OP-1156 changed PID control loops to use generic pid library, readded unnecessary...
[librepilot.git] / flight / modules / PathFollower / pathfollower.c
blob69e3cc7aa364f89a8173070e3819a06405517c2f
1 /**
2 ******************************************************************************
4 * @file pathfollower.c
5 * @author The OpenPilot Team, http://www.openpilot.org Copyright (C) 2010.
6 * @brief This module compared @ref PositionActuatl to @ref ActiveWaypoint
7 * and sets @ref AttitudeDesired. It only does this when the FlightMode field
8 * of @ref ManualControlCommand is Auto.
10 * @see The GNU Public License (GPL) Version 3
12 *****************************************************************************/
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 3 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
21 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
22 * for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 /**
30 * Input object: PathDesired
31 * Input object: PositionState
32 * Input object: ManualControlCommand
33 * Output object: StabilizationDesired
35 * This module acts as "autopilot" - it controls the setpoints of stabilization
36 * based on current flight situation and desired flight path (PathDesired) as
37 * directed by flightmode selection or pathplanner
38 * This is a periodic delayed callback module
40 * Modules have no API, all communication to other modules is done through UAVObjects.
41 * However modules may use the API exposed by shared libraries.
42 * See the OpenPilot wiki for more details.
43 * http://www.openpilot.org/OpenPilot_Application_Architecture
47 #include <openpilot.h>
49 #include <callbackinfo.h>
51 #include <math.h>
52 #include <pid.h>
53 #include <CoordinateConversions.h>
54 #include <pios_struct_helper.h>
55 #include <sin_lookup.h>
56 #include <pathdesired.h>
57 #include <paths.h>
58 #include <sanitycheck.h>
61 #include <fixedwingpathfollowersettings.h>
62 #include <fixedwingpathfollowerstatus.h>
63 #include <vtolpathfollowersettings.h>
64 #include <flightstatus.h>
65 #include <pathstatus.h>
66 #include <positionstate.h>
67 #include <velocitystate.h>
68 #include <velocitydesired.h>
69 #include <stabilizationdesired.h>
70 #include <airspeedstate.h>
71 #include <attitudestate.h>
72 #include <takeofflocation.h>
73 #include <poilocation.h>
74 #include <manualcontrolcommand.h>
75 #include <systemsettings.h>
76 #include <stabilizationbank.h>
79 // Private constants
81 #define CALLBACK_PRIORITY CALLBACK_PRIORITY_LOW
82 #define CBTASK_PRIORITY CALLBACK_TASK_FLIGHTCONTROL
84 #define PF_IDLE_UPDATE_RATE_MS 100
86 #define STACK_SIZE_BYTES 2048
88 #define DEADBAND_HIGH 0.10f
89 #define DEADBAND_LOW -0.10f
90 // Private types
92 struct Globals {
93 struct pid PIDposH[2];
94 struct pid PIDposV;
95 struct pid PIDvel[3];
96 struct pid PIDcourse;
97 struct pid PIDspeed;
98 struct pid PIDpower;
99 float poiRadius;
100 float vtolEmergencyFallback;
101 bool vtolEmergencyFallbackSwitch;
105 // Private variables
106 static DelayedCallbackInfo *pathFollowerCBInfo;
107 static uint32_t updatePeriod = PF_IDLE_UPDATE_RATE_MS;
108 static struct Globals global;
109 static PathStatusData pathStatus;
110 static PathDesiredData pathDesired;
111 static FixedWingPathFollowerSettingsData fixedWingPathFollowerSettings;
112 static VtolPathFollowerSettingsData vtolPathFollowerSettings;
114 // correct speed by measured airspeed
115 static float indicatedAirspeedStateBias = 0.0f;
118 // Private functions
119 static void pathFollowerTask(void);
120 static void resetGlobals();
121 static void SettingsUpdatedCb(UAVObjEvent *ev);
122 static uint8_t updateAutoPilotByFrameType();
123 static uint8_t updateAutoPilotFixedWing();
124 static uint8_t updateAutoPilotVtol();
125 static float updateTailInBearing();
126 static float updateCourseBearing();
127 static float updatePathBearing();
128 static float updatePOIBearing();
129 static void processPOI();
130 static void updatePathVelocity(float kFF, bool limited);
131 static uint8_t updateFixedDesiredAttitude();
132 static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction);
133 static void updateFixedAttitude();
134 static void updateVtolDesiredAttitudeEmergencyFallback();
135 static void airspeedStateUpdatedCb(UAVObjEvent *ev);
136 static bool correctCourse(float *C, float *V, float *F, float s);
139 * Initialise the module, called on startup
140 * \returns 0 on success or -1 if initialisation failed
142 int32_t PathFollowerStart()
144 // Start main task
145 PathStatusGet(&pathStatus);
146 SettingsUpdatedCb(NULL);
147 PIOS_CALLBACKSCHEDULER_Dispatch(pathFollowerCBInfo);
149 return 0;
153 * Initialise the module, called on startup
154 * \returns 0 on success or -1 if initialisation failed
156 int32_t PathFollowerInitialize()
158 // initialize objects
159 FixedWingPathFollowerSettingsInitialize();
160 FixedWingPathFollowerStatusInitialize();
161 VtolPathFollowerSettingsInitialize();
162 FlightStatusInitialize();
163 PathStatusInitialize();
164 PathDesiredInitialize();
165 PositionStateInitialize();
166 VelocityStateInitialize();
167 VelocityDesiredInitialize();
168 StabilizationDesiredInitialize();
169 AirspeedStateInitialize();
170 AttitudeStateInitialize();
171 TakeOffLocationInitialize();
172 PoiLocationInitialize();
173 ManualControlCommandInitialize();
174 SystemSettingsInitialize();
175 StabilizationBankInitialize();
177 // reset integrals
178 resetGlobals();
180 // Create object queue
181 pathFollowerCBInfo = PIOS_CALLBACKSCHEDULER_Create(&pathFollowerTask, CALLBACK_PRIORITY, CBTASK_PRIORITY, CALLBACKINFO_RUNNING_PATHFOLLOWER, STACK_SIZE_BYTES);
182 FixedWingPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
183 VtolPathFollowerSettingsConnectCallback(&SettingsUpdatedCb);
184 PathDesiredConnectCallback(SettingsUpdatedCb);
185 AirspeedStateConnectCallback(airspeedStateUpdatedCb);
187 return 0;
189 MODULE_INITCALL(PathFollowerInitialize, PathFollowerStart);
193 * Module thread, should not return.
