eeepc-laptop: Register as a pci-hotplug device
[linux-2.6/linux-acpi-2.6.git] / arch / powerpc / platforms / powermac / smp.c
blobcf1dbe758890df60d441cfbd79421db63e40834f
1 /*
2 * SMP support for power macintosh.
4 * We support both the old "powersurge" SMP architecture
5 * and the current Core99 (G4 PowerMac) machines.
7 * Note that we don't support the very first rev. of
8 * Apple/DayStar 2 CPUs board, the one with the funky
9 * watchdog. Hopefully, none of these should be there except
10 * maybe internally to Apple. I should probably still add some
11 * code to detect this card though and disable SMP. --BenH.
13 * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14 * and Ben Herrenschmidt <benh@kernel.crashing.org>.
16 * Support for DayStar quad CPU cards
17 * Copyright (C) XLR8, Inc. 1994-2000
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version
22 * 2 of the License, or (at your option) any later version.
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/smp.h>
27 #include <linux/interrupt.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/errno.h>
33 #include <linux/hardirq.h>
34 #include <linux/cpu.h>
35 #include <linux/compiler.h>
37 #include <asm/ptrace.h>
38 #include <asm/atomic.h>
39 #include <asm/code-patching.h>
40 #include <asm/irq.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/sections.h>
44 #include <asm/io.h>
45 #include <asm/prom.h>
46 #include <asm/smp.h>
47 #include <asm/machdep.h>
48 #include <asm/pmac_feature.h>
49 #include <asm/time.h>
50 #include <asm/mpic.h>
51 #include <asm/cacheflush.h>
52 #include <asm/keylargo.h>
53 #include <asm/pmac_low_i2c.h>
54 #include <asm/pmac_pfunc.h>
56 #undef DEBUG
58 #ifdef DEBUG
59 #define DBG(fmt...) udbg_printf(fmt)
60 #else
61 #define DBG(fmt...)
62 #endif
64 extern void __secondary_start_pmac_0(void);
65 extern int pmac_pfunc_base_install(void);
67 #ifdef CONFIG_PPC32
69 /* Sync flag for HW tb sync */
70 static volatile int sec_tb_reset = 0;
73 * Powersurge (old powermac SMP) support.
76 /* Addresses for powersurge registers */
77 #define HAMMERHEAD_BASE 0xf8000000
78 #define HHEAD_CONFIG 0x90
79 #define HHEAD_SEC_INTR 0xc0
81 /* register for interrupting the primary processor on the powersurge */
82 /* N.B. this is actually the ethernet ROM! */
83 #define PSURGE_PRI_INTR 0xf3019000
85 /* register for storing the start address for the secondary processor */
86 /* N.B. this is the PCI config space address register for the 1st bridge */
87 #define PSURGE_START 0xf2800000
89 /* Daystar/XLR8 4-CPU card */
90 #define PSURGE_QUAD_REG_ADDR 0xf8800000
92 #define PSURGE_QUAD_IRQ_SET 0
93 #define PSURGE_QUAD_IRQ_CLR 1
94 #define PSURGE_QUAD_IRQ_PRIMARY 2
95 #define PSURGE_QUAD_CKSTOP_CTL 3
96 #define PSURGE_QUAD_PRIMARY_ARB 4
97 #define PSURGE_QUAD_BOARD_ID 6
98 #define PSURGE_QUAD_WHICH_CPU 7
99 #define PSURGE_QUAD_CKSTOP_RDBK 8
100 #define PSURGE_QUAD_RESET_CTL 11
102 #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v)))
103 #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
104 #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
105 #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
107 /* virtual addresses for the above */
108 static volatile u8 __iomem *hhead_base;
109 static volatile u8 __iomem *quad_base;
110 static volatile u32 __iomem *psurge_pri_intr;
111 static volatile u8 __iomem *psurge_sec_intr;
112 static volatile u32 __iomem *psurge_start;
114 /* values for psurge_type */
115 #define PSURGE_NONE -1
116 #define PSURGE_DUAL 0
117 #define PSURGE_QUAD_OKEE 1
118 #define PSURGE_QUAD_COTTON 2
119 #define PSURGE_QUAD_ICEGRASS 3
121 /* what sort of powersurge board we have */
122 static int psurge_type = PSURGE_NONE;
125 * Set and clear IPIs for powersurge.
