before merging master
[inav.git] / lib / main / STM32F7 / Drivers / STM32F7xx_HAL_Driver / Src / stm32f7xx_ll_tim.c
blobf942a24e69eb14586b27b20dcaea08846a2bc540
1 /**
2 ******************************************************************************
3 * @file stm32f7xx_ll_tim.c
4 * @author MCD Application Team
5 * @version V1.2.2
6 * @date 14-April-2017
7 * @brief TIM LL module driver.
8 ******************************************************************************
9 * @attention
11 * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
13 * Redistribution and use in source and binary forms, with or without modification,
14 * are permitted provided that the following conditions are met:
15 * 1. Redistributions of source code must retain the above copyright notice,
16 * this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright notice,
18 * this list of conditions and the following disclaimer in the documentation
19 * and/or other materials provided with the distribution.
20 * 3. Neither the name of STMicroelectronics nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
30 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
31 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
33 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 ******************************************************************************
37 #if defined(USE_FULL_LL_DRIVER)
39 /* Includes ------------------------------------------------------------------*/
40 #include "stm32f7xx_ll_tim.h"
41 #include "stm32f7xx_ll_bus.h"
43 #ifdef USE_FULL_ASSERT
44 #include "stm32_assert.h"
45 #else
46 #define assert_param(expr) ((void)0U)
47 #endif
49 /** @addtogroup STM32F7xx_LL_Driver
50 * @{
53 #if defined (TIM1) || defined (TIM8) || defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM12) || defined (TIM13) || defined (TIM14) || defined (TIM6) || defined (TIM7)
55 /** @addtogroup TIM_LL
56 * @{
59 /* Private types -------------------------------------------------------------*/
60 /* Private variables ---------------------------------------------------------*/
61 /* Private constants ---------------------------------------------------------*/
62 /* Private macros ------------------------------------------------------------*/
63 /** @addtogroup TIM_LL_Private_Macros
64 * @{
66 #define IS_LL_TIM_COUNTERMODE(__VALUE__) (((__VALUE__) == LL_TIM_COUNTERMODE_UP) \
67 || ((__VALUE__) == LL_TIM_COUNTERMODE_DOWN) \
68 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP) \
69 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_DOWN) \
70 || ((__VALUE__) == LL_TIM_COUNTERMODE_CENTER_UP_DOWN))
72 #define IS_LL_TIM_CLOCKDIVISION(__VALUE__) (((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV1) \
73 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV2) \
74 || ((__VALUE__) == LL_TIM_CLOCKDIVISION_DIV4))
76 #define IS_LL_TIM_OCMODE(__VALUE__) (((__VALUE__) == LL_TIM_OCMODE_FROZEN) \
77 || ((__VALUE__) == LL_TIM_OCMODE_ACTIVE) \
78 || ((__VALUE__) == LL_TIM_OCMODE_INACTIVE) \
79 || ((__VALUE__) == LL_TIM_OCMODE_TOGGLE) \
80 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_INACTIVE) \
81 || ((__VALUE__) == LL_TIM_OCMODE_FORCED_ACTIVE) \
82 || ((__VALUE__) == LL_TIM_OCMODE_PWM1) \
83 || ((__VALUE__) == LL_TIM_OCMODE_PWM2) \
84 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM1) \
85 || ((__VALUE__) == LL_TIM_OCMODE_RETRIG_OPM2) \
86 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM1) \
87 || ((__VALUE__) == LL_TIM_OCMODE_COMBINED_PWM2) \
88 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM1) \
89 || ((__VALUE__) == LL_TIM_OCMODE_ASSYMETRIC_PWM2))
91 #define IS_LL_TIM_OCSTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCSTATE_DISABLE) \
92 || ((__VALUE__) == LL_TIM_OCSTATE_ENABLE))
94 #define IS_LL_TIM_OCPOLARITY(__VALUE__) (((__VALUE__) == LL_TIM_OCPOLARITY_HIGH) \
95 || ((__VALUE__) == LL_TIM_OCPOLARITY_LOW))
97 #define IS_LL_TIM_OCIDLESTATE(__VALUE__) (((__VALUE__) == LL_TIM_OCIDLESTATE_LOW) \
98 || ((__VALUE__) == LL_TIM_OCIDLESTATE_HIGH))
100 #define IS_LL_TIM_ACTIVEINPUT(__VALUE__) (((__VALUE__) == LL_TIM_ACTIVEINPUT_DIRECTTI) \
101 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_INDIRECTTI) \
102 || ((__VALUE__) == LL_TIM_ACTIVEINPUT_TRC))
104 #define IS_LL_TIM_ICPSC(__VALUE__) (((__VALUE__) == LL_TIM_ICPSC_DIV1) \
105 || ((__VALUE__) == LL_TIM_ICPSC_DIV2) \
106 || ((__VALUE__) == LL_TIM_ICPSC_DIV4) \
107 || ((__VALUE__) == LL_TIM_ICPSC_DIV8))
109 #define IS_LL_TIM_IC_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_IC_FILTER_FDIV1) \
110 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N2) \
111 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N4) \
112 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV1_N8) \
113 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N6) \
114 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV2_N8) \
115 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N6) \
116 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV4_N8) \
117 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N6) \
118 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV8_N8) \
119 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N5) \
120 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N6) \
121 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV16_N8) \
122 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N5) \
123 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N6) \
124 || ((__VALUE__) == LL_TIM_IC_FILTER_FDIV32_N8))
126 #define IS_LL_TIM_IC_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
127 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING) \
128 || ((__VALUE__) == LL_TIM_IC_POLARITY_BOTHEDGE))
130 #define IS_LL_TIM_ENCODERMODE(__VALUE__) (((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI1) \
131 || ((__VALUE__) == LL_TIM_ENCODERMODE_X2_TI2) \
132 || ((__VALUE__) == LL_TIM_ENCODERMODE_X4_TI12))
134 #define IS_LL_TIM_IC_POLARITY_ENCODER(__VALUE__) (((__VALUE__) == LL_TIM_IC_POLARITY_RISING) \
135 || ((__VALUE__) == LL_TIM_IC_POLARITY_FALLING))
137 #define IS_LL_TIM_OSSR_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSR_DISABLE) \
138 || ((__VALUE__) == LL_TIM_OSSR_ENABLE))
140 #define IS_LL_TIM_OSSI_STATE(__VALUE__) (((__VALUE__) == LL_TIM_OSSI_DISABLE) \
141 || ((__VALUE__) == LL_TIM_OSSI_ENABLE))
143 #define IS_LL_TIM_LOCK_LEVEL(__VALUE__) (((__VALUE__) == LL_TIM_LOCKLEVEL_OFF) \
144 || ((__VALUE__) == LL_TIM_LOCKLEVEL_1) \
145 || ((__VALUE__) == LL_TIM_LOCKLEVEL_2) \
146 || ((__VALUE__) == LL_TIM_LOCKLEVEL_3))
148 #define IS_LL_TIM_BREAK_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_DISABLE) \
149 || ((__VALUE__) == LL_TIM_BREAK_ENABLE))
151 #define IS_LL_TIM_BREAK_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_POLARITY_LOW) \
152 || ((__VALUE__) == LL_TIM_BREAK_POLARITY_HIGH))
154 #define IS_LL_TIM_BREAK_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1) \
155 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N2) \
156 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N4) \
157 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV1_N8) \
158 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N6) \
159 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV2_N8) \
160 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N6) \
161 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV4_N8) \
162 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N6) \
163 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV8_N8) \
164 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N5) \
165 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N6) \
166 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV16_N8) \
167 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N5) \
168 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N6) \
169 || ((__VALUE__) == LL_TIM_BREAK_FILTER_FDIV32_N8))
