1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
50 #include <linux/sched/signal.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
74 #include <uapi/linux/io_uring.h>
78 #define IORING_MAX_ENTRIES 4096
79 #define IORING_MAX_FIXED_FILES 1024
82 u32 head ____cacheline_aligned_in_smp
;
83 u32 tail ____cacheline_aligned_in_smp
;
87 * This data is shared with the application through the mmap at offset
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
98 * The kernel controls head and the application controls tail.
102 * Bitmask to apply to head and tail offsets (constant, equals
106 /* Ring size (constant, power of 2) */
109 * Number of invalid entries dropped by the kernel due to
110 * invalid index stored in array
112 * Written by the kernel, shouldn't be modified by the
113 * application (i.e. get number of "new events" by comparing to
116 * After a new SQ head value was read by the application this
117 * counter includes all submissions that were dropped reaching
118 * the new SQ head (and possibly more).
124 * Written by the kernel, shouldn't be modified by the
127 * The application needs a full memory barrier before checking
128 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
132 * Ring buffer of indices into array of io_uring_sqe, which is
133 * mmapped by the application using the IORING_OFF_SQES offset.
135 * This indirection could e.g. be used to assign fixed
136 * io_uring_sqe entries to operations and only submit them to
137 * the queue when needed.
139 * The kernel modifies neither the indices array nor the entries
146 * This data is shared with the application through the mmap at offset
147 * IORING_OFF_CQ_RING.
149 * The offsets to the member fields are published through struct
150 * io_cqring_offsets when calling io_uring_setup.
154 * Head and tail offsets into the ring; the offsets need to be
155 * masked to get valid indices.
157 * The application controls head and the kernel tail.
161 * Bitmask to apply to head and tail offsets (constant, equals
165 /* Ring size (constant, power of 2) */
168 * Number of completion events lost because the queue was full;
169 * this should be avoided by the application by making sure
170 * there are not more requests pending thatn there is space in
171 * the completion queue.
173 * Written by the kernel, shouldn't be modified by the
174 * application (i.e. get number of "new events" by comparing to
177 * As completion events come in out of order this counter is not
178 * ordered with any other data.
182 * Ring buffer of completion events.
184 * The kernel writes completion events fresh every time they are
185 * produced, so the application is allowed to modify pending
188 struct io_uring_cqe cqes
[];
191 struct io_mapped_ubuf
{
194 struct bio_vec
*bvec
;
195 unsigned int nr_bvecs
;
201 struct list_head list
;
210 struct percpu_ref refs
;
211 } ____cacheline_aligned_in_smp
;
219 struct io_sq_ring
*sq_ring
;
220 unsigned cached_sq_head
;
223 unsigned sq_thread_idle
;
224 struct io_uring_sqe
*sq_sqes
;
226 struct list_head defer_list
;
227 } ____cacheline_aligned_in_smp
;
230 struct workqueue_struct
*sqo_wq
;
231 struct task_struct
*sqo_thread
; /* if using sq thread polling */
232 struct mm_struct
*sqo_mm
;
233 wait_queue_head_t sqo_wait
;
237 struct io_cq_ring
*cq_ring
;
238 unsigned cached_cq_tail
;
241 struct wait_queue_head cq_wait
;
242 struct fasync_struct
*cq_fasync
;
243 struct eventfd_ctx
*cq_ev_fd
;
244 } ____cacheline_aligned_in_smp
;
247 * If used, fixed file set. Writers must ensure that ->refs is dead,
248 * readers must ensure that ->refs is alive as long as the file* is
249 * used. Only updated through io_uring_register(2).
251 struct file
**user_files
;
252 unsigned nr_user_files
;
254 /* if used, fixed mapped user buffers */
255 unsigned nr_user_bufs
;
256 struct io_mapped_ubuf
*user_bufs
;
258 struct user_struct
*user
;
260 struct completion ctx_done
;
263 struct mutex uring_lock
;
264 wait_queue_head_t wait
;
265 } ____cacheline_aligned_in_smp
;
268 spinlock_t completion_lock
;
269 bool poll_multi_file
;
271 * ->poll_list is protected by the ctx->uring_lock for
272 * io_uring instances that don't use IORING_SETUP_SQPOLL.
273 * For SQPOLL, only the single threaded io_sq_thread() will
274 * manipulate the list, hence no extra locking is needed there.
276 struct list_head poll_list
;
277 struct list_head cancel_list
;
278 } ____cacheline_aligned_in_smp
;
280 struct async_list pending_async
[2];
282 #if defined(CONFIG_UNIX)
283 struct socket
*ring_sock
;
288 const struct io_uring_sqe
*sqe
;
289 unsigned short index
;
292 bool needs_fixed_file
;
296 * First field must be the file pointer in all the
297 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
299 struct io_poll_iocb
{
301 struct wait_queue_head
*head
;
305 struct wait_queue_entry wait
;
309 * NOTE! Each of the iocb union members has the file pointer
310 * as the first entry in their struct definition. So you can
311 * access the file pointer through any of the sub-structs,
312 * or directly as just 'ki_filp' in this struct.
318 struct io_poll_iocb poll
;
321 struct sqe_submit submit
;
323 struct io_ring_ctx
*ctx
;
324 struct list_head list
;
327 #define REQ_F_NOWAIT 1 /* must not punt to workers */
328 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
329 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
330 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
331 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
332 #define REQ_F_IO_DRAINED 32 /* drain done */
334 u32 error
; /* iopoll result from callback */
337 struct work_struct work
;
340 #define IO_PLUG_THRESHOLD 2
341 #define IO_IOPOLL_BATCH 8
343 struct io_submit_state
{
344 struct blk_plug plug
;
347 * io_kiocb alloc cache
349 void *reqs
[IO_IOPOLL_BATCH
];
350 unsigned int free_reqs
;
351 unsigned int cur_req
;
354 * File reference cache
358 unsigned int has_refs
;
359 unsigned int used_refs
;
360 unsigned int ios_left
;
363 static void io_sq_wq_submit_work(struct work_struct
*work
);
365 static struct kmem_cache
*req_cachep
;
367 static const struct file_operations io_uring_fops
;
369 struct sock
*io_uring_get_socket(struct file
*file
)
371 #if defined(CONFIG_UNIX)
372 if (file
->f_op
== &io_uring_fops
) {
373 struct io_ring_ctx
*ctx
= file
->private_data
;
375 return ctx
->ring_sock
->sk
;
380 EXPORT_SYMBOL(io_uring_get_socket
);
382 static void io_ring_ctx_ref_free(struct percpu_ref
*ref
)
384 struct io_ring_ctx
*ctx
= container_of(ref
, struct io_ring_ctx
, refs
);
386 complete(&ctx
->ctx_done
);
389 static struct io_ring_ctx
*io_ring_ctx_alloc(struct io_uring_params
*p
)
391 struct io_ring_ctx
*ctx
;
394 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
398 if (percpu_ref_init(&ctx
->refs
, io_ring_ctx_ref_free
, 0, GFP_KERNEL
)) {
403 ctx
->flags
= p
->flags
;
404 init_waitqueue_head(&ctx
->cq_wait
);
405 init_completion(&ctx
->ctx_done
);
406 mutex_init(&ctx
->uring_lock
);
407 init_waitqueue_head(&ctx
->wait
);
408 for (i
= 0; i
< ARRAY_SIZE(ctx
->pending_async
); i
++) {
409 spin_lock_init(&ctx
->pending_async
[i
].lock
);
410 INIT_LIST_HEAD(&ctx
->pending_async
[i
].list
);
411 atomic_set(&ctx
->pending_async
[i
].cnt
, 0);
413 spin_lock_init(&ctx
->completion_lock
);
414 INIT_LIST_HEAD(&ctx
->poll_list
);
415 INIT_LIST_HEAD(&ctx
->cancel_list
);
416 INIT_LIST_HEAD(&ctx
->defer_list
);
420 static inline bool io_sequence_defer(struct io_ring_ctx
*ctx
,
421 struct io_kiocb
*req
)
423 if ((req
->flags
& (REQ_F_IO_DRAIN
|REQ_F_IO_DRAINED
)) != REQ_F_IO_DRAIN
)
426 return req
->sequence
> ctx
->cached_cq_tail
+ ctx
->sq_ring
->dropped
;
429 static struct io_kiocb
*io_get_deferred_req(struct io_ring_ctx
*ctx
)
431 struct io_kiocb
*req
;
433 if (list_empty(&ctx
->defer_list
))
436 req
= list_first_entry(&ctx
->defer_list
, struct io_kiocb
, list
);
437 if (!io_sequence_defer(ctx
, req
)) {
438 list_del_init(&req
->list
);
445 static void __io_commit_cqring(struct io_ring_ctx
*ctx
)
447 struct io_cq_ring
*ring
= ctx
->cq_ring
;
449 if (ctx
->cached_cq_tail
!= READ_ONCE(ring
->r
.tail
)) {
450 /* order cqe stores with ring update */
451 smp_store_release(&ring
->r
.tail
, ctx
->cached_cq_tail
);
453 if (wq_has_sleeper(&ctx
->cq_wait
)) {
454 wake_up_interruptible(&ctx
->cq_wait
);
455 kill_fasync(&ctx
->cq_fasync
, SIGIO
, POLL_IN
);
460 static void io_commit_cqring(struct io_ring_ctx
*ctx
)
462 struct io_kiocb
*req
;
464 __io_commit_cqring(ctx
);
466 while ((req
= io_get_deferred_req(ctx
)) != NULL
) {
467 req
->flags
|= REQ_F_IO_DRAINED
;
468 queue_work(ctx
->sqo_wq
, &req
->work
);
472 static struct io_uring_cqe
*io_get_cqring(struct io_ring_ctx
*ctx
)
474 struct io_cq_ring
*ring
= ctx
->cq_ring
;
477 tail
= ctx
->cached_cq_tail
;
479 * writes to the cq entry need to come after reading head; the
480 * control dependency is enough as we're using WRITE_ONCE to
483 if (tail
- READ_ONCE(ring
->r
.head
) == ring
->ring_entries
)
486 ctx
->cached_cq_tail
++;
487 return &ring
->cqes
[tail
& ctx
->cq_mask
];
490 static void io_cqring_fill_event(struct io_ring_ctx
*ctx
, u64 ki_user_data
,
493 struct io_uring_cqe
*cqe
;
496 * If we can't get a cq entry, userspace overflowed the
497 * submission (by quite a lot). Increment the overflow count in
500 cqe
= io_get_cqring(ctx
);
502 WRITE_ONCE(cqe
->user_data
, ki_user_data
);
503 WRITE_ONCE(cqe
->res
, res
);
504 WRITE_ONCE(cqe
->flags
, 0);
506 unsigned overflow
= READ_ONCE(ctx
->cq_ring
->overflow
);
508 WRITE_ONCE(ctx
->cq_ring
->overflow
, overflow
+ 1);
512 static void io_cqring_ev_posted(struct io_ring_ctx
*ctx
)
514 if (waitqueue_active(&ctx
->wait
))
516 if (waitqueue_active(&ctx
->sqo_wait
))
517 wake_up(&ctx
->sqo_wait
);
519 eventfd_signal(ctx
->cq_ev_fd
, 1);
522 static void io_cqring_add_event(struct io_ring_ctx
*ctx
, u64 user_data
,
527 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
528 io_cqring_fill_event(ctx
, user_data
, res
);
529 io_commit_cqring(ctx
);
530 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
532 io_cqring_ev_posted(ctx
);
535 static void io_ring_drop_ctx_refs(struct io_ring_ctx
*ctx
, unsigned refs
)
537 percpu_ref_put_many(&ctx
->refs
, refs
);
539 if (waitqueue_active(&ctx
->wait
))
543 static struct io_kiocb
*io_get_req(struct io_ring_ctx
*ctx
,
544 struct io_submit_state
*state
)
546 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
547 struct io_kiocb
*req
;
549 if (!percpu_ref_tryget(&ctx
->refs
))
553 req
= kmem_cache_alloc(req_cachep
, gfp
);
556 } else if (!state
->free_reqs
) {
560 sz
= min_t(size_t, state
->ios_left
, ARRAY_SIZE(state
->reqs
));
561 ret
= kmem_cache_alloc_bulk(req_cachep
, gfp
, sz
, state
->reqs
);
564 * Bulk alloc is all-or-nothing. If we fail to get a batch,
565 * retry single alloc to be on the safe side.
