2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
26 #include "kvm_cache_regs.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/cpufreq.h>
41 #include <asm/uaccess.h>
46 #define MAX_IO_MSRS 256
47 #define CR0_RESERVED_BITS \
48 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
49 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
50 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
51 #define CR4_RESERVED_BITS \
52 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
53 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
54 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
55 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
57 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
59 * - enable syscall per default because its emulated by KVM
60 * - enable LME and LMA per default on 64 bit KVM
63 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffafeULL
;
65 static u64 __read_mostly efer_reserved_bits
= 0xfffffffffffffffeULL
;
68 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
69 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
71 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
72 struct kvm_cpuid_entry2 __user
*entries
);
73 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
74 u32 function
, u32 index
);
76 struct kvm_x86_ops
*kvm_x86_ops
;
77 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
79 struct kvm_stats_debugfs_item debugfs_entries
[] = {
80 { "pf_fixed", VCPU_STAT(pf_fixed
) },
81 { "pf_guest", VCPU_STAT(pf_guest
) },
82 { "tlb_flush", VCPU_STAT(tlb_flush
) },
83 { "invlpg", VCPU_STAT(invlpg
) },
84 { "exits", VCPU_STAT(exits
) },
85 { "io_exits", VCPU_STAT(io_exits
) },
86 { "mmio_exits", VCPU_STAT(mmio_exits
) },
87 { "signal_exits", VCPU_STAT(signal_exits
) },
88 { "irq_window", VCPU_STAT(irq_window_exits
) },
89 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
90 { "halt_exits", VCPU_STAT(halt_exits
) },
91 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
92 { "hypercalls", VCPU_STAT(hypercalls
) },
93 { "request_irq", VCPU_STAT(request_irq_exits
) },
94 { "request_nmi", VCPU_STAT(request_nmi_exits
) },
95 { "irq_exits", VCPU_STAT(irq_exits
) },
96 { "host_state_reload", VCPU_STAT(host_state_reload
) },
97 { "efer_reload", VCPU_STAT(efer_reload
) },
98 { "fpu_reload", VCPU_STAT(fpu_reload
) },
99 { "insn_emulation", VCPU_STAT(insn_emulation
) },
100 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
101 { "irq_injections", VCPU_STAT(irq_injections
) },
102 { "nmi_injections", VCPU_STAT(nmi_injections
) },
103 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
104 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
105 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
106 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
107 { "mmu_flooded", VM_STAT(mmu_flooded
) },
108 { "mmu_recycled", VM_STAT(mmu_recycled
) },
109 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
110 { "mmu_unsync", VM_STAT(mmu_unsync
) },
111 { "mmu_unsync_global", VM_STAT(mmu_unsync_global
) },
112 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
113 { "largepages", VM_STAT(lpages
) },
117 unsigned long segment_base(u16 selector
)
119 struct descriptor_table gdt
;
120 struct desc_struct
*d
;
121 unsigned long table_base
;
127 asm("sgdt %0" : "=m"(gdt
));
128 table_base
= gdt
.base
;
130 if (selector
& 4) { /* from ldt */
133 asm("sldt %0" : "=g"(ldt_selector
));
134 table_base
= segment_base(ldt_selector
);
136 d
= (struct desc_struct
*)(table_base
+ (selector
& ~7));
137 v
= d
->base0
| ((unsigned long)d
->base1
<< 16) |
138 ((unsigned long)d
->base2
<< 24);
140 if (d
->s
== 0 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
141 v
|= ((unsigned long)((struct ldttss_desc64
*)d
)->base3
) << 32;
145 EXPORT_SYMBOL_GPL(segment_base
);
147 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
149 if (irqchip_in_kernel(vcpu
->kvm
))
150 return vcpu
->arch
.apic_base
;
152 return vcpu
->arch
.apic_base
;
154 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
156 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
158 /* TODO: reserve bits check */
159 if (irqchip_in_kernel(vcpu
->kvm
))
160 kvm_lapic_set_base(vcpu
, data
);
162 vcpu
->arch
.apic_base
= data
;
164 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
166 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
168 WARN_ON(vcpu
->arch
.exception
.pending
);
169 vcpu
->arch
.exception
.pending
= true;
170 vcpu
->arch
.exception
.has_error_code
= false;
171 vcpu
->arch
.exception
.nr
= nr
;
173 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
175 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, unsigned long addr
,
178 ++vcpu
->stat
.pf_guest
;
180 if (vcpu
->arch
.exception
.pending
) {
181 if (vcpu
->arch
.exception
.nr
== PF_VECTOR
) {
182 printk(KERN_DEBUG
"kvm: inject_page_fault:"
183 " double fault 0x%lx\n", addr
);
184 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
185 vcpu
->arch
.exception
.error_code
= 0;
186 } else if (vcpu
->arch
.exception
.nr
== DF_VECTOR
) {
187 /* triple fault -> shutdown */
188 set_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
);
192 vcpu
->arch
.cr2
= addr
;
193 kvm_queue_exception_e(vcpu
, PF_VECTOR
, error_code
);
196 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
198 vcpu
->arch
.nmi_pending
= 1;
200 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
202 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
204 WARN_ON(vcpu
->arch
.exception
.pending
);
205 vcpu
->arch
.exception
.pending
= true;
206 vcpu
->arch
.exception
.has_error_code
= true;
207 vcpu
->arch
.exception
.nr
= nr
;
208 vcpu
->arch
.exception
.error_code
= error_code
;
210 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
212 static void __queue_exception(struct kvm_vcpu
*vcpu
)
214 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
215 vcpu
->arch
.exception
.has_error_code
,
216 vcpu
->arch
.exception
.error_code
);
220 * Load the pae pdptrs. Return true is they are all valid.
222 int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
224 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
225 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
228 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
230 ret
= kvm_read_guest_page(vcpu
->kvm
, pdpt_gfn
, pdpte
,
231 offset
* sizeof(u64
), sizeof(pdpte
));
236 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
237 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
244 memcpy(vcpu
->arch
.pdptrs
, pdpte
, sizeof(vcpu
->arch
.pdptrs
));
249 EXPORT_SYMBOL_GPL(load_pdptrs
);
251 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
253 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.pdptrs
)];
257 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
260 r
= kvm_read_guest(vcpu
->kvm
, vcpu
->arch
.cr3
& ~31u, pdpte
, sizeof(pdpte
));
263 changed
= memcmp(pdpte
, vcpu
->arch
.pdptrs
, sizeof(pdpte
)) != 0;
269 void kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
271 if (cr0
& CR0_RESERVED_BITS
) {
272 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
273 cr0
, vcpu
->arch
.cr0
);
274 kvm_inject_gp(vcpu
, 0);
278 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
279 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
280 kvm_inject_gp(vcpu
, 0);
284 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
285 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
286 "and a clear PE flag\n");
287 kvm_inject_gp(vcpu
, 0);
291 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
293 if ((vcpu
->arch
.shadow_efer
& EFER_LME
)) {
297 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
298 "in long mode while PAE is disabled\n");
299 kvm_inject_gp(vcpu
, 0);
302 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
304 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
305 "in long mode while CS.L == 1\n");
306 kvm_inject_gp(vcpu
, 0);
312 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
313 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
315 kvm_inject_gp(vcpu
, 0);
321 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
322 vcpu
->arch
.cr0
= cr0
;
324 kvm_mmu_sync_global(vcpu
);
325 kvm_mmu_reset_context(vcpu
);
328 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
330 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
332 kvm_set_cr0(vcpu
, (vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f));
333 KVMTRACE_1D(LMSW
, vcpu
,
334 (u32
)((vcpu
->arch
.cr0
& ~0x0ful
) | (msw
& 0x0f)),
337 EXPORT_SYMBOL_GPL(kvm_lmsw
);
339 void kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
341 unsigned long old_cr4
= vcpu
->arch
.cr4
;
342 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
;
344 if (cr4
& CR4_RESERVED_BITS
) {
345 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
346 kvm_inject_gp(vcpu
, 0);
350 if (is_long_mode(vcpu
)) {
351 if (!(cr4
& X86_CR4_PAE
)) {
352 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
354 kvm_inject_gp(vcpu
, 0);
357 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
358 && ((cr4
^ old_cr4
) & pdptr_bits
)
359 && !load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
360 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
361 kvm_inject_gp(vcpu
, 0);
365 if (cr4
& X86_CR4_VMXE
) {
366 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
367 kvm_inject_gp(vcpu
, 0);
370 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
371 vcpu
->arch
.cr4
= cr4
;
372 vcpu
->arch
.mmu
.base_role
.cr4_pge
= (cr4
& X86_CR4_PGE
) && !tdp_enabled
;
373 kvm_mmu_sync_global(vcpu
);
374 kvm_mmu_reset_context(vcpu
);
376 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
378 void kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
380 if (cr3
== vcpu
->arch
.cr3
&& !pdptrs_changed(vcpu
)) {
381 kvm_mmu_sync_roots(vcpu
);
382 kvm_mmu_flush_tlb(vcpu
);
386 if (is_long_mode(vcpu
)) {
387 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
388 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
389 kvm_inject_gp(vcpu
, 0);
394 if (cr3
& CR3_PAE_RESERVED_BITS
) {
396 "set_cr3: #GP, reserved bits\n");
397 kvm_inject_gp(vcpu
, 0);
400 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
401 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
403 kvm_inject_gp(vcpu
, 0);
408 * We don't check reserved bits in nonpae mode, because
409 * this isn't enforced, and VMware depends on this.
