !memcmp(p
, arg
, l
) && (p
[l
] == 0 || isspace(p
[l
]));
286 static __init
void parse_cmdline_early (char ** cmdline_p
)
288 char c
= ' ', *to
= command_line
, *from
= COMMAND_LINE
;
298 * If the BIOS enumerates physical processors before logical,
299 * maxcpus=N at enumeration-time can be used to disable HT.
301 else if (!memcmp(from
, "maxcpus=", 8)) {
302 extern unsigned int maxcpus
;
304 maxcpus
= simple_strtoul(from
+ 8, NULL
, 0);
308 /* "acpi=off" disables both ACPI table parsing and interpreter init */
309 if (fullarg(from
,"acpi=off"))
312 if (fullarg(from
, "acpi=force")) {
313 /* add later when we do DMI horrors: */
318 /* acpi=ht just means: do ACPI MADT parsing
319 at bootup, but don't enable the full ACPI interpreter */
320 if (fullarg(from
, "acpi=ht")) {
325 else if (fullarg(from
, "pci=noacpi"))
327 else if (fullarg(from
, "acpi=noirq"))
330 else if (fullarg(from
, "acpi_sci=edge"))
331 acpi_sci_flags
.trigger
= 1;
332 else if (fullarg(from
, "acpi_sci=level"))
333 acpi_sci_flags
.trigger
= 3;
334 else if (fullarg(from
, "acpi_sci=high"))
335 acpi_sci_flags
.polarity
= 1;
336 else if (fullarg(from
, "acpi_sci=low"))
337 acpi_sci_flags
.polarity
= 3;
339 /* acpi=strict disables out-of-spec workarounds */
340 else if (fullarg(from
, "acpi=strict")) {
343 #ifdef CONFIG_X86_IO_APIC
344 else if (fullarg(from
, "acpi_skip_timer_override"))
345 acpi_skip_timer_override
= 1;
349 if (fullarg(from
, "disable_timer_pin_1"))
350 disable_timer_pin_1
= 1;
351 if (fullarg(from
, "enable_timer_pin_1"))
352 disable_timer_pin_1
= -1;
354 if (fullarg(from
, "nolapic") || fullarg(from
, "disableapic")) {
355 clear_bit(X86_FEATURE_APIC
, boot_cpu_data
.x86_capability
);
359 if (fullarg(from
, "noapic"))
360 skip_ioapic_setup
= 1;
362 if (fullarg(from
,"apic")) {
363 skip_ioapic_setup
= 0;
367 if (!memcmp(from
, "mem=", 4))
368 parse_memopt(from
+4, &from
);
370 if (!memcmp(from
, "memmap=", 7)) {
371 /* exactmap option is for used defined memory */
372 if (!memcmp(from
+7, "exactmap", 8)) {
373 #ifdef CONFIG_CRASH_DUMP
374 /* If we are doing a crash dump, we
375 * still need to know the real mem
376 * size before original memory map is
379 saved_max_pfn
= e820_end_of_ram();
387 parse_memmapopt(from
+7, &from
);
393 if (!memcmp(from
, "numa=", 5))
397 if (!memcmp(from
,"iommu=",6)) {
401 if (fullarg(from
,"oops=panic"))
404 if (!memcmp(from
, "noexec=", 7))
405 nonx_setup(from
+ 7);
408 /* crashkernel=size@addr specifies the location to reserve for
409 * a crash kernel. By reserving this memory we guarantee
410 * that linux never set's it up as a DMA target.
411 * Useful for holding code to do something appropriate
412 * after a kernel panic.
414 else if (!memcmp(from
, "crashkernel=", 12)) {
415 unsigned long size
, base
;
416 size
= memparse(from
+12, &from
);
418 base
= memparse(from
+1, &from
);
419 /* FIXME: Do I want a sanity check
420 * to validate the memory range?
422 crashk_res
.start
= base
;
423 crashk_res
.end
= base
+ size
- 1;
428 #ifdef CONFIG_PROC_VMCORE
429 /* elfcorehdr= specifies the location of elf core header
430 * stored by the crashed kernel. This option will be passed
431 * by kexec loader to the capture kernel.