171 #define IS_LL_TIM_BREAK2_STATE(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_DISABLE) \
172 || ((__VALUE__) == LL_TIM_BREAK2_ENABLE))
174 #define IS_LL_TIM_BREAK2_POLARITY(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_POLARITY_LOW) \
175 || ((__VALUE__) == LL_TIM_BREAK2_POLARITY_HIGH))
177 #define IS_LL_TIM_BREAK2_FILTER(__VALUE__) (((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1) \
178 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N2) \
179 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N4) \
180 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV1_N8) \
181 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N6) \
182 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV2_N8) \
183 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N6) \
184 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV4_N8) \
185 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N6) \
186 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV8_N8) \
187 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N5) \
188 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N6) \
189 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV16_N8) \
190 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N5) \
191 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N6) \
192 || ((__VALUE__) == LL_TIM_BREAK2_FILTER_FDIV32_N8))
194 #define IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(__VALUE__) (((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_DISABLE) \
195 || ((__VALUE__) == LL_TIM_AUTOMATICOUTPUT_ENABLE))
197 * @}
201 /* Private function prototypes -----------------------------------------------*/
202 /** @defgroup TIM_LL_Private_Functions TIM Private Functions
203 * @{
205 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
206 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
207 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
208 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
209 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
210 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct);
211 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
212 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
213 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
214 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct);
216 * @}
219 /* Exported functions --------------------------------------------------------*/
220 /** @addtogroup TIM_LL_Exported_Functions
221 * @{
224 /** @addtogroup TIM_LL_EF_Init
225 * @{
229 * @brief Set TIMx registers to their reset values.
230 * @param TIMx Timer instance
231 * @retval An ErrorStatus enumeration value:
232 * - SUCCESS: TIMx registers are de-initialized
233 * - ERROR: invalid TIMx instance
235 ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx)
237 ErrorStatus result = SUCCESS;
239 /* Check the parameters */
240 assert_param(IS_TIM_INSTANCE(TIMx));
242 if (TIMx == TIM1)
244 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM1);
245 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM1);
247 else if (TIMx == TIM2)
249 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM2);
250 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM2);
252 #if defined(TIM3)
253 else if (TIMx == TIM3)
255 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM3);
256 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM3);
258 #endif
259 #if defined(TIM4)
260 else if (TIMx == TIM4)
262 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM4);
263 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM4);
265 #endif
266 #if defined(TIM5)
267 else if (TIMx == TIM5)
269 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM5);
270 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM5);
272 #endif
273 #if defined(TIM6)
274 else if (TIMx == TIM6)
276 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM6);
277 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM6);
279 #endif
280 #if defined (TIM7)
281 else if (TIMx == TIM7)
283 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM7);
284 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM7);
286 #endif
287 #if defined(TIM8)
288 else if (TIMx == TIM8)
290 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM8);
291 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM8);
293 #endif
294 #if defined(TIM9)
295 else if (TIMx == TIM9)
297 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM9);
298 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM9);
300 #endif
301 #if defined(TIM10)
302 else if (TIMx == TIM10)
304 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM10);
305 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM10);
307 #endif
308 #if defined(TIM11)
309 else if (TIMx == TIM11)
311 LL_APB2_GRP1_ForceReset(LL_APB2_GRP1_PERIPH_TIM11);
312 LL_APB2_GRP1_ReleaseReset(LL_APB2_GRP1_PERIPH_TIM11);
314 #endif
315 #if defined(TIM12)
316 else if (TIMx == TIM12)
318 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM12);
319 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM12);
321 #endif
322 #if defined(TIM13)
323 else if (TIMx == TIM13)
325 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM13);
326 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM13);
328 #endif
329 #if defined(TIM14)
330 else if (TIMx == TIM14)
332 LL_APB1_GRP1_ForceReset(LL_APB1_GRP1_PERIPH_TIM14);
333 LL_APB1_GRP1_ReleaseReset(LL_APB1_GRP1_PERIPH_TIM14);
335 #endif
336 else
338 result = ERROR;
341 return result;
345 * @brief Set the fields of the time base unit configuration data structure
346 * to their default values.
347 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (time base unit configuration data structure)
348 * @retval None
350 void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct)
352 /* Set the default configuration */
353 TIM_InitStruct->Prescaler = (uint16_t)0x0000U;
354 TIM_InitStruct->CounterMode = LL_TIM_COUNTERMODE_UP;
355 TIM_InitStruct->Autoreload = 0xFFFFFFFFU;
356 TIM_InitStruct->ClockDivision = LL_TIM_CLOCKDIVISION_DIV1;
357 TIM_InitStruct->RepetitionCounter = (uint8_t)0x00U;
361 * @brief Configure the TIMx time base unit.
362 * @param TIMx Timer Instance
363 * @param TIM_InitStruct pointer to a @ref LL_TIM_InitTypeDef structure (TIMx time base unit configuration data structure)
364 * @retval An ErrorStatus enumeration value:
365 * - SUCCESS: TIMx registers are de-initialized
366 * - ERROR: not applicable
368 ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct)
370 uint32_t tmpcr1 = 0U;
372 /* Check the parameters */
373 assert_param(IS_TIM_INSTANCE(TIMx));
374 assert_param(IS_LL_TIM_COUNTERMODE(TIM_InitStruct->CounterMode));
375 assert_param(IS_LL_TIM_CLOCKDIVISION(TIM_InitStruct->ClockDivision));
377 tmpcr1 = LL_TIM_ReadReg(TIMx, CR1);
379 if (IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx))
381 /* Select the Counter Mode */
382 MODIFY_REG(tmpcr1, (TIM_CR1_DIR | TIM_CR1_CMS), TIM_InitStruct->CounterMode);
385 if (IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx))
387 /* Set the clock division */
388 MODIFY_REG(tmpcr1, TIM_CR1_CKD, TIM_InitStruct->ClockDivision);
391 /* Write to TIMx CR1 */
392 LL_TIM_WriteReg(TIMx, CR1, tmpcr1);
394 /* Set the Autoreload value */
395 LL_TIM_SetAutoReload(TIMx, TIM_InitStruct->Autoreload);
397 /* Set the Prescaler value */
398 LL_TIM_SetPrescaler(TIMx, TIM_InitStruct->Prescaler);
400 if (IS_TIM_REPETITION_COUNTER_INSTANCE(TIMx))
402 /* Set the Repetition Counter value */
403 LL_TIM_SetRepetitionCounter(TIMx, TIM_InitStruct->RepetitionCounter);
406 /* Generate an update event to reload the Prescaler
407 and the repetition counter value (if applicable) immediately */
408 LL_TIM_GenerateEvent_UPDATE(TIMx);
410 return SUCCESS;
414 * @brief Set the fields of the TIMx output channel configuration data
415 * structure to their default values.