567 if (unlikely(ret
<= 0)) {
568 state
->reqs
[0] = kmem_cache_alloc(req_cachep
, gfp
);
573 state
->free_reqs
= ret
- 1;
575 req
= state
->reqs
[0];
577 req
= state
->reqs
[state
->cur_req
];
585 /* one is dropped after submission, the other at completion */
586 refcount_set(&req
->refs
, 2);
589 io_ring_drop_ctx_refs(ctx
, 1);
593 static void io_free_req_many(struct io_ring_ctx
*ctx
, void **reqs
, int *nr
)
596 kmem_cache_free_bulk(req_cachep
, *nr
, reqs
);
597 io_ring_drop_ctx_refs(ctx
, *nr
);
602 static void io_free_req(struct io_kiocb
*req
)
604 if (req
->file
&& !(req
->flags
& REQ_F_FIXED_FILE
))
606 io_ring_drop_ctx_refs(req
->ctx
, 1);
607 kmem_cache_free(req_cachep
, req
);
610 static void io_put_req(struct io_kiocb
*req
)
612 if (refcount_dec_and_test(&req
->refs
))
617 * Find and free completed poll iocbs
619 static void io_iopoll_complete(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
620 struct list_head
*done
)
622 void *reqs
[IO_IOPOLL_BATCH
];
623 struct io_kiocb
*req
;
627 while (!list_empty(done
)) {
628 req
= list_first_entry(done
, struct io_kiocb
, list
);
629 list_del(&req
->list
);
631 io_cqring_fill_event(ctx
, req
->user_data
, req
->error
);
634 if (refcount_dec_and_test(&req
->refs
)) {
635 /* If we're not using fixed files, we have to pair the
636 * completion part with the file put. Use regular
637 * completions for those, only batch free for fixed
640 if (req
->flags
& REQ_F_FIXED_FILE
) {
641 reqs
[to_free
++] = req
;
642 if (to_free
== ARRAY_SIZE(reqs
))
643 io_free_req_many(ctx
, reqs
, &to_free
);
650 io_commit_cqring(ctx
);
651 io_free_req_many(ctx
, reqs
, &to_free
);
654 static int io_do_iopoll(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
657 struct io_kiocb
*req
, *tmp
;
663 * Only spin for completions if we don't have multiple devices hanging
664 * off our complete list, and we're under the requested amount.
666 spin
= !ctx
->poll_multi_file
&& *nr_events
< min
;
669 list_for_each_entry_safe(req
, tmp
, &ctx
->poll_list
, list
) {
670 struct kiocb
*kiocb
= &req
->rw
;
673 * Move completed entries to our local list. If we find a
674 * request that requires polling, break out and complete
675 * the done list first, if we have entries there.
677 if (req
->flags
& REQ_F_IOPOLL_COMPLETED
) {
678 list_move_tail(&req
->list
, &done
);
681 if (!list_empty(&done
))
684 ret
= kiocb
->ki_filp
->f_op
->iopoll(kiocb
, spin
);
693 if (!list_empty(&done
))
694 io_iopoll_complete(ctx
, nr_events
, &done
);
700 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
701 * non-spinning poll check - we'll still enter the driver poll loop, but only
702 * as a non-spinning completion check.
704 static int io_iopoll_getevents(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
707 while (!list_empty(&ctx
->poll_list
)) {
710 ret
= io_do_iopoll(ctx
, nr_events
, min
);
713 if (!min
|| *nr_events
>= min
)
721 * We can't just wait for polled events to come to us, we have to actively
722 * find and complete them.
724 static void io_iopoll_reap_events(struct io_ring_ctx
*ctx
)
726 if (!(ctx
->flags
& IORING_SETUP_IOPOLL
))
729 mutex_lock(&ctx
->uring_lock
);
730 while (!list_empty(&ctx
->poll_list
)) {
731 unsigned int nr_events
= 0;
733 io_iopoll_getevents(ctx
, &nr_events
, 1);
735 mutex_unlock(&ctx
->uring_lock
);
738 static int io_iopoll_check(struct io_ring_ctx
*ctx
, unsigned *nr_events
,
746 if (*nr_events
< min
)
747 tmin
= min
- *nr_events
;
749 ret
= io_iopoll_getevents(ctx
, nr_events
, tmin
);
753 } while (min
&& !*nr_events
&& !need_resched());
758 static void kiocb_end_write(struct kiocb
*kiocb
)
760 if (kiocb
->ki_flags
& IOCB_WRITE
) {
761 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
764 * Tell lockdep we inherited freeze protection from submission
767 if (S_ISREG(inode
->i_mode
))
768 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
769 file_end_write(kiocb
->ki_filp
);
773 static void io_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
775 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
);
777 kiocb_end_write(kiocb
);
779 io_cqring_add_event(req
->ctx
, req
->user_data
, res
);
783 static void io_complete_rw_iopoll(struct kiocb
*kiocb
, long res
, long res2
)
785 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
);
787 kiocb_end_write(kiocb
);
791 req
->flags
|= REQ_F_IOPOLL_COMPLETED
;
795 * After the iocb has been issued, it's safe to be found on the poll list.
796 * Adding the kiocb to the list AFTER submission ensures that we don't
797 * find it from a io_iopoll_getevents() thread before the issuer is done
798 * accessing the kiocb cookie.
800 static void io_iopoll_req_issued(struct io_kiocb
*req
)
802 struct io_ring_ctx
*ctx
= req
->ctx
;
805 * Track whether we have multiple files in our lists. This will impact
806 * how we do polling eventually, not spinning if we're on potentially
809 if (list_empty(&ctx
->poll_list
)) {
810 ctx
->poll_multi_file
= false;
811 } else if (!ctx
->poll_multi_file
) {
812 struct io_kiocb
*list_req
;
814 list_req
= list_first_entry(&ctx
->poll_list
, struct io_kiocb
,
816 if (list_req
->rw
.ki_filp
!= req
->rw
.ki_filp
)
817 ctx
->poll_multi_file
= true;
821 * For fast devices, IO may have already completed. If it has, add
822 * it to the front so we find it first.
824 if (req
->flags
& REQ_F_IOPOLL_COMPLETED
)
825 list_add(&req
->list
, &ctx
->poll_list
);
827 list_add_tail(&req
->list
, &ctx
->poll_list
);
830 static void io_file_put(struct io_submit_state
*state
)
833 int diff
= state
->has_refs
- state
->used_refs
;
836 fput_many(state
->file
, diff
);
842 * Get as many references to a file as we have IOs left in this submission,
843 * assuming most submissions are for one file, or at least that each file
844 * has more than one submission.
846 static struct file
*io_file_get(struct io_submit_state
*state
, int fd
)
852 if (state
->fd
== fd
) {
859 state
->file
= fget_many(fd
, state
->ios_left
);
864 state
->has_refs
= state
->ios_left
;
865 state
->used_refs
= 1;
871 * If we tracked the file through the SCM inflight mechanism, we could support
872 * any file. For now, just ensure that anything potentially problematic is done
875 static bool io_file_supports_async(struct file
*file
)
877 umode_t mode
= file_inode(file
)->i_mode
;
879 if (S_ISBLK(mode
) || S_ISCHR(mode
))
881 if (S_ISREG(mode
) && file
->f_op
!= &io_uring_fops
)
887 static int io_prep_rw(struct io_kiocb
*req
, const struct sqe_submit
*s
,
890 const struct io_uring_sqe
*sqe
= s
->sqe
;
891 struct io_ring_ctx
*ctx
= req
->ctx
;
892 struct kiocb
*kiocb
= &req
->rw
;
899 if (force_nonblock
&& !io_file_supports_async(req
->file
))
900 force_nonblock
= false;
902 kiocb
->ki_pos
= READ_ONCE(sqe
->off
);
903 kiocb
->ki_flags
= iocb_flags(kiocb
->ki_filp
);
904 kiocb
->ki_hint
= ki_hint_validate(file_write_hint(kiocb
->ki_filp
));
906 ioprio
= READ_ONCE(sqe
->ioprio
);
908 ret
= ioprio_check_cap(ioprio
);
912 kiocb
->ki_ioprio
= ioprio
;
914 kiocb
->ki_ioprio
= get_current_ioprio();
916 ret
= kiocb_set_rw_flags(kiocb
, READ_ONCE(sqe
->rw_flags
));
920 /* don't allow async punt if RWF_NOWAIT was requested */
921 if (kiocb
->ki_flags
& IOCB_NOWAIT
)
922 req
->flags
|= REQ_F_NOWAIT
;
925 kiocb
->ki_flags
|= IOCB_NOWAIT
;
927 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
928 if (!(kiocb
->ki_flags
& IOCB_DIRECT
) ||
929 !kiocb
->ki_filp
->f_op
->iopoll
)
933 kiocb
->ki_flags
|= IOCB_HIPRI
;
934 kiocb
->ki_complete
= io_complete_rw_iopoll
;
936 if (kiocb
->ki_flags
& IOCB_HIPRI
)
938 kiocb
->ki_complete
= io_complete_rw
;
943 static inline void io_rw_done(struct kiocb
*kiocb
, ssize_t ret
)
949 case -ERESTARTNOINTR
:
950 case -ERESTARTNOHAND
:
951 case -ERESTART_RESTARTBLOCK
:
953 * We can't just restart the syscall, since previously
954 * submitted sqes may already be in progress. Just fail this
960 kiocb
->ki_complete(kiocb
, ret
, 0);
964 static int io_import_fixed(struct io_ring_ctx
*ctx
, int rw
,
965 const struct io_uring_sqe
*sqe
,
966 struct iov_iter
*iter
)
968 size_t len
= READ_ONCE(sqe
->len
);
969 struct io_mapped_ubuf
*imu
;
970 unsigned index
, buf_index
;
974 /* attempt to use fixed buffers without having provided iovecs */
975 if (unlikely(!ctx
->user_bufs
))
978 buf_index
= READ_ONCE(sqe
->buf_index
);
979 if (unlikely(buf_index
>= ctx
->nr_user_bufs
))
982 index
= array_index_nospec(buf_index
, ctx
->nr_user_bufs
);
983 imu
= &ctx
->user_bufs
[index
];
984 buf_addr
= READ_ONCE(sqe
->addr
);
987 if (buf_addr
+ len
< buf_addr
)
989 /* not inside the mapped region */
990 if (buf_addr
< imu
->ubuf
|| buf_addr
+ len
> imu
->ubuf
+ imu
->len
)
994 * May not be a start of buffer, set size appropriately
995 * and advance us to the beginning.