195 static void pathFollowerTask(void)
197 FlightStatusData flightStatus;
199 FlightStatusGet(&flightStatus);
201 if (flightStatus.ControlChain.PathFollower != FLIGHTSTATUS_CONTROLCHAIN_TRUE) {
202 resetGlobals();
203 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_UNINITIALISED);
204 PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, PF_IDLE_UPDATE_RATE_MS, CALLBACK_UPDATEMODE_SOONER);
205 return;
208 if (flightStatus.FlightMode == FLIGHTSTATUS_FLIGHTMODE_POI) { // TODO Hack from vtolpathfollower, move that shit into manualcontrol!
209 processPOI();
212 pathStatus.UID = pathDesired.UID;
213 pathStatus.Status = PATHSTATUS_STATUS_INPROGRESS;
214 switch (pathDesired.Mode) {
215 case PATHDESIRED_MODE_FLYENDPOINT:
216 case PATHDESIRED_MODE_FLYVECTOR:
217 case PATHDESIRED_MODE_FLYCIRCLERIGHT:
218 case PATHDESIRED_MODE_FLYCIRCLELEFT:
220 uint8_t result = updateAutoPilotByFrameType();
221 if (result) {
222 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
223 } else {
224 pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
225 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_WARNING);
228 break;
229 case PATHDESIRED_MODE_FIXEDATTITUDE:
230 updateFixedAttitude(pathDesired.ModeParameters);
231 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_OK);
232 break;
233 case PATHDESIRED_MODE_DISARMALARM:
234 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_CRITICAL);
235 break;
236 default:
237 pathStatus.Status = PATHSTATUS_STATUS_CRITICAL;
238 AlarmsSet(SYSTEMALARMS_ALARM_GUIDANCE, SYSTEMALARMS_ALARM_ERROR);
239 break;
241 PathStatusSet(&pathStatus);
243 PIOS_CALLBACKSCHEDULER_Schedule(pathFollowerCBInfo, updatePeriod, CALLBACK_UPDATEMODE_SOONER);
247 static void SettingsUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
249 FixedWingPathFollowerSettingsGet(&fixedWingPathFollowerSettings);
251 pid_configure(&global.PIDcourse, fixedWingPathFollowerSettings.CoursePI.Kp, fixedWingPathFollowerSettings.CoursePI.Ki, 0.0f, fixedWingPathFollowerSettings.CoursePI.ILimit);
252 pid_configure(&global.PIDspeed, fixedWingPathFollowerSettings.SpeedPI.Kp, fixedWingPathFollowerSettings.SpeedPI.Ki, 0.0f, fixedWingPathFollowerSettings.SpeedPI.ILimit);
253 pid_configure(&global.PIDpower, fixedWingPathFollowerSettings.PowerPI.Kp, fixedWingPathFollowerSettings.PowerPI.Ki, 0.0f, fixedWingPathFollowerSettings.PowerPI.ILimit);
256 VtolPathFollowerSettingsGet(&vtolPathFollowerSettings);
258 pid_configure(&global.PIDvel[0], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
259 pid_configure(&global.PIDvel[1], vtolPathFollowerSettings.HorizontalVelPID.Kp, vtolPathFollowerSettings.HorizontalVelPID.Ki, vtolPathFollowerSettings.HorizontalVelPID.Kd, vtolPathFollowerSettings.HorizontalVelPID.ILimit);
260 pid_configure(&global.PIDvel[2], vtolPathFollowerSettings.VerticalVelPID.Kp, vtolPathFollowerSettings.VerticalVelPID.Ki, vtolPathFollowerSettings.VerticalVelPID.Kd, vtolPathFollowerSettings.VerticalVelPID.ILimit);
261 pid_configure(&global.PIDvel[2], vtolPathFollowerSettings.VerticalVelPID.Kp, vtolPathFollowerSettings.VerticalVelPID.Ki, vtolPathFollowerSettings.VerticalVelPID.Kd, vtolPathFollowerSettings.VerticalVelPID.ILimit);
263 PathDesiredGet(&pathDesired);
267 static void airspeedStateUpdatedCb(__attribute__((unused)) UAVObjEvent *ev)
269 AirspeedStateData airspeedState;
270 VelocityStateData velocityState;
272 AirspeedStateGet(&airspeedState);
273 VelocityStateGet(&velocityState);
274 float airspeedVector[2];
275 float yaw;
276 AttitudeStateYawGet(&yaw);
277 airspeedVector[0] = cos_lookup_deg(yaw);
278 airspeedVector[1] = sin_lookup_deg(yaw);
279 // vector projection of groundspeed on airspeed vector to handle both forward and backwards movement
280 float groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
282 indicatedAirspeedStateBias = airspeedState.CalibratedAirspeed - groundspeedProjection;
283 // note - we do fly by Indicated Airspeed (== calibrated airspeed) however
284 // since airspeed is updated less often than groundspeed, we use sudden
285 // changes to groundspeed to offset the airspeed by the same measurement.
286 // This has a side effect that in the absence of any airspeed updates, the
287 // pathfollower will fly using groundspeed.