433 else if(!memcmp(from
, "elfcorehdr=", 11))
434 elfcorehdr_addr
= memparse(from
+11, &from
);
437 #ifdef CONFIG_HOTPLUG_CPU
438 else if (!memcmp(from
, "additional_cpus=", 16))
439 setup_additional_cpus(from
+16);
446 if (COMMAND_LINE_SIZE
<= ++len
)
451 printk(KERN_INFO
"user-defined physical RAM map:\n");
452 e820_print_map("user");
455 *cmdline_p
= command_line
;
460 contig_initmem_init(unsigned long start_pfn
, unsigned long end_pfn
)
462 unsigned long bootmap_size
, bootmap
;
464 bootmap_size
= bootmem_bootmap_pages(end_pfn
)<<PAGE_SHIFT
;
465 bootmap
= find_e820_area(0, end_pfn
<<PAGE_SHIFT
, bootmap_size
);
467 panic("Cannot find bootmem map of size %ld\n",bootmap_size
);
468 bootmap_size
= init_bootmem(bootmap
>> PAGE_SHIFT
, end_pfn
);
469 e820_bootmem_free(NODE_DATA(0), 0, end_pfn
<< PAGE_SHIFT
);
470 reserve_bootmem(bootmap
, bootmap_size
);
474 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
476 #ifdef CONFIG_EDD_MODULE
480 * copy_edd() - Copy the BIOS EDD information
481 * from boot_params into a safe place.
484 static inline void copy_edd(void)
486 memcpy(edd
.mbr_signature
, EDD_MBR_SIGNATURE
, sizeof(edd
.mbr_signature
));
487 memcpy(edd
.edd_info
, EDD_BUF
, sizeof(edd
.edd_info
));
488 edd
.mbr_signature_nr
= EDD_MBR_SIG_NR
;
489 edd
.edd_info_nr
= EDD_NR
;
492 static inline void copy_edd(void)
497 #define EBDA_ADDR_POINTER 0x40E
499 unsigned __initdata ebda_addr
;
500 unsigned __initdata ebda_size
;
502 static void discover_ebda(void)
505 * there is a real-mode segmented pointer pointing to the
506 * 4K EBDA area at 0x40E
508 ebda_addr
= *(unsigned short *)EBDA_ADDR_POINTER
;
511 ebda_size
= *(unsigned short *)(unsigned long)ebda_addr
;
513 /* Round EBDA up to pages */
517 ebda_size
= round_up(ebda_size
+ (ebda_addr
& ~PAGE_MASK
), PAGE_SIZE
);
518 if (ebda_size
> 64*1024)
522 void __init
setup_arch(char **cmdline_p
)
524 ROOT_DEV
= old_decode_dev(ORIG_ROOT_DEV
);
525 screen_info
= SCREEN_INFO
;
526 edid_info
= EDID_INFO
;
527 saved_video_mode
= SAVED_VIDEO_MODE
;
528 bootloader_type
= LOADER_TYPE
;
530 #ifdef CONFIG_BLK_DEV_RAM
531 rd_image_start
= RAMDISK_FLAGS
& RAMDISK_IMAGE_START_MASK
;
532 rd_prompt
= ((RAMDISK_FLAGS
& RAMDISK_PROMPT_FLAG
) != 0);
533 rd_doload
= ((RAMDISK_FLAGS
& RAMDISK_LOAD_FLAG
) != 0);
535 setup_memory_region();
538 if (!MOUNT_ROOT_RDONLY
)
539 root_mountflags
&= ~MS_RDONLY
;
540 init_mm
.start_code
= (unsigned long) &_text
;
541 init_mm
.end_code
= (unsigned long) &_etext
;
542 init_mm
.end_data
= (unsigned long) &_edata
;
543 init_mm
.brk
= (unsigned long) &_end
;
545 code_resource
.start
= virt_to_phys(&_text
);
546 code_resource
.end
= virt_to_phys(&_etext
)-1;
547 data_resource
.start
= virt_to_phys(&_etext
);
548 data_resource
.end
= virt_to_phys(&_edata
)-1;
550 parse_cmdline_early(cmdline_p
);
552 early_identify_cpu(&boot_cpu_data
);
555 * partially used pages are not usable - thus
556 * we are rounding upwards:
558 end_pfn
= e820_end_of_ram();
559 num_physpages
= end_pfn
; /* for pfn_valid */
565 init_memory_mapping(0, (end_pfn_map
<< PAGE_SHIFT
));
573 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
574 * Call this early for SRAT node setup.