997 offset
= buf_addr
- imu
->ubuf
;
998 iov_iter_bvec(iter
, rw
, imu
->bvec
, imu
->nr_bvecs
, offset
+ len
);
1000 iov_iter_advance(iter
, offset
);
1002 /* don't drop a reference to these pages */
1003 iter
->type
|= ITER_BVEC_FLAG_NO_REF
;
1007 static int io_import_iovec(struct io_ring_ctx
*ctx
, int rw
,
1008 const struct sqe_submit
*s
, struct iovec
**iovec
,
1009 struct iov_iter
*iter
)
1011 const struct io_uring_sqe
*sqe
= s
->sqe
;
1012 void __user
*buf
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
1013 size_t sqe_len
= READ_ONCE(sqe
->len
);
1017 * We're reading ->opcode for the second time, but the first read
1018 * doesn't care whether it's _FIXED or not, so it doesn't matter
1019 * whether ->opcode changes concurrently. The first read does care
1020 * about whether it is a READ or a WRITE, so we don't trust this read
1021 * for that purpose and instead let the caller pass in the read/write
1024 opcode
= READ_ONCE(sqe
->opcode
);
1025 if (opcode
== IORING_OP_READ_FIXED
||
1026 opcode
== IORING_OP_WRITE_FIXED
) {
1027 int ret
= io_import_fixed(ctx
, rw
, sqe
, iter
);
1035 #ifdef CONFIG_COMPAT
1037 return compat_import_iovec(rw
, buf
, sqe_len
, UIO_FASTIOV
,
1041 return import_iovec(rw
, buf
, sqe_len
, UIO_FASTIOV
, iovec
, iter
);
1045 * Make a note of the last file/offset/direction we punted to async
1046 * context. We'll use this information to see if we can piggy back a
1047 * sequential request onto the previous one, if it's still hasn't been
1048 * completed by the async worker.
1050 static void io_async_list_note(int rw
, struct io_kiocb
*req
, size_t len
)
1052 struct async_list
*async_list
= &req
->ctx
->pending_async
[rw
];
1053 struct kiocb
*kiocb
= &req
->rw
;
1054 struct file
*filp
= kiocb
->ki_filp
;
1055 off_t io_end
= kiocb
->ki_pos
+ len
;
1057 if (filp
== async_list
->file
&& kiocb
->ki_pos
== async_list
->io_end
) {
1058 unsigned long max_pages
;
1060 /* Use 8x RA size as a decent limiter for both reads/writes */
1061 max_pages
= filp
->f_ra
.ra_pages
;
1063 max_pages
= VM_READAHEAD_PAGES
;
1066 /* If max pages are exceeded, reset the state */
1068 if (async_list
->io_pages
+ len
<= max_pages
) {
1069 req
->flags
|= REQ_F_SEQ_PREV
;
1070 async_list
->io_pages
+= len
;
1073 async_list
->io_pages
= 0;
1077 /* New file? Reset state. */
1078 if (async_list
->file
!= filp
) {
1079 async_list
->io_pages
= 0;
1080 async_list
->file
= filp
;
1082 async_list
->io_end
= io_end
;
1085 static int io_read(struct io_kiocb
*req
, const struct sqe_submit
*s
,
1086 bool force_nonblock
)
1088 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1089 struct kiocb
*kiocb
= &req
->rw
;
1090 struct iov_iter iter
;
1095 ret
= io_prep_rw(req
, s
, force_nonblock
);
1098 file
= kiocb
->ki_filp
;
1100 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1102 if (unlikely(!file
->f_op
->read_iter
))
1105 ret
= io_import_iovec(req
->ctx
, READ
, s
, &iovec
, &iter
);
1109 iov_count
= iov_iter_count(&iter
);
1110 ret
= rw_verify_area(READ
, file
, &kiocb
->ki_pos
, iov_count
);
1114 /* Catch -EAGAIN return for forced non-blocking submission */
1115 ret2
= call_read_iter(file
, kiocb
, &iter
);
1116 if (!force_nonblock
|| ret2
!= -EAGAIN
) {
1117 io_rw_done(kiocb
, ret2
);
1120 * If ->needs_lock is true, we're already in async
1124 io_async_list_note(READ
, req
, iov_count
);
1132 static int io_write(struct io_kiocb
*req
, const struct sqe_submit
*s
,
1133 bool force_nonblock
)
1135 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1136 struct kiocb
*kiocb
= &req
->rw
;
1137 struct iov_iter iter
;
1142 ret
= io_prep_rw(req
, s
, force_nonblock
);
1146 file
= kiocb
->ki_filp
;
1147 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1149 if (unlikely(!file
->f_op
->write_iter
))
1152 ret
= io_import_iovec(req
->ctx
, WRITE
, s
, &iovec
, &iter
);
1156 iov_count
= iov_iter_count(&iter
);
1159 if (force_nonblock
&& !(kiocb
->ki_flags
& IOCB_DIRECT
)) {
1160 /* If ->needs_lock is true, we're already in async context. */
1162 io_async_list_note(WRITE
, req
, iov_count
);
1166 ret
= rw_verify_area(WRITE
, file
, &kiocb
->ki_pos
, iov_count
);
1171 * Open-code file_start_write here to grab freeze protection,
1172 * which will be released by another thread in
1173 * io_complete_rw(). Fool lockdep by telling it the lock got
1174 * released so that it doesn't complain about the held lock when
1175 * we return to userspace.
1177 if (S_ISREG(file_inode(file
)->i_mode
)) {
1178 __sb_start_write(file_inode(file
)->i_sb
,
1179 SB_FREEZE_WRITE
, true);
1180 __sb_writers_release(file_inode(file
)->i_sb
,
1183 kiocb
->ki_flags
|= IOCB_WRITE
;
1185 ret2
= call_write_iter(file
, kiocb
, &iter
);
1186 if (!force_nonblock
|| ret2
!= -EAGAIN
) {
1187 io_rw_done(kiocb
, ret2
);
1190 * If ->needs_lock is true, we're already in async
1194 io_async_list_note(WRITE
, req
, iov_count
);
1204 * IORING_OP_NOP just posts a completion event, nothing else.
1206 static int io_nop(struct io_kiocb
*req
, u64 user_data
)
1208 struct io_ring_ctx
*ctx
= req
->ctx
;
1211 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1214 io_cqring_add_event(ctx
, user_data
, err
);
1219 static int io_prep_fsync(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1221 struct io_ring_ctx
*ctx
= req
->ctx
;
1226 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1228 if (unlikely(sqe
->addr
|| sqe
->ioprio
|| sqe
->buf_index
))
1234 static int io_fsync(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
1235 bool force_nonblock
)
1237 loff_t sqe_off
= READ_ONCE(sqe
->off
);
1238 loff_t sqe_len
= READ_ONCE(sqe
->len
);
1239 loff_t end
= sqe_off
+ sqe_len
;
1240 unsigned fsync_flags
;
1243 fsync_flags
= READ_ONCE(sqe
->fsync_flags
);
1244 if (unlikely(fsync_flags
& ~IORING_FSYNC_DATASYNC
))
1247 ret
= io_prep_fsync(req
, sqe
);
1251 /* fsync always requires a blocking context */
1255 ret
= vfs_fsync_range(req
->rw
.ki_filp
, sqe_off
,
1256 end
> 0 ? end
: LLONG_MAX
,
1257 fsync_flags
& IORING_FSYNC_DATASYNC
);
1259 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
);
1264 static int io_prep_sfr(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1266 struct io_ring_ctx
*ctx
= req
->ctx
;
1272 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1274 if (unlikely(sqe
->addr
|| sqe
->ioprio
|| sqe
->buf_index
))
1280 static int io_sync_file_range(struct io_kiocb
*req
,
1281 const struct io_uring_sqe
*sqe
,
1282 bool force_nonblock
)
1289 ret
= io_prep_sfr(req
, sqe
);
1293 /* sync_file_range always requires a blocking context */
1297 sqe_off
= READ_ONCE(sqe
->off
);
1298 sqe_len
= READ_ONCE(sqe
->len
);
1299 flags
= READ_ONCE(sqe
->sync_range_flags
);
1301 ret
= sync_file_range(req
->rw
.ki_filp
, sqe_off
, sqe_len
, flags
);
1303 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
);
1308 static void io_poll_remove_one(struct io_kiocb
*req
)
1310 struct io_poll_iocb
*poll
= &req
->poll
;
1312 spin_lock(&poll
->head
->lock
);
1313 WRITE_ONCE(poll
->canceled
, true);
1314 if (!list_empty(&poll
->wait
.entry
)) {
1315 list_del_init(&poll
->wait
.entry
);
1316 queue_work(req
->ctx
->sqo_wq
, &req
->work
);
1318 spin_unlock(&poll
->head
->lock
);
1320 list_del_init(&req
->list
);
1323 static void io_poll_remove_all(struct io_ring_ctx
*ctx
)
1325 struct io_kiocb
*req
;
1327 spin_lock_irq(&ctx
->completion_lock
);
1328 while (!list_empty(&ctx
->cancel_list
)) {
1329 req
= list_first_entry(&ctx
->cancel_list
, struct io_kiocb
,list
);
1330 io_poll_remove_one(req
);
1332 spin_unlock_irq(&ctx
->completion_lock
);
1336 * Find a running poll command that matches one specified in sqe->addr,
1337 * and remove it if found.