416 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (the output channel configuration data structure)
417 * @retval None
419 void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
421 /* Set the default configuration */
422 TIM_OC_InitStruct->OCMode = LL_TIM_OCMODE_FROZEN;
423 TIM_OC_InitStruct->OCState = LL_TIM_OCSTATE_DISABLE;
424 TIM_OC_InitStruct->OCNState = LL_TIM_OCSTATE_DISABLE;
425 TIM_OC_InitStruct->CompareValue = 0x00000000U;
426 TIM_OC_InitStruct->OCPolarity = LL_TIM_OCPOLARITY_HIGH;
427 TIM_OC_InitStruct->OCNPolarity = LL_TIM_OCPOLARITY_HIGH;
428 TIM_OC_InitStruct->OCIdleState = LL_TIM_OCIDLESTATE_LOW;
429 TIM_OC_InitStruct->OCNIdleState = LL_TIM_OCIDLESTATE_LOW;
433 * @brief Configure the TIMx output channel.
434 * @param TIMx Timer Instance
435 * @param Channel This parameter can be one of the following values:
436 * @arg @ref LL_TIM_CHANNEL_CH1
437 * @arg @ref LL_TIM_CHANNEL_CH2
438 * @arg @ref LL_TIM_CHANNEL_CH3
439 * @arg @ref LL_TIM_CHANNEL_CH4
440 * @arg @ref LL_TIM_CHANNEL_CH5
441 * @arg @ref LL_TIM_CHANNEL_CH6
442 * @param TIM_OC_InitStruct pointer to a @ref LL_TIM_OC_InitTypeDef structure (TIMx output channel configuration data structure)
443 * @retval An ErrorStatus enumeration value:
444 * - SUCCESS: TIMx output channel is initialized
445 * - ERROR: TIMx output channel is not initialized
447 ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct)
449 ErrorStatus result = ERROR;
451 switch (Channel)
453 case LL_TIM_CHANNEL_CH1:
454 result = OC1Config(TIMx, TIM_OC_InitStruct);
455 break;
456 case LL_TIM_CHANNEL_CH2:
457 result = OC2Config(TIMx, TIM_OC_InitStruct);
458 break;
459 case LL_TIM_CHANNEL_CH3:
460 result = OC3Config(TIMx, TIM_OC_InitStruct);
461 break;
462 case LL_TIM_CHANNEL_CH4:
463 result = OC4Config(TIMx, TIM_OC_InitStruct);
464 break;
465 case LL_TIM_CHANNEL_CH5:
466 result = OC5Config(TIMx, TIM_OC_InitStruct);
467 break;
468 case LL_TIM_CHANNEL_CH6:
469 result = OC6Config(TIMx, TIM_OC_InitStruct);
470 break;
471 default:
472 break;
475 return result;
479 * @brief Set the fields of the TIMx input channel configuration data
480 * structure to their default values.
481 * @param TIM_ICInitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (the input channel configuration data structure)
482 * @retval None
484 void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
486 /* Set the default configuration */
487 TIM_ICInitStruct->ICPolarity = LL_TIM_IC_POLARITY_RISING;
488 TIM_ICInitStruct->ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
489 TIM_ICInitStruct->ICPrescaler = LL_TIM_ICPSC_DIV1;
490 TIM_ICInitStruct->ICFilter = LL_TIM_IC_FILTER_FDIV1;
494 * @brief Configure the TIMx input channel.
495 * @param TIMx Timer Instance
496 * @param Channel This parameter can be one of the following values:
497 * @arg @ref LL_TIM_CHANNEL_CH1
498 * @arg @ref LL_TIM_CHANNEL_CH2
499 * @arg @ref LL_TIM_CHANNEL_CH3
500 * @arg @ref LL_TIM_CHANNEL_CH4
501 * @param TIM_IC_InitStruct pointer to a @ref LL_TIM_IC_InitTypeDef structure (TIMx input channel configuration data structure)
502 * @retval An ErrorStatus enumeration value:
503 * - SUCCESS: TIMx output channel is initialized
504 * - ERROR: TIMx output channel is not initialized
506 ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct)
508 ErrorStatus result = ERROR;
510 switch (Channel)
512 case LL_TIM_CHANNEL_CH1:
513 result = IC1Config(TIMx, TIM_IC_InitStruct);
514 break;
515 case LL_TIM_CHANNEL_CH2:
516 result = IC2Config(TIMx, TIM_IC_InitStruct);
517 break;
518 case LL_TIM_CHANNEL_CH3:
519 result = IC3Config(TIMx, TIM_IC_InitStruct);
520 break;
521 case LL_TIM_CHANNEL_CH4:
522 result = IC4Config(TIMx, TIM_IC_InitStruct);
523 break;
524 default:
525 break;
528 return result;
532 * @brief Fills each TIM_EncoderInitStruct field with its default value
533 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (encoder interface configuration data structure)
534 * @retval None
536 void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
538 /* Set the default configuration */
539 TIM_EncoderInitStruct->EncoderMode = LL_TIM_ENCODERMODE_X2_TI1;
540 TIM_EncoderInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
541 TIM_EncoderInitStruct->IC1ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
542 TIM_EncoderInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
543 TIM_EncoderInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
544 TIM_EncoderInitStruct->IC2Polarity = LL_TIM_IC_POLARITY_RISING;
545 TIM_EncoderInitStruct->IC2ActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI;
546 TIM_EncoderInitStruct->IC2Prescaler = LL_TIM_ICPSC_DIV1;
547 TIM_EncoderInitStruct->IC2Filter = LL_TIM_IC_FILTER_FDIV1;
551 * @brief Configure the encoder interface of the timer instance.