576 acpi_boot_table_init();
579 #ifdef CONFIG_ACPI_NUMA
581 * Parse SRAT to discover nodes.
587 numa_initmem_init(0, end_pfn
);
589 contig_initmem_init(0, end_pfn
);
592 /* Reserve direct mapping */
593 reserve_bootmem_generic(table_start
<< PAGE_SHIFT
,
594 (table_end
- table_start
) << PAGE_SHIFT
);
597 reserve_bootmem_generic(__pa_symbol(&_text
),
598 __pa_symbol(&_end
) - __pa_symbol(&_text
));
601 * reserve physical page 0 - it's a special BIOS page on many boxes,
602 * enabling clean reboots, SMP operation, laptop functions.
604 reserve_bootmem_generic(0, PAGE_SIZE
);
606 /* reserve ebda region */
608 reserve_bootmem_generic(ebda_addr
, ebda_size
);
612 * But first pinch a few for the stack/trampoline stuff
613 * FIXME: Don't need the extra page at 4K, but need to fix
614 * trampoline before removing it. (see the GDT stuff)
616 reserve_bootmem_generic(PAGE_SIZE
, PAGE_SIZE
);
618 /* Reserve SMP trampoline */
619 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE
, PAGE_SIZE
);
622 #ifdef CONFIG_ACPI_SLEEP
624 * Reserve low memory region for sleep support.
626 acpi_reserve_bootmem();
628 #ifdef CONFIG_X86_LOCAL_APIC
630 * Find and reserve possible boot-time SMP configuration:
634 #ifdef CONFIG_BLK_DEV_INITRD
635 if (LOADER_TYPE
&& INITRD_START
) {
636 if (INITRD_START
+ INITRD_SIZE
<= (end_pfn
<< PAGE_SHIFT
)) {
637 reserve_bootmem_generic(INITRD_START
, INITRD_SIZE
);
639 INITRD_START
? INITRD_START
+ PAGE_OFFSET
: 0;
640 initrd_end
= initrd_start
+INITRD_SIZE
;
643 printk(KERN_ERR
"initrd extends beyond end of memory "
644 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
645 (unsigned long)(INITRD_START
+ INITRD_SIZE
),
646 (unsigned long)(end_pfn
<< PAGE_SHIFT
));
652 if (crashk_res
.start
!= crashk_res
.end
) {
653 reserve_bootmem_generic(crashk_res
.start
,
654 crashk_res
.end
- crashk_res
.start
+ 1);
663 * set this early, so we dont allocate cpu0
664 * if MADT list doesnt list BSP first
665 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
667 cpu_set(0, cpu_present_map
);
670 * Read APIC and some other early information from ACPI tables.
677 #ifdef CONFIG_X86_LOCAL_APIC
679 * get boot-time SMP configuration:
681 if (smp_found_config
)
683 init_apic_mappings();
687 * Request address space for all standard RAM and ROM resources
688 * and also for regions reported as reserved by the e820.
691 e820_reserve_resources();
693 request_resource(&iomem_resource
, &video_ram_resource
);
697 /* request I/O space for devices used on all i[345]86 PCs */
698 for (i
= 0; i
< STANDARD_IO_RESOURCES
; i
++)
699 request_resource(&ioport_resource
, &standard_io_resources
[i
]);
705 #if defined(CONFIG_VGA_CONSOLE)
706 conswitchp
= &vga_con
;
707 #elif defined(CONFIG_DUMMY_CONSOLE)
708 conswitchp
= &dummy_con
;
713 static int __cpuinit
get_model_name(struct cpuinfo_x86
*c
)
717 if (c
->extended_cpuid_level