414 * Does the new cr3 value map to physical memory? (Note, we
415 * catch an invalid cr3 even in real-mode, because it would
416 * cause trouble later on when we turn on paging anyway.)
418 * A real CPU would silently accept an invalid cr3 and would
419 * attempt to use it - with largely undefined (and often hard
420 * to debug) behavior on the guest side.
422 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
423 kvm_inject_gp(vcpu
, 0);
425 vcpu
->arch
.cr3
= cr3
;
426 vcpu
->arch
.mmu
.new_cr3(vcpu
);
429 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
431 void kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
433 if (cr8
& CR8_RESERVED_BITS
) {
434 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
435 kvm_inject_gp(vcpu
, 0);
438 if (irqchip_in_kernel(vcpu
->kvm
))
439 kvm_lapic_set_tpr(vcpu
, cr8
);
441 vcpu
->arch
.cr8
= cr8
;
443 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
445 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
447 if (irqchip_in_kernel(vcpu
->kvm
))
448 return kvm_lapic_get_cr8(vcpu
);
450 return vcpu
->arch
.cr8
;
452 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
454 static inline u32
bit(int bitno
)
456 return 1 << (bitno
& 31);
460 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
461 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
463 * This list is modified at module load time to reflect the
464 * capabilities of the host cpu.
466 static u32 msrs_to_save
[] = {
467 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
470 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
472 MSR_IA32_TIME_STAMP_COUNTER
, MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
473 MSR_IA32_PERF_STATUS
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
476 static unsigned num_msrs_to_save
;
478 static u32 emulated_msrs
[] = {
479 MSR_IA32_MISC_ENABLE
,
482 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
484 if (efer
& efer_reserved_bits
) {
485 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
487 kvm_inject_gp(vcpu
, 0);
492 && (vcpu
->arch
.shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
493 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
494 kvm_inject_gp(vcpu
, 0);
498 if (efer
& EFER_FFXSR
) {
499 struct kvm_cpuid_entry2
*feat
;
501 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
502 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
))) {
503 printk(KERN_DEBUG
"set_efer: #GP, enable FFXSR w/o CPUID capability\n");
504 kvm_inject_gp(vcpu
, 0);
509 if (efer
& EFER_SVME
) {
510 struct kvm_cpuid_entry2
*feat
;
512 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
513 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
))) {
514 printk(KERN_DEBUG
"set_efer: #GP, enable SVM w/o SVM\n");
515 kvm_inject_gp(vcpu
, 0);
520 kvm_x86_ops
->set_efer(vcpu
, efer
);
523 efer
|= vcpu
->arch
.shadow_efer
& EFER_LMA
;
525 vcpu
->arch
.shadow_efer
= efer
;
528 void kvm_enable_efer_bits(u64 mask
)
530 efer_reserved_bits
&= ~mask
;
532 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
536 * Writes msr value into into the appropriate "register".
537 * Returns 0 on success, non-0 otherwise.
538 * Assumes vcpu_load() was already called.
540 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
542 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
546 * Adapt set_msr() to msr_io()'s calling convention
548 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
550 return kvm_set_msr(vcpu
, index
, *data
);
553 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
556 struct pvclock_wall_clock wc
;
557 struct timespec now
, sys
, boot
;
564 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
567 * The guest calculates current wall clock time by adding
568 * system time (updated by kvm_write_guest_time below) to the
569 * wall clock specified here. guest system time equals host
570 * system time for us, thus we must fill in host boot time here.
572 now
= current_kernel_time();
574 boot
= ns_to_timespec(timespec_to_ns(&now
) - timespec_to_ns(&sys
));
576 wc
.sec
= boot
.tv_sec
;
577 wc
.nsec
= boot
.tv_nsec
;
578 wc
.version
= version
;
580 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
583 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
586 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
588 uint32_t quotient
, remainder
;
590 /* Don't try to replace with do_div(), this one calculates
591 * "(dividend << 32) / divisor" */
593 : "=a" (quotient
), "=d" (remainder
)
594 : "0" (0), "1" (dividend
), "r" (divisor
) );
598 static void kvm_set_time_scale(uint32_t tsc_khz
, struct pvclock_vcpu_time_info
*hv_clock
)
600 uint64_t nsecs
= 1000000000LL;
605 tps64
= tsc_khz
* 1000LL;
606 while (tps64
> nsecs
*2) {
611 tps32
= (uint32_t)tps64
;
612 while (tps32
<= (uint32_t)nsecs
) {
617 hv_clock
->tsc_shift
= shift
;
618 hv_clock
->tsc_to_system_mul
= div_frac(nsecs
, tps32
);
620 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
621 __func__
, tsc_khz
, hv_clock
->tsc_shift
,
622 hv_clock
->tsc_to_system_mul
);
625 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
627 static void kvm_write_guest_time(struct kvm_vcpu
*v
)
631 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
634 if ((!vcpu
->time_page
))
637 if (unlikely(vcpu
->hv_clock_tsc_khz
!= __get_cpu_var(cpu_tsc_khz
))) {
638 kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz
), &vcpu
->hv_clock
);
639 vcpu
->hv_clock_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
642 /* Keep irq disabled to prevent changes to the clock */
643 local_irq_save(flags
);
644 kvm_get_msr(v
, MSR_IA32_TIME_STAMP_COUNTER
,
645 &vcpu
->hv_clock
.tsc_timestamp
);
647 local_irq_restore(flags
);
649 /* With all the info we got, fill in the values */
651 vcpu
->hv_clock
.system_time
= ts
.tv_nsec
+
652 (NSEC_PER_SEC
* (u64
)ts
.tv_sec
);
654 * The interface expects us to write an even number signaling that the
655 * update is finished. Since the guest won't see the intermediate
656 * state, we just increase by 2 at the end.
658 vcpu
->hv_clock
.version
+= 2;
660 shared_kaddr
= kmap_atomic(vcpu
->time_page
, KM_USER0
);
662 memcpy(shared_kaddr
+ vcpu
->time_offset
, &vcpu
->hv_clock
,
663 sizeof(vcpu
->hv_clock
));
665 kunmap_atomic(shared_kaddr
, KM_USER0
);
667 mark_page_dirty(v
->kvm
, vcpu
->time
>> PAGE_SHIFT
);
670 static int kvm_request_guest_time_update(struct kvm_vcpu
*v
)
672 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
674 if (!vcpu
->time_page
)
676 set_bit(KVM_REQ_KVMCLOCK_UPDATE
, &v
->requests
);
680 static bool msr_mtrr_valid(unsigned msr
)
683 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
684 case MSR_MTRRfix64K_00000
:
685 case MSR_MTRRfix16K_80000
:
686 case MSR_MTRRfix16K_A0000
:
687 case MSR_MTRRfix4K_C0000
:
688 case MSR_MTRRfix4K_C8000
:
689 case MSR_MTRRfix4K_D0000
:
690 case MSR_MTRRfix4K_D8000
:
691 case MSR_MTRRfix4K_E0000
:
692 case MSR_MTRRfix4K_E8000
:
693 case MSR_MTRRfix4K_F0000
:
694 case MSR_MTRRfix4K_F8000
:
695 case MSR_MTRRdefType
:
696 case MSR_IA32_CR_PAT
:
704 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
706 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
708 if (!msr_mtrr_valid(msr
))
711 if (msr
== MSR_MTRRdefType
) {
712 vcpu
->arch
.mtrr_state
.def_type
= data
;
713 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
714 } else if (msr
== MSR_MTRRfix64K_00000
)
716 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
717 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
718 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
719 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
720 else if (msr
== MSR_IA32_CR_PAT
)
721 vcpu
->arch
.pat
= data
;
722 else { /* Variable MTRRs */
723 int idx
, is_mtrr_mask
;
726 idx
= (msr
- 0x200) / 2;
727 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
730 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
733 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
737 kvm_mmu_reset_context(vcpu
);
741 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
745 set_efer(vcpu
, data
);
747 case MSR_IA32_MC0_STATUS
:
748 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
751 case MSR_IA32_MCG_STATUS
:
752 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
755 case MSR_IA32_MCG_CTL
:
756 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
759 case MSR_IA32_DEBUGCTLMSR
:
761 /* We support the non-activated case already */
763 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
764 /* Values other than LBR and BTF are vendor-specific,
765 thus reserved and should throw a #GP */
768 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
771 case MSR_IA32_UCODE_REV
:
772 case MSR_IA32_UCODE_WRITE
:
773 case MSR_VM_HSAVE_PA
:
775 case 0x200 ... 0x2ff:
776 return set_msr_mtrr(vcpu
, msr
, data
);
777 case MSR_IA32_APICBASE
:
778 kvm_set_apic_base(vcpu
, data
);
780 case MSR_IA32_MISC_ENABLE
:
781 vcpu
->arch
.ia32_misc_enable_msr
= data
;
783 case MSR_KVM_WALL_CLOCK
:
784 vcpu
->kvm
->arch
.wall_clock
= data
;
785 kvm_write_wall_clock(vcpu
->kvm
, data
);
787 case MSR_KVM_SYSTEM_TIME
: {
788 if (vcpu
->arch
.time_page
) {
789 kvm_release_page_dirty(vcpu
->arch
.time_page
);
790 vcpu
->arch
.time_page
= NULL
;
793 vcpu
->arch
.time
= data
;
795 /* we verify if the enable bit is set... */
799 /* ...but clean it before doing the actual write */
800 vcpu
->arch
.time_offset
= data
& ~(PAGE_MASK
| 1);
802 vcpu
->arch
.time_page
=
803 gfn_to_page(vcpu
->kvm
, data
>> PAGE_SHIFT
);
805 if (is_error_page(vcpu
->arch
.time_page
)) {
806 kvm_release_page_clean(vcpu
->arch
.time_page
);
807 vcpu
->arch
.time_page
= NULL
;
810 kvm_request_guest_time_update(vcpu
);
814 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n", msr
, data
);
819 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
823 * Reads an msr value (of 'msr_index') into 'pdata'.