127 static inline void psurge_set_ipi(int cpu)
129 if (psurge_type == PSURGE_NONE)
130 return;
131 if (cpu == 0)
132 in_be32(psurge_pri_intr);
133 else if (psurge_type == PSURGE_DUAL)
134 out_8(psurge_sec_intr, 0);
135 else
136 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
139 static inline void psurge_clr_ipi(int cpu)
141 if (cpu > 0) {
142 switch(psurge_type) {
143 case PSURGE_DUAL:
144 out_8(psurge_sec_intr, ~0);
145 case PSURGE_NONE:
146 break;
147 default:
148 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
154 * On powersurge (old SMP powermac architecture) we don't have
155 * separate IPIs for separate messages like openpic does. Instead
156 * we have a bitmap for each processor, where a 1 bit means that
157 * the corresponding message is pending for that processor.
158 * Ideally each cpu's entry would be in a different cache line.
159 * -- paulus.
161 static unsigned long psurge_smp_message[NR_CPUS];
163 void psurge_smp_message_recv(void)
165 int cpu = smp_processor_id();
166 int msg;
168 /* clear interrupt */
169 psurge_clr_ipi(cpu);
171 if (num_online_cpus() < 2)
172 return;
174 /* make sure there is a message there */
175 for (msg = 0; msg < 4; msg++)
176 if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
177 smp_message_recv(msg);
180 irqreturn_t psurge_primary_intr(int irq, void *d)
182 psurge_smp_message_recv();
183 return IRQ_HANDLED;
186 static void smp_psurge_message_pass(int target, int msg)
188 int i;
190 if (num_online_cpus() < 2)
191 return;
193 for_each_online_cpu(i) {
194 if (target == MSG_ALL
195 || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
196 || target == i) {
197 set_bit(msg, &psurge_smp_message[i]);
198 psurge_set_ipi(i);
204 * Determine a quad card presence. We read the board ID register, we
205 * force the data bus to change to something else, and we read it again.
206 * It it's stable, then the register probably exist (ugh !)
208 static int __init psurge_quad_probe(void)
210 int type;
211 unsigned int i;
213 type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
214 if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
215 || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
216 return PSURGE_DUAL;
218 /* looks OK, try a slightly more rigorous test */
219 /* bogus is not necessarily cacheline-aligned,
220 though I don't suppose that really matters. -- paulus */
221 for (i = 0; i < 100; i++) {
222 volatile u32 bogus[8];
223 bogus[(0+i)%8] = 0x00000000;
224 bogus[(1+i)%8] = 0x55555555;
225 bogus[(2+i)%8] = 0xFFFFFFFF;
226 bogus[(3+i)%8] = 0xAAAAAAAA;
227 bogus[(4+i)%8] = 0x33333333;
228 bogus[(5+i)%8] = 0xCCCCCCCC;
229 bogus[(6+i)%8] = 0xCCCCCCCC;
230 bogus[(7+i)%8] = 0x33333333;
231 wmb();
232 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
233 mb();
234 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
235 return PSURGE_DUAL;
237 return type;
240 static void __init psurge_quad_init(void)
242 int procbits;
244 if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
245 procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
246 if (psurge_type == PSURGE_QUAD_ICEGRASS)
247 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
248 else
249 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
250 mdelay(33);
251 out_8(psurge_sec_intr, ~0);
252 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
253 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
254 if (psurge_type != PSURGE_QUAD_ICEGRASS)
255 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
256 PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
257 mdelay(33);
258 PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
259 mdelay(33);
260 PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
261 mdelay(33);
264 static int __init smp_psurge_probe(void)
266 int i, ncpus;
267 struct device_node *dn;
269 /* We don't do SMP on the PPC601 -- paulus */
270 if (PVR_VER(mfspr(SPRN_PVR)) == 1)
271 return 1;
274 * The powersurge cpu board can be used in the generation
275 * of powermacs that have a socket for an upgradeable cpu card,
276 * including the 7500, 8500, 9500, 9600.