< 0x80000004)
720 v
= (unsigned int *) c
->x86_model_id
;
721 cpuid(0x80000002, &v
[0], &v
[1], &v
[2], &v
[3]);
722 cpuid(0x80000003, &v
[4], &v
[5], &v
[6], &v
[7]);
723 cpuid(0x80000004, &v
[8], &v
[9], &v
[10], &v
[11]);
724 c
->x86_model_id
[48] = 0;
729 static void __cpuinit
display_cacheinfo(struct cpuinfo_x86
*c
)
731 unsigned int n
, dummy
, eax
, ebx
, ecx
, edx
;
733 n
= c
->extended_cpuid_level
;
735 if (n
>= 0x80000005) {
736 cpuid(0x80000005, &dummy
, &ebx
, &ecx
, &edx
);
737 printk(KERN_INFO
"CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
738 edx
>>24, edx
&0xFF, ecx
>>24, ecx
&0xFF);
739 c
->x86_cache_size
=(ecx
>>24)+(edx
>>24);
740 /* On K8 L1 TLB is inclusive, so don't count it */
744 if (n
>= 0x80000006) {
745 cpuid(0x80000006, &dummy
, &ebx
, &ecx
, &edx
);
746 ecx
= cpuid_ecx(0x80000006);
747 c
->x86_cache_size
= ecx
>> 16;
748 c
->x86_tlbsize
+= ((ebx
>> 16) & 0xfff) + (ebx
& 0xfff);
750 printk(KERN_INFO
"CPU: L2 Cache: %dK (%d bytes/line)\n",
751 c
->x86_cache_size
, ecx
& 0xFF);
755 cpuid(0x80000007, &dummy
, &dummy
, &dummy
, &c
->x86_power
);
756 if (n
>= 0x80000008) {
757 cpuid(0x80000008, &eax
, &dummy
, &dummy
, &dummy
);
758 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
759 c
->x86_phys_bits
= eax
& 0xff;
764 static int nearby_node(int apicid
)
767 for (i
= apicid
- 1; i
>= 0; i
--) {
768 int node
= apicid_to_node
[i
];
769 if (node
!= NUMA_NO_NODE
&& node_online(node
))
772 for (i
= apicid
+ 1; i
< MAX_LOCAL_APIC
; i
++) {
773 int node
= apicid_to_node
[i
];
774 if (node
!= NUMA_NO_NODE
&& node_online(node
))
777 return first_node(node_online_map
); /* Shouldn't happen */
782 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
783 * Assumes number of cores is a power of two.
785 static void __init
amd_detect_cmp(struct cpuinfo_x86
*c
)
790 int cpu
= smp_processor_id();
792 unsigned apicid
= hard_smp_processor_id();
794 unsigned ecx
= cpuid_ecx(0x80000008);
796 c
->x86_max_cores
= (ecx
& 0xff) + 1;
798 /* CPU telling us the core id bits shift? */
799 bits
= (ecx
>> 12) & 0xF;
801 /* Otherwise recompute */
803 while ((1 << bits
) < c
->x86_max_cores
)
807 /* Low order bits define the core id (index of core in socket) */
808 c
->cpu_core_id
= c
->phys_proc_id
& ((1 << bits
)-1);
809 /* Convert the APIC ID into the socket ID */
810 c
->phys_proc_id
= phys_pkg_id(bits
);
813 node
= c
->phys_proc_id
;
814 if (apicid_to_node
[apicid
] != NUMA_NO_NODE
)
815 node
= apicid_to_node
[apicid
];
816 if (!node_online(node
)) {
817 /* Two possibilities here:
818 - The CPU is missing memory and no node was created.
819 In that case try picking one from a nearby CPU
820 - The APIC IDs differ from the HyperTransport node IDs
821 which the K8 northbridge parsing fills in.
822 Assume they are all increased by a constant offset,
823 but in the same order as the HT nodeids.