552 * @param TIMx Timer Instance
553 * @param TIM_EncoderInitStruct pointer to a @ref LL_TIM_ENCODER_InitTypeDef structure (TIMx encoder interface configuration data structure)
554 * @retval An ErrorStatus enumeration value:
555 * - SUCCESS: TIMx registers are de-initialized
556 * - ERROR: not applicable
558 ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct)
560 uint32_t tmpccmr1 = 0U;
561 uint32_t tmpccer = 0U;
563 /* Check the parameters */
564 assert_param(IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx));
565 assert_param(IS_LL_TIM_ENCODERMODE(TIM_EncoderInitStruct->EncoderMode));
566 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC1Polarity));
567 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC1ActiveInput));
568 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC1Prescaler));
569 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC1Filter));
570 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_EncoderInitStruct->IC2Polarity));
571 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_EncoderInitStruct->IC2ActiveInput));
572 assert_param(IS_LL_TIM_ICPSC(TIM_EncoderInitStruct->IC2Prescaler));
573 assert_param(IS_LL_TIM_IC_FILTER(TIM_EncoderInitStruct->IC2Filter));
575 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
576 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
578 /* Get the TIMx CCMR1 register value */
579 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
581 /* Get the TIMx CCER register value */
582 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
584 /* Configure TI1 */
585 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
586 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1ActiveInput >> 16U);
587 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Filter >> 16U);
588 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC1Prescaler >> 16U);
590 /* Configure TI2 */
591 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC);
592 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2ActiveInput >> 8U);
593 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Filter >> 8U);
594 tmpccmr1 |= (uint32_t)(TIM_EncoderInitStruct->IC2Prescaler >> 8U);
596 /* Set TI1 and TI2 polarity and enable TI1 and TI2 */
597 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
598 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC1Polarity);
599 tmpccer |= (uint32_t)(TIM_EncoderInitStruct->IC2Polarity << 4U);
600 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
602 /* Set encoder mode */
603 LL_TIM_SetEncoderMode(TIMx, TIM_EncoderInitStruct->EncoderMode);
605 /* Write to TIMx CCMR1 */
606 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
608 /* Write to TIMx CCER */
609 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
611 return SUCCESS;
615 * @brief Set the fields of the TIMx Hall sensor interface configuration data
616 * structure to their default values.
617 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (HALL sensor interface configuration data structure)
618 * @retval None
620 void LL_TIM_HALLSENSOR_StructInit(LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
622 /* Set the default configuration */
623 TIM_HallSensorInitStruct->IC1Polarity = LL_TIM_IC_POLARITY_RISING;
624 TIM_HallSensorInitStruct->IC1Prescaler = LL_TIM_ICPSC_DIV1;
625 TIM_HallSensorInitStruct->IC1Filter = LL_TIM_IC_FILTER_FDIV1;
626 TIM_HallSensorInitStruct->CommutationDelay = 0U;
630 * @brief Configure the Hall sensor interface of the timer instance.
631 * @note TIMx CH1, CH2 and CH3 inputs connected through a XOR
632 * to the TI1 input channel
633 * @note TIMx slave mode controller is configured in reset mode.
634 Selected internal trigger is TI1F_ED.
635 * @note Channel 1 is configured as input, IC1 is mapped on TRC.
636 * @note Captured value stored in TIMx_CCR1 correspond to the time elapsed
637 * between 2 changes on the inputs. It gives information about motor speed.
638 * @note Channel 2 is configured in output PWM 2 mode.
639 * @note Compare value stored in TIMx_CCR2 corresponds to the commutation delay.
640 * @note OC2REF is selected as trigger output on TRGO.
641 * @note LL_TIM_IC_POLARITY_BOTHEDGE must not be used for TI1 when it is used
642 * when TIMx operates in Hall sensor interface mode.
643 * @param TIMx Timer Instance
644 * @param TIM_HallSensorInitStruct pointer to a @ref LL_TIM_HALLSENSOR_InitTypeDef structure (TIMx HALL sensor interface configuration data structure)
645 * @retval An ErrorStatus enumeration value:
646 * - SUCCESS: TIMx registers are de-initialized
647 * - ERROR: not applicable
649 ErrorStatus LL_TIM_HALLSENSOR_Init(TIM_TypeDef *TIMx, LL_TIM_HALLSENSOR_InitTypeDef *TIM_HallSensorInitStruct)
651 uint32_t tmpcr2 = 0U;
652 uint32_t tmpccmr1 = 0U;
653 uint32_t tmpccer = 0U;
654 uint32_t tmpsmcr = 0U;
656 /* Check the parameters */
657 assert_param(IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(TIMx));
658 assert_param(IS_LL_TIM_IC_POLARITY_ENCODER(TIM_HallSensorInitStruct->IC1Polarity));
659 assert_param(IS_LL_TIM_ICPSC(TIM_HallSensorInitStruct->IC1Prescaler));
660 assert_param(IS_LL_TIM_IC_FILTER(TIM_HallSensorInitStruct->IC1Filter));
662 /* Disable the CC1 and CC2: Reset the CC1E and CC2E Bits */
663 TIMx->CCER &= (uint32_t)~(TIM_CCER_CC1E | TIM_CCER_CC2E);
665 /* Get the TIMx CR2 register value */
666 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
668 /* Get the TIMx CCMR1 register value */
669 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
671 /* Get the TIMx CCER register value */
672 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
674 /* Get the TIMx SMCR register value */
675 tmpsmcr = LL_TIM_ReadReg(TIMx, SMCR);
677 /* Connect TIMx_CH1, CH2 and CH3 pins to the TI1 input */
678 tmpcr2 |= TIM_CR2_TI1S;
680 /* OC2REF signal is used as trigger output (TRGO) */
681 tmpcr2 |= LL_TIM_TRGO_OC2REF;
683 /* Configure the slave mode controller */
684 tmpsmcr &= (uint32_t)~(TIM_SMCR_TS | TIM_SMCR_SMS);
685 tmpsmcr |= LL_TIM_TS_TI1F_ED;
686 tmpsmcr |= LL_TIM_SLAVEMODE_RESET;
688 /* Configure input channel 1 */
689 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC);
690 tmpccmr1 |= (uint32_t)(LL_TIM_ACTIVEINPUT_TRC >> 16U);
691 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Filter >> 16U);
692 tmpccmr1 |= (uint32_t)(TIM_HallSensorInitStruct->IC1Prescaler >> 16U);
694 /* Configure input channel 2 */
695 tmpccmr1 &= (uint32_t)~(TIM_CCMR1_OC2M | TIM_CCMR1_OC2FE | TIM_CCMR1_OC2PE | TIM_CCMR1_OC2CE);
696 tmpccmr1 |= (uint32_t)(LL_TIM_OCMODE_PWM2 << 8U);
698 /* Set Channel 1 polarity and enable Channel 1 and Channel2 */
699 tmpccer &= (uint32_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP | TIM_CCER_CC2P | TIM_CCER_CC2NP);
700 tmpccer |= (uint32_t)(TIM_HallSensorInitStruct->IC1Polarity);
701 tmpccer |= (uint32_t)(TIM_CCER_CC1E | TIM_CCER_CC2E);
703 /* Write to TIMx CR2 */
704 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
706 /* Write to TIMx SMCR */
707 LL_TIM_WriteReg(TIMx, SMCR, tmpsmcr);
709 /* Write to TIMx CCMR1 */
710 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
712 /* Write to TIMx CCER */
713 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
715 /* Write to TIMx CCR2 */
716 LL_TIM_OC_SetCompareCH2(TIMx, TIM_HallSensorInitStruct->CommutationDelay);
718 return SUCCESS;
722 * @brief Set the fields of the Break and Dead Time configuration data structure
723 * to their default values.