277 * The device tree doesn't tell you if you have 2 cpus because
278 * OF doesn't know anything about the 2nd processor.
279 * Instead we look for magic bits in magic registers,
280 * in the hammerhead memory controller in the case of the
281 * dual-cpu powersurge board. -- paulus.
283 dn = of_find_node_by_name(NULL, "hammerhead");
284 if (dn == NULL)
285 return 1;
286 of_node_put(dn);
288 hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
289 quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
290 psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
292 psurge_type = psurge_quad_probe();
293 if (psurge_type != PSURGE_DUAL) {
294 psurge_quad_init();
295 /* All released cards using this HW design have 4 CPUs */
296 ncpus = 4;
297 } else {
298 iounmap(quad_base);
299 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
300 /* not a dual-cpu card */
301 iounmap(hhead_base);
302 psurge_type = PSURGE_NONE;
303 return 1;
305 ncpus = 2;
308 psurge_start = ioremap(PSURGE_START, 4);
309 psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
312 * This is necessary because OF doesn't know about the
313 * secondary cpu(s), and thus there aren't nodes in the
314 * device tree for them, and smp_setup_cpu_maps hasn't
315 * set their bits in cpu_possible_map and cpu_present_map.
317 if (ncpus > NR_CPUS)
318 ncpus = NR_CPUS;
319 for (i = 1; i < ncpus ; ++i) {
320 cpu_set(i, cpu_present_map);
321 set_hard_smp_processor_id(i, i);
324 if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
326 return ncpus;
329 static void __init smp_psurge_kick_cpu(int nr)
331 unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8;
332 unsigned long a;
333 int i;
335 /* may need to flush here if secondary bats aren't setup */
336 for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
337 asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
338 asm volatile("sync");
340 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
342 out_be32(psurge_start, start);
343 mb();
345 psurge_set_ipi(nr);
347 * We can't use udelay here because the timebase is now frozen.
349 for (i = 0; i < 2000; ++i)
350 barrier();
351 psurge_clr_ipi(nr);
353 if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
357 * With the dual-cpu powersurge board, the decrementers and timebases
358 * of both cpus are frozen after the secondary cpu is started up,
359 * until we give the secondary cpu another interrupt. This routine
360 * uses this to get the timebases synchronized.
361 * -- paulus.
363 static void __init psurge_dual_sync_tb(int cpu_nr)
365 int t;
367 set_dec(tb_ticks_per_jiffy);
368 /* XXX fixme */
369 set_tb(0, 0);
371 if (cpu_nr > 0) {
372 mb();
373 sec_tb_reset = 1;
374 return;
377 /* wait for the secondary to have reset its TB before proceeding */
378 for (t = 10000000; t > 0 && !sec_tb_reset; --t)
381 /* now interrupt the secondary, starting both TBs */
382 psurge_set_ipi(1);
385 static struct irqaction psurge_irqaction = {
386 .handler = psurge_primary_intr,
387 .flags = IRQF_DISABLED,
388 .name = "primary IPI",
391 static void __init smp_psurge_setup_cpu(int cpu_nr)
394 if (cpu_nr == 0) {
395 /* If we failed to start the second CPU, we should still
396 * send it an IPI to start the timebase & DEC or we might
397 * have them stuck.