824 If that doesn't result in a usable node fall back to the
825 path for the previous case. */
826 int ht_nodeid
= apicid
- (cpu_data
[0].phys_proc_id
<< bits
);
827 if (ht_nodeid
>= 0 &&
828 apicid_to_node
[ht_nodeid
] != NUMA_NO_NODE
)
829 node
= apicid_to_node
[ht_nodeid
];
830 /* Pick a nearby node */
831 if (!node_online(node
))
832 node
= nearby_node(apicid
);
834 numa_set_node(cpu
, node
);
836 printk(KERN_INFO
"CPU %d/%x -> Node %d\n", cpu
, apicid
, node
);
841 static void __init
init_amd(struct cpuinfo_x86
*c
)
849 * Disable TLB flush filter by setting HWCR.FFDIS on K8
850 * bit 6 of msr C001_0015
852 * Errata 63 for SH-B3 steppings
853 * Errata 122 for all steppings (F+ have it disabled by default)
856 rdmsrl(MSR_K8_HWCR
, value
);
858 wrmsrl(MSR_K8_HWCR
, value
);
862 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
863 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
864 clear_bit(0*32+31, &c
->x86_capability
);
866 /* On C+ stepping K8 rep microcode works well for copy/memset */
867 level
= cpuid_eax(1);
868 if (c
->x86
== 15 && ((level
>= 0x0f48 && level
< 0x0f50) || level
>= 0x0f58))
869 set_bit(X86_FEATURE_REP_GOOD
, &c
->x86_capability
);
871 /* Enable workaround for FXSAVE leak */
873 set_bit(X86_FEATURE_FXSAVE_LEAK
, &c
->x86_capability
);
875 level
= get_model_name(c
);
879 /* Should distinguish Models here, but this is only
880 a fallback anyways. */
881 strcpy(c
->x86_model_id
, "Hammer");
885 display_cacheinfo(c
);
887 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
888 if (c
->x86_power
& (1<<8))
889 set_bit(X86_FEATURE_CONSTANT_TSC
, &c
->x86_capability
);
891 /* Multi core CPU? */
892 if (c
->extended_cpuid_level
>= 0x80000008)
895 /* Fix cpuid4 emulation for more */
896 num_cache_leaves
= 3;
899 static void __cpuinit
detect_ht(struct cpuinfo_x86
*c
)
902 u32 eax
, ebx
, ecx
, edx
;
903 int index_msb
, core_bits
;
905 cpuid(1, &eax
, &ebx
, &ecx
, &edx
);
908 if (!cpu_has(c
, X86_FEATURE_HT
))
910 if (cpu_has(c
, X86_FEATURE_CMP_LEGACY
))
913 smp_num_siblings
= (ebx
& 0xff0000) >> 16;
915 if (smp_num_siblings
== 1) {
916 printk(KERN_INFO
"CPU: Hyper-Threading is disabled\n");
917 } else if (smp_num_siblings
> 1 ) {
919 if (smp_num_siblings
> NR_CPUS
) {
920 printk(KERN_WARNING
"CPU: Unsupported number of the siblings %d", smp_num_siblings
);
921 smp_num_siblings
= 1;
925 index_msb
= get_count_order(smp_num_siblings
);
926 c
->phys_proc_id
= phys_pkg_id(index_msb
);
928 smp_num_siblings
= smp_num_siblings
/ c
->x86_max_cores
;
930 index_msb
= get_count_order(smp_num_siblings
) ;
932 core_bits
= get_count_order(c
->x86_max_cores
);
934 c
->cpu_core_id
= phys_pkg_id(index_msb
) &
935 ((1 << core_bits
) - 1);
938 if ((c
->x86_max_cores
* smp_num_siblings
) > 1) {
939 printk(KERN_INFO
"CPU: Physical Processor ID: %d\n", c
->phys_proc_id
);
940 printk(KERN_INFO
"CPU: Processor Core ID: %d\n", c
->cpu_core_id
);
947 * find out the number of processor cores on the die
949 static int __cpuinit
intel_num_cpu_cores(struct cpuinfo_x86
*c
)
953 if (c
->cpuid_level
< 4)
956 cpuid_count(4, 0, &eax
, &t
, &t
, &t
);
959 return ((eax
>> 26) + 1);
964 static void srat_detect_node(void)
968 int cpu
= smp_processor_id();
969 int apicid
= hard_smp_processor_id();
971 /* Don't do the funky fallback heuristics the AMD version employs