292 * reset integrals
294 static void resetGlobals()
296 pid_zero(&global.PIDposH[0]);
297 pid_zero(&global.PIDposH[1]);
298 pid_zero(&global.PIDposV);
299 pid_zero(&global.PIDvel[0]);
300 pid_zero(&global.PIDvel[1]);
301 pid_zero(&global.PIDvel[2]);
302 pid_zero(&global.PIDcourse);
303 pid_zero(&global.PIDspeed);
304 pid_zero(&global.PIDpower);
305 global.poiRadius = 0.0f;
306 global.vtolEmergencyFallback = 0;
307 global.vtolEmergencyFallbackSwitch = false;
310 static uint8_t updateAutoPilotByFrameType()
312 FrameType_t frameType = GetCurrentFrameType();
314 if (frameType == FRAME_TYPE_CUSTOM || frameType == FRAME_TYPE_GROUND) {
315 switch (vtolPathFollowerSettings.TreatCustomCraftAs) {
316 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_FIXEDWING:
317 frameType = FRAME_TYPE_FIXED_WING;
318 break;
319 case VTOLPATHFOLLOWERSETTINGS_TREATCUSTOMCRAFTAS_VTOL:
320 frameType = FRAME_TYPE_MULTIROTOR;
321 break;
324 switch (frameType) {
325 case FRAME_TYPE_MULTIROTOR:
326 case FRAME_TYPE_HELI:
327 updatePeriod = vtolPathFollowerSettings.UpdatePeriod;
328 return updateAutoPilotVtol();
330 break;
331 case FRAME_TYPE_FIXED_WING:
332 default:
333 updatePeriod = fixedWingPathFollowerSettings.UpdatePeriod;
334 return updateAutoPilotFixedWing();
336 break;
341 * fixed wing autopilot:
342 * straight forward:
343 * 1. update path velocity for limited motion crafts
344 * 2. update attitude according to default fixed wing pathfollower algorithm
346 static uint8_t updateAutoPilotFixedWing()
348 pid_configure(&global.PIDposH[0], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
349 pid_configure(&global.PIDposH[1], fixedWingPathFollowerSettings.HorizontalPosP, 0.0f, 0.0f, 0.0f);
350 pid_configure(&global.PIDposV, fixedWingPathFollowerSettings.VerticalPosP, 0.0f, 0.0f, 0.0f);
351 updatePathVelocity(fixedWingPathFollowerSettings.CourseFeedForward, true);
352 return updateFixedDesiredAttitude();
356 * vtol autopilot
357 * use hover capable algorithm with unlimeted movement calculation. if that fails (flyaway situation due to compass failure)
358 * fall back to emergency fallback autopilot to keep minimum amount of flight control
360 static uint8_t updateAutoPilotVtol()
362 if (!global.vtolEmergencyFallbackSwitch) {
363 if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ALWAYS) {
364 pid_configure(&global.PIDposH[0], 1.0f, 0.0f, 0.0f, 0.0f);
365 pid_configure(&global.PIDposH[1], 1.0f, 0.0f, 0.0f, 0.0f);
366 pid_configure(&global.PIDposV, vtolPathFollowerSettings.VerticalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
367 updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, true);
368 updateVtolDesiredAttitudeEmergencyFallback();
369 return 1;
370 } else {
371 pid_configure(&global.PIDposH[0], vtolPathFollowerSettings.HorizontalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
372 pid_configure(&global.PIDposH[1], vtolPathFollowerSettings.HorizontalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
373 pid_configure(&global.PIDposV, vtolPathFollowerSettings.VerticalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
374 updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, false);
375 uint8_t result = 1;
376 bool yaw_attitude = true;
377 float yaw = 0.0f;
378 switch (vtolPathFollowerSettings.YawControl) {
379 case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MANUAL:
380 yaw_attitude = false;
381 break;
382 case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_TAILIN:
383 yaw = updateTailInBearing();
384 break;
385 case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_MOVEMENTDIRECTION:
386 yaw = updateCourseBearing();
387 break;
388 case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_PATHDIRECTION:
389 yaw = updatePathBearing();
390 break;
391 case VTOLPATHFOLLOWERSETTINGS_YAWCONTROL_POI:
392 yaw = updatePOIBearing();
393 break;
395 result = updateVtolDesiredAttitude(yaw_attitude, yaw);
396 if (!result && (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_ENABLED || vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST)) {
397 global.vtolEmergencyFallbackSwitch = true;
399 return result;
401 } else {
402 pid_configure(&global.PIDposH[0], 1.0f, 0.0f, 0.0f, 0.0f);
403 pid_configure(&global.PIDposH[1], 1.0f, 0.0f, 0.0f, 0.0f);
404 pid_configure(&global.PIDposV, vtolPathFollowerSettings.VerticalPosPI.Kp, vtolPathFollowerSettings.HorizontalPosPI.Ki, 0.0f, vtolPathFollowerSettings.HorizontalPosPI.ILimit);
405 updatePathVelocity(vtolPathFollowerSettings.CourseFeedForward, true);
406 updateVtolDesiredAttitudeEmergencyFallback();
407 return 0;
413 * Compute bearing of current takeoff location
415 static float updateTailInBearing()
417 PositionStateData p;
419 PositionStateGet(&p);
420 TakeOffLocationData t;
421 TakeOffLocationGet(&t);
422 // atan2f always returns in between + and - 180 degrees
423 float yaw = RAD2DEG(atan2f(p.East - t.East, p.North - t.North));
424 // result is in between 0 and 360 degrees
425 if (yaw < 0.0f) {
426 yaw += 360.0f;
428 return yaw;
432 * Compute bearing of current movement direction
434 static float updateCourseBearing()
436 VelocityStateData v;
438 VelocityStateGet(&v);
439 // atan2f always returns in between + and - 180 degrees
440 float yaw = RAD2DEG(atan2f(v.East, v.North));
441 // result is in between 0 and 360 degrees
442 if (yaw < 0.0f) {
443 yaw += 360.0f;
445 return yaw;
449 * Compute bearing of current path direction
451 static float updatePathBearing()
453 PositionStateData positionState;
455 PositionStateGet(&positionState);
457 float cur[3] = { positionState.North,
458 positionState.East,
459 positionState.Down };
460 struct path_status progress;
462 path_progress(&pathDesired, cur, &progress);
464 // atan2f always returns in between + and - 180 degrees
465 float yaw = RAD2DEG(atan2f(progress.path_vector[1], progress.path_vector[0]));
466 // result is in between 0 and 360 degrees
467 if (yaw < 0.0f) {
468 yaw += 360.0f;
470 return yaw;
474 * Compute bearing between current position and POI
476 static float updatePOIBearing()
478 PoiLocationData poi;
480 PoiLocationGet(&poi);
481 PositionStateData positionState;
482 PositionStateGet(&positionState);
484 const float dT = updatePeriod / 1000.0f;
485 float dLoc[3];
486 float yaw = 0;
487 /*float elevation = 0;*/
489 dLoc[0] = positionState.North - poi.North;
490 dLoc[1] = positionState.East - poi.East;
491 dLoc[2] = positionState.Down - poi.Down;
493 if (dLoc[1] < 0) {
494 yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
495 } else {
496 yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
498 ManualControlCommandData manualControlData;
499 ManualControlCommandGet(&manualControlData);
501 float pathAngle = 0;
502 if (manualControlData.Roll > DEADBAND_HIGH) {
503 pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
504 } else if (manualControlData.Roll < DEADBAND_LOW) {
505 pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
508 return yaw + (pathAngle / 2.0f);
512 * process POI control logic TODO: this should most likely go into manualcontrol!!!!