824 * Returns 0 on success, non-0 otherwise.
825 * Assumes vcpu_load() was already called.
827 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
829 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
832 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
834 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
836 if (!msr_mtrr_valid(msr
))
839 if (msr
== MSR_MTRRdefType
)
840 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
841 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
842 else if (msr
== MSR_MTRRfix64K_00000
)
844 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
845 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
846 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
847 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
848 else if (msr
== MSR_IA32_CR_PAT
)
849 *pdata
= vcpu
->arch
.pat
;
850 else { /* Variable MTRRs */
851 int idx
, is_mtrr_mask
;
854 idx
= (msr
- 0x200) / 2;
855 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
858 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
861 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
868 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
873 case 0xc0010010: /* SYSCFG */
874 case 0xc0010015: /* HWCR */
875 case MSR_IA32_PLATFORM_ID
:
876 case MSR_IA32_P5_MC_ADDR
:
877 case MSR_IA32_P5_MC_TYPE
:
878 case MSR_IA32_MC0_CTL
:
879 case MSR_IA32_MCG_STATUS
:
880 case MSR_IA32_MCG_CAP
:
881 case MSR_IA32_MCG_CTL
:
882 case MSR_IA32_MC0_MISC
:
883 case MSR_IA32_MC0_MISC
+4:
884 case MSR_IA32_MC0_MISC
+8:
885 case MSR_IA32_MC0_MISC
+12:
886 case MSR_IA32_MC0_MISC
+16:
887 case MSR_IA32_MC0_MISC
+20:
888 case MSR_IA32_UCODE_REV
:
889 case MSR_IA32_EBL_CR_POWERON
:
890 case MSR_IA32_DEBUGCTLMSR
:
891 case MSR_IA32_LASTBRANCHFROMIP
:
892 case MSR_IA32_LASTBRANCHTOIP
:
893 case MSR_IA32_LASTINTFROMIP
:
894 case MSR_IA32_LASTINTTOIP
:
895 case MSR_VM_HSAVE_PA
:
899 data
= 0x500 | KVM_NR_VAR_MTRR
;
901 case 0x200 ... 0x2ff:
902 return get_msr_mtrr(vcpu
, msr
, pdata
);
903 case 0xcd: /* fsb frequency */
906 case MSR_IA32_APICBASE
:
907 data
= kvm_get_apic_base(vcpu
);
909 case MSR_IA32_MISC_ENABLE
:
910 data
= vcpu
->arch
.ia32_misc_enable_msr
;
912 case MSR_IA32_PERF_STATUS
:
913 /* TSC increment by tick */
916 data
|= (((uint64_t)4ULL) << 40);
919 data
= vcpu
->arch
.shadow_efer
;
921 case MSR_KVM_WALL_CLOCK
:
922 data
= vcpu
->kvm
->arch
.wall_clock
;
924 case MSR_KVM_SYSTEM_TIME
:
925 data
= vcpu
->arch
.time
;
928 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
934 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
937 * Read or write a bunch of msrs. All parameters are kernel addresses.
939 * @return number of msrs set successfully.
941 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
942 struct kvm_msr_entry
*entries
,
943 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
944 unsigned index
, u64
*data
))
950 down_read(&vcpu
->kvm
->slots_lock
);
951 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
952 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
954 up_read(&vcpu
->kvm
->slots_lock
);
962 * Read or write a bunch of msrs. Parameters are user addresses.
964 * @return number of msrs set successfully.
966 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
967 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
968 unsigned index
, u64
*data
),
971 struct kvm_msrs msrs
;
972 struct kvm_msr_entry
*entries
;
977 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
981 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
985 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
986 entries
= vmalloc(size
);
991 if (copy_from_user(entries
, user_msrs
->entries
, size
))
994 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
999 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
1010 int kvm_dev_ioctl_check_extension(long ext
)
1015 case KVM_CAP_IRQCHIP
:
1017 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
1018 case KVM_CAP_SET_TSS_ADDR
:
1019 case KVM_CAP_EXT_CPUID
:
1020 case KVM_CAP_CLOCKSOURCE
:
1022 case KVM_CAP_NOP_IO_DELAY
:
1023 case KVM_CAP_MP_STATE
:
1024 case KVM_CAP_SYNC_MMU
:
1025 case KVM_CAP_REINJECT_CONTROL
:
1026 case KVM_CAP_IRQ_INJECT_STATUS
:
1029 case KVM_CAP_COALESCED_MMIO
:
1030 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
1033 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
1035 case KVM_CAP_NR_VCPUS
:
1038 case KVM_CAP_NR_MEMSLOTS
:
1039 r
= KVM_MEMORY_SLOTS
;
1041 case KVM_CAP_PV_MMU
:
1055 long kvm_arch_dev_ioctl(struct file
*filp
,
1056 unsigned int ioctl
, unsigned long arg
)
1058 void __user
*argp
= (void __user
*)arg
;
1062 case KVM_GET_MSR_INDEX_LIST
: {
1063 struct kvm_msr_list __user
*user_msr_list
= argp
;
1064 struct kvm_msr_list msr_list
;
1068 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
1071 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
1072 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
1075 if (n
< num_msrs_to_save
)
1078 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
1079 num_msrs_to_save
* sizeof(u32
)))
1081 if (copy_to_user(user_msr_list
->indices
1082 + num_msrs_to_save
* sizeof(u32
),
1084 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
1089 case KVM_GET_SUPPORTED_CPUID
: {
1090 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1091 struct kvm_cpuid2 cpuid
;
1094 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1096 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
1097 cpuid_arg
->entries
);
1102 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1114 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1116 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
1117 kvm_request_guest_time_update(vcpu
);
1120 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
1122 kvm_x86_ops
->vcpu_put(vcpu
);
1123 kvm_put_guest_fpu(vcpu
);
1126 static int is_efer_nx(void)
1128 unsigned long long efer
= 0;
1130 rdmsrl_safe(MSR_EFER
, &efer
);
1131 return efer
& EFER_NX
;
1134 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
1137 struct kvm_cpuid_entry2
*e
, *entry
;
1140 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
1141 e
= &vcpu
->arch
.cpuid_entries
[i
];
1142 if (e
->function
== 0x80000001) {
1147 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
1148 entry
->edx
&= ~(1 << 20);
1149 printk(KERN_INFO
"kvm: guest NX capability removed\n");
1153 /* when an old userspace process fills a new kernel module */
1154 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
1155 struct kvm_cpuid
*cpuid
,
1156 struct kvm_cpuid_entry __user
*entries
)
1159 struct kvm_cpuid_entry
*cpuid_entries
;
1162 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1165 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
1169 if (copy_from_user(cpuid_entries
, entries
,
1170 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
1172 for (i
= 0; i
< cpuid
->nent
; i
++) {
1173 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
1174 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
1175 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
1176 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
1177 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
1178 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
1179 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
1180 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
1181 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
1182 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
1184 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1185 cpuid_fix_nx_cap(vcpu
);
1189 vfree(cpuid_entries
);
1194 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
1195 struct kvm_cpuid2
*cpuid
,
1196 struct kvm_cpuid_entry2 __user
*entries
)
1201 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
1204 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
1205 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
1207 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
1214 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
1215 struct kvm_cpuid2
*cpuid
,
1216 struct kvm_cpuid_entry2 __user
*entries
)
1221 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
1224 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
1225 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
1230 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
1234 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1237 entry
->function
= function
;
1238 entry
->index
= index
;
1239 cpuid_count(entry
->function
, entry
->index
,
1240 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
1244 static void do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
1245 u32 index
, int *nent
, int maxnent
)
1247 const u32 kvm_supported_word0_x86_features
= bit(X86_FEATURE_FPU
) |
1248 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1249 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1250 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1251 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1252 bit(X86_FEATURE_SEP
) | bit(X86_FEATURE_PGE
) |
1253 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1254 bit(X86_FEATURE_CLFLSH
) | bit(X86_FEATURE_MMX
) |
1255 bit(X86_FEATURE_FXSR
) | bit(X86_FEATURE_XMM
) |
1256 bit(X86_FEATURE_XMM2
) | bit(X86_FEATURE_SELFSNOOP
);
1257 const u32 kvm_supported_word1_x86_features
= bit(X86_FEATURE_FPU
) |
1258 bit(X86_FEATURE_VME
) | bit(X86_FEATURE_DE
) |
1259 bit(X86_FEATURE_PSE
) | bit(X86_FEATURE_TSC
) |
1260 bit(X86_FEATURE_MSR
) | bit(X86_FEATURE_PAE
) |
1261 bit(X86_FEATURE_CX8
) | bit(X86_FEATURE_APIC
) |
1262 bit(X86_FEATURE_PGE
) |
1263 bit(X86_FEATURE_CMOV
) | bit(X86_FEATURE_PSE36
) |
1264 bit(X86_FEATURE_MMX
) | bit(X86_FEATURE_FXSR
) |
1265 bit(X86_FEATURE_SYSCALL
) |
1266 (is_efer_nx() ? bit(X86_FEATURE_NX
) : 0) |
1267 #ifdef CONFIG_X86_64
1268 bit(X86_FEATURE_LM
) |
1270 bit(X86_FEATURE_FXSR_OPT
) |
1271 bit(X86_FEATURE_MMXEXT
) |