724 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
725 * @retval None
727 void LL_TIM_BDTR_StructInit(LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
729 /* Set the default configuration */
730 TIM_BDTRInitStruct->OSSRState = LL_TIM_OSSR_DISABLE;
731 TIM_BDTRInitStruct->OSSIState = LL_TIM_OSSI_DISABLE;
732 TIM_BDTRInitStruct->LockLevel = LL_TIM_LOCKLEVEL_OFF;
733 TIM_BDTRInitStruct->DeadTime = (uint8_t)0x00U;
734 TIM_BDTRInitStruct->BreakState = LL_TIM_BREAK_DISABLE;
735 TIM_BDTRInitStruct->BreakPolarity = LL_TIM_BREAK_POLARITY_LOW;
736 TIM_BDTRInitStruct->BreakFilter = LL_TIM_BREAK_FILTER_FDIV1;
737 TIM_BDTRInitStruct->Break2State = LL_TIM_BREAK2_DISABLE;
738 TIM_BDTRInitStruct->Break2Polarity = LL_TIM_BREAK2_POLARITY_LOW;
739 TIM_BDTRInitStruct->Break2Filter = LL_TIM_BREAK2_FILTER_FDIV1;
740 TIM_BDTRInitStruct->AutomaticOutput = LL_TIM_AUTOMATICOUTPUT_DISABLE;
744 * @brief Configure the Break and Dead Time feature of the timer instance.
745 * @note As the bits BK2P, BK2E, BK2F[3:0], BKF[3:0], AOE, BKP, BKE, OSSI, OSSR
746 * and DTG[7:0] can be write-locked depending on the LOCK configuration, it
747 * can be necessary to configure all of them during the first write access to
748 * the TIMx_BDTR register.
749 * @note Macro @ref IS_TIM_BREAK_INSTANCE(TIMx) can be used to check whether or not
750 * a timer instance provides a break input.
751 * @note Macro @ref IS_TIM_BKIN2_INSTANCE(TIMx) can be used to check whether or not
752 * a timer instance provides a second break input.
753 * @param TIMx Timer Instance
754 * @param TIM_BDTRInitStruct pointer to a @ref LL_TIM_BDTR_InitTypeDef structure (Break and Dead Time configuration data structure)
755 * @retval An ErrorStatus enumeration value:
756 * - SUCCESS: Break and Dead Time is initialized
757 * - ERROR: not applicable
759 ErrorStatus LL_TIM_BDTR_Init(TIM_TypeDef *TIMx, LL_TIM_BDTR_InitTypeDef *TIM_BDTRInitStruct)
761 uint32_t tmpbdtr = 0;
763 /* Check the parameters */
764 assert_param(IS_TIM_BREAK_INSTANCE(TIMx));
765 assert_param(IS_LL_TIM_OSSR_STATE(TIM_BDTRInitStruct->OSSRState));
766 assert_param(IS_LL_TIM_OSSI_STATE(TIM_BDTRInitStruct->OSSIState));
767 assert_param(IS_LL_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->LockLevel));
768 assert_param(IS_LL_TIM_BREAK_STATE(TIM_BDTRInitStruct->BreakState));
769 assert_param(IS_LL_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->BreakPolarity));
770 assert_param(IS_LL_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->AutomaticOutput));
772 /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
773 the OSSI State, the dead time value and the Automatic Output Enable Bit */
775 /* Set the BDTR bits */
776 MODIFY_REG(tmpbdtr, TIM_BDTR_DTG, TIM_BDTRInitStruct->DeadTime);
777 MODIFY_REG(tmpbdtr, TIM_BDTR_LOCK, TIM_BDTRInitStruct->LockLevel);
778 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSI, TIM_BDTRInitStruct->OSSIState);
779 MODIFY_REG(tmpbdtr, TIM_BDTR_OSSR, TIM_BDTRInitStruct->OSSRState);
780 MODIFY_REG(tmpbdtr, TIM_BDTR_BKE, TIM_BDTRInitStruct->BreakState);
781 MODIFY_REG(tmpbdtr, TIM_BDTR_BKP, TIM_BDTRInitStruct->BreakPolarity);
782 MODIFY_REG(tmpbdtr, TIM_BDTR_AOE, TIM_BDTRInitStruct->AutomaticOutput);
783 MODIFY_REG(tmpbdtr, TIM_BDTR_MOE, TIM_BDTRInitStruct->AutomaticOutput);
784 if (IS_TIM_ADVANCED_INSTANCE(TIMx))
786 assert_param(IS_LL_TIM_BREAK_FILTER(TIM_BDTRInitStruct->BreakFilter));
787 MODIFY_REG(tmpbdtr, TIM_BDTR_BKF, TIM_BDTRInitStruct->BreakFilter);
790 if (IS_TIM_BKIN2_INSTANCE(TIMx))
792 assert_param(IS_LL_TIM_BREAK2_STATE(TIM_BDTRInitStruct->Break2State));
793 assert_param(IS_LL_TIM_BREAK2_POLARITY(TIM_BDTRInitStruct->Break2Polarity));
794 assert_param(IS_LL_TIM_BREAK2_FILTER(TIM_BDTRInitStruct->Break2Filter));
796 /* Set the BREAK2 input related BDTR bit-fields */
797 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2F, (TIM_BDTRInitStruct->Break2Filter));
798 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2E, TIM_BDTRInitStruct->Break2State);
799 MODIFY_REG(tmpbdtr, TIM_BDTR_BK2P, TIM_BDTRInitStruct->Break2Polarity);
802 /* Set TIMx_BDTR */
803 LL_TIM_WriteReg(TIMx, BDTR, tmpbdtr);
805 return SUCCESS;
808 * @}
812 * @}
815 /** @addtogroup TIM_LL_Private_Functions TIM Private Functions
816 * @brief Private functions
817 * @{
820 * @brief Configure the TIMx output channel 1.