513 * TODO: the whole process of POI handling likely needs cleanup and rethinking, might be broken since manualcontrol was refactored currently
515 static void processPOI()
517 const float dT = updatePeriod / 1000.0f;
520 PositionStateData positionState;
522 PositionStateGet(&positionState);
523 // CameraDesiredData cameraDesired;
524 // CameraDesiredGet(&cameraDesired);
525 StabilizationDesiredData stabDesired;
526 StabilizationDesiredGet(&stabDesired);
527 PoiLocationData poi;
528 PoiLocationGet(&poi);
530 float dLoc[3];
531 float yaw = 0;
532 /*float elevation = 0;*/
534 dLoc[0] = positionState.North - poi.North;
535 dLoc[1] = positionState.East - poi.East;
536 dLoc[2] = positionState.Down - poi.Down;
538 if (dLoc[1] < 0) {
539 yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) + 180.0f;
540 } else {
541 yaw = RAD2DEG(atan2f(dLoc[1], dLoc[0])) - 180.0f;
544 // distance
545 float distance = sqrtf(powf(dLoc[0], 2.0f) + powf(dLoc[1], 2.0f));
547 ManualControlCommandData manualControlData;
548 ManualControlCommandGet(&manualControlData);
550 float changeRadius = 0;
551 // Move closer or further, radially
552 if (manualControlData.Pitch > DEADBAND_HIGH) {
553 changeRadius = (manualControlData.Pitch - DEADBAND_HIGH) * dT * 100.0f;
554 } else if (manualControlData.Pitch < DEADBAND_LOW) {
555 changeRadius = (manualControlData.Pitch - DEADBAND_LOW) * dT * 100.0f;
558 // move along circular path
559 float pathAngle = 0;
560 if (manualControlData.Roll > DEADBAND_HIGH) {
561 pathAngle = -(manualControlData.Roll - DEADBAND_HIGH) * dT * 300.0f;
562 } else if (manualControlData.Roll < DEADBAND_LOW) {
563 pathAngle = -(manualControlData.Roll - DEADBAND_LOW) * dT * 300.0f;
564 } else if (manualControlData.Roll >= DEADBAND_LOW && manualControlData.Roll <= DEADBAND_HIGH) {
565 // change radius only when not circling
566 global.poiRadius = distance + changeRadius;
569 // don't try to move any closer
570 if (global.poiRadius >= 3.0f || changeRadius > 0) {
571 if (fabsf(pathAngle) > 0.0f || fabsf(changeRadius) > 0.0f) {
572 pathDesired.End.North = poi.North + (global.poiRadius * cosf(DEG2RAD(pathAngle + yaw - 180.0f)));
573 pathDesired.End.East = poi.East + (global.poiRadius * sinf(DEG2RAD(pathAngle + yaw - 180.0f)));
574 pathDesired.StartingVelocity = 1.0f;
575 pathDesired.EndingVelocity = 0.0f;
576 pathDesired.Mode = PATHDESIRED_MODE_FLYENDPOINT;
577 PathDesiredSet(&pathDesired);
580 // not above
581 if (distance >= 3.0f) {
582 // You can feed this into camerastabilization
583 /*elevation = RAD2DEG(atan2f(dLoc[2],distance));*/
585 // cameraDesired.Yaw=yaw;
586 // cameraDesired.PitchOrServo2=elevation;
588 // CameraDesiredSet(&cameraDesired);
593 * Compute desired velocity from the current position and path
595 static void updatePathVelocity(float kFF, bool limited)
597 PositionStateData positionState;
599 PositionStateGet(&positionState);
600 VelocityStateData velocityState;
601 VelocityStateGet(&velocityState);
603 const float dT = updatePeriod / 1000.0f;
605 // look ahead kFF seconds
606 float cur[3] = { positionState.North + (velocityState.North * kFF),
607 positionState.East + (velocityState.East * kFF),
608 positionState.Down + (velocityState.Down * kFF) };
609 struct path_status progress;
611 path_progress(&pathDesired, cur, &progress);
613 // calculate velocity - can be zero if waypoints are too close
614 VelocityDesiredData velocityDesired;
615 velocityDesired.North = progress.path_vector[0];
616 velocityDesired.East = progress.path_vector[1];
617 velocityDesired.Down = progress.path_vector[2];
619 if (limited &&
620 // if a plane is crossing its desired flightpath facing the wrong way (away from flight direction)
621 // it would turn towards the flightpath to get on its desired course. This however would reverse the correction vector
622 // once it crosses the flightpath again, which would make it again turn towards the flightpath (but away from its desired heading)
623 // leading to an S-shape snake course the wrong way
624 // this only happens especially if HorizontalPosP is too high, as otherwise the angle between velocity desired and path_direction won't
625 // turn steep unless there is enough space complete the turn before crossing the flightpath
626 // in this case the plane effectively needs to be turned around
627 // indicators:
628 // difference between correction_direction and velocitystate >90 degrees and
629 // difference between path_direction and velocitystate >90 degrees ( 4th sector, facing away from everything )
630 // fix: ignore correction, steer in path direction until the situation has become better (condition doesn't apply anymore)
631 // calculating angles < 90 degrees through dot products
632 (vector_lengthf(progress.path_vector, 2) > 1e-6f) &&
633 ((progress.path_vector[0] * velocityState.North + progress.path_vector[1] * velocityState.East) < 0.0f) &&
634 ((progress.correction_vector[0] * velocityState.North + progress.correction_vector[1] * velocityState.East) < 0.0f)) {
636 } else {
637 // calculate correction
638 velocityDesired.North += pid_apply(&global.PIDposH[0], progress.correction_vector[0], dT);
639 velocityDesired.East += pid_apply(&global.PIDposH[1], progress.correction_vector[1], dT);
641 velocityDesired.Down += pid_apply(&global.PIDposV, progress.correction_vector[2], dT);
643 // update pathstatus
644 pathStatus.error = progress.error;
645 pathStatus.fractional_progress = progress.fractional_progress;
646 pathStatus.path_direction_north = progress.path_vector[0];
647 pathStatus.path_direction_east = progress.path_vector[1];
648 pathStatus.path_direction_down = progress.path_vector[2];
650 pathStatus.correction_direction_north = progress.correction_vector[0];
651 pathStatus.correction_direction_east = progress.correction_vector[1];
652 pathStatus.correction_direction_down = progress.correction_vector[2];
654 VelocityDesiredSet(&velocityDesired);
659 * Compute desired attitude from the desired velocity for fixed wing craft
661 static uint8_t updateFixedDesiredAttitude()