973 node
= apicid_to_node
[apicid
];
974 if (node
== NUMA_NO_NODE
)
975 node
= first_node(node_online_map
);
976 numa_set_node(cpu
, node
);
979 printk(KERN_INFO
"CPU %d/%x -> Node %d\n", cpu
, apicid
, node
);
983 static void __cpuinit
init_intel(struct cpuinfo_x86
*c
)
988 init_intel_cacheinfo(c
);
989 if (c
->cpuid_level
> 9 ) {
990 unsigned eax
= cpuid_eax(10);
991 /* Check for version and the number of counters */
992 if ((eax
& 0xff) && (((eax
>>8) & 0xff) > 1))
993 set_bit(X86_FEATURE_ARCH_PERFMON
, &c
->x86_capability
);
996 n
= c
->extended_cpuid_level
;
997 if (n
>= 0x80000008) {
998 unsigned eax
= cpuid_eax(0x80000008);
999 c
->x86_virt_bits
= (eax
>> 8) & 0xff;
1000 c
->x86_phys_bits
= eax
& 0xff;
1001 /* CPUID workaround for Intel 0F34 CPU */
1002 if (c
->x86_vendor
== X86_VENDOR_INTEL
&&
1003 c
->x86
== 0xF && c
->x86_model
== 0x3 &&
1005 c
->x86_phys_bits
= 36;
1009 c
->x86_cache_alignment
= c
->x86_clflush_size
* 2;
1010 if ((c
->x86
== 0xf && c
->x86_model
>= 0x03) ||
1011 (c
->x86
== 0x6 && c
->x86_model
>= 0x0e))
1012 set_bit(X86_FEATURE_CONSTANT_TSC
, &c
->x86_capability
);
1013 set_bit(X86_FEATURE_SYNC_RDTSC
, &c
->x86_capability
);
1014 c
->x86_max_cores
= intel_num_cpu_cores(c
);
1019 static void __cpuinit
get_cpu_vendor(struct cpuinfo_x86
*c
)
1021 char *v
= c
->x86_vendor_id
;
1023 if (!strcmp(v
, "AuthenticAMD"))
1024 c
->x86_vendor
= X86_VENDOR_AMD
;
1025 else if (!strcmp(v
, "GenuineIntel"))
1026 c
->x86_vendor
= X86_VENDOR_INTEL
;
1028 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
1031 struct cpu_model_info
{
1034 char *model_names
[16];
1037 /* Do some early cpuid on the boot CPU to get some parameter that are
1038 needed before check_bugs. Everything advanced is in identify_cpu
1040 void __cpuinit
early_identify_cpu(struct cpuinfo_x86
*c
)
1044 c
->loops_per_jiffy
= loops_per_jiffy
;
1045 c
->x86_cache_size
= -1;
1046 c
->x86_vendor
= X86_VENDOR_UNKNOWN
;
1047 c
->x86_model
= c
->x86_mask
= 0; /* So far unknown... */
1048 c
->x86_vendor_id
[0] = '\0'; /* Unset */
1049 c
->x86_model_id
[0] = '\0'; /* Unset */
1050 c
->x86_clflush_size
= 64;
1051 c
->x86_cache_alignment
= c
->x86_clflush_size
;
1052 c
->x86_max_cores
= 1;
1053 c
->extended_cpuid_level
= 0;
1054 memset(&c
->x86_capability
, 0, sizeof c
->x86_capability
);
1056 /* Get vendor name */
1057 cpuid(0x00000000, (unsigned int *)&c
->cpuid_level
,
1058 (unsigned int *)&c
->x86_vendor_id
[0],
1059 (unsigned int *)&c
->x86_vendor_id
[8],
1060 (unsigned int *)&c
->x86_vendor_id
[4]);
1064 /* Initialize the standard set of capabilities */
1065 /* Note that the vendor-specific code below might override */
1067 /* Intel-defined flags: level 0x00000001 */
1068 if (c
->cpuid_level
>= 0x00000001) {
1070 cpuid(0x00000001, &tfms
, &misc
, &c
->x86_capability
[4],
1071 &c
->x86_capability
[0]);
1072 c
->x86
= (tfms
>> 8) & 0xf;
1073 c
->x86_model
= (tfms
>> 4) & 0xf;
1074 c
->x86_mask
= tfms
& 0xf;
1076 c
->x86
+= (tfms
>> 20) & 0xff;
1078 c
->x86_model
+= ((tfms
>> 16) & 0xF) << 4;
1079 if (c
->x86_capability
[0] & (1<<19))
1080 c
->x86_clflush_size
= ((misc
>> 8) & 0xff) * 8;
1082 /* Have CPUID level 0 only - unheard of */
1087 c
->phys_proc_id
= (cpuid_ebx(1) >> 24) & 0xff;
1092 * This does the hard work of actually picking apart the CPU stuff...