1339 static int io_poll_remove(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1341 struct io_ring_ctx
*ctx
= req
->ctx
;
1342 struct io_kiocb
*poll_req
, *next
;
1345 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1347 if (sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
||
1351 spin_lock_irq(&ctx
->completion_lock
);
1352 list_for_each_entry_safe(poll_req
, next
, &ctx
->cancel_list
, list
) {
1353 if (READ_ONCE(sqe
->addr
) == poll_req
->user_data
) {
1354 io_poll_remove_one(poll_req
);
1359 spin_unlock_irq(&ctx
->completion_lock
);
1361 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
);
1366 static void io_poll_complete(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1369 req
->poll
.done
= true;
1370 io_cqring_fill_event(ctx
, req
->user_data
, mangle_poll(mask
));
1371 io_commit_cqring(ctx
);
1374 static void io_poll_complete_work(struct work_struct
*work
)
1376 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1377 struct io_poll_iocb
*poll
= &req
->poll
;
1378 struct poll_table_struct pt
= { ._key
= poll
->events
};
1379 struct io_ring_ctx
*ctx
= req
->ctx
;
1382 if (!READ_ONCE(poll
->canceled
))
1383 mask
= vfs_poll(poll
->file
, &pt
) & poll
->events
;
1386 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1387 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1388 * synchronize with them. In the cancellation case the list_del_init
1389 * itself is not actually needed, but harmless so we keep it in to
1390 * avoid further branches in the fast path.
1392 spin_lock_irq(&ctx
->completion_lock
);
1393 if (!mask
&& !READ_ONCE(poll
->canceled
)) {
1394 add_wait_queue(poll
->head
, &poll
->wait
);
1395 spin_unlock_irq(&ctx
->completion_lock
);
1398 list_del_init(&req
->list
);
1399 io_poll_complete(ctx
, req
, mask
);
1400 spin_unlock_irq(&ctx
->completion_lock
);
1402 io_cqring_ev_posted(ctx
);
1406 static int io_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1409 struct io_poll_iocb
*poll
= container_of(wait
, struct io_poll_iocb
,
1411 struct io_kiocb
*req
= container_of(poll
, struct io_kiocb
, poll
);
1412 struct io_ring_ctx
*ctx
= req
->ctx
;
1413 __poll_t mask
= key_to_poll(key
);
1414 unsigned long flags
;
1416 /* for instances that support it check for an event match first: */
1417 if (mask
&& !(mask
& poll
->events
))
1420 list_del_init(&poll
->wait
.entry
);
1422 if (mask
&& spin_trylock_irqsave(&ctx
->completion_lock
, flags
)) {
1423 list_del(&req
->list
);
1424 io_poll_complete(ctx
, req
, mask
);
1425 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1427 io_cqring_ev_posted(ctx
);
1430 queue_work(ctx
->sqo_wq
, &req
->work
);
1436 struct io_poll_table
{
1437 struct poll_table_struct pt
;
1438 struct io_kiocb
*req
;
1442 static void io_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1443 struct poll_table_struct
*p
)
1445 struct io_poll_table
*pt
= container_of(p
, struct io_poll_table
, pt
);
1447 if (unlikely(pt
->req
->poll
.head
)) {
1448 pt
->error
= -EINVAL
;
1453 pt
->req
->poll
.head
= head
;
1454 add_wait_queue(head
, &pt
->req
->poll
.wait
);
1457 static int io_poll_add(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1459 struct io_poll_iocb
*poll
= &req
->poll
;
1460 struct io_ring_ctx
*ctx
= req
->ctx
;
1461 struct io_poll_table ipt
;
1462 bool cancel
= false;
1466 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1468 if (sqe
->addr
|| sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
)
1473 INIT_WORK(&req
->work
, io_poll_complete_work
);
1474 events
= READ_ONCE(sqe
->poll_events
);
1475 poll
->events
= demangle_poll(events
) | EPOLLERR
| EPOLLHUP
;
1479 poll
->canceled
= false;
1481 ipt
.pt
._qproc
= io_poll_queue_proc
;
1482 ipt
.pt
._key
= poll
->events
;
1484 ipt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1486 /* initialized the list so that we can do list_empty checks */
1487 INIT_LIST_HEAD(&poll
->wait
.entry
);
1488 init_waitqueue_func_entry(&poll
->wait
, io_poll_wake
);
1490 mask
= vfs_poll(poll
->file
, &ipt
.pt
) & poll
->events
;
1492 spin_lock_irq(&ctx
->completion_lock
);
1493 if (likely(poll
->head
)) {
1494 spin_lock(&poll
->head
->lock
);
1495 if (unlikely(list_empty(&poll
->wait
.entry
))) {
1501 if (mask
|| ipt
.error
)
1502 list_del_init(&poll
->wait
.entry
);
1504 WRITE_ONCE(poll
->canceled
, true);
1505 else if (!poll
->done
) /* actually waiting for an event */
1506 list_add_tail(&req
->list
, &ctx
->cancel_list
);
1507 spin_unlock(&poll
->head
->lock
);
1509 if (mask
) { /* no async, we'd stolen it */
1511 io_poll_complete(ctx
, req
, mask
);
1513 spin_unlock_irq(&ctx
->completion_lock
);
1516 io_cqring_ev_posted(ctx
);
1522 static int io_req_defer(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1523 const struct io_uring_sqe
*sqe
)
1525 struct io_uring_sqe
*sqe_copy
;
1527 if (!io_sequence_defer(ctx
, req
) && list_empty(&ctx
->defer_list
))
1530 sqe_copy
= kmalloc(sizeof(*sqe_copy
), GFP_KERNEL
);
1534 spin_lock_irq(&ctx
->completion_lock
);
1535 if (!io_sequence_defer(ctx
, req
) && list_empty(&ctx
->defer_list
)) {
1536 spin_unlock_irq(&ctx
->completion_lock
);
1541 memcpy(sqe_copy
, sqe
, sizeof(*sqe_copy
));
1542 req
->submit
.sqe
= sqe_copy
;
1544 INIT_WORK(&req
->work
, io_sq_wq_submit_work
);
1545 list_add_tail(&req
->list
, &ctx
->defer_list
);
1546 spin_unlock_irq(&ctx
->completion_lock
);
1547 return -EIOCBQUEUED
;
1550 static int __io_submit_sqe(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1551 const struct sqe_submit
*s
, bool force_nonblock
)
1555 if (unlikely(s
->index
>= ctx
->sq_entries
))
1557 req
->user_data
= READ_ONCE(s
->sqe
->user_data
);
1559 opcode
= READ_ONCE(s
->sqe
->opcode
);
1562 ret
= io_nop(req
, req
->user_data
);
1564 case IORING_OP_READV
:
1565 if (unlikely(s
->sqe
->buf_index
))
1567 ret
= io_read(req
, s
, force_nonblock
);
1569 case IORING_OP_WRITEV
:
1570 if (unlikely(s
->sqe
->buf_index
))
1572 ret
= io_write(req
, s
, force_nonblock
);
1574 case IORING_OP_READ_FIXED
:
1575 ret
= io_read(req
, s
, force_nonblock
);
1577 case IORING_OP_WRITE_FIXED
:
1578 ret
= io_write(req
, s
, force_nonblock
);
1580 case IORING_OP_FSYNC
:
1581 ret
= io_fsync(req
, s
->sqe
, force_nonblock
);
1583 case IORING_OP_POLL_ADD
:
1584 ret
= io_poll_add(req
, s
->sqe
);
1586 case IORING_OP_POLL_REMOVE
:
1587 ret
= io_poll_remove(req
, s
->sqe
);
1589 case IORING_OP_SYNC_FILE_RANGE
:
1590 ret
= io_sync_file_range(req
, s
->sqe
, force_nonblock
);
1600 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
1601 if (req
->error
== -EAGAIN
)
1604 /* workqueue context doesn't hold uring_lock, grab it now */
1606 mutex_lock(&ctx
->uring_lock
);
1607 io_iopoll_req_issued(req
);
1609 mutex_unlock(&ctx
->uring_lock
);
1615 static struct async_list
*io_async_list_from_sqe(struct io_ring_ctx
*ctx
,
1616 const struct io_uring_sqe
*sqe
)
1618 switch (sqe
->opcode
) {
1619 case IORING_OP_READV
:
1620 case IORING_OP_READ_FIXED
:
1621 return &ctx
->pending_async
[READ
];
1622 case IORING_OP_WRITEV
:
1623 case IORING_OP_WRITE_FIXED
:
1624 return &ctx
->pending_async
[WRITE
];
1630 static inline bool io_sqe_needs_user(const struct io_uring_sqe
*sqe
)
1632 u8 opcode
= READ_ONCE(sqe
->opcode
);
1634 return !(opcode
== IORING_OP_READ_FIXED
||
1635 opcode
== IORING_OP_WRITE_FIXED
);
1638 static void io_sq_wq_submit_work(struct work_struct
*work
)
1640 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1641 struct io_ring_ctx
*ctx
= req
->ctx
;
1642 struct mm_struct
*cur_mm
= NULL
;
1643 struct async_list
*async_list
;
1644 LIST_HEAD(req_list
);
1645 mm_segment_t old_fs
;
1648 async_list
= io_async_list_from_sqe(ctx
, req
->submit
.sqe
);
1651 struct sqe_submit
*s
= &req
->submit
;
1652 const struct io_uring_sqe
*sqe
= s
->sqe
;
1654 /* Ensure we clear previously set non-block flag */
1655 req
->rw
.ki_flags
&= ~IOCB_NOWAIT
;
1658 if (io_sqe_needs_user(sqe
) && !cur_mm
) {
1659 if (!mmget_not_zero(ctx
->sqo_mm
)) {
1662 cur_mm
= ctx
->sqo_mm
;
1670 s
->has_user
= cur_mm
!= NULL
;
1671 s
->needs_lock
= true;
1673 ret
= __io_submit_sqe(ctx
, req
, s
, false);
1675 * We can get EAGAIN for polled IO even though
1676 * we're forcing a sync submission from here,
1677 * since we can't wait for request slots on the
1686 /* drop submission reference */
1690 io_cqring_add_event(ctx
, sqe
->user_data
, ret
);
1694 /* async context always use a copy of the sqe */
1699 if (!list_empty(&req_list
)) {
1700 req
= list_first_entry(&req_list
, struct io_kiocb
,
1702 list_del(&req
->list
);
1705 if (list_empty(&async_list
->list
))
1709 spin_lock(&async_list
->lock
);
1710 if (list_empty(&async_list
->list
)) {
1711 spin_unlock(&async_list
->lock
);
1714 list_splice_init(&async_list
->list
, &req_list
);
1715 spin_unlock(&async_list
->lock
);
1717 req
= list_first_entry(&req_list
, struct io_kiocb
, list
);
1718 list_del(&req
->list
);
1722 * Rare case of racing with a submitter. If we find the count has
1723 * dropped to zero AND we have pending work items, then restart
1724 * the processing. This is a tiny race window.