399 if (num_online_cpus() < 2) {
400 if (psurge_type == PSURGE_DUAL)
401 psurge_set_ipi(1);
402 return;
404 /* reset the entry point so if we get another intr we won't
405 * try to startup again */
406 out_be32(psurge_start, 0x100);
407 if (setup_irq(30, &psurge_irqaction))
408 printk(KERN_ERR "Couldn't get primary IPI interrupt");
411 if (psurge_type == PSURGE_DUAL)
412 psurge_dual_sync_tb(cpu_nr);
415 void __init smp_psurge_take_timebase(void)
417 /* Dummy implementation */
420 void __init smp_psurge_give_timebase(void)
422 /* Dummy implementation */
425 /* PowerSurge-style Macs */
426 struct smp_ops_t psurge_smp_ops = {
427 .message_pass = smp_psurge_message_pass,
428 .probe = smp_psurge_probe,
429 .kick_cpu = smp_psurge_kick_cpu,
430 .setup_cpu = smp_psurge_setup_cpu,
431 .give_timebase = smp_psurge_give_timebase,
432 .take_timebase = smp_psurge_take_timebase,
434 #endif /* CONFIG_PPC32 - actually powersurge support */
437 * Core 99 and later support
440 static void (*pmac_tb_freeze)(int freeze);
441 static u64 timebase;
442 static int tb_req;
444 static void smp_core99_give_timebase(void)
446 unsigned long flags;
448 local_irq_save(flags);
450 while(!tb_req)
451 barrier();
452 tb_req = 0;
453 (*pmac_tb_freeze)(1);
454 mb();
455 timebase = get_tb();
456 mb();
457 while (timebase)
458 barrier();
459 mb();
460 (*pmac_tb_freeze)(0);
461 mb();
463 local_irq_restore(flags);
467 static void __devinit smp_core99_take_timebase(void)
469 unsigned long flags;
471 local_irq_save(flags);
473 tb_req = 1;
474 mb();
475 while (!timebase)
476 barrier();
477 mb();
478 set_tb(timebase >> 32, timebase & 0xffffffff);
479 timebase = 0;
480 mb();
481 set_dec(tb_ticks_per_jiffy/2);
483 local_irq_restore(flags);
486 #ifdef CONFIG_PPC64
488 * G5s enable/disable the timebase via an i2c-connected clock chip.
490 static struct pmac_i2c_bus *pmac_tb_clock_chip_host;
491 static u8 pmac_tb_pulsar_addr;
493 static void smp_core99_cypress_tb_freeze(int freeze)
495 u8 data;
496 int rc;
498 /* Strangely, the device-tree says address is 0xd2, but darwin
499 * accesses 0xd0 ...
501 pmac_i2c_setmode(pmac_tb_clock_chip_host,
502 pmac_i2c_mode_combined);
503 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
504 0xd0 | pmac_i2c_read,
505 1, 0x81, &data, 1);
506 if (rc != 0)
507 goto bail;
509 data = (data & 0xf3) | (freeze ? 0x00 : 0x0c);
511 pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub);
512 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
513 0xd0 | pmac_i2c_write,
514 1, 0x81, &data, 1);
516 bail:
517 if (rc != 0) {
518 printk("Cypress Timebase %s rc: %d\n",
519 freeze ? "freeze" : "unfreeze", rc);
520 panic("Timebase freeze failed !\n");