1094 void __cpuinit
identify_cpu(struct cpuinfo_x86
*c
)
1099 early_identify_cpu(c
);
1101 /* AMD-defined flags: level 0x80000001 */
1102 xlvl
= cpuid_eax(0x80000000);
1103 c
->extended_cpuid_level
= xlvl
;
1104 if ((xlvl
& 0xffff0000) == 0x80000000) {
1105 if (xlvl
>= 0x80000001) {
1106 c
->x86_capability
[1] = cpuid_edx(0x80000001);
1107 c
->x86_capability
[6] = cpuid_ecx(0x80000001);
1109 if (xlvl
>= 0x80000004)
1110 get_model_name(c
); /* Default name */
1113 /* Transmeta-defined flags: level 0x80860001 */
1114 xlvl
= cpuid_eax(0x80860000);
1115 if ((xlvl
& 0xffff0000) == 0x80860000) {
1116 /* Don't set x86_cpuid_level here for now to not confuse. */
1117 if (xlvl
>= 0x80860001)
1118 c
->x86_capability
[2] = cpuid_edx(0x80860001);
1121 c
->apicid
= phys_pkg_id(0);
1124 * Vendor-specific initialization. In this section we
1125 * canonicalize the feature flags, meaning if there are
1126 * features a certain CPU supports which CPUID doesn't
1127 * tell us, CPUID claiming incorrect flags, or other bugs,
1128 * we handle them here.
1130 * At the end of this section, c->x86_capability better
1131 * indicate the features this CPU genuinely supports!
1133 switch (c
->x86_vendor
) {
1134 case X86_VENDOR_AMD
:
1138 case X86_VENDOR_INTEL
:
1142 case X86_VENDOR_UNKNOWN
:
1144 display_cacheinfo(c
);
1148 select_idle_routine(c
);
1152 * On SMP, boot_cpu_data holds the common feature set between
1153 * all CPUs; so make sure that we indicate which features are
1154 * common between the CPUs. The first time this routine gets
1155 * executed, c == &boot_cpu_data.
1157 if (c
!= &boot_cpu_data
) {
1158 /* AND the already accumulated flags with these */
1159 for (i
= 0 ; i
< NCAPINTS
; i
++)
1160 boot_cpu_data
.x86_capability
[i
] &= c
->x86_capability
[i
];
1163 #ifdef CONFIG_X86_MCE
1166 if (c
== &boot_cpu_data
)
1171 numa_add_cpu(smp_processor_id());
1176 void __cpuinit
print_cpu_info(struct cpuinfo_x86
*c
)
1178 if (c
->x86_model_id
[0])
1179 printk("%s", c
->x86_model_id
);
1181 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1182 printk(" stepping %02x\n", c
->x86_mask
);
1188 * Get CPU information for use by the procfs.
1191 static int show_cpuinfo(struct seq_file
*m
, void *v
)
1193 struct cpuinfo_x86
*c
= v
;
1196 * These flag bits must match the definitions in <asm/cpufeature.h>.
1197 * NULL means this bit is undefined or reserved; either way it doesn't
1198 * have meaning as far as Linux is concerned. Note that it's important
1199 * to realize there is a difference between this table and CPUID -- if
1200 * applications want to get the raw CPUID data, they should access
1201 * /dev/cpu/<cpu_nr>/cpuid instead.
1203 static char *x86_cap_flags
[] = {
1205 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1206 "cx8", "apic", NULL
, "sep", "mtrr", "pge", "mca", "cmov",
1207 "pat", "pse36", "pn", "clflush", NULL
, "dts", "acpi", "mmx",
1208 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL
,
1211 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1212 NULL
, NULL
, NULL
, "syscall", NULL
, NULL
, NULL
, NULL
,
1213 NULL
, NULL
, NULL
, NULL
, "nx", NULL
, "mmxext", NULL
,
1214 NULL
, "fxsr_opt", NULL
, "rdtscp", NULL
, "lm", "3dnowext", "3dnow",
1216 /* Transmeta-defined */
1217 "recovery", "longrun", NULL
, "lrti", NULL
, NULL
, NULL
, NULL
,
1218 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1219 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1220 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1222 /* Other (Linux-defined) */
1223 "cxmmx", NULL
, "cyrix_arr", "centaur_mcr", NULL
,
1224 "constant_tsc", NULL
, NULL
,
1225 "up", NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1226 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1227 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1229 /* Intel-defined (#2) */