1727 ret
= atomic_dec_return(&async_list
->cnt
);
1728 while (!ret
&& !list_empty(&async_list
->list
)) {
1729 spin_lock(&async_list
->lock
);
1730 atomic_inc(&async_list
->cnt
);
1731 list_splice_init(&async_list
->list
, &req_list
);
1732 spin_unlock(&async_list
->lock
);
1734 if (!list_empty(&req_list
)) {
1735 req
= list_first_entry(&req_list
,
1736 struct io_kiocb
, list
);
1737 list_del(&req
->list
);
1740 ret
= atomic_dec_return(&async_list
->cnt
);
1752 * See if we can piggy back onto previously submitted work, that is still
1753 * running. We currently only allow this if the new request is sequential
1754 * to the previous one we punted.
1756 static bool io_add_to_prev_work(struct async_list
*list
, struct io_kiocb
*req
)
1762 if (!(req
->flags
& REQ_F_SEQ_PREV
))
1764 if (!atomic_read(&list
->cnt
))
1768 spin_lock(&list
->lock
);
1769 list_add_tail(&req
->list
, &list
->list
);
1770 if (!atomic_read(&list
->cnt
)) {
1771 list_del_init(&req
->list
);
1774 spin_unlock(&list
->lock
);
1778 static bool io_op_needs_file(const struct io_uring_sqe
*sqe
)
1780 int op
= READ_ONCE(sqe
->opcode
);
1784 case IORING_OP_POLL_REMOVE
:
1791 static int io_req_set_file(struct io_ring_ctx
*ctx
, const struct sqe_submit
*s
,
1792 struct io_submit_state
*state
, struct io_kiocb
*req
)
1797 flags
= READ_ONCE(s
->sqe
->flags
);
1798 fd
= READ_ONCE(s
->sqe
->fd
);
1800 if (flags
& IOSQE_IO_DRAIN
) {
1801 req
->flags
|= REQ_F_IO_DRAIN
;
1802 req
->sequence
= ctx
->cached_sq_head
- 1;
1805 if (!io_op_needs_file(s
->sqe
))
1808 if (flags
& IOSQE_FIXED_FILE
) {
1809 if (unlikely(!ctx
->user_files
||
1810 (unsigned) fd
>= ctx
->nr_user_files
))
1812 req
->file
= ctx
->user_files
[fd
];
1813 req
->flags
|= REQ_F_FIXED_FILE
;
1815 if (s
->needs_fixed_file
)
1817 req
->file
= io_file_get(state
, fd
);
1818 if (unlikely(!req
->file
))
1825 static int io_submit_sqe(struct io_ring_ctx
*ctx
, struct sqe_submit
*s
,
1826 struct io_submit_state
*state
)
1828 struct io_kiocb
*req
;
1831 /* enforce forwards compatibility on users */
1832 if (unlikely(s
->sqe
->flags
& ~(IOSQE_FIXED_FILE
| IOSQE_IO_DRAIN
)))
1835 req
= io_get_req(ctx
, state
);
1839 ret
= io_req_set_file(ctx
, s
, state
, req
);
1843 ret
= io_req_defer(ctx
, req
, s
->sqe
);
1845 if (ret
== -EIOCBQUEUED
)
1850 ret
= __io_submit_sqe(ctx
, req
, s
, true);
1851 if (ret
== -EAGAIN
&& !(req
->flags
& REQ_F_NOWAIT
)) {
1852 struct io_uring_sqe
*sqe_copy
;
1854 sqe_copy
= kmalloc(sizeof(*sqe_copy
), GFP_KERNEL
);
1856 struct async_list
*list
;
1858 memcpy(sqe_copy
, s
->sqe
, sizeof(*sqe_copy
));
1861 memcpy(&req
->submit
, s
, sizeof(*s
));
1862 list
= io_async_list_from_sqe(ctx
, s
->sqe
);
1863 if (!io_add_to_prev_work(list
, req
)) {
1865 atomic_inc(&list
->cnt
);
1866 INIT_WORK(&req
->work
, io_sq_wq_submit_work
);
1867 queue_work(ctx
->sqo_wq
, &req
->work
);
1871 * Queued up for async execution, worker will release
1872 * submit reference when the iocb is actually
1880 /* drop submission reference */
1883 /* and drop final reference, if we failed */
1891 * Batched submission is done, ensure local IO is flushed out.
1893 static void io_submit_state_end(struct io_submit_state
*state
)
1895 blk_finish_plug(&state
->plug
);
1897 if (state
->free_reqs
)
1898 kmem_cache_free_bulk(req_cachep
, state
->free_reqs
,
1899 &state
->reqs
[state
->cur_req
]);
1903 * Start submission side cache.
1905 static void io_submit_state_start(struct io_submit_state
*state
,
1906 struct io_ring_ctx
*ctx
, unsigned max_ios
)
1908 blk_start_plug(&state
->plug
);
1909 state
->free_reqs
= 0;
1911 state
->ios_left
= max_ios
;
1914 static void io_commit_sqring(struct io_ring_ctx
*ctx
)
1916 struct io_sq_ring
*ring
= ctx
->sq_ring
;
1918 if (ctx
->cached_sq_head
!= READ_ONCE(ring
->r
.head
)) {
1920 * Ensure any loads from the SQEs are done at this point,
1921 * since once we write the new head, the application could
1922 * write new data to them.
1924 smp_store_release(&ring
->r
.head
, ctx
->cached_sq_head
);
1929 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1930 * that is mapped by userspace. This means that care needs to be taken to
1931 * ensure that reads are stable, as we cannot rely on userspace always
1932 * being a good citizen. If members of the sqe are validated and then later
1933 * used, it's important that those reads are done through READ_ONCE() to
1934 * prevent a re-load down the line.
1936 static bool io_get_sqring(struct io_ring_ctx
*ctx
, struct sqe_submit
*s
)
1938 struct io_sq_ring
*ring
= ctx
->sq_ring
;
1942 * The cached sq head (or cq tail) serves two purposes:
1944 * 1) allows us to batch the cost of updating the user visible
1946 * 2) allows the kernel side to track the head on its own, even
1947 * though the application is the one updating it.
1949 head
= ctx
->cached_sq_head
;
1950 /* make sure SQ entry isn't read before tail */
1951 if (head
== smp_load_acquire(&ring
->r
.tail
))
1954 head
= READ_ONCE(ring
->array
[head
& ctx
->sq_mask
]);
1955 if (head
< ctx
->sq_entries
) {
1957 s
->sqe
= &ctx
->sq_sqes
[head
];
1958 ctx
->cached_sq_head
++;
1962 /* drop invalid entries */
1963 ctx
->cached_sq_head
++;
1968 static int io_submit_sqes(struct io_ring_ctx
*ctx
, struct sqe_submit
*sqes
,
1969 unsigned int nr
, bool has_user
, bool mm_fault
)
1971 struct io_submit_state state
, *statep
= NULL
;
1972 int ret
, i
, submitted
= 0;
1974 if (nr
> IO_PLUG_THRESHOLD
) {
1975 io_submit_state_start(&state
, ctx
, nr
);
1979 for (i
= 0; i
< nr
; i
++) {
1980 if (unlikely(mm_fault
)) {
1983 sqes
[i
].has_user
= has_user
;
1984 sqes
[i
].needs_lock
= true;
1985 sqes
[i
].needs_fixed_file
= true;
1986 ret
= io_submit_sqe(ctx
, &sqes
[i
], statep
);
1993 io_cqring_add_event(ctx
, sqes
[i
].sqe
->user_data
, ret
);
1997 io_submit_state_end(&state
);
2002 static int io_sq_thread(void *data
)
2004 struct sqe_submit sqes
[IO_IOPOLL_BATCH
];
2005 struct io_ring_ctx
*ctx
= data
;
2006 struct mm_struct
*cur_mm
= NULL
;
2007 mm_segment_t old_fs
;
2010 unsigned long timeout
;
2015 timeout
= inflight
= 0;
2016 while (!kthread_should_park()) {
2017 bool all_fixed
, mm_fault
= false;
2021 unsigned nr_events
= 0;
2023 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
2025 * We disallow the app entering submit/complete
2026 * with polling, but we still need to lock the
2027 * ring to prevent racing with polled issue
2028 * that got punted to a workqueue.
2030 mutex_lock(&ctx
->uring_lock
);
2031 io_iopoll_check(ctx
, &nr_events
, 0);
2032 mutex_unlock(&ctx
->uring_lock
);
2035 * Normal IO, just pretend everything completed.
2036 * We don't have to poll completions for that.