525 static void smp_core99_pulsar_tb_freeze(int freeze)
527 u8 data;
528 int rc;
530 pmac_i2c_setmode(pmac_tb_clock_chip_host,
531 pmac_i2c_mode_combined);
532 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
533 pmac_tb_pulsar_addr | pmac_i2c_read,
534 1, 0x2e, &data, 1);
535 if (rc != 0)
536 goto bail;
538 data = (data & 0x88) | (freeze ? 0x11 : 0x22);
540 pmac_i2c_setmode(pmac_tb_clock_chip_host, pmac_i2c_mode_stdsub);
541 rc = pmac_i2c_xfer(pmac_tb_clock_chip_host,
542 pmac_tb_pulsar_addr | pmac_i2c_write,
543 1, 0x2e, &data, 1);
544 bail:
545 if (rc != 0) {
546 printk(KERN_ERR "Pulsar Timebase %s rc: %d\n",
547 freeze ? "freeze" : "unfreeze", rc);
548 panic("Timebase freeze failed !\n");
552 static void __init smp_core99_setup_i2c_hwsync(int ncpus)
554 struct device_node *cc = NULL;
555 struct device_node *p;
556 const char *name = NULL;
557 const u32 *reg;
558 int ok;
560 /* Look for the clock chip */
561 while ((cc = of_find_node_by_name(cc, "i2c-hwclock")) != NULL) {
562 p = of_get_parent(cc);
563 ok = p && of_device_is_compatible(p, "uni-n-i2c");
564 of_node_put(p);
565 if (!ok)
566 continue;
568 pmac_tb_clock_chip_host = pmac_i2c_find_bus(cc);
569 if (pmac_tb_clock_chip_host == NULL)
570 continue;
571 reg = of_get_property(cc, "reg", NULL);
572 if (reg == NULL)
573 continue;
574 switch (*reg) {
575 case 0xd2:
576 if (of_device_is_compatible(cc,"pulsar-legacy-slewing")) {
577 pmac_tb_freeze = smp_core99_pulsar_tb_freeze;
578 pmac_tb_pulsar_addr = 0xd2;
579 name = "Pulsar";
580 } else if (of_device_is_compatible(cc, "cy28508")) {
581 pmac_tb_freeze = smp_core99_cypress_tb_freeze;
582 name = "Cypress";
584 break;
585 case 0xd4:
586 pmac_tb_freeze = smp_core99_pulsar_tb_freeze;
587 pmac_tb_pulsar_addr = 0xd4;
588 name = "Pulsar";
589 break;
591 if (pmac_tb_freeze != NULL)
592 break;
594 if (pmac_tb_freeze != NULL) {
595 /* Open i2c bus for synchronous access */
596 if (pmac_i2c_open(pmac_tb_clock_chip_host, 1)) {
597 printk(KERN_ERR "Failed top open i2c bus for clock"
598 " sync, fallback to software sync !\n");
599 goto no_i2c_sync;
601 printk(KERN_INFO "Processor timebase sync using %s i2c clock\n",
602 name);
603 return;
605 no_i2c_sync:
606 pmac_tb_freeze = NULL;
607 pmac_tb_clock_chip_host = NULL;
613 * Newer G5s uses a platform function
616 static void smp_core99_pfunc_tb_freeze(int freeze)
618 struct device_node *cpus;
619 struct pmf_args args;
621 cpus = of_find_node_by_path("/cpus");
622 BUG_ON(cpus == NULL);
623 args.count = 1;
624 args.u[0].v = !freeze;
625 pmf_call_function(cpus, "cpu-timebase", &args);
626 of_node_put(cpus);
629 #else /* CONFIG_PPC64 */
632 * SMP G4 use a GPIO to enable/disable the timebase.