821 * @param TIMx Timer Instance
822 * @param TIM_OCInitStruct pointer to the the TIMx output channel 1 configuration data structure
823 * @retval An ErrorStatus enumeration value:
824 * - SUCCESS: TIMx registers are de-initialized
825 * - ERROR: not applicable
827 static ErrorStatus OC1Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
829 uint32_t tmpccmr1 = 0U;
830 uint32_t tmpccer = 0U;
831 uint32_t tmpcr2 = 0U;
833 /* Check the parameters */
834 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
835 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
836 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
837 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
838 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
839 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
841 /* Disable the Channel 1: Reset the CC1E Bit */
842 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC1E);
844 /* Get the TIMx CCER register value */
845 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
847 /* Get the TIMx CR2 register value */
848 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
850 /* Get the TIMx CCMR1 register value */
851 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
853 /* Reset Capture/Compare selection Bits */
854 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC1S);
856 /* Set the Output Compare Mode */
857 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC1M, TIM_OCInitStruct->OCMode);
859 /* Set the Output Compare Polarity */
860 MODIFY_REG(tmpccer, TIM_CCER_CC1P, TIM_OCInitStruct->OCPolarity);
862 /* Set the Output State */
863 MODIFY_REG(tmpccer, TIM_CCER_CC1E, TIM_OCInitStruct->OCState);
865 if (IS_TIM_BREAK_INSTANCE(TIMx))
867 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
868 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
870 /* Set the complementary output Polarity */
871 MODIFY_REG(tmpccer, TIM_CCER_CC1NP, TIM_OCInitStruct->OCNPolarity << 2U);
873 /* Set the complementary output State */
874 MODIFY_REG(tmpccer, TIM_CCER_CC1NE, TIM_OCInitStruct->OCNState << 2U);
876 /* Set the Output Idle state */
877 MODIFY_REG(tmpcr2, TIM_CR2_OIS1, TIM_OCInitStruct->OCIdleState);
879 /* Set the complementary output Idle state */
880 MODIFY_REG(tmpcr2, TIM_CR2_OIS1N, TIM_OCInitStruct->OCNIdleState << 1U);
883 /* Write to TIMx CR2 */
884 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
886 /* Write to TIMx CCMR1 */
887 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
889 /* Set the Capture Compare Register value */
890 LL_TIM_OC_SetCompareCH1(TIMx, TIM_OCInitStruct->CompareValue);
892 /* Write to TIMx CCER */
893 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
895 return SUCCESS;
899 * @brief Configure the TIMx output channel 2.
900 * @param TIMx Timer Instance
901 * @param TIM_OCInitStruct pointer to the the TIMx output channel 2 configuration data structure
902 * @retval An ErrorStatus enumeration value:
903 * - SUCCESS: TIMx registers are de-initialized
904 * - ERROR: not applicable
906 static ErrorStatus OC2Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
908 uint32_t tmpccmr1 = 0U;
909 uint32_t tmpccer = 0U;
910 uint32_t tmpcr2 = 0U;
912 /* Check the parameters */
913 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
914 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
915 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
916 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
917 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
918 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
920 /* Disable the Channel 2: Reset the CC2E Bit */
921 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC2E);
923 /* Get the TIMx CCER register value */
924 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
926 /* Get the TIMx CR2 register value */
927 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
929 /* Get the TIMx CCMR1 register value */
930 tmpccmr1 = LL_TIM_ReadReg(TIMx, CCMR1);
932 /* Reset Capture/Compare selection Bits */
933 CLEAR_BIT(tmpccmr1, TIM_CCMR1_CC2S);
935 /* Select the Output Compare Mode */
936 MODIFY_REG(tmpccmr1, TIM_CCMR1_OC2M, TIM_OCInitStruct->OCMode << 8U);
938 /* Set the Output Compare Polarity */
939 MODIFY_REG(tmpccer, TIM_CCER_CC2P, TIM_OCInitStruct->OCPolarity << 4U);
941 /* Set the Output State */
942 MODIFY_REG(tmpccer, TIM_CCER_CC2E, TIM_OCInitStruct->OCState << 4U);
944 if (IS_TIM_BREAK_INSTANCE(TIMx))
946 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
947 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
949 /* Set the complementary output Polarity */
950 MODIFY_REG(tmpccer, TIM_CCER_CC2NP, TIM_OCInitStruct->OCNPolarity << 6U);
952 /* Set the complementary output State */
953 MODIFY_REG(tmpccer, TIM_CCER_CC2NE, TIM_OCInitStruct->OCNState << 6U);
955 /* Set the Output Idle state */
956 MODIFY_REG(tmpcr2, TIM_CR2_OIS2, TIM_OCInitStruct->OCIdleState << 2U);
958 /* Set the complementary output Idle state */
959 MODIFY_REG(tmpcr2, TIM_CR2_OIS2N, TIM_OCInitStruct->OCNIdleState << 3U);
962 /* Write to TIMx CR2 */
963 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
965 /* Write to TIMx CCMR1 */
966 LL_TIM_WriteReg(TIMx, CCMR1, tmpccmr1);
968 /* Set the Capture Compare Register value */
969 LL_TIM_OC_SetCompareCH2(TIMx, TIM_OCInitStruct->CompareValue);
971 /* Write to TIMx CCER */
972 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
974 return SUCCESS;
978 * @brief Configure the TIMx output channel 3.
979 * @param TIMx Timer Instance
980 * @param TIM_OCInitStruct pointer to the the TIMx output channel 3 configuration data structure
981 * @retval An ErrorStatus enumeration value:
982 * - SUCCESS: TIMx registers are de-initialized
983 * - ERROR: not applicable
985 static ErrorStatus OC3Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
987 uint32_t tmpccmr2 = 0U;
988 uint32_t tmpccer = 0U;
989 uint32_t tmpcr2 = 0U;
991 /* Check the parameters */
992 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
993 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
994 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
995 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
996 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
997 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
999 /* Disable the Channel 3: Reset the CC3E Bit */
1000 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC3E);
1002 /* Get the TIMx CCER register value */
1003 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1005 /* Get the TIMx CR2 register value */
1006 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1008 /* Get the TIMx CCMR2 register value */
1009 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1011 /* Reset Capture/Compare selection Bits */
1012 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC3S);
1014 /* Select the Output Compare Mode */
1015 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC3M, TIM_OCInitStruct->OCMode);
1017 /* Set the Output Compare Polarity */
1018 MODIFY_REG(tmpccer, TIM_CCER_CC3P, TIM_OCInitStruct->OCPolarity << 8U);
1020 /* Set the Output State */
1021 MODIFY_REG(tmpccer, TIM_CCER_CC3E, TIM_OCInitStruct->OCState << 8U);
1023 if (IS_TIM_BREAK_INSTANCE(TIMx))
1025 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1026 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1028 /* Set the complementary output Polarity */
1029 MODIFY_REG(tmpccer, TIM_CCER_CC3NP, TIM_OCInitStruct->OCNPolarity << 10U);
1031 /* Set the complementary output State */
1032 MODIFY_REG(tmpccer, TIM_CCER_CC3NE, TIM_OCInitStruct->OCNState << 10U);
1034 /* Set the Output Idle state */
1035 MODIFY_REG(tmpcr2, TIM_CR2_OIS3, TIM_OCInitStruct->OCIdleState << 4U);
1037 /* Set the complementary output Idle state */
1038 MODIFY_REG(tmpcr2, TIM_CR2_OIS3N, TIM_OCInitStruct->OCNIdleState << 5U);
1041 /* Write to TIMx CR2 */
1042 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1044 /* Write to TIMx CCMR2 */
1045 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1047 /* Set the Capture Compare Register value */
1048 LL_TIM_OC_SetCompareCH3(TIMx, TIM_OCInitStruct->CompareValue);
1050 /* Write to TIMx CCER */
1051 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1053 return SUCCESS;
1057 * @brief Configure the TIMx output channel 4.