1272 bit(X86_FEATURE_3DNOWEXT
) |
1273 bit(X86_FEATURE_3DNOW
);
1274 const u32 kvm_supported_word3_x86_features
=
1275 bit(X86_FEATURE_XMM3
) | bit(X86_FEATURE_CX16
);
1276 const u32 kvm_supported_word6_x86_features
=
1277 bit(X86_FEATURE_LAHF_LM
) | bit(X86_FEATURE_CMP_LEGACY
) |
1278 bit(X86_FEATURE_SVM
);
1280 /* all calls to cpuid_count() should be made on the same cpu */
1282 do_cpuid_1_ent(entry
, function
, index
);
1287 entry
->eax
= min(entry
->eax
, (u32
)0xb);
1290 entry
->edx
&= kvm_supported_word0_x86_features
;
1291 entry
->ecx
&= kvm_supported_word3_x86_features
;
1293 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1294 * may return different values. This forces us to get_cpu() before
1295 * issuing the first command, and also to emulate this annoying behavior
1296 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1298 int t
, times
= entry
->eax
& 0xff;
1300 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1301 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
1302 for (t
= 1; t
< times
&& *nent
< maxnent
; ++t
) {
1303 do_cpuid_1_ent(&entry
[t
], function
, 0);
1304 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
1309 /* function 4 and 0xb have additional index. */
1313 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1314 /* read more entries until cache_type is zero */
1315 for (i
= 1; *nent
< maxnent
; ++i
) {
1316 cache_type
= entry
[i
- 1].eax
& 0x1f;
1319 do_cpuid_1_ent(&entry
[i
], function
, i
);
1321 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1329 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1330 /* read more entries until level_type is zero */
1331 for (i
= 1; *nent
< maxnent
; ++i
) {
1332 level_type
= entry
[i
- 1].ecx
& 0xff00;
1335 do_cpuid_1_ent(&entry
[i
], function
, i
);
1337 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
1343 entry
->eax
= min(entry
->eax
, 0x8000001a);
1346 entry
->edx
&= kvm_supported_word1_x86_features
;
1347 entry
->ecx
&= kvm_supported_word6_x86_features
;
1353 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2
*cpuid
,
1354 struct kvm_cpuid_entry2 __user
*entries
)
1356 struct kvm_cpuid_entry2
*cpuid_entries
;
1357 int limit
, nent
= 0, r
= -E2BIG
;
1360 if (cpuid
->nent
< 1)
1363 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
1367 do_cpuid_ent(&cpuid_entries
[0], 0, 0, &nent
, cpuid
->nent
);
1368 limit
= cpuid_entries
[0].eax
;
1369 for (func
= 1; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1370 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1371 &nent
, cpuid
->nent
);
1373 if (nent
>= cpuid
->nent
)
1376 do_cpuid_ent(&cpuid_entries
[nent
], 0x80000000, 0, &nent
, cpuid
->nent
);
1377 limit
= cpuid_entries
[nent
- 1].eax
;
1378 for (func
= 0x80000001; func
<= limit
&& nent
< cpuid
->nent
; ++func
)
1379 do_cpuid_ent(&cpuid_entries
[nent
], func
, 0,
1380 &nent
, cpuid
->nent
);
1382 if (copy_to_user(entries
, cpuid_entries
,
1383 nent
* sizeof(struct kvm_cpuid_entry2
)))
1389 vfree(cpuid_entries
);
1394 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
1395 struct kvm_lapic_state
*s
)
1398 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
1404 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
1405 struct kvm_lapic_state
*s
)
1408 memcpy(vcpu
->arch
.apic
->regs
, s
->regs
, sizeof *s
);
1409 kvm_apic_post_state_restore(vcpu
);
1415 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
1416 struct kvm_interrupt
*irq
)
1418 if (irq
->irq
< 0 || irq
->irq
>= 256)
1420 if (irqchip_in_kernel(vcpu
->kvm
))
1424 set_bit(irq
->irq
, vcpu
->arch
.irq_pending
);
1425 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->arch
.irq_summary
);
1432 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
1435 kvm_inject_nmi(vcpu
);
1441 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
1442 struct kvm_tpr_access_ctl
*tac
)
1446 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
1450 long kvm_arch_vcpu_ioctl(struct file
*filp
,
1451 unsigned int ioctl
, unsigned long arg
)
1453 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1454 void __user
*argp
= (void __user
*)arg
;
1456 struct kvm_lapic_state
*lapic
= NULL
;
1459 case KVM_GET_LAPIC
: {
1460 lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1465 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, lapic
);
1469 if (copy_to_user(argp
, lapic
, sizeof(struct kvm_lapic_state
)))
1474 case KVM_SET_LAPIC
: {
1475 lapic
= kmalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
1480 if (copy_from_user(lapic
, argp
, sizeof(struct kvm_lapic_state
)))
1482 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, lapic
);
1488 case KVM_INTERRUPT
: {
1489 struct kvm_interrupt irq
;
1492 if (copy_from_user(&irq
, argp
, sizeof irq
))
1494 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
1501 r
= kvm_vcpu_ioctl_nmi(vcpu
);
1507 case KVM_SET_CPUID
: {
1508 struct kvm_cpuid __user
*cpuid_arg
= argp
;
1509 struct kvm_cpuid cpuid
;
1512 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1514 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
1519 case KVM_SET_CPUID2
: {
1520 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1521 struct kvm_cpuid2 cpuid
;
1524 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1526 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
1527 cpuid_arg
->entries
);
1532 case KVM_GET_CPUID2
: {
1533 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
1534 struct kvm_cpuid2 cpuid
;
1537 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
1539 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
1540 cpuid_arg
->entries
);
1544 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
1550 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
1553 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
1555 case KVM_TPR_ACCESS_REPORTING
: {
1556 struct kvm_tpr_access_ctl tac
;
1559 if (copy_from_user(&tac
, argp
, sizeof tac
))
1561 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
1565 if (copy_to_user(argp
, &tac
, sizeof tac
))
1570 case KVM_SET_VAPIC_ADDR
: {
1571 struct kvm_vapic_addr va
;
1574 if (!irqchip_in_kernel(vcpu
->kvm
))
1577 if (copy_from_user(&va
, argp
, sizeof va
))
1580 kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
1592 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
1596 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
1598 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
1602 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
1603 u32 kvm_nr_mmu_pages
)
1605 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
1608 down_write(&kvm
->slots_lock
);
1610 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
1611 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
1613 up_write(&kvm
->slots_lock
);
1617 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
1619 return kvm
->arch
.n_alloc_mmu_pages
;
1622 gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
1625 struct kvm_mem_alias
*alias
;
1627 for (i
= 0; i
< kvm
->arch
.naliases
; ++i
) {
1628 alias
= &kvm
->arch
.aliases
[i
];
1629 if (gfn
>= alias
->base_gfn
1630 && gfn
< alias
->base_gfn
+ alias
->npages
)
1631 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
1637 * Set a new alias region. Aliases map a portion of physical memory into
1638 * another portion. This is useful for memory windows, for example the PC
1641 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
1642 struct kvm_memory_alias
*alias
)
1645 struct kvm_mem_alias
*p
;
1648 /* General sanity checks */
1649 if (alias
->memory_size
& (PAGE_SIZE
- 1))
1651 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
1653 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
1655 if (alias
->guest_phys_addr
+ alias
->memory_size
1656 < alias
->guest_phys_addr
)
1658 if (alias
->target_phys_addr
+ alias
->memory_size
1659 < alias
->target_phys_addr
)
1662 down_write(&kvm
->slots_lock
);
1663 spin_lock(&kvm
->mmu_lock
);
1665 p
= &kvm
->arch
.aliases
[alias
->slot
];
1666 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
1667 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
1668 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
1670 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
1671 if (kvm
->arch
.aliases
[n
- 1].npages
)
1673 kvm
->arch
.naliases
= n
;
1675 spin_unlock(&kvm
->mmu_lock
);
1676 kvm_mmu_zap_all(kvm
);
1678 up_write(&kvm
->slots_lock
);
1686 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1691 switch (chip
->chip_id
) {
1692 case KVM_IRQCHIP_PIC_MASTER
:
1693 memcpy(&chip
->chip
.pic
,
1694 &pic_irqchip(kvm
)->pics
[0],
1695 sizeof(struct kvm_pic_state
));
1697 case KVM_IRQCHIP_PIC_SLAVE
:
1698 memcpy(&chip
->chip
.pic
,
1699 &pic_irqchip(kvm
)->pics
[1],
1700 sizeof(struct kvm_pic_state
));
1702 case KVM_IRQCHIP_IOAPIC
:
1703 memcpy(&chip
->chip
.ioapic
,
1704 ioapic_irqchip(kvm
),
1705 sizeof(struct kvm_ioapic_state
));
1714 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
1719 switch (chip
->chip_id
) {
1720 case KVM_IRQCHIP_PIC_MASTER
:
1721 memcpy(&pic_irqchip(kvm
)->pics
[0],
1723 sizeof(struct kvm_pic_state
));
1725 case KVM_IRQCHIP_PIC_SLAVE
:
1726 memcpy(&pic_irqchip(kvm
)->pics
[1],
1728 sizeof(struct kvm_pic_state
));
1730 case KVM_IRQCHIP_IOAPIC
:
1731 memcpy(ioapic_irqchip(kvm
),
1733 sizeof(struct kvm_ioapic_state
));
1739 kvm_pic_update_irq(pic_irqchip(kvm
));
1743 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1747 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
1751 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
1755 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
1756 kvm_pit_load_count(kvm
, 0, ps
->channels
[0].count
);
1760 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
1761 struct kvm_reinject_control
*control
)
1763 if (!kvm
->arch
.vpit
)
1765 kvm
->arch
.vpit
->pit_state
.pit_timer
.reinject
= control
->pit_reinject
;
1770 * Get (and clear) the dirty memory log for a memory slot.