2038 nr_events
= inflight
;
2041 inflight
-= nr_events
;
2043 timeout
= jiffies
+ ctx
->sq_thread_idle
;
2046 if (!io_get_sqring(ctx
, &sqes
[0])) {
2048 * We're polling. If we're within the defined idle
2049 * period, then let us spin without work before going
2052 if (inflight
|| !time_after(jiffies
, timeout
)) {
2058 * Drop cur_mm before scheduling, we can't hold it for
2059 * long periods (or over schedule()). Do this before
2060 * adding ourselves to the waitqueue, as the unuse/drop
2069 prepare_to_wait(&ctx
->sqo_wait
, &wait
,
2070 TASK_INTERRUPTIBLE
);
2072 /* Tell userspace we may need a wakeup call */
2073 ctx
->sq_ring
->flags
|= IORING_SQ_NEED_WAKEUP
;
2074 /* make sure to read SQ tail after writing flags */
2077 if (!io_get_sqring(ctx
, &sqes
[0])) {
2078 if (kthread_should_park()) {
2079 finish_wait(&ctx
->sqo_wait
, &wait
);
2082 if (signal_pending(current
))
2083 flush_signals(current
);
2085 finish_wait(&ctx
->sqo_wait
, &wait
);
2087 ctx
->sq_ring
->flags
&= ~IORING_SQ_NEED_WAKEUP
;
2090 finish_wait(&ctx
->sqo_wait
, &wait
);
2092 ctx
->sq_ring
->flags
&= ~IORING_SQ_NEED_WAKEUP
;
2098 if (all_fixed
&& io_sqe_needs_user(sqes
[i
].sqe
))
2102 if (i
== ARRAY_SIZE(sqes
))
2104 } while (io_get_sqring(ctx
, &sqes
[i
]));
2106 /* Unless all new commands are FIXED regions, grab mm */
2107 if (!all_fixed
&& !cur_mm
) {
2108 mm_fault
= !mmget_not_zero(ctx
->sqo_mm
);
2110 use_mm(ctx
->sqo_mm
);
2111 cur_mm
= ctx
->sqo_mm
;
2115 inflight
+= io_submit_sqes(ctx
, sqes
, i
, cur_mm
!= NULL
,
2118 /* Commit SQ ring head once we've consumed all SQEs */
2119 io_commit_sqring(ctx
);
2133 static int io_ring_submit(struct io_ring_ctx
*ctx
, unsigned int to_submit
)
2135 struct io_submit_state state
, *statep
= NULL
;
2138 if (to_submit
> IO_PLUG_THRESHOLD
) {
2139 io_submit_state_start(&state
, ctx
, to_submit
);
2143 for (i
= 0; i
< to_submit
; i
++) {
2144 struct sqe_submit s
;
2147 if (!io_get_sqring(ctx
, &s
))
2151 s
.needs_lock
= false;
2152 s
.needs_fixed_file
= false;
2155 ret
= io_submit_sqe(ctx
, &s
, statep
);
2157 io_cqring_add_event(ctx
, s
.sqe
->user_data
, ret
);
2159 io_commit_sqring(ctx
);
2162 io_submit_state_end(statep
);
2167 static unsigned io_cqring_events(struct io_cq_ring
*ring
)
2169 /* See comment at the top of this file */
2171 return READ_ONCE(ring
->r
.tail
) - READ_ONCE(ring
->r
.head
);
2175 * Wait until events become available, if we don't already have some. The
2176 * application must reap them itself, as they reside on the shared cq ring.
2178 static int io_cqring_wait(struct io_ring_ctx
*ctx
, int min_events
,
2179 const sigset_t __user
*sig
, size_t sigsz
)
2181 struct io_cq_ring
*ring
= ctx
->cq_ring
;
2182 sigset_t ksigmask
, sigsaved
;
2185 if (io_cqring_events(ring
) >= min_events
)
2189 #ifdef CONFIG_COMPAT
2190 if (in_compat_syscall())
2191 ret
= set_compat_user_sigmask((const compat_sigset_t __user
*)sig
,
2192 &ksigmask
, &sigsaved
, sigsz
);
2195 ret
= set_user_sigmask(sig
, &ksigmask
,
2202 ret
= wait_event_interruptible(ctx
->wait
, io_cqring_events(ring
) >= min_events
);
2205 restore_user_sigmask(sig
, &sigsaved
, ret
== -ERESTARTSYS
);
2207 if (ret
== -ERESTARTSYS
)
2210 return READ_ONCE(ring
->r
.head
) == READ_ONCE(ring
->r
.tail
) ? ret
: 0;
2213 static void __io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
2215 #if defined(CONFIG_UNIX)
2216 if (ctx
->ring_sock
) {
2217 struct sock
*sock
= ctx
->ring_sock
->sk
;
2218 struct sk_buff
*skb
;
2220 while ((skb
= skb_dequeue(&sock
->sk_receive_queue
)) != NULL
)
2226 for (i
= 0; i
< ctx
->nr_user_files
; i
++)
2227 fput(ctx
->user_files
[i
]);
2231 static int io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
2233 if (!ctx
->user_files
)
2236 __io_sqe_files_unregister(ctx
);
2237 kfree(ctx
->user_files
);
2238 ctx
->user_files
= NULL
;
2239 ctx
->nr_user_files
= 0;
2243 static void io_sq_thread_stop(struct io_ring_ctx
*ctx
)
2245 if (ctx
->sqo_thread
) {
2247 * The park is a bit of a work-around, without it we get
2248 * warning spews on shutdown with SQPOLL set and affinity
2249 * set to a single CPU.
2251 kthread_park(ctx
->sqo_thread
);
2252 kthread_stop(ctx
->sqo_thread
);
2253 ctx
->sqo_thread
= NULL
;
2257 static void io_finish_async(struct io_ring_ctx
*ctx
)
2259 io_sq_thread_stop(ctx
);
2262 destroy_workqueue(ctx
->sqo_wq
);
2267 #if defined(CONFIG_UNIX)
2268 static void io_destruct_skb(struct sk_buff
*skb
)
2270 struct io_ring_ctx
*ctx
= skb
->sk
->sk_user_data
;
2272 io_finish_async(ctx
);
2273 unix_destruct_scm(skb
);
2277 * Ensure the UNIX gc is aware of our file set, so we are certain that
2278 * the io_uring can be safely unregistered on process exit, even if we have
2279 * loops in the file referencing.
2281 static int __io_sqe_files_scm(struct io_ring_ctx
*ctx
, int nr
, int offset
)
2283 struct sock
*sk
= ctx
->ring_sock
->sk
;
2284 struct scm_fp_list
*fpl
;
2285 struct sk_buff
*skb
;
2288 if (!capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
)) {
2289 unsigned long inflight
= ctx
->user
->unix_inflight
+ nr
;
2291 if (inflight
> task_rlimit(current
, RLIMIT_NOFILE
))
2295 fpl
= kzalloc(sizeof(*fpl
), GFP_KERNEL
);
2299 skb
= alloc_skb(0, GFP_KERNEL
);
2306 skb
->destructor
= io_destruct_skb
;
2308 fpl
->user
= get_uid(ctx
->user
);
2309 for (i
= 0; i
< nr
; i
++) {
2310 fpl
->fp
[i
] = get_file(ctx
->user_files
[i
+ offset
]);
2311 unix_inflight(fpl
->user
, fpl
->fp
[i
]);
2314 fpl
->max
= fpl
->count
= nr
;
2315 UNIXCB(skb
).fp
= fpl
;
2316 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
2317 skb_queue_head(&sk
->sk_receive_queue
, skb
);
2319 for (i
= 0; i
< nr
; i
++)
2326 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2327 * causes regular reference counting to break down. We rely on the UNIX
2328 * garbage collection to take care of this problem for us.
2330 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
2332 unsigned left
, total
;
2336 left
= ctx
->nr_user_files
;
2338 unsigned this_files
= min_t(unsigned, left
, SCM_MAX_FD
);
2340 ret
= __io_sqe_files_scm(ctx
, this_files
, total
);
2344 total
+= this_files
;
2350 while (total
< ctx
->nr_user_files
) {
2351 fput(ctx
->user_files
[total
]);
2358 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
2364 static int io_sqe_files_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
2367 __s32 __user
*fds
= (__s32 __user
*) arg
;
2371 if (ctx
->user_files
)
2375 if (nr_args
> IORING_MAX_FIXED_FILES
)
2378 ctx
->user_files
= kcalloc(nr_args
, sizeof(struct file
*), GFP_KERNEL
);
2379 if (!ctx
->user_files
)
2382 for (i
= 0; i
< nr_args
; i
++) {
2384 if (copy_from_user(&fd
, &fds
[i
], sizeof(fd
)))
2387 ctx
->user_files
[i
] = fget(fd
);
2390 if (!ctx
->user_files
[i
])
2393 * Don't allow io_uring instances to be registered. If UNIX
2394 * isn't enabled, then this causes a reference cycle and this
2395 * instance can never get freed. If UNIX is enabled we'll
2396 * handle it just fine, but there's still no point in allowing
2397 * a ring fd as it doesn't support regular read/write anyway.