1058 * @param TIMx Timer Instance
1059 * @param TIM_OCInitStruct pointer to the the TIMx output channel 4 configuration data structure
1060 * @retval An ErrorStatus enumeration value:
1061 * - SUCCESS: TIMx registers are de-initialized
1062 * - ERROR: not applicable
1064 static ErrorStatus OC4Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1066 uint32_t tmpccmr2 = 0U;
1067 uint32_t tmpccer = 0U;
1068 uint32_t tmpcr2 = 0U;
1070 /* Check the parameters */
1071 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1072 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1073 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1074 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1075 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1076 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1078 /* Disable the Channel 4: Reset the CC4E Bit */
1079 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC4E);
1081 /* Get the TIMx CCER register value */
1082 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1084 /* Get the TIMx CR2 register value */
1085 tmpcr2 = LL_TIM_ReadReg(TIMx, CR2);
1087 /* Get the TIMx CCMR2 register value */
1088 tmpccmr2 = LL_TIM_ReadReg(TIMx, CCMR2);
1090 /* Reset Capture/Compare selection Bits */
1091 CLEAR_BIT(tmpccmr2, TIM_CCMR2_CC4S);
1093 /* Select the Output Compare Mode */
1094 MODIFY_REG(tmpccmr2, TIM_CCMR2_OC4M, TIM_OCInitStruct->OCMode << 8U);
1096 /* Set the Output Compare Polarity */
1097 MODIFY_REG(tmpccer, TIM_CCER_CC4P, TIM_OCInitStruct->OCPolarity << 12U);
1099 /* Set the Output State */
1100 MODIFY_REG(tmpccer, TIM_CCER_CC4E, TIM_OCInitStruct->OCState << 12U);
1102 if (IS_TIM_BREAK_INSTANCE(TIMx))
1104 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1105 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1107 /* Set the Output Idle state */
1108 MODIFY_REG(tmpcr2, TIM_CR2_OIS4, TIM_OCInitStruct->OCIdleState << 6U);
1111 /* Write to TIMx CR2 */
1112 LL_TIM_WriteReg(TIMx, CR2, tmpcr2);
1114 /* Write to TIMx CCMR2 */
1115 LL_TIM_WriteReg(TIMx, CCMR2, tmpccmr2);
1117 /* Set the Capture Compare Register value */
1118 LL_TIM_OC_SetCompareCH4(TIMx, TIM_OCInitStruct->CompareValue);
1120 /* Write to TIMx CCER */
1121 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1123 return SUCCESS;
1127 * @brief Configure the TIMx output channel 5.
1128 * @param TIMx Timer Instance
1129 * @param TIM_OCInitStruct pointer to the the TIMx output channel 5 configuration data structure
1130 * @retval An ErrorStatus enumeration value:
1131 * - SUCCESS: TIMx registers are de-initialized
1132 * - ERROR: not applicable
1134 static ErrorStatus OC5Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1136 uint32_t tmpccmr3 = 0U;
1137 uint32_t tmpccer = 0U;
1139 /* Check the parameters */
1140 assert_param(IS_TIM_CC5_INSTANCE(TIMx));
1141 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1142 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1143 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1144 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1145 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1147 /* Disable the Channel 5: Reset the CC5E Bit */
1148 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC5E);
1150 /* Get the TIMx CCER register value */
1151 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1153 /* Get the TIMx CCMR3 register value */
1154 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1156 /* Select the Output Compare Mode */
1157 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC5M, TIM_OCInitStruct->OCMode);
1159 /* Set the Output Compare Polarity */
1160 MODIFY_REG(tmpccer, TIM_CCER_CC5P, TIM_OCInitStruct->OCPolarity << 16U);
1162 /* Set the Output State */
1163 MODIFY_REG(tmpccer, TIM_CCER_CC5E, TIM_OCInitStruct->OCState << 16U);
1165 if (IS_TIM_BREAK_INSTANCE(TIMx))
1167 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1168 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1170 /* Set the Output Idle state */
1171 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS5, TIM_OCInitStruct->OCIdleState << 8U);
1175 /* Write to TIMx CCMR3 */
1176 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1178 /* Set the Capture Compare Register value */
1179 LL_TIM_OC_SetCompareCH5(TIMx, TIM_OCInitStruct->CompareValue);
1181 /* Write to TIMx CCER */
1182 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1184 return SUCCESS;
1188 * @brief Configure the TIMx output channel 6.
1189 * @param TIMx Timer Instance
1190 * @param TIM_OCInitStruct pointer to the the TIMx output channel 6 configuration data structure
1191 * @retval An ErrorStatus enumeration value:
1192 * - SUCCESS: TIMx registers are de-initialized
1193 * - ERROR: not applicable
1195 static ErrorStatus OC6Config(TIM_TypeDef *TIMx, LL_TIM_OC_InitTypeDef *TIM_OCInitStruct)
1197 uint32_t tmpccmr3 = 0U;
1198 uint32_t tmpccer = 0U;
1200 /* Check the parameters */
1201 assert_param(IS_TIM_CC6_INSTANCE(TIMx));
1202 assert_param(IS_LL_TIM_OCMODE(TIM_OCInitStruct->OCMode));
1203 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCState));
1204 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCPolarity));
1205 assert_param(IS_LL_TIM_OCPOLARITY(TIM_OCInitStruct->OCNPolarity));
1206 assert_param(IS_LL_TIM_OCSTATE(TIM_OCInitStruct->OCNState));
1208 /* Disable the Channel 5: Reset the CC6E Bit */
1209 CLEAR_BIT(TIMx->CCER, TIM_CCER_CC6E);
1211 /* Get the TIMx CCER register value */
1212 tmpccer = LL_TIM_ReadReg(TIMx, CCER);
1214 /* Get the TIMx CCMR3 register value */
1215 tmpccmr3 = LL_TIM_ReadReg(TIMx, CCMR3);
1217 /* Select the Output Compare Mode */
1218 MODIFY_REG(tmpccmr3, TIM_CCMR3_OC6M, TIM_OCInitStruct->OCMode << 8U);
1220 /* Set the Output Compare Polarity */
1221 MODIFY_REG(tmpccer, TIM_CCER_CC6P, TIM_OCInitStruct->OCPolarity << 20U);
1223 /* Set the Output State */
1224 MODIFY_REG(tmpccer, TIM_CCER_CC6E, TIM_OCInitStruct->OCState << 20U);
1226 if (IS_TIM_BREAK_INSTANCE(TIMx))
1228 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCNIdleState));
1229 assert_param(IS_LL_TIM_OCIDLESTATE(TIM_OCInitStruct->OCIdleState));
1231 /* Set the Output Idle state */
1232 MODIFY_REG(TIMx->CR2, TIM_CR2_OIS6, TIM_OCInitStruct->OCIdleState << 10U);
1235 /* Write to TIMx CCMR3 */
1236 LL_TIM_WriteReg(TIMx, CCMR3, tmpccmr3);
1238 /* Set the Capture Compare Register value */
1239 LL_TIM_OC_SetCompareCH6(TIMx, TIM_OCInitStruct->CompareValue);
1241 /* Write to TIMx CCER */
1242 LL_TIM_WriteReg(TIMx, CCER, tmpccer);
1244 return SUCCESS;
1248 * @brief Configure the TIMx input channel 1.