1772 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
1773 struct kvm_dirty_log
*log
)
1777 struct kvm_memory_slot
*memslot
;
1780 down_write(&kvm
->slots_lock
);
1782 r
= kvm_get_dirty_log(kvm
, log
, &is_dirty
);
1786 /* If nothing is dirty, don't bother messing with page tables. */
1788 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
1789 kvm_flush_remote_tlbs(kvm
);
1790 memslot
= &kvm
->memslots
[log
->slot
];
1791 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
1792 memset(memslot
->dirty_bitmap
, 0, n
);
1796 up_write(&kvm
->slots_lock
);
1800 long kvm_arch_vm_ioctl(struct file
*filp
,
1801 unsigned int ioctl
, unsigned long arg
)
1803 struct kvm
*kvm
= filp
->private_data
;
1804 void __user
*argp
= (void __user
*)arg
;
1807 * This union makes it completely explicit to gcc-3.x
1808 * that these two variables' stack usage should be
1809 * combined, not added together.
1812 struct kvm_pit_state ps
;
1813 struct kvm_memory_alias alias
;
1817 case KVM_SET_TSS_ADDR
:
1818 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
1822 case KVM_SET_MEMORY_REGION
: {
1823 struct kvm_memory_region kvm_mem
;
1824 struct kvm_userspace_memory_region kvm_userspace_mem
;
1827 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
1829 kvm_userspace_mem
.slot
= kvm_mem
.slot
;
1830 kvm_userspace_mem
.flags
= kvm_mem
.flags
;
1831 kvm_userspace_mem
.guest_phys_addr
= kvm_mem
.guest_phys_addr
;
1832 kvm_userspace_mem
.memory_size
= kvm_mem
.memory_size
;
1833 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 0);
1838 case KVM_SET_NR_MMU_PAGES
:
1839 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
1843 case KVM_GET_NR_MMU_PAGES
:
1844 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
1846 case KVM_SET_MEMORY_ALIAS
:
1848 if (copy_from_user(&u
.alias
, argp
, sizeof(struct kvm_memory_alias
)))
1850 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &u
.alias
);
1854 case KVM_CREATE_IRQCHIP
:
1856 kvm
->arch
.vpic
= kvm_create_pic(kvm
);
1857 if (kvm
->arch
.vpic
) {
1858 r
= kvm_ioapic_init(kvm
);
1860 kfree(kvm
->arch
.vpic
);
1861 kvm
->arch
.vpic
= NULL
;
1866 r
= kvm_setup_default_irq_routing(kvm
);
1868 kfree(kvm
->arch
.vpic
);
1869 kfree(kvm
->arch
.vioapic
);
1873 case KVM_CREATE_PIT
:
1874 mutex_lock(&kvm
->lock
);
1877 goto create_pit_unlock
;
1879 kvm
->arch
.vpit
= kvm_create_pit(kvm
);
1883 mutex_unlock(&kvm
->lock
);
1885 case KVM_IRQ_LINE_STATUS
:
1886 case KVM_IRQ_LINE
: {
1887 struct kvm_irq_level irq_event
;
1890 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
1892 if (irqchip_in_kernel(kvm
)) {
1894 mutex_lock(&kvm
->lock
);
1895 status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
1896 irq_event
.irq
, irq_event
.level
);
1897 mutex_unlock(&kvm
->lock
);
1898 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
1899 irq_event
.status
= status
;
1900 if (copy_to_user(argp
, &irq_event
,
1908 case KVM_GET_IRQCHIP
: {
1909 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1910 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1916 if (copy_from_user(chip
, argp
, sizeof *chip
))
1917 goto get_irqchip_out
;
1919 if (!irqchip_in_kernel(kvm
))
1920 goto get_irqchip_out
;
1921 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
1923 goto get_irqchip_out
;
1925 if (copy_to_user(argp
, chip
, sizeof *chip
))
1926 goto get_irqchip_out
;
1934 case KVM_SET_IRQCHIP
: {
1935 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1936 struct kvm_irqchip
*chip
= kmalloc(sizeof(*chip
), GFP_KERNEL
);
1942 if (copy_from_user(chip
, argp
, sizeof *chip
))
1943 goto set_irqchip_out
;
1945 if (!irqchip_in_kernel(kvm
))
1946 goto set_irqchip_out
;
1947 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
1949 goto set_irqchip_out
;
1959 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
1962 if (!kvm
->arch
.vpit
)
1964 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
1968 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
1975 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
1978 if (!kvm
->arch
.vpit
)
1980 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
1986 case KVM_REINJECT_CONTROL
: {
1987 struct kvm_reinject_control control
;
1989 if (copy_from_user(&control
, argp
, sizeof(control
)))
1991 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
2004 static void kvm_init_msr_list(void)
2009 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2010 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2013 msrs_to_save
[j
] = msrs_to_save
[i
];
2016 num_msrs_to_save
= j
;
2020 * Only apic need an MMIO device hook, so shortcut now..
2022 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
2023 gpa_t addr
, int len
,
2026 struct kvm_io_device
*dev
;
2028 if (vcpu
->arch
.apic
) {
2029 dev
= &vcpu
->arch
.apic
->dev
;
2030 if (dev
->in_range(dev
, addr
, len
, is_write
))
2037 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
2038 gpa_t addr
, int len
,
2041 struct kvm_io_device
*dev
;
2043 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
, len
, is_write
);
2045 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
, len
,
2050 static int kvm_read_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2051 struct kvm_vcpu
*vcpu
)
2054 int r
= X86EMUL_CONTINUE
;
2057 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2058 unsigned offset
= addr
& (PAGE_SIZE
-1);
2059 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2062 if (gpa
== UNMAPPED_GVA
) {
2063 r
= X86EMUL_PROPAGATE_FAULT
;
2066 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
2068 r
= X86EMUL_UNHANDLEABLE
;
2080 static int kvm_write_guest_virt(gva_t addr
, void *val
, unsigned int bytes
,
2081 struct kvm_vcpu
*vcpu
)
2084 int r
= X86EMUL_CONTINUE
;
2087 gpa_t gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2088 unsigned offset
= addr
& (PAGE_SIZE
-1);
2089 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
2092 if (gpa
== UNMAPPED_GVA
) {
2093 r
= X86EMUL_PROPAGATE_FAULT
;
2096 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
2098 r
= X86EMUL_UNHANDLEABLE
;
2111 static int emulator_read_emulated(unsigned long addr
,
2114 struct kvm_vcpu
*vcpu
)
2116 struct kvm_io_device
*mmio_dev
;
2119 if (vcpu
->mmio_read_completed
) {
2120 memcpy(val
, vcpu
->mmio_data
, bytes
);
2121 vcpu
->mmio_read_completed
= 0;
2122 return X86EMUL_CONTINUE
;
2125 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2127 /* For APIC access vmexit */
2128 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2131 if (kvm_read_guest_virt(addr
, val
, bytes
, vcpu
)
2132 == X86EMUL_CONTINUE
)
2133 return X86EMUL_CONTINUE
;
2134 if (gpa
== UNMAPPED_GVA
)
2135 return X86EMUL_PROPAGATE_FAULT
;
2139 * Is this MMIO handled locally?