2399 if (ctx
->user_files
[i
]->f_op
== &io_uring_fops
) {
2400 fput(ctx
->user_files
[i
]);
2403 ctx
->nr_user_files
++;
2408 for (i
= 0; i
< ctx
->nr_user_files
; i
++)
2409 fput(ctx
->user_files
[i
]);
2411 kfree(ctx
->user_files
);
2412 ctx
->user_files
= NULL
;
2413 ctx
->nr_user_files
= 0;
2417 ret
= io_sqe_files_scm(ctx
);
2419 io_sqe_files_unregister(ctx
);
2424 static int io_sq_offload_start(struct io_ring_ctx
*ctx
,
2425 struct io_uring_params
*p
)
2429 init_waitqueue_head(&ctx
->sqo_wait
);
2430 mmgrab(current
->mm
);
2431 ctx
->sqo_mm
= current
->mm
;
2433 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
2435 if (!capable(CAP_SYS_ADMIN
))
2438 ctx
->sq_thread_idle
= msecs_to_jiffies(p
->sq_thread_idle
);
2439 if (!ctx
->sq_thread_idle
)
2440 ctx
->sq_thread_idle
= HZ
;
2442 if (p
->flags
& IORING_SETUP_SQ_AFF
) {
2443 int cpu
= p
->sq_thread_cpu
;
2446 if (cpu
>= nr_cpu_ids
)
2448 if (!cpu_online(cpu
))
2451 ctx
->sqo_thread
= kthread_create_on_cpu(io_sq_thread
,
2455 ctx
->sqo_thread
= kthread_create(io_sq_thread
, ctx
,
2458 if (IS_ERR(ctx
->sqo_thread
)) {
2459 ret
= PTR_ERR(ctx
->sqo_thread
);
2460 ctx
->sqo_thread
= NULL
;
2463 wake_up_process(ctx
->sqo_thread
);
2464 } else if (p
->flags
& IORING_SETUP_SQ_AFF
) {
2465 /* Can't have SQ_AFF without SQPOLL */
2470 /* Do QD, or 2 * CPUS, whatever is smallest */
2471 ctx
->sqo_wq
= alloc_workqueue("io_ring-wq", WQ_UNBOUND
| WQ_FREEZABLE
,
2472 min(ctx
->sq_entries
- 1, 2 * num_online_cpus()));
2480 io_sq_thread_stop(ctx
);
2481 mmdrop(ctx
->sqo_mm
);
2486 static void io_unaccount_mem(struct user_struct
*user
, unsigned long nr_pages
)
2488 atomic_long_sub(nr_pages
, &user
->locked_vm
);
2491 static int io_account_mem(struct user_struct
*user
, unsigned long nr_pages
)
2493 unsigned long page_limit
, cur_pages
, new_pages
;
2495 /* Don't allow more pages than we can safely lock */
2496 page_limit
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
2499 cur_pages
= atomic_long_read(&user
->locked_vm
);
2500 new_pages
= cur_pages
+ nr_pages
;
2501 if (new_pages
> page_limit
)
2503 } while (atomic_long_cmpxchg(&user
->locked_vm
, cur_pages
,
2504 new_pages
) != cur_pages
);
2509 static void io_mem_free(void *ptr
)
2516 page
= virt_to_head_page(ptr
);
2517 if (put_page_testzero(page
))
2518 free_compound_page(page
);
2521 static void *io_mem_alloc(size_t size
)
2523 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| __GFP_NOWARN
| __GFP_COMP
|
2526 return (void *) __get_free_pages(gfp_flags
, get_order(size
));
2529 static unsigned long ring_pages(unsigned sq_entries
, unsigned cq_entries
)
2531 struct io_sq_ring
*sq_ring
;
2532 struct io_cq_ring
*cq_ring
;
2535 bytes
= struct_size(sq_ring
, array
, sq_entries
);
2536 bytes
+= array_size(sizeof(struct io_uring_sqe
), sq_entries
);
2537 bytes
+= struct_size(cq_ring
, cqes
, cq_entries
);
2539 return (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
2542 static int io_sqe_buffer_unregister(struct io_ring_ctx
*ctx
)
2546 if (!ctx
->user_bufs
)
2549 for (i
= 0; i
< ctx
->nr_user_bufs
; i
++) {
2550 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
2552 for (j
= 0; j
< imu
->nr_bvecs
; j
++)
2553 put_page(imu
->bvec
[j
].bv_page
);
2555 if (ctx
->account_mem
)
2556 io_unaccount_mem(ctx
->user
, imu
->nr_bvecs
);
2561 kfree(ctx
->user_bufs
);
2562 ctx
->user_bufs
= NULL
;
2563 ctx
->nr_user_bufs
= 0;
2567 static int io_copy_iov(struct io_ring_ctx
*ctx
, struct iovec
*dst
,
2568 void __user
*arg
, unsigned index
)
2570 struct iovec __user
*src
;
2572 #ifdef CONFIG_COMPAT
2574 struct compat_iovec __user
*ciovs
;
2575 struct compat_iovec ciov
;
2577 ciovs
= (struct compat_iovec __user
*) arg
;
2578 if (copy_from_user(&ciov
, &ciovs
[index
], sizeof(ciov
)))
2581 dst
->iov_base
= (void __user
*) (unsigned long) ciov
.iov_base
;
2582 dst
->iov_len
= ciov
.iov_len
;
2586 src
= (struct iovec __user
*) arg
;
2587 if (copy_from_user(dst
, &src
[index
], sizeof(*dst
)))
2592 static int io_sqe_buffer_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
2595 struct vm_area_struct
**vmas
= NULL
;
2596 struct page
**pages
= NULL
;
2597 int i
, j
, got_pages
= 0;
2602 if (!nr_args
|| nr_args
> UIO_MAXIOV
)
2605 ctx
->user_bufs
= kcalloc(nr_args
, sizeof(struct io_mapped_ubuf
),
2607 if (!ctx
->user_bufs
)
2610 for (i
= 0; i
< nr_args
; i
++) {
2611 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
2612 unsigned long off
, start
, end
, ubuf
;
2617 ret
= io_copy_iov(ctx
, &iov
, arg
, i
);
2622 * Don't impose further limits on the size and buffer
2623 * constraints here, we'll -EINVAL later when IO is
2624 * submitted if they are wrong.
2627 if (!iov
.iov_base
|| !iov
.iov_len
)
2630 /* arbitrary limit, but we need something */
2631 if (iov
.iov_len
> SZ_1G
)
2634 ubuf
= (unsigned long) iov
.iov_base
;
2635 end
= (ubuf
+ iov
.iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2636 start
= ubuf
>> PAGE_SHIFT
;
2637 nr_pages
= end
- start
;
2639 if (ctx
->account_mem
) {
2640 ret
= io_account_mem(ctx
->user
, nr_pages
);
2646 if (!pages
|| nr_pages
> got_pages
) {
2649 pages
= kvmalloc_array(nr_pages
, sizeof(struct page
*),
2651 vmas
= kvmalloc_array(nr_pages
,
2652 sizeof(struct vm_area_struct
*),
2654 if (!pages
|| !vmas
) {
2656 if (ctx
->account_mem
)
2657 io_unaccount_mem(ctx
->user
, nr_pages
);
2660 got_pages
= nr_pages
;
2663 imu
->bvec
= kvmalloc_array(nr_pages
, sizeof(struct bio_vec
),
2667 if (ctx
->account_mem
)
2668 io_unaccount_mem(ctx
->user
, nr_pages
);
2673 down_read(¤t
->mm
->mmap_sem
);
2674 pret
= get_user_pages(ubuf
, nr_pages
,
2675 FOLL_WRITE
| FOLL_LONGTERM
,
2677 if (pret
== nr_pages
) {
2678 /* don't support file backed memory */
2679 for (j
= 0; j
< nr_pages
; j
++) {
2680 struct vm_area_struct
*vma
= vmas
[j
];
2683 !is_file_hugepages(vma
->vm_file
)) {
2689 ret
= pret
< 0 ? pret
: -EFAULT
;
2691 up_read(¤t
->mm
->mmap_sem
);
2694 * if we did partial map, or found file backed vmas,
2695 * release any pages we did get
2698 for (j
= 0; j
< pret
; j
++)
2701 if (ctx
->account_mem
)
2702 io_unaccount_mem(ctx
->user
, nr_pages
);
2707 off
= ubuf
& ~PAGE_MASK
;
2709 for (j
= 0; j
< nr_pages
; j
++) {
2712 vec_len
= min_t(size_t, size
, PAGE_SIZE
- off
);
2713 imu
->bvec
[j
].bv_page
= pages
[j
];
2714 imu
->bvec
[j
].bv_len
= vec_len
;
2715 imu
->bvec
[j
].bv_offset
= off
;
2719 /* store original address for later verification */
2721 imu
->len
= iov
.iov_len
;
2722 imu
->nr_bvecs
= nr_pages
;
2724 ctx
->nr_user_bufs
++;
2732 io_sqe_buffer_unregister(ctx
);
2736 static int io_eventfd_register(struct io_ring_ctx
*ctx
, void __user
*arg
)
2738 __s32 __user
*fds
= arg
;
2744 if (copy_from_user(&fd
, fds
, sizeof(*fds
)))
2747 ctx
->cq_ev_fd
= eventfd_ctx_fdget(fd
);
2748 if (IS_ERR(ctx
->cq_ev_fd
)) {
2749 int ret
= PTR_ERR(ctx
->cq_ev_fd
);
2750 ctx
->cq_ev_fd
= NULL
;
2757 static int io_eventfd_unregister(struct io_ring_ctx
*ctx
)
2759 if (ctx
->cq_ev_fd
) {
2760 eventfd_ctx_put(ctx
->cq_ev_fd
);
2761 ctx
->cq_ev_fd
= NULL
;
2768 static void io_ring_ctx_free(struct io_ring_ctx
*ctx
)
2770 io_finish_async(ctx
);
2772 mmdrop(ctx
->sqo_mm
);
2774 io_iopoll_reap_events(ctx
);
2775 io_sqe_buffer_unregister(ctx
);
2776 io_sqe_files_unregister(ctx
);
2777 io_eventfd_unregister(ctx
);
2779 #if defined(CONFIG_UNIX)
2780 if (ctx
->ring_sock
) {
2781 ctx
->ring_sock
->file
= NULL
; /* so that iput() is called */
2782 sock_release(ctx
->ring_sock
);
2786 io_mem_free(ctx
->sq_ring
);
2787 io_mem_free(ctx
->sq_sqes
);
2788 io_mem_free(ctx
->cq_ring
);
2790 percpu_ref_exit(&ctx
->refs
);
2791 if (ctx
->account_mem
)
2792 io_unaccount_mem(ctx
->user
,
2793 ring_pages(ctx
->sq_entries
, ctx
->cq_entries
));
2794 free_uid(ctx
->user
);
2798 static __poll_t
io_uring_poll(struct file
*file
, poll_table
*wait
)
2800 struct io_ring_ctx
*ctx
= file
->private_data
;
2803 poll_wait(file
, &ctx
->cq_wait
, wait
);
2805 * synchronizes with barrier from wq_has_sleeper call in
2809 if (READ_ONCE(ctx
->sq_ring
->r
.tail
) - ctx
->cached_sq_head
!=
2810 ctx
->sq_ring
->ring_entries
)
2811 mask
|= EPOLLOUT
| EPOLLWRNORM
;
2812 if (READ_ONCE(ctx
->cq_ring
->r
.head
) != ctx
->cached_cq_tail
)
2813 mask
|= EPOLLIN
| EPOLLRDNORM
;
2818 static int io_uring_fasync(int fd
, struct file
*file
, int on
)
2820 struct io_ring_ctx
*ctx
= file
->private_data
;
2822 return fasync_helper(fd
, file
, on
, &ctx
->cq_fasync
);
2825 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx
*ctx
)
2827 mutex_lock(&ctx
->uring_lock
);
2828 percpu_ref_kill(&ctx
->refs
);
2829 mutex_unlock(&ctx
->uring_lock
);
2831 io_poll_remove_all(ctx
);
2832 io_iopoll_reap_events(ctx
);
2833 wait_for_completion(&ctx
->ctx_done
);
2834 io_ring_ctx_free(ctx
);
2837 static int io_uring_release(struct inode
*inode
, struct file
*file
)
2839 struct io_ring_ctx
*ctx
= file
->private_data
;
2841 file
->private_data
= NULL
;
2842 io_ring_ctx_wait_and_kill(ctx
);
2846 static int io_uring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2848 loff_t offset
= (loff_t
) vma
->vm_pgoff
<< PAGE_SHIFT
;
2849 unsigned long sz
= vma
->vm_end
- vma
->vm_start
;
2850 struct io_ring_ctx
*ctx
= file
->private_data
;
2856 case IORING_OFF_SQ_RING
:
2859 case IORING_OFF_SQES
:
2862 case IORING_OFF_CQ_RING
:
2869 page
= virt_to_head_page(ptr
);
2870 if (sz
> (PAGE_SIZE
<< compound_order(page
)))
2873 pfn
= virt_to_phys(ptr
) >> PAGE_SHIFT
;
2874 return remap_pfn_range(vma
, vma
->vm_start
, pfn
, sz
, vma
->vm_page_prot
);
2877 SYSCALL_DEFINE6(io_uring_enter
, unsigned int, fd
, u32
, to_submit
,
2878 u32
, min_complete
, u32
, flags
, const sigset_t __user
*, sig
,
2881 struct io_ring_ctx
*ctx
;
2886 if (flags
& ~(IORING_ENTER_GETEVENTS
| IORING_ENTER_SQ_WAKEUP
))
2894 if (f
.file
->f_op
!= &io_uring_fops
)
2898 ctx
= f
.file
->private_data
;
2899 if (!percpu_ref_tryget(&ctx
->refs
))
2903 * For SQ polling, the thread will do all submissions and completions.