663 uint8_t result = 1;
665 const float dT = updatePeriod / 1000.0f; // Convert from [ms] to [s]
667 VelocityDesiredData velocityDesired;
668 VelocityStateData velocityState;
669 StabilizationDesiredData stabDesired;
670 AttitudeStateData attitudeState;
671 FixedWingPathFollowerStatusData fixedWingPathFollowerStatus;
672 AirspeedStateData airspeedState;
673 SystemSettingsData systemSettings;
675 float groundspeedProjection;
676 float indicatedAirspeedState;
677 float indicatedAirspeedDesired;
678 float airspeedError;
680 float pitchCommand;
682 float descentspeedDesired;
683 float descentspeedError;
684 float powerCommand;
686 float airspeedVector[2];
687 float fluidMovement[2];
688 float courseComponent[2];
689 float courseError;
690 float courseCommand;
692 FixedWingPathFollowerStatusGet(&fixedWingPathFollowerStatus);
694 VelocityStateGet(&velocityState);
695 StabilizationDesiredGet(&stabDesired);
696 VelocityDesiredGet(&velocityDesired);
697 AttitudeStateGet(&attitudeState);
698 AirspeedStateGet(&airspeedState);
699 SystemSettingsGet(&systemSettings);
702 * Compute speed error and course
704 // missing sensors for airspeed-direction we have to assume within
705 // reasonable error that measured airspeed is actually the airspeed
706 // component in forward pointing direction
707 // airspeedVector is normalized
708 airspeedVector[0] = cos_lookup_deg(attitudeState.Yaw);
709 airspeedVector[1] = sin_lookup_deg(attitudeState.Yaw);
711 // current ground speed projected in forward direction
712 groundspeedProjection = velocityState.North * airspeedVector[0] + velocityState.East * airspeedVector[1];
714 // note that airspeedStateBias is ( calibratedAirspeed - groundspeedProjection ) at the time of measurement,
715 // but thanks to accelerometers, groundspeedProjection reacts faster to changes in direction
716 // than airspeed and gps sensors alone
717 indicatedAirspeedState = groundspeedProjection + indicatedAirspeedStateBias;
719 // fluidMovement is a vector describing the aproximate movement vector of
720 // the surrounding fluid in 2d space (aka wind vector)
721 fluidMovement[0] = velocityState.North - (indicatedAirspeedState * airspeedVector[0]);
722 fluidMovement[1] = velocityState.East - (indicatedAirspeedState * airspeedVector[1]);
724 // calculate the movement vector we need to fly to reach velocityDesired -
725 // taking fluidMovement into account
726 courseComponent[0] = velocityDesired.North - fluidMovement[0];
727 courseComponent[1] = velocityDesired.East - fluidMovement[1];
729 indicatedAirspeedDesired = boundf(sqrtf(courseComponent[0] * courseComponent[0] + courseComponent[1] * courseComponent[1]),
730 fixedWingPathFollowerSettings.HorizontalVelMin,
731 fixedWingPathFollowerSettings.HorizontalVelMax);
733 // if we could fly at arbitrary speeds, we'd just have to move towards the
734 // courseComponent vector as previously calculated and we'd be fine
735 // unfortunately however we are bound by min and max air speed limits, so
736 // we need to recalculate the correct course to meet at least the
737 // velocityDesired vector direction at our current speed
738 // this overwrites courseComponent
739 bool valid = correctCourse(courseComponent, (float *)&velocityDesired.North, fluidMovement, indicatedAirspeedDesired);
741 // Error condition: wind speed too high, we can't go where we want anymore
742 fixedWingPathFollowerStatus.Errors.Wind = 0;
743 if ((!valid) &&
744 fixedWingPathFollowerSettings.Safetymargins.Wind > 0.5f) { // alarm switched on
745 fixedWingPathFollowerStatus.Errors.Wind = 1;
746 result = 0;
749 // Airspeed error
750 airspeedError = indicatedAirspeedDesired - indicatedAirspeedState;
752 // Vertical speed error
753 descentspeedDesired = boundf(
754 velocityDesired.Down,
755 -fixedWingPathFollowerSettings.VerticalVelMax,
756 fixedWingPathFollowerSettings.VerticalVelMax);
757 descentspeedError = descentspeedDesired - velocityState.Down;
759 // Error condition: plane too slow or too fast
760 fixedWingPathFollowerStatus.Errors.Highspeed = 0;
761 fixedWingPathFollowerStatus.Errors.Lowspeed = 0;
762 if (indicatedAirspeedState > systemSettings.AirSpeedMax * fixedWingPathFollowerSettings.Safetymargins.Overspeed) {
763 fixedWingPathFollowerStatus.Errors.Overspeed = 1;
764 result = 0;
766 if (indicatedAirspeedState > fixedWingPathFollowerSettings.HorizontalVelMax * fixedWingPathFollowerSettings.Safetymargins.Highspeed) {
767 fixedWingPathFollowerStatus.Errors.Highspeed = 1;
768 result = 0;
770 if (indicatedAirspeedState < fixedWingPathFollowerSettings.HorizontalVelMin * fixedWingPathFollowerSettings.Safetymargins.Lowspeed) {
771 fixedWingPathFollowerStatus.Errors.Lowspeed = 1;
772 result = 0;
774 if (indicatedAirspeedState < systemSettings.AirSpeedMin * fixedWingPathFollowerSettings.Safetymargins.Stallspeed) {
775 fixedWingPathFollowerStatus.Errors.Stallspeed = 1;
776 result = 0;
780 * Compute desired thrust command
783 // Compute the cross feed from vertical speed to pitch, with saturation
784 float speedErrorToPowerCommandComponent = boundf(
785 (airspeedError / fixedWingPathFollowerSettings.HorizontalVelMin) * fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Kp,
786 -fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max,
787 fixedWingPathFollowerSettings.AirspeedToPowerCrossFeed.Max
790 // Compute final thrust response
791 powerCommand = pid_apply(&global.PIDpower, -descentspeedError, dT) +
792 speedErrorToPowerCommandComponent;
794 // Output internal state to telemetry
795 fixedWingPathFollowerStatus.Error.Power = descentspeedError;
796 fixedWingPathFollowerStatus.ErrorInt.Power = global.PIDpower.iAccumulator;
797 fixedWingPathFollowerStatus.Command.Power = powerCommand;
799 // set thrust
800 stabDesired.Thrust = boundf(fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand,
801 fixedWingPathFollowerSettings.ThrustLimit.Min,
802 fixedWingPathFollowerSettings.ThrustLimit.Max);
804 // Error condition: plane cannot hold altitude at current speed.