2141 mutex_lock(&vcpu
->kvm
->lock
);
2142 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 0);
2144 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
2145 mutex_unlock(&vcpu
->kvm
->lock
);
2146 return X86EMUL_CONTINUE
;
2148 mutex_unlock(&vcpu
->kvm
->lock
);
2150 vcpu
->mmio_needed
= 1;
2151 vcpu
->mmio_phys_addr
= gpa
;
2152 vcpu
->mmio_size
= bytes
;
2153 vcpu
->mmio_is_write
= 0;
2155 return X86EMUL_UNHANDLEABLE
;
2158 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
2159 const void *val
, int bytes
)
2163 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
2166 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
, 1);
2170 static int emulator_write_emulated_onepage(unsigned long addr
,
2173 struct kvm_vcpu
*vcpu
)
2175 struct kvm_io_device
*mmio_dev
;
2178 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2180 if (gpa
== UNMAPPED_GVA
) {
2181 kvm_inject_page_fault(vcpu
, addr
, 2);
2182 return X86EMUL_PROPAGATE_FAULT
;
2185 /* For APIC access vmexit */
2186 if ((gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2189 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
2190 return X86EMUL_CONTINUE
;
2194 * Is this MMIO handled locally?
2196 mutex_lock(&vcpu
->kvm
->lock
);
2197 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
, bytes
, 1);
2199 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
2200 mutex_unlock(&vcpu
->kvm
->lock
);
2201 return X86EMUL_CONTINUE
;
2203 mutex_unlock(&vcpu
->kvm
->lock
);
2205 vcpu
->mmio_needed
= 1;
2206 vcpu
->mmio_phys_addr
= gpa
;
2207 vcpu
->mmio_size
= bytes
;
2208 vcpu
->mmio_is_write
= 1;
2209 memcpy(vcpu
->mmio_data
, val
, bytes
);
2211 return X86EMUL_CONTINUE
;
2214 int emulator_write_emulated(unsigned long addr
,
2217 struct kvm_vcpu
*vcpu
)
2219 /* Crossing a page boundary? */
2220 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
2223 now
= -addr
& ~PAGE_MASK
;
2224 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
2225 if (rc
!= X86EMUL_CONTINUE
)
2231 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
2233 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
2235 static int emulator_cmpxchg_emulated(unsigned long addr
,
2239 struct kvm_vcpu
*vcpu
)
2241 static int reported
;
2245 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
2247 #ifndef CONFIG_X86_64
2248 /* guests cmpxchg8b have to be emulated atomically */
2255 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, addr
);
2257 if (gpa
== UNMAPPED_GVA
||
2258 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
2261 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
2266 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
2268 kaddr
= kmap_atomic(page
, KM_USER0
);
2269 set_64bit((u64
*)(kaddr
+ offset_in_page(gpa
)), val
);
2270 kunmap_atomic(kaddr
, KM_USER0
);
2271 kvm_release_page_dirty(page
);
2276 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
2279 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
2281 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
2284 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
2286 kvm_mmu_invlpg(vcpu
, address
);
2287 return X86EMUL_CONTINUE
;
2290 int emulate_clts(struct kvm_vcpu
*vcpu
)
2292 KVMTRACE_0D(CLTS
, vcpu
, handler
);
2293 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
& ~X86_CR0_TS
);
2294 return X86EMUL_CONTINUE
;
2297 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
2299 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
2303 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
2304 return X86EMUL_CONTINUE
;
2306 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __func__
, dr
);
2307 return X86EMUL_UNHANDLEABLE
;
2311 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
2313 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
2316 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
2318 /* FIXME: better handling */
2319 return X86EMUL_UNHANDLEABLE
;
2321 return X86EMUL_CONTINUE
;
2324 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
2327 unsigned long rip
= kvm_rip_read(vcpu
);
2328 unsigned long rip_linear
;
2330 if (!printk_ratelimit())
2333 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
2335 kvm_read_guest_virt(rip_linear
, (void *)opcodes
, 4, vcpu
);
2337 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2338 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
2340 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
2342 static struct x86_emulate_ops emulate_ops
= {
2343 .read_std
= kvm_read_guest_virt
,
2344 .read_emulated
= emulator_read_emulated
,
2345 .write_emulated
= emulator_write_emulated
,
2346 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
2349 static void cache_all_regs(struct kvm_vcpu
*vcpu
)
2351 kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2352 kvm_register_read(vcpu
, VCPU_REGS_RSP
);
2353 kvm_register_read(vcpu
, VCPU_REGS_RIP
);
2354 vcpu
->arch
.regs_dirty
= ~0;
2357 int emulate_instruction(struct kvm_vcpu
*vcpu
,
2358 struct kvm_run
*run
,
2364 struct decode_cache
*c
;
2366 kvm_clear_exception_queue(vcpu
);
2367 vcpu
->arch
.mmio_fault_cr2
= cr2
;
2369 * TODO: fix x86_emulate.c to use guest_read/write_register
2370 * instead of direct ->regs accesses, can save hundred cycles
2371 * on Intel for instructions that don't read/change RSP, for
2374 cache_all_regs(vcpu
);
2376 vcpu
->mmio_is_write
= 0;
2377 vcpu
->arch
.pio
.string
= 0;
2379 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
2381 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
2383 vcpu
->arch
.emulate_ctxt
.vcpu
= vcpu
;
2384 vcpu
->arch
.emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
2385 vcpu
->arch
.emulate_ctxt
.mode
=
2386 (vcpu
->arch
.emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
2387 ? X86EMUL_MODE_REAL
: cs_l
2388 ? X86EMUL_MODE_PROT64
: cs_db
2389 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
2391 r
= x86_decode_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2393 /* Reject the instructions other than VMCALL/VMMCALL when
2394 * try to emulate invalid opcode */
2395 c
= &vcpu
->arch
.emulate_ctxt
.decode
;
2396 if ((emulation_type
& EMULTYPE_TRAP_UD
) &&
2397 (!(c
->twobyte
&& c
->b
== 0x01 &&
2398 (c
->modrm_reg
== 0 || c
->modrm_reg
== 3) &&
2399 c
->modrm_mod
== 3 && c
->modrm_rm
== 1)))
2400 return EMULATE_FAIL
;
2402 ++vcpu
->stat
.insn_emulation
;
2404 ++vcpu
->stat
.insn_emulation_fail
;
2405 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2406 return EMULATE_DONE
;
2407 return EMULATE_FAIL
;
2411 r
= x86_emulate_insn(&vcpu
->arch
.emulate_ctxt
, &emulate_ops
);
2413 if (vcpu
->arch
.pio
.string
)
2414 return EMULATE_DO_MMIO
;
2416 if ((r
|| vcpu
->mmio_is_write
) && run
) {
2417 run
->exit_reason
= KVM_EXIT_MMIO
;
2418 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
2419 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
2420 run
->mmio
.len
= vcpu
->mmio_size
;
2421 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
2425 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
2426 return EMULATE_DONE
;
2427 if (!vcpu
->mmio_needed
) {
2428 kvm_report_emulation_failure(vcpu
, "mmio");
2429 return EMULATE_FAIL
;
2431 return EMULATE_DO_MMIO
;
2434 kvm_x86_ops
->set_rflags(vcpu
, vcpu
->arch
.emulate_ctxt
.eflags
);
2436 if (vcpu
->mmio_is_write
) {
2437 vcpu
->mmio_needed
= 0;
2438 return EMULATE_DO_MMIO
;
2441 return EMULATE_DONE
;
2443 EXPORT_SYMBOL_GPL(emulate_instruction
);
2445 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
2447 void *p
= vcpu
->arch
.pio_data
;
2448 gva_t q
= vcpu
->arch
.pio
.guest_gva
;
2452 bytes
= vcpu
->arch
.pio
.size
* vcpu
->arch
.pio
.cur_count
;
2453 if (vcpu
->arch
.pio
.in
)
2454 ret
= kvm_write_guest_virt(q
, p
, bytes
, vcpu
);
2456 ret
= kvm_read_guest_virt(q
, p
, bytes
, vcpu
);
2460 int complete_pio(struct kvm_vcpu
*vcpu
)
2462 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2469 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2470 memcpy(&val
, vcpu
->arch
.pio_data
, io
->size
);
2471 kvm_register_write(vcpu
, VCPU_REGS_RAX
, val
);
2475 r
= pio_copy_data(vcpu
);
2482 delta
*= io
->cur_count
;
2484 * The size of the register should really depend on
2485 * current address size.