2904 * Just return the requested submit count, and wake the thread if
2907 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
2908 if (flags
& IORING_ENTER_SQ_WAKEUP
)
2909 wake_up(&ctx
->sqo_wait
);
2910 submitted
= to_submit
;
2916 to_submit
= min(to_submit
, ctx
->sq_entries
);
2918 mutex_lock(&ctx
->uring_lock
);
2919 submitted
= io_ring_submit(ctx
, to_submit
);
2920 mutex_unlock(&ctx
->uring_lock
);
2922 if (flags
& IORING_ENTER_GETEVENTS
) {
2923 unsigned nr_events
= 0;
2925 min_complete
= min(min_complete
, ctx
->cq_entries
);
2927 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
2928 mutex_lock(&ctx
->uring_lock
);
2929 ret
= io_iopoll_check(ctx
, &nr_events
, min_complete
);
2930 mutex_unlock(&ctx
->uring_lock
);
2932 ret
= io_cqring_wait(ctx
, min_complete
, sig
, sigsz
);
2937 io_ring_drop_ctx_refs(ctx
, 1);
2940 return submitted
? submitted
: ret
;
2943 static const struct file_operations io_uring_fops
= {
2944 .release
= io_uring_release
,
2945 .mmap
= io_uring_mmap
,
2946 .poll
= io_uring_poll
,
2947 .fasync
= io_uring_fasync
,
2950 static int io_allocate_scq_urings(struct io_ring_ctx
*ctx
,
2951 struct io_uring_params
*p
)
2953 struct io_sq_ring
*sq_ring
;
2954 struct io_cq_ring
*cq_ring
;
2957 sq_ring
= io_mem_alloc(struct_size(sq_ring
, array
, p
->sq_entries
));
2961 ctx
->sq_ring
= sq_ring
;
2962 sq_ring
->ring_mask
= p
->sq_entries
- 1;
2963 sq_ring
->ring_entries
= p
->sq_entries
;
2964 ctx
->sq_mask
= sq_ring
->ring_mask
;
2965 ctx
->sq_entries
= sq_ring
->ring_entries
;
2967 size
= array_size(sizeof(struct io_uring_sqe
), p
->sq_entries
);
2968 if (size
== SIZE_MAX
)
2971 ctx
->sq_sqes
= io_mem_alloc(size
);
2975 cq_ring
= io_mem_alloc(struct_size(cq_ring
, cqes
, p
->cq_entries
));
2979 ctx
->cq_ring
= cq_ring
;
2980 cq_ring
->ring_mask
= p
->cq_entries
- 1;
2981 cq_ring
->ring_entries
= p
->cq_entries
;
2982 ctx
->cq_mask
= cq_ring
->ring_mask
;
2983 ctx
->cq_entries
= cq_ring
->ring_entries
;
2988 * Allocate an anonymous fd, this is what constitutes the application
2989 * visible backing of an io_uring instance. The application mmaps this
2990 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2991 * we have to tie this fd to a socket for file garbage collection purposes.
2993 static int io_uring_get_fd(struct io_ring_ctx
*ctx
)
2998 #if defined(CONFIG_UNIX)
2999 ret
= sock_create_kern(&init_net
, PF_UNIX
, SOCK_RAW
, IPPROTO_IP
,
3005 ret
= get_unused_fd_flags(O_RDWR
| O_CLOEXEC
);
3009 file
= anon_inode_getfile("[io_uring]", &io_uring_fops
, ctx
,
3010 O_RDWR
| O_CLOEXEC
);
3013 ret
= PTR_ERR(file
);
3017 #if defined(CONFIG_UNIX)
3018 ctx
->ring_sock
->file
= file
;
3019 ctx
->ring_sock
->sk
->sk_user_data
= ctx
;
3021 fd_install(ret
, file
);
3024 #if defined(CONFIG_UNIX)
3025 sock_release(ctx
->ring_sock
);
3026 ctx
->ring_sock
= NULL
;
3031 static int io_uring_create(unsigned entries
, struct io_uring_params
*p
)
3033 struct user_struct
*user
= NULL
;
3034 struct io_ring_ctx
*ctx
;
3038 if (!entries
|| entries
> IORING_MAX_ENTRIES
)
3042 * Use twice as many entries for the CQ ring. It's possible for the
3043 * application to drive a higher depth than the size of the SQ ring,
3044 * since the sqes are only used at submission time. This allows for
3045 * some flexibility in overcommitting a bit.
3047 p
->sq_entries
= roundup_pow_of_two(entries
);
3048 p
->cq_entries
= 2 * p
->sq_entries
;
3050 user
= get_uid(current_user());
3051 account_mem
= !capable(CAP_IPC_LOCK
);
3054 ret
= io_account_mem(user
,
3055 ring_pages(p
->sq_entries
, p
->cq_entries
));
3062 ctx
= io_ring_ctx_alloc(p
);
3065 io_unaccount_mem(user
, ring_pages(p
->sq_entries
,
3070 ctx
->compat
= in_compat_syscall();
3071 ctx
->account_mem
= account_mem
;
3074 ret
= io_allocate_scq_urings(ctx
, p
);
3078 ret
= io_sq_offload_start(ctx
, p
);
3082 ret
= io_uring_get_fd(ctx
);
3086 memset(&p
->sq_off
, 0, sizeof(p
->sq_off
));
3087 p
->sq_off
.head
= offsetof(struct io_sq_ring
, r
.head
);
3088 p
->sq_off
.tail
= offsetof(struct io_sq_ring
, r
.tail
);
3089 p
->sq_off
.ring_mask
= offsetof(struct io_sq_ring
, ring_mask
);
3090 p
->sq_off
.ring_entries
= offsetof(struct io_sq_ring
, ring_entries
);
3091 p
->sq_off
.flags
= offsetof(struct io_sq_ring
, flags
);
3092 p
->sq_off
.dropped
= offsetof(struct io_sq_ring
, dropped
);
3093 p
->sq_off
.array
= offsetof(struct io_sq_ring
, array
);
3095 memset(&p
->cq_off
, 0, sizeof(p
->cq_off
));
3096 p
->cq_off
.head
= offsetof(struct io_cq_ring
, r
.head
);
3097 p
->cq_off
.tail
= offsetof(struct io_cq_ring
, r
.tail
);
3098 p
->cq_off
.ring_mask
= offsetof(struct io_cq_ring
, ring_mask
);
3099 p
->cq_off
.ring_entries
= offsetof(struct io_cq_ring
, ring_entries
);
3100 p
->cq_off
.overflow
= offsetof(struct io_cq_ring
, overflow
);
3101 p
->cq_off
.cqes
= offsetof(struct io_cq_ring
, cqes
);
3104 io_ring_ctx_wait_and_kill(ctx
);
3109 * Sets up an aio uring context, and returns the fd. Applications asks for a
3110 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3111 * params structure passed in.
3113 static long io_uring_setup(u32 entries
, struct io_uring_params __user
*params
)
3115 struct io_uring_params p
;
3119 if (copy_from_user(&p
, params
, sizeof(p
)))
3121 for (i
= 0; i
< ARRAY_SIZE(p
.resv
); i
++) {
3126 if (p
.flags
& ~(IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
|
3127 IORING_SETUP_SQ_AFF
))
3130 ret
= io_uring_create(entries
, &p
);
3134 if (copy_to_user(params
, &p
, sizeof(p
)))
3140 SYSCALL_DEFINE2(io_uring_setup
, u32
, entries
,
3141 struct io_uring_params __user
*, params
)
3143 return io_uring_setup(entries
, params
);
3146 static int __io_uring_register(struct io_ring_ctx
*ctx
, unsigned opcode
,
3147 void __user
*arg
, unsigned nr_args
)
3148 __releases(ctx
->uring_lock
)
3149 __acquires(ctx
->uring_lock
)
3154 * We're inside the ring mutex, if the ref is already dying, then
3155 * someone else killed the ctx or is already going through
3156 * io_uring_register().
3158 if (percpu_ref_is_dying(&ctx
->refs
))
3161 percpu_ref_kill(&ctx
->refs
);
3164 * Drop uring mutex before waiting for references to exit. If another
3165 * thread is currently inside io_uring_enter() it might need to grab
3166 * the uring_lock to make progress. If we hold it here across the drain
3167 * wait, then we can deadlock. It's safe to drop the mutex here, since
3168 * no new references will come in after we've killed the percpu ref.
3170 mutex_unlock(&ctx
->uring_lock
);
3171 wait_for_completion(&ctx
->ctx_done
);
3172 mutex_lock(&ctx
->uring_lock
);
3175 case IORING_REGISTER_BUFFERS
:
3176 ret
= io_sqe_buffer_register(ctx
, arg
, nr_args
);
3178 case IORING_UNREGISTER_BUFFERS
:
3182 ret
= io_sqe_buffer_unregister(ctx
);
3184 case IORING_REGISTER_FILES
:
3185 ret
= io_sqe_files_register(ctx
, arg
, nr_args
);
3187 case IORING_UNREGISTER_FILES
:
3191 ret
= io_sqe_files_unregister(ctx
);
3193 case IORING_REGISTER_EVENTFD
:
3197 ret
= io_eventfd_register(ctx
, arg
);
3199 case IORING_UNREGISTER_EVENTFD
:
3203 ret
= io_eventfd_unregister(ctx
);
3210 /* bring the ctx back to life */
3211 reinit_completion(&ctx
->ctx_done
);
3212 percpu_ref_reinit(&ctx
->refs
);
3216 SYSCALL_DEFINE4(io_uring_register
, unsigned int, fd
, unsigned int, opcode
,
3217 void __user
*, arg
, unsigned int, nr_args
)
3219 struct io_ring_ctx
*ctx
;
3228 if (f
.file
->f_op
!= &io_uring_fops
)
3231 ctx
= f
.file
->private_data
;
3233 mutex_lock(&ctx
->uring_lock
);
3234 ret
= __io_uring_register(ctx
, opcode
, arg
, nr_args
);
3235 mutex_unlock(&ctx
->uring_lock
);
3241 static int __init
io_uring_init(void)
3243 req_cachep
= KMEM_CACHE(io_kiocb
, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);
3246 __initcall(io_uring_init
);