805 fixedWingPathFollowerStatus.Errors.Lowpower = 0;
806 if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand >= fixedWingPathFollowerSettings.ThrustLimit.Max && // thrust at maximum
807 velocityState.Down > 0.0f && // we ARE going down
808 descentspeedDesired < 0.0f && // we WANT to go up
809 airspeedError > 0.0f && // we are too slow already
810 fixedWingPathFollowerSettings.Safetymargins.Lowpower > 0.5f) { // alarm switched on
811 fixedWingPathFollowerStatus.Errors.Lowpower = 1;
812 result = 0;
814 // Error condition: plane keeps climbing despite minimum thrust (opposite of above)
815 fixedWingPathFollowerStatus.Errors.Highpower = 0;
816 if (fixedWingPathFollowerSettings.ThrustLimit.Neutral + powerCommand <= fixedWingPathFollowerSettings.ThrustLimit.Min && // thrust at minimum
817 velocityState.Down < 0.0f && // we ARE going up
818 descentspeedDesired > 0.0f && // we WANT to go down
819 airspeedError < 0.0f && // we are too fast already
820 fixedWingPathFollowerSettings.Safetymargins.Highpower > 0.5f) { // alarm switched on
821 fixedWingPathFollowerStatus.Errors.Highpower = 1;
822 result = 0;
826 * Compute desired pitch command
828 // Compute the cross feed from vertical speed to pitch, with saturation
829 float verticalSpeedToPitchCommandComponent = boundf(-descentspeedError * fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Kp,
830 -fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max,
831 fixedWingPathFollowerSettings.VerticalToPitchCrossFeed.Max
834 // Compute the pitch command as err*Kp + errInt*Ki + X_feed.
835 pitchCommand = -pid_apply(&global.PIDspeed, airspeedError, dT) + verticalSpeedToPitchCommandComponent;
837 fixedWingPathFollowerStatus.Error.Speed = airspeedError;
838 fixedWingPathFollowerStatus.ErrorInt.Speed = global.PIDspeed.iAccumulator;
839 fixedWingPathFollowerStatus.Command.Speed = pitchCommand;
841 stabDesired.Pitch = boundf(fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand,
842 fixedWingPathFollowerSettings.PitchLimit.Min,
843 fixedWingPathFollowerSettings.PitchLimit.Max);
845 // Error condition: high speed dive
846 fixedWingPathFollowerStatus.Errors.Pitchcontrol = 0;
847 if (fixedWingPathFollowerSettings.PitchLimit.Neutral + pitchCommand >= fixedWingPathFollowerSettings.PitchLimit.Max && // pitch demand is full up
848 velocityState.Down > 0.0f && // we ARE going down
849 descentspeedDesired < 0.0f && // we WANT to go up
850 airspeedError < 0.0f && // we are too fast already
851 fixedWingPathFollowerSettings.Safetymargins.Pitchcontrol > 0.5f) { // alarm switched on
852 fixedWingPathFollowerStatus.Errors.Pitchcontrol = 1;
853 result = 0;
857 * Compute desired roll command
859 courseError = RAD2DEG(atan2f(courseComponent[1], courseComponent[0])) - attitudeState.Yaw;
861 if (courseError < -180.0f) {
862 courseError += 360.0f;
864 if (courseError > 180.0f) {
865 courseError -= 360.0f;
868 // overlap calculation. Theres a dead zone behind the craft where the
869 // counter-yawing of some craft while rolling could render a desired right
870 // turn into a desired left turn. Making the turn direction based on
871 // current roll angle keeps the plane committed to a direction once chosen
872 if (courseError < -180.0f + (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
873 && attitudeState.Roll > 0.0f) {
874 courseError += 360.0f;
876 if (courseError > 180.0f - (fixedWingPathFollowerSettings.ReverseCourseOverlap * 0.5f)
877 && attitudeState.Roll < 0.0f) {
878 courseError -= 360.0f;
881 courseCommand = pid_apply(&global.PIDcourse, courseError, dT);
883 fixedWingPathFollowerStatus.Error.Course = courseError;
884 fixedWingPathFollowerStatus.ErrorInt.Course = global.PIDcourse.iAccumulator;
885 fixedWingPathFollowerStatus.Command.Course = courseCommand;
887 stabDesired.Roll = boundf(fixedWingPathFollowerSettings.RollLimit.Neutral +
888 courseCommand,
889 fixedWingPathFollowerSettings.RollLimit.Min,
890 fixedWingPathFollowerSettings.RollLimit.Max);
892 // TODO: find a check to determine loss of directional control. Likely needs some check of derivative
896 * Compute desired yaw command
898 // TODO implement raw control mode for yaw and base on Accels.Y
899 stabDesired.Yaw = 0.0f;
902 stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
903 stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
904 stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
905 stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
907 StabilizationDesiredSet(&stabDesired);
909 FixedWingPathFollowerStatusSet(&fixedWingPathFollowerStatus);
911 return result;
916 * Function to calculate course vector C based on airspeed s, fluid movement F
917 * and desired movement vector V
918 * parameters in: V,F,s
919 * parameters out: C
920 * returns true if a valid solution could be found for V,F,s, false if not
921 * C will be set to a best effort attempt either way
923 static bool correctCourse(float *C, float *V, float *F, float s)
925 // Approach:
926 // Let Sc be a circle around origin marking possible movement vectors
927 // of the craft with airspeed s (all possible options for C)
928 // Let Vl be a line through the origin along movement vector V where fr any
929 // point v on line Vl v = k * (V / |V|) = k' * V
930 // Let Wl be a line parallel to Vl where for any point v on line Vl exists
931 // a point w on WL with w = v - F
932 // Then any intersection between circle Sc and line Wl represents course
933 // vector which would result in a movement vector
934 // V' = k * ( V / |V|) = k' * V
935 // If there is no intersection point, S is insufficient to compensate
936 // for F and we can only try to fly in direction of V (thus having wind drift
937 // but at least making progress orthogonal to wind)
939 s = fabsf(s);
940 float f = vector_lengthf(F, 2);
942 // normalize Cn=V/|V|, |V| must be >0
943 float v = vector_lengthf(V, 2);
944 if (v < 1e-6f) {
945 // if |V|=0, we aren't supposed to move, turn into the wind
946 // (this allows hovering)
947 C[0] = -F[0];
948 C[1] = -F[1];
949 // if desired airspeed matches fluidmovement a hover is actually