635 static unsigned int core99_tb_gpio; /* Timebase freeze GPIO */
637 static void smp_core99_gpio_tb_freeze(int freeze)
639 if (freeze)
640 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4);
641 else
642 pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0);
643 pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0);
647 #endif /* !CONFIG_PPC64 */
649 /* L2 and L3 cache settings to pass from CPU0 to CPU1 on G4 cpus */
650 volatile static long int core99_l2_cache;
651 volatile static long int core99_l3_cache;
653 static void __devinit core99_init_caches(int cpu)
655 #ifndef CONFIG_PPC64
656 if (!cpu_has_feature(CPU_FTR_L2CR))
657 return;
659 if (cpu == 0) {
660 core99_l2_cache = _get_L2CR();
661 printk("CPU0: L2CR is %lx\n", core99_l2_cache);
662 } else {
663 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
664 _set_L2CR(0);
665 _set_L2CR(core99_l2_cache);
666 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
669 if (!cpu_has_feature(CPU_FTR_L3CR))
670 return;
672 if (cpu == 0){
673 core99_l3_cache = _get_L3CR();
674 printk("CPU0: L3CR is %lx\n", core99_l3_cache);
675 } else {
676 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
677 _set_L3CR(0);
678 _set_L3CR(core99_l3_cache);
679 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
681 #endif /* !CONFIG_PPC64 */
684 static void __init smp_core99_setup(int ncpus)
686 #ifdef CONFIG_PPC64
688 /* i2c based HW sync on some G5s */
689 if (machine_is_compatible("PowerMac7,2") ||
690 machine_is_compatible("PowerMac7,3") ||
691 machine_is_compatible("RackMac3,1"))
692 smp_core99_setup_i2c_hwsync(ncpus);
694 /* pfunc based HW sync on recent G5s */
695 if (pmac_tb_freeze == NULL) {
696 struct device_node *cpus =
697 of_find_node_by_path("/cpus");
698 if (cpus &&
699 of_get_property(cpus, "platform-cpu-timebase", NULL)) {
700 pmac_tb_freeze = smp_core99_pfunc_tb_freeze;
701 printk(KERN_INFO "Processor timebase sync using"
702 " platform function\n");
706 #else /* CONFIG_PPC64 */
708 /* GPIO based HW sync on ppc32 Core99 */
709 if (pmac_tb_freeze == NULL && !machine_is_compatible("MacRISC4")) {
710 struct device_node *cpu;
711 const u32 *tbprop = NULL;
713 core99_tb_gpio = KL_GPIO_TB_ENABLE; /* default value */
714 cpu = of_find_node_by_type(NULL, "cpu");
715 if (cpu != NULL) {
716 tbprop = of_get_property(cpu, "timebase-enable", NULL);
717 if (tbprop)
718 core99_tb_gpio = *tbprop;
719 of_node_put(cpu);
721 pmac_tb_freeze = smp_core99_gpio_tb_freeze;
722 printk(KERN_INFO "Processor timebase sync using"
723 " GPIO 0x%02x\n", core99_tb_gpio);
726 #endif /* CONFIG_PPC64 */
728 /* No timebase sync, fallback to software */
729 if (pmac_tb_freeze == NULL) {
730 smp_ops->give_timebase = smp_generic_give_timebase;
731 smp_ops->take_timebase = smp_generic_take_timebase;
732 printk(KERN_INFO "Processor timebase sync using software\n");
735 #ifndef CONFIG_PPC64
737 int i;
739 /* XXX should get this from reg properties */
740 for (i = 1; i < ncpus; ++i)
741 set_hard_smp_processor_id(i, i);
743 #endif
745 /* 32 bits SMP can't NAP */
746 if (!machine_is_compatible("MacRISC4"))
747 powersave_nap = 0;
750 static int __init smp_core99_probe(void)
752 struct device_node *cpus;
753 int ncpus = 0;
755 if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
757 /* Count CPUs in the device-tree */
758 for (cpus = NULL; (cpus = of_find_node_by_type(cpus, "cpu")) != NULL;)
759 ++ncpus;
761 printk(KERN_INFO "PowerMac SMP probe found %d cpus\n", ncpus);
763 /* Nothing more to do if less than 2 of them */
764 if (ncpus <= 1)
765 return 1;
767 /* We need to perform some early initialisations before we can start
768 * setting up SMP as we are running before initcalls
770 pmac_pfunc_base_install();
771 pmac_i2c_init();
773 /* Setup various bits like timebase sync method, ability to nap, ... */
774 smp_core99_setup(ncpus);
776 /* Install IPIs */
777 mpic_request_ipis();
779 /* Collect l2cr and l3cr values from CPU 0 */
780 core99_init_caches(0);
782 return ncpus;
785 static void __devinit smp_core99_kick_cpu(int nr)
787 unsigned int save_vector;
788 unsigned long target, flags;
789 unsigned int *vector = (unsigned int *)(PAGE_OFFSET+0x100);
791 if (nr < 0 || nr > 3)
792 return;
794 if (ppc_md.progress)
795 ppc_md.progress("smp_core99_kick_cpu", 0x346);
797 local_irq_save(flags);
799 /* Save reset vector */
800 save_vector = *vector;
802 /* Setup fake reset vector that does
803 * b __secondary_start_pmac_0 + nr*8
805 target = (unsigned long) __secondary_start_pmac_0 + nr * 8;
806 patch_branch(vector, target, BRANCH_SET_LINK);
808 /* Put some life in our friend */
809 pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
811 /* FIXME: We wait a bit for the CPU to take the exception, I should
812 * instead wait for the entry code to set something for me. Well,
813 * ideally, all that crap will be done in prom.c and the CPU left
814 * in a RAM-based wait loop like CHRP.