1249 * @param TIMx Timer Instance
1250 * @param TIM_ICInitStruct pointer to the the TIMx input channel 1 configuration data structure
1251 * @retval An ErrorStatus enumeration value:
1252 * - SUCCESS: TIMx registers are de-initialized
1253 * - ERROR: not applicable
1255 static ErrorStatus IC1Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1257 /* Check the parameters */
1258 assert_param(IS_TIM_CC1_INSTANCE(TIMx));
1259 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1260 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1261 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1262 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1264 /* Disable the Channel 1: Reset the CC1E Bit */
1265 TIMx->CCER &= (uint32_t)~TIM_CCER_CC1E;
1267 /* Select the Input and set the filter and the prescaler value */
1268 MODIFY_REG(TIMx->CCMR1,
1269 (TIM_CCMR1_CC1S | TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC),
1270 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1272 /* Select the Polarity and set the CC1E Bit */
1273 MODIFY_REG(TIMx->CCER,
1274 (TIM_CCER_CC1P | TIM_CCER_CC1NP),
1275 (TIM_ICInitStruct->ICPolarity | TIM_CCER_CC1E));
1277 return SUCCESS;
1281 * @brief Configure the TIMx input channel 2.
1282 * @param TIMx Timer Instance
1283 * @param TIM_ICInitStruct pointer to the the TIMx input channel 2 configuration data structure
1284 * @retval An ErrorStatus enumeration value:
1285 * - SUCCESS: TIMx registers are de-initialized
1286 * - ERROR: not applicable
1288 static ErrorStatus IC2Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1290 /* Check the parameters */
1291 assert_param(IS_TIM_CC2_INSTANCE(TIMx));
1292 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1293 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1294 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1295 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1297 /* Disable the Channel 2: Reset the CC2E Bit */
1298 TIMx->CCER &= (uint32_t)~TIM_CCER_CC2E;
1300 /* Select the Input and set the filter and the prescaler value */
1301 MODIFY_REG(TIMx->CCMR1,
1302 (TIM_CCMR1_CC2S | TIM_CCMR1_IC2F | TIM_CCMR1_IC2PSC),
1303 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1305 /* Select the Polarity and set the CC2E Bit */
1306 MODIFY_REG(TIMx->CCER,
1307 (TIM_CCER_CC2P | TIM_CCER_CC2NP),
1308 ((TIM_ICInitStruct->ICPolarity << 4U) | TIM_CCER_CC2E));
1310 return SUCCESS;
1314 * @brief Configure the TIMx input channel 3.
1315 * @param TIMx Timer Instance
1316 * @param TIM_ICInitStruct pointer to the the TIMx input channel 3 configuration data structure
1317 * @retval An ErrorStatus enumeration value:
1318 * - SUCCESS: TIMx registers are de-initialized
1319 * - ERROR: not applicable
1321 static ErrorStatus IC3Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1323 /* Check the parameters */
1324 assert_param(IS_TIM_CC3_INSTANCE(TIMx));
1325 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1326 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1327 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1328 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1330 /* Disable the Channel 3: Reset the CC3E Bit */
1331 TIMx->CCER &= (uint32_t)~TIM_CCER_CC3E;
1333 /* Select the Input and set the filter and the prescaler value */
1334 MODIFY_REG(TIMx->CCMR2,
1335 (TIM_CCMR2_CC3S | TIM_CCMR2_IC3F | TIM_CCMR2_IC3PSC),
1336 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 16U);
1338 /* Select the Polarity and set the CC3E Bit */
1339 MODIFY_REG(TIMx->CCER,
1340 (TIM_CCER_CC3P | TIM_CCER_CC3NP),
1341 ((TIM_ICInitStruct->ICPolarity << 8U) | TIM_CCER_CC3E));
1343 return SUCCESS;
1347 * @brief Configure the TIMx input channel 4.
1348 * @param TIMx Timer Instance
1349 * @param TIM_ICInitStruct pointer to the the TIMx input channel 4 configuration data structure
1350 * @retval An ErrorStatus enumeration value:
1351 * - SUCCESS: TIMx registers are de-initialized
1352 * - ERROR: not applicable
1354 static ErrorStatus IC4Config(TIM_TypeDef *TIMx, LL_TIM_IC_InitTypeDef *TIM_ICInitStruct)
1356 /* Check the parameters */
1357 assert_param(IS_TIM_CC4_INSTANCE(TIMx));
1358 assert_param(IS_LL_TIM_IC_POLARITY(TIM_ICInitStruct->ICPolarity));
1359 assert_param(IS_LL_TIM_ACTIVEINPUT(TIM_ICInitStruct->ICActiveInput));
1360 assert_param(IS_LL_TIM_ICPSC(TIM_ICInitStruct->ICPrescaler));
1361 assert_param(IS_LL_TIM_IC_FILTER(TIM_ICInitStruct->ICFilter));
1363 /* Disable the Channel 4: Reset the CC4E Bit */
1364 TIMx->CCER &= (uint32_t)~TIM_CCER_CC4E;
1366 /* Select the Input and set the filter and the prescaler value */
1367 MODIFY_REG(TIMx->CCMR2,
1368 (TIM_CCMR2_CC4S | TIM_CCMR2_IC4F | TIM_CCMR2_IC4PSC),
1369 (TIM_ICInitStruct->ICActiveInput | TIM_ICInitStruct->ICFilter | TIM_ICInitStruct->ICPrescaler) >> 8U);
1371 /* Select the Polarity and set the CC2E Bit */
1372 MODIFY_REG(TIMx->CCER,
1373 (TIM_CCER_CC4P | TIM_CCER_CC4NP),
1374 ((TIM_ICInitStruct->ICPolarity << 12U) | TIM_CCER_CC4E));
1376 return SUCCESS;
1381 * @}
1385 * @}
1388 #endif /* TIM1 || TIM8 || TIM2 || TIM3 || TIM4 || TIM5 ||TIM9 || TIM10 || TIM11 || TIM12 || TIM13 || TIM14 || TIM6 || TIM7 */
1391 * @}
1394 #endif /* USE_FULL_LL_DRIVER */
1396 /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/