2487 val
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2489 kvm_register_write(vcpu
, VCPU_REGS_RCX
, val
);
2495 val
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
2497 kvm_register_write(vcpu
, VCPU_REGS_RDI
, val
);
2499 val
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2501 kvm_register_write(vcpu
, VCPU_REGS_RSI
, val
);
2505 io
->count
-= io
->cur_count
;
2511 static void kernel_pio(struct kvm_io_device
*pio_dev
,
2512 struct kvm_vcpu
*vcpu
,
2515 /* TODO: String I/O for in kernel device */
2517 mutex_lock(&vcpu
->kvm
->lock
);
2518 if (vcpu
->arch
.pio
.in
)
2519 kvm_iodevice_read(pio_dev
, vcpu
->arch
.pio
.port
,
2520 vcpu
->arch
.pio
.size
,
2523 kvm_iodevice_write(pio_dev
, vcpu
->arch
.pio
.port
,
2524 vcpu
->arch
.pio
.size
,
2526 mutex_unlock(&vcpu
->kvm
->lock
);
2529 static void pio_string_write(struct kvm_io_device
*pio_dev
,
2530 struct kvm_vcpu
*vcpu
)
2532 struct kvm_pio_request
*io
= &vcpu
->arch
.pio
;
2533 void *pd
= vcpu
->arch
.pio_data
;
2536 mutex_lock(&vcpu
->kvm
->lock
);
2537 for (i
= 0; i
< io
->cur_count
; i
++) {
2538 kvm_iodevice_write(pio_dev
, io
->port
,
2543 mutex_unlock(&vcpu
->kvm
->lock
);
2546 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
2547 gpa_t addr
, int len
,
2550 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
, len
, is_write
);
2553 int kvm_emulate_pio(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2554 int size
, unsigned port
)
2556 struct kvm_io_device
*pio_dev
;
2559 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2560 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2561 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2562 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2563 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= 1;
2564 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2565 vcpu
->arch
.pio
.in
= in
;
2566 vcpu
->arch
.pio
.string
= 0;
2567 vcpu
->arch
.pio
.down
= 0;
2568 vcpu
->arch
.pio
.rep
= 0;
2570 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2571 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2574 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2577 val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2578 memcpy(vcpu
->arch
.pio_data
, &val
, 4);
2580 pio_dev
= vcpu_find_pio_dev(vcpu
, port
, size
, !in
);
2582 kernel_pio(pio_dev
, vcpu
, vcpu
->arch
.pio_data
);
2588 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
2590 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
2591 int size
, unsigned long count
, int down
,
2592 gva_t address
, int rep
, unsigned port
)
2594 unsigned now
, in_page
;
2596 struct kvm_io_device
*pio_dev
;
2598 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
2599 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
2600 vcpu
->run
->io
.size
= vcpu
->arch
.pio
.size
= size
;
2601 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
2602 vcpu
->run
->io
.count
= vcpu
->arch
.pio
.count
= vcpu
->arch
.pio
.cur_count
= count
;
2603 vcpu
->run
->io
.port
= vcpu
->arch
.pio
.port
= port
;
2604 vcpu
->arch
.pio
.in
= in
;
2605 vcpu
->arch
.pio
.string
= 1;
2606 vcpu
->arch
.pio
.down
= down
;
2607 vcpu
->arch
.pio
.rep
= rep
;
2609 if (vcpu
->run
->io
.direction
== KVM_EXIT_IO_IN
)
2610 KVMTRACE_2D(IO_READ
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2613 KVMTRACE_2D(IO_WRITE
, vcpu
, vcpu
->run
->io
.port
, (u32
)size
,
2617 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2622 in_page
= PAGE_SIZE
- offset_in_page(address
);
2624 in_page
= offset_in_page(address
) + size
;
2625 now
= min(count
, (unsigned long)in_page
/ size
);
2630 * String I/O in reverse. Yuck. Kill the guest, fix later.
2632 pr_unimpl(vcpu
, "guest string pio down\n");
2633 kvm_inject_gp(vcpu
, 0);
2636 vcpu
->run
->io
.count
= now
;
2637 vcpu
->arch
.pio
.cur_count
= now
;
2639 if (vcpu
->arch
.pio
.cur_count
== vcpu
->arch
.pio
.count
)
2640 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
2642 vcpu
->arch
.pio
.guest_gva
= address
;
2644 pio_dev
= vcpu_find_pio_dev(vcpu
, port
,
2645 vcpu
->arch
.pio
.cur_count
,
2646 !vcpu
->arch
.pio
.in
);
2647 if (!vcpu
->arch
.pio
.in
) {
2648 /* string PIO write */
2649 ret
= pio_copy_data(vcpu
);
2650 if (ret
== X86EMUL_PROPAGATE_FAULT
) {
2651 kvm_inject_gp(vcpu
, 0);
2654 if (ret
== 0 && pio_dev
) {
2655 pio_string_write(pio_dev
, vcpu
);
2657 if (vcpu
->arch
.pio
.count
== 0)
2661 pr_unimpl(vcpu
, "no string pio read support yet, "
2662 "port %x size %d count %ld\n",
2667 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
2669 static void bounce_off(void *info
)
2674 static unsigned int ref_freq
;
2675 static unsigned long tsc_khz_ref
;
2677 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
2680 struct cpufreq_freqs
*freq
= data
;
2682 struct kvm_vcpu
*vcpu
;
2683 int i
, send_ipi
= 0;
2686 ref_freq
= freq
->old
;
2688 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
2690 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
2692 per_cpu(cpu_tsc_khz
, freq
->cpu
) = cpufreq_scale(tsc_khz_ref
, ref_freq
, freq
->new);
2694 spin_lock(&kvm_lock
);
2695 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
2696 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
2697 vcpu
= kvm
->vcpus
[i
];
2700 if (vcpu
->cpu
!= freq
->cpu
)
2702 if (!kvm_request_guest_time_update(vcpu
))
2704 if (vcpu
->cpu
!= smp_processor_id())
2708 spin_unlock(&kvm_lock
);
2710 if (freq
->old
< freq
->new && send_ipi
) {
2712 * We upscale the frequency. Must make the guest
2713 * doesn't see old kvmclock values while running with
2714 * the new frequency, otherwise we risk the guest sees
2715 * time go backwards.
2717 * In case we update the frequency for another cpu
2718 * (which might be in guest context) send an interrupt
2719 * to kick the cpu out of guest context. Next time
2720 * guest context is entered kvmclock will be updated,
2721 * so the guest will not see stale values.
2723 smp_call_function_single(freq
->cpu
, bounce_off
, NULL
, 1);
2728 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
2729 .notifier_call
= kvmclock_cpufreq_notifier
2732 int kvm_arch_init(void *opaque
)
2735 struct kvm_x86_ops
*ops
= (struct kvm_x86_ops
*)opaque
;
2738 printk(KERN_ERR
"kvm: already loaded the other module\n");
2743 if (!ops
->cpu_has_kvm_support()) {
2744 printk(KERN_ERR
"kvm: no hardware support\n");
2748 if (ops
->disabled_by_bios()) {
2749 printk(KERN_ERR
"kvm: disabled by bios\n");
2754 r
= kvm_mmu_module_init();
2758 kvm_init_msr_list();
2761 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2762 kvm_mmu_set_base_ptes(PT_PRESENT_MASK
);
2763 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
2764 PT_DIRTY_MASK
, PT64_NX_MASK
, 0, 0);
2766 for_each_possible_cpu(cpu
)
2767 per_cpu(cpu_tsc_khz
, cpu
) = tsc_khz
;
2768 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
2769 tsc_khz_ref
= tsc_khz
;
2770 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
2771 CPUFREQ_TRANSITION_NOTIFIER
);
2780 void kvm_arch_exit(void)
2782 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
2783 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
2784 CPUFREQ_TRANSITION_NOTIFIER
);
2786 kvm_mmu_module_exit();
2789 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
2791 ++vcpu
->stat
.halt_exits
;
2792 KVMTRACE_0D(HLT
, vcpu
, handler
);
2793 if (irqchip_in_kernel(vcpu
->kvm
)) {
2794 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
2797 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
2801 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
2803 static inline gpa_t
hc_gpa(struct kvm_vcpu
*vcpu
, unsigned long a0
,
2806 if (is_long_mode(vcpu
))
2809 return a0
| ((gpa_t
)a1
<< 32);
2812 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
2814 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
2817 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
2818 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
2819 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
2820 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
2821 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
2823 KVMTRACE_1D(VMMCALL
, vcpu
, (u32
)nr
, handler
);
2825 if (!is_long_mode(vcpu
)) {
2834 case KVM_HC_VAPIC_POLL_IRQ
:
2838 r
= kvm_pv_mmu_op(vcpu
, a0
, hc_gpa(vcpu
, a1
, a2
), &ret
);
2844 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
2845 ++vcpu
->stat
.hypercalls
;
2848 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
2850 int kvm_fix_hypercall(struct kvm_vcpu
*vcpu
)
2852 char instruction
[3];
2854 unsigned long rip
= kvm_rip_read(vcpu
);
2858 * Blow out the MMU to ensure that no other VCPU has an active mapping
2859 * to ensure that the updated hypercall appears atomically across all
2862 kvm_mmu_zap_all(vcpu
->kvm
);
2864 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
2865 if (emulator_write_emulated(rip
, instruction
, 3, vcpu
)
2866 != X86EMUL_CONTINUE
)
2872 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
2874 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
2877 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2879 struct descriptor_table dt
= { limit
, base
};
2881 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2884 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
2886 struct descriptor_table dt
= { limit
, base
};
2888 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2891 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
2892 unsigned long *rflags
)
2894 kvm_lmsw(vcpu
, msw
);
2895 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2898 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
2900 unsigned long value
;
2902 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2905 value
= vcpu
->arch
.cr0
;
2908 value
= vcpu
->arch
.cr2
;
2911 value
= vcpu
->arch
.cr3
;
2914 value
= vcpu
->arch
.cr4
;
2917 value
= kvm_get_cr8(vcpu
);
2920 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2923 KVMTRACE_3D(CR_READ
, vcpu
, (u32
)cr
, (u32
)value
,
2924 (u32
)((u64
)value
>> 32), handler
);
2929 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
2930 unsigned long *rflags
)
2932 KVMTRACE_3D(CR_WRITE
, vcpu
, (u32
)cr
, (u32
)val
,
2933 (u32
)((u64
)val
>> 32), handler
);
2937 kvm_set_cr0(vcpu
, mk_cr_64(vcpu
->arch
.cr0
, val
));
2938 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2941 vcpu
->arch
.cr2
= val
;
2944 kvm_set_cr3(vcpu
, val
);
2947 kvm_set_cr4(vcpu
, mk_cr_64(vcpu
->arch
.cr4
, val
));
2950 kvm_set_cr8(vcpu
, val
& 0xfUL
);
2953 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __func__
, cr
);
2957 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
2959 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
2960 int j
, nent
= vcpu
->arch
.cpuid_nent
;
2962 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
2963 /* when no next entry is found, the current entry[i] is reselected */
2964 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
2965 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
2966 if (ej
->function
== e
->function
) {
2967 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
2971 return 0; /* silence gcc, even though control never reaches here */
2974 /* find an entry with matching function, matching index (if needed), and that
2975 * should be read next (if it's stateful) */
2976 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
2977 u32 function
, u32 index
)
2979 if (e
->function
!= function
)
2981 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
2983 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
2984 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
2989 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
2990 u32 function
, u32 index
)
2993 struct kvm_cpuid_entry2
*best
= NULL
;
2995 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
2996 struct kvm_cpuid_entry2
*e
;
2998 e
= &vcpu
->arch
.cpuid_entries
[i
];
2999 if (is_matching_cpuid_entry(e
, function
, index
)) {
3000 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
3001 move_to_next_stateful_cpuid_entry(vcpu
, i
);
3006 * Both basic or both extended?