816 mdelay(1);
818 /* Restore our exception vector */
819 *vector = save_vector;
820 flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
822 local_irq_restore(flags);
823 if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
826 static void __devinit smp_core99_setup_cpu(int cpu_nr)
828 /* Setup L2/L3 */
829 if (cpu_nr != 0)
830 core99_init_caches(cpu_nr);
832 /* Setup openpic */
833 mpic_setup_this_cpu();
835 if (cpu_nr == 0) {
836 #ifdef CONFIG_PPC64
837 extern void g5_phy_disable_cpu1(void);
839 /* Close i2c bus if it was used for tb sync */
840 if (pmac_tb_clock_chip_host) {
841 pmac_i2c_close(pmac_tb_clock_chip_host);
842 pmac_tb_clock_chip_host = NULL;
845 /* If we didn't start the second CPU, we must take
846 * it off the bus
848 if (machine_is_compatible("MacRISC4") &&
849 num_online_cpus() < 2)
850 g5_phy_disable_cpu1();
851 #endif /* CONFIG_PPC64 */
853 if (ppc_md.progress)
854 ppc_md.progress("core99_setup_cpu 0 done", 0x349);
859 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PPC32)
861 int smp_core99_cpu_disable(void)
863 cpu_clear(smp_processor_id(), cpu_online_map);
865 /* XXX reset cpu affinity here */
866 mpic_cpu_set_priority(0xf);
867 asm volatile("mtdec %0" : : "r" (0x7fffffff));
868 mb();
869 udelay(20);
870 asm volatile("mtdec %0" : : "r" (0x7fffffff));
871 return 0;
874 extern void low_cpu_die(void) __attribute__((noreturn)); /* in sleep.S */
875 static int cpu_dead[NR_CPUS];
877 void cpu_die(void)
879 local_irq_disable();
880 cpu_dead[smp_processor_id()] = 1;
881 mb();
882 low_cpu_die();
885 void smp_core99_cpu_die(unsigned int cpu)
887 int timeout;
889 timeout = 1000;
890 while (!cpu_dead[cpu]) {
891 if (--timeout == 0) {
892 printk("CPU %u refused to die!\n", cpu);
893 break;
895 msleep(1);
897 cpu_dead[cpu] = 0;
900 #endif /* CONFIG_HOTPLUG_CPU && CONFIG_PP32 */
902 /* Core99 Macs (dual G4s and G5s) */
903 struct smp_ops_t core99_smp_ops = {
904 .message_pass = smp_mpic_message_pass,
905 .probe = smp_core99_probe,
906 .kick_cpu = smp_core99_kick_cpu,
907 .setup_cpu = smp_core99_setup_cpu,
908 .give_timebase = smp_core99_give_timebase,
909 .take_timebase = smp_core99_take_timebase,
910 #if defined(CONFIG_HOTPLUG_CPU)
911 # if defined(CONFIG_PPC32)
912 .cpu_disable = smp_core99_cpu_disable,
913 .cpu_die = smp_core99_cpu_die,
914 # endif
915 # if defined(CONFIG_PPC64)
916 .cpu_disable = generic_cpu_disable,
917 .cpu_die = generic_cpu_die,
918 /* intentionally do *NOT* assign cpu_enable,
919 * the generic code will use kick_cpu then! */
920 # endif
921 #endif