950 // intended so return true
951 return fabsf(f - s) < 1e-3f;
953 float Vn[2] = { V[0] / v, V[1] / v };
955 // project F on V
956 float fp = F[0] * Vn[0] + F[1] * Vn[1];
958 // find component Fo of F that is orthogonal to V
959 // (which is exactly the distance between Vl and Wl)
960 float Fo[2] = { F[0] - (fp * Vn[0]), F[1] - (fp * Vn[1]) };
961 float fo2 = Fo[0] * Fo[0] + Fo[1] * Fo[1];
963 // find k where k * Vn = C - Fo
964 // |C|=s is the hypothenuse in any rectangular triangle formed by k * Vn and Fo
965 // so k^2 + fo^2 = s^2 (since |Vn|=1)
966 float k2 = s * s - fo2;
967 if (k2 <= -1e-3f) {
968 // there is no solution, we will be drifted off either way
969 // fallback: fly stupidly in direction of V and hope for the best
970 C[0] = V[0];
971 C[1] = V[1];
972 return false;
973 } else if (k2 <= 1e-3f) {
974 // there is exactly one solution: -Fo
975 C[0] = -Fo[0];
976 C[1] = -Fo[1];
977 return true;
979 // we have two possible solutions k positive and k negative as there are
980 // two intersection points between Wl and Sc
981 // which one is better? two criteria:
982 // 1. we MUST move in the right direction, if any k leads to -v its invalid
983 // 2. we should minimize the speed error
984 float k = sqrt(k2);
985 float C1[2] = { -k * Vn[0] - Fo[0], -k * Vn[1] - Fo[1] };
986 float C2[2] = { k *Vn[0] - Fo[0], k * Vn[1] - Fo[1] };
987 // project C+F on Vn to find signed resulting movement vector length
988 float vp1 = (C1[0] + F[0]) * Vn[0] + (C1[1] + F[1]) * Vn[1];
989 float vp2 = (C2[0] + F[0]) * Vn[0] + (C2[1] + F[1]) * Vn[1];
990 if (vp1 >= 0.0f && fabsf(v - vp1) < fabsf(v - vp2)) {
991 // in this case the angle between course and resulting movement vector
992 // is greater than 90 degrees - so we actually fly backwards
993 C[0] = C1[0];
994 C[1] = C1[1];
995 return true;
997 C[0] = C2[0];
998 C[1] = C2[1];
999 if (vp2 >= 0.0f) {
1000 // in this case the angle between course and movement vector is less than
1001 // 90 degrees, but we do move in the right direction
1002 return true;
1003 } else {
1004 // in this case we actually get driven in the opposite direction of V
1005 // with both solutions for C
1006 // this might be reached in headwind stronger than maximum allowed
1007 // airspeed.
1008 return false;
1013 * Compute desired attitude from the desired velocity
1015 * Takes in @ref NedState which has the acceleration in the
1016 * NED frame as the feedback term and then compares the
1017 * @ref VelocityState against the @ref VelocityDesired
1019 static int8_t updateVtolDesiredAttitude(bool yaw_attitude, float yaw_direction)
1021 const float dT = updatePeriod / 1000.0f;
1022 uint8_t result = 1;
1024 VelocityDesiredData velocityDesired;
1025 VelocityStateData velocityState;
1026 StabilizationDesiredData stabDesired;
1027 AttitudeStateData attitudeState;
1028 StabilizationBankData stabSettings;
1029 SystemSettingsData systemSettings;
1031 float northError;
1032 float northCommand;
1034 float eastError;
1035 float eastCommand;
1037 float downError;
1038 float downCommand;
1040 SystemSettingsGet(&systemSettings);
1041 VelocityStateGet(&velocityState);
1042 VelocityDesiredGet(&velocityDesired);
1043 StabilizationDesiredGet(&stabDesired);
1044 VelocityDesiredGet(&velocityDesired);
1045 AttitudeStateGet(&attitudeState);
1046 StabilizationBankGet(&stabSettings);
1048 // Testing code - refactor into manual control command
1049 ManualControlCommandData manualControlData;
1050 ManualControlCommandGet(&manualControlData);
1052 // scale velocity if it is above configured maximum
1053 float velH = sqrtf(velocityDesired.North * velocityDesired.North + velocityDesired.East * velocityDesired.East);
1054 if (velH > vtolPathFollowerSettings.HorizontalVelMax) {
1055 velocityDesired.North *= vtolPathFollowerSettings.HorizontalVelMax / velH;
1056 velocityDesired.East *= vtolPathFollowerSettings.HorizontalVelMax / velH;
1058 if (fabsf(velocityDesired.Down) > vtolPathFollowerSettings.VerticalVelMax) {
1059 velocityDesired.Down *= vtolPathFollowerSettings.VerticalVelMax / fabsf(velocityDesired.Down);
1062 // Compute desired north command
1063 northError = velocityDesired.North - velocityState.North;
1064 northCommand = pid_apply(&global.PIDvel[0], northError, dT) + velocityDesired.North * vtolPathFollowerSettings.VelocityFeedforward;
1066 // Compute desired east command
1067 eastError = velocityDesired.East - velocityState.East;
1068 eastCommand = pid_apply(&global.PIDvel[1], eastError, dT) + velocityDesired.East * vtolPathFollowerSettings.VelocityFeedforward;
1070 // Compute desired down command
1071 downError = velocityDesired.Down - velocityState.Down;
1072 // Must flip this sign
1073 downError = -downError;
1074 downCommand = pid_apply(&global.PIDvel[2], downError, dT);
1076 stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
1079 // DEBUG HACK: allow user to skew compass on purpose to see if emergency failsafe kicks in
1080 if (vtolPathFollowerSettings.FlyawayEmergencyFallback == VTOLPATHFOLLOWERSETTINGS_FLYAWAYEMERGENCYFALLBACK_DEBUGTEST) {
1081 attitudeState.Yaw += 120.0f;
1082 if (attitudeState.Yaw > 180.0f) {
1083 attitudeState.Yaw -= 360.0f;
1087 if ( // emergency flyaway detection
1088 ( // integral already at its limit
1089 vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[0].iAccumulator) < 1e-6f ||
1090 vtolPathFollowerSettings.HorizontalVelPID.ILimit - fabsf(global.PIDvel[1].iAccumulator) < 1e-6f
1091 ) &&
1092 // angle between desired and actual velocity >90 degrees (by dot product)
1093 (velocityDesired.North * velocityState.North + velocityDesired.East * velocityState.East < 0.0f) &&
1094 // quad is moving at significant speed (during flyaway it would keep speeding up)
1095 squaref(velocityState.North) + squaref(velocityState.East) > 1.0f
1097 global.vtolEmergencyFallback += dT;
1098 if (global.vtolEmergencyFallback >= vtolPathFollowerSettings.FlyawayEmergencyFallbackTriggerTime) {
1099 // after emergency timeout, trigger alarm - everything else is handled by callers
1100 // (switch to emergency algorithm, switch to emergency waypoint in pathplanner, alarms, ...)