1230 "pni", NULL
, NULL
, "monitor", "ds_cpl", "vmx", "smx", "est",
1231 "tm2", NULL
, "cid", NULL
, NULL
, "cx16", "xtpr", NULL
,
1232 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1233 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1235 /* VIA/Cyrix/Centaur-defined */
1236 NULL
, NULL
, "rng", "rng_en", NULL
, NULL
, "ace", "ace_en",
1237 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1238 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1239 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1241 /* AMD-defined (#2) */
1242 "lahf_lm", "cmp_legacy", "svm", NULL
, "cr8_legacy", NULL
, NULL
, NULL
,
1243 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1244 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1245 NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
, NULL
,
1247 static char *x86_power_flags
[] = {
1248 "ts", /* temperature sensor */
1249 "fid", /* frequency id control */
1250 "vid", /* voltage id control */
1251 "ttp", /* thermal trip */
1255 /* nothing */ /* constant_tsc - moved to flags */
1260 if (!cpu_online(c
-cpu_data
))
1264 seq_printf(m
,"processor\t: %u\n"
1266 "cpu family\t: %d\n"
1268 "model name\t: %s\n",
1269 (unsigned)(c
-cpu_data
),
1270 c
->x86_vendor_id
[0] ? c
->x86_vendor_id
: "unknown",
1273 c
->x86_model_id
[0] ? c
->x86_model_id
: "unknown");
1275 if (c
->x86_mask
|| c
->cpuid_level
>= 0)
1276 seq_printf(m
, "stepping\t: %d\n", c
->x86_mask
);
1278 seq_printf(m
, "stepping\t: unknown\n");
1280 if (cpu_has(c
,X86_FEATURE_TSC
)) {
1281 unsigned int freq
= cpufreq_quick_get((unsigned)(c
-cpu_data
));
1284 seq_printf(m
, "cpu MHz\t\t: %u.%03u\n",
1285 freq
/ 1000, (freq
% 1000));
1289 if (c
->x86_cache_size
>= 0)
1290 seq_printf(m
, "cache size\t: %d KB\n", c
->x86_cache_size
);
1293 if (smp_num_siblings
* c
->x86_max_cores
> 1) {
1294 int cpu
= c
- cpu_data
;
1295 seq_printf(m
, "physical id\t: %d\n", c
->phys_proc_id
);
1296 seq_printf(m
, "siblings\t: %d\n", cpus_weight(cpu_core_map
[cpu
]));
1297 seq_printf(m
, "core id\t\t: %d\n", c
->cpu_core_id
);
1298 seq_printf(m
, "cpu cores\t: %d\n", c
->booted_cores
);
1304 "fpu_exception\t: yes\n"
1305 "cpuid level\t: %d\n"
1312 for ( i
= 0 ; i
< 32*NCAPINTS
; i
++ )
1313 if (cpu_has(c
, i
) && x86_cap_flags
[i
] != NULL
)
1314 seq_printf(m
, " %s", x86_cap_flags
[i
]);
1317 seq_printf(m
, "\nbogomips\t: %lu.%02lu\n",
1318 c
->loops_per_jiffy
/(500000/HZ
),
1319 (c
->loops_per_jiffy
/(5000/HZ
)) % 100);
1321 if (c
->x86_tlbsize
> 0)
1322 seq_printf(m
, "TLB size\t: %d 4K pages\n", c
->x86_tlbsize
);
1323 seq_printf(m
, "clflush size\t: %d\n", c
->x86_clflush_size
);
1324 seq_printf(m
, "cache_alignment\t: %d\n", c
->x86_cache_alignment
);
1326 seq_printf(m
, "address sizes\t: %u bits physical, %u bits virtual\n",
1327 c
->x86_phys_bits
, c
->x86_virt_bits
);
1329 seq_printf(m
, "power management:");
1332 for (i
= 0; i
< 32; i
++)
1333 if (c
->x86_power
& (1 << i
)) {
1334 if (i
< ARRAY_SIZE(x86_power_flags
) &&
1336 seq_printf(m
, "%s%s",
1337 x86_power_flags
[i
][0]?" ":"",
1338 x86_power_flags
[i
]);
1340 seq_printf(m
, " [%d]", i
);
1344 seq_printf(m
, "\n\n");
1349 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1351 return *pos
< NR_CPUS
? cpu_data
+ *pos
: NULL
;
1354 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1357 return c_start(m
, pos
);
1360 static void c_stop(struct seq_file
*m
, void *v
)
1364 struct seq_operations cpuinfo_op
= {
1368 .show
= show_cpuinfo
,
1371 #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
1372 #include <linux/platform_device.h>
1373 static __init
int add_pcspkr(void)
1375 struct platform_device
*pd
;
1378 pd
= platform_device_alloc("pcspkr", -1);
1382 ret
= platform_device_add(pd
);
1384 platform_device_put(pd
);
1388 device_initcall(add_pcspkr
);