1101 result = 0;
1103 } else {
1104 global.vtolEmergencyFallback = 0.0f;
1107 // Project the north and east command signals into the pitch and roll based on yaw. For this to behave well the
1108 // craft should move similarly for 5 deg roll versus 5 deg pitch
1109 stabDesired.Pitch = boundf(-northCommand * cosf(DEG2RAD(attitudeState.Yaw)) +
1110 -eastCommand * sinf(DEG2RAD(attitudeState.Yaw)),
1111 -vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
1112 stabDesired.Roll = boundf(-northCommand * sinf(DEG2RAD(attitudeState.Yaw)) +
1113 eastCommand * cosf(DEG2RAD(attitudeState.Yaw)),
1114 -vtolPathFollowerSettings.MaxRollPitch, vtolPathFollowerSettings.MaxRollPitch);
1116 if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
1117 // For now override thrust with manual control. Disable at your risk, quad goes to China.
1118 ManualControlCommandData manualControl;
1119 ManualControlCommandGet(&manualControl);
1120 stabDesired.Thrust = manualControl.Thrust;
1123 stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
1124 stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
1125 if (yaw_attitude) {
1126 stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
1127 stabDesired.Yaw = yaw_direction;
1128 } else {
1129 stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_AXISLOCK;
1130 stabDesired.Yaw = stabSettings.MaximumRate.Yaw * manualControlData.Yaw;
1132 stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
1133 StabilizationDesiredSet(&stabDesired);
1135 return result;
1139 * Compute desired attitude for vtols - emergency fallback
1141 static void updateVtolDesiredAttitudeEmergencyFallback()
1143 const float dT = updatePeriod / 1000.0f;
1145 VelocityDesiredData velocityDesired;
1146 VelocityStateData velocityState;
1147 StabilizationDesiredData stabDesired;
1149 float courseError;
1150 float courseCommand;
1152 float downError;
1153 float downCommand;
1155 VelocityStateGet(&velocityState);
1156 VelocityDesiredGet(&velocityDesired);
1158 ManualControlCommandData manualControlData;
1159 ManualControlCommandGet(&manualControlData);
1161 courseError = RAD2DEG(atan2f(velocityDesired.East, velocityDesired.North) - atan2f(velocityState.East, velocityState.North));
1163 if (courseError < -180.0f) {
1164 courseError += 360.0f;
1166 if (courseError > 180.0f) {
1167 courseError -= 360.0f;
1171 courseCommand = (courseError * vtolPathFollowerSettings.EmergencyFallbackYawRate.kP);
1173 stabDesired.Yaw = boundf(courseCommand, -vtolPathFollowerSettings.EmergencyFallbackYawRate.Max, vtolPathFollowerSettings.EmergencyFallbackYawRate.Max);
1175 // Compute desired down command
1176 downError = velocityDesired.Down - velocityState.Down;
1177 // Must flip this sign
1178 downError = -downError;
1179 downCommand = pid_apply(&global.PIDvel[2], downError, dT);
1181 stabDesired.Thrust = boundf(downCommand + vtolPathFollowerSettings.ThrustLimits.Neutral, vtolPathFollowerSettings.ThrustLimits.Min, vtolPathFollowerSettings.ThrustLimits.Max);
1184 stabDesired.Roll = vtolPathFollowerSettings.EmergencyFallbackAttitude.Roll;
1185 stabDesired.Pitch = vtolPathFollowerSettings.EmergencyFallbackAttitude.Pitch;
1187 if (vtolPathFollowerSettings.ThrustControl == VTOLPATHFOLLOWERSETTINGS_THRUSTCONTROL_MANUAL) {
1188 // For now override thrust with manual control. Disable at your risk, quad goes to China.
1189 ManualControlCommandData manualControl;
1190 ManualControlCommandGet(&manualControl);
1191 stabDesired.Thrust = manualControl.Thrust;
1194 stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
1195 stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
1196 stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
1197 stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_CRUISECONTROL;
1198 StabilizationDesiredSet(&stabDesired);
1203 * Compute desired attitude from a fixed preset
1206 static void updateFixedAttitude(float *attitude)
1208 StabilizationDesiredData stabDesired;
1210 StabilizationDesiredGet(&stabDesired);
1211 stabDesired.Roll = attitude[0];
1212 stabDesired.Pitch = attitude[1];
1213 stabDesired.Yaw = attitude[2];
1214 stabDesired.Thrust = attitude[3];
1215 stabDesired.StabilizationMode.Roll = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
1216 stabDesired.StabilizationMode.Pitch = STABILIZATIONDESIRED_STABILIZATIONMODE_ATTITUDE;
1217 stabDesired.StabilizationMode.Yaw = STABILIZATIONDESIRED_STABILIZATIONMODE_RATE;
1218 stabDesired.StabilizationMode.Thrust = STABILIZATIONDESIRED_STABILIZATIONMODE_MANUAL;
1219 StabilizationDesiredSet(&stabDesired);