3008 if (((e
->function
^ function
) & 0x80000000) == 0)
3009 if (!best
|| e
->function
> best
->function
)
3015 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
3017 u32 function
, index
;
3018 struct kvm_cpuid_entry2
*best
;
3020 function
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3021 index
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3022 kvm_register_write(vcpu
, VCPU_REGS_RAX
, 0);
3023 kvm_register_write(vcpu
, VCPU_REGS_RBX
, 0);
3024 kvm_register_write(vcpu
, VCPU_REGS_RCX
, 0);
3025 kvm_register_write(vcpu
, VCPU_REGS_RDX
, 0);
3026 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
3028 kvm_register_write(vcpu
, VCPU_REGS_RAX
, best
->eax
);
3029 kvm_register_write(vcpu
, VCPU_REGS_RBX
, best
->ebx
);
3030 kvm_register_write(vcpu
, VCPU_REGS_RCX
, best
->ecx
);
3031 kvm_register_write(vcpu
, VCPU_REGS_RDX
, best
->edx
);
3033 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3034 KVMTRACE_5D(CPUID
, vcpu
, function
,
3035 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RAX
),
3036 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RBX
),
3037 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RCX
),
3038 (u32
)kvm_register_read(vcpu
, VCPU_REGS_RDX
), handler
);
3040 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
3043 * Check if userspace requested an interrupt window, and that the
3044 * interrupt window is open.
3046 * No need to exit to userspace if we already have an interrupt queued.
3048 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
3049 struct kvm_run
*kvm_run
)
3051 return (!vcpu
->arch
.irq_summary
&&
3052 kvm_run
->request_interrupt_window
&&
3053 vcpu
->arch
.interrupt_window_open
&&
3054 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
3057 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
3058 struct kvm_run
*kvm_run
)
3060 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
3061 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
3062 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
3063 if (irqchip_in_kernel(vcpu
->kvm
))
3064 kvm_run
->ready_for_interrupt_injection
= 1;
3066 kvm_run
->ready_for_interrupt_injection
=
3067 (vcpu
->arch
.interrupt_window_open
&&
3068 vcpu
->arch
.irq_summary
== 0);
3071 static void vapic_enter(struct kvm_vcpu
*vcpu
)
3073 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3076 if (!apic
|| !apic
->vapic_addr
)
3079 page
= gfn_to_page(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3081 vcpu
->arch
.apic
->vapic_page
= page
;
3084 static void vapic_exit(struct kvm_vcpu
*vcpu
)
3086 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
3088 if (!apic
|| !apic
->vapic_addr
)
3091 down_read(&vcpu
->kvm
->slots_lock
);
3092 kvm_release_page_dirty(apic
->vapic_page
);
3093 mark_page_dirty(vcpu
->kvm
, apic
->vapic_addr
>> PAGE_SHIFT
);
3094 up_read(&vcpu
->kvm
->slots_lock
);
3097 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3102 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD
, &vcpu
->requests
))
3103 kvm_mmu_unload(vcpu
);
3105 r
= kvm_mmu_reload(vcpu
);
3109 if (vcpu
->requests
) {
3110 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
))
3111 __kvm_migrate_timers(vcpu
);
3112 if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE
, &vcpu
->requests
))
3113 kvm_write_guest_time(vcpu
);
3114 if (test_and_clear_bit(KVM_REQ_MMU_SYNC
, &vcpu
->requests
))
3115 kvm_mmu_sync_roots(vcpu
);
3116 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH
, &vcpu
->requests
))
3117 kvm_x86_ops
->tlb_flush(vcpu
);
3118 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS
,
3120 kvm_run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
3124 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT
, &vcpu
->requests
)) {
3125 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
3131 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
3132 kvm_inject_pending_timer_irqs(vcpu
);
3136 kvm_x86_ops
->prepare_guest_switch(vcpu
);
3137 kvm_load_guest_fpu(vcpu
);
3139 local_irq_disable();
3141 if (vcpu
->requests
|| need_resched() || signal_pending(current
)) {
3148 vcpu
->guest_mode
= 1;
3150 * Make sure that guest_mode assignment won't happen after
3151 * testing the pending IRQ vector bitmap.
3155 if (vcpu
->arch
.exception
.pending
)
3156 __queue_exception(vcpu
);
3157 else if (irqchip_in_kernel(vcpu
->kvm
))
3158 kvm_x86_ops
->inject_pending_irq(vcpu
);
3160 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
3162 kvm_lapic_sync_to_vapic(vcpu
);
3164 up_read(&vcpu
->kvm
->slots_lock
);
3168 get_debugreg(vcpu
->arch
.host_dr6
, 6);
3169 get_debugreg(vcpu
->arch
.host_dr7
, 7);
3170 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3171 get_debugreg(vcpu
->arch
.host_db
[0], 0);
3172 get_debugreg(vcpu
->arch
.host_db
[1], 1);
3173 get_debugreg(vcpu
->arch
.host_db
[2], 2);
3174 get_debugreg(vcpu
->arch
.host_db
[3], 3);
3177 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
3178 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
3179 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
3180 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
3183 KVMTRACE_0D(VMENTRY
, vcpu
, entryexit
);
3184 kvm_x86_ops
->run(vcpu
, kvm_run
);
3186 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
3188 set_debugreg(vcpu
->arch
.host_db
[0], 0);
3189 set_debugreg(vcpu
->arch
.host_db
[1], 1);
3190 set_debugreg(vcpu
->arch
.host_db
[2], 2);
3191 set_debugreg(vcpu
->arch
.host_db
[3], 3);
3193 set_debugreg(vcpu
->arch
.host_dr6
, 6);
3194 set_debugreg(vcpu
->arch
.host_dr7
, 7);
3196 vcpu
->guest_mode
= 0;
3202 * We must have an instruction between local_irq_enable() and
3203 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3204 * the interrupt shadow. The stat.exits increment will do nicely.
3205 * But we need to prevent reordering, hence this barrier():
3213 down_read(&vcpu
->kvm
->slots_lock
);
3216 * Profile KVM exit RIPs:
3218 if (unlikely(prof_on
== KVM_PROFILING
)) {
3219 unsigned long rip
= kvm_rip_read(vcpu
);
3220 profile_hit(KVM_PROFILING
, (void *)rip
);
3223 if (vcpu
->arch
.exception
.pending
&& kvm_x86_ops
->exception_injected(vcpu
))
3224 vcpu
->arch
.exception
.pending
= false;
3226 kvm_lapic_sync_from_vapic(vcpu
);
3228 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
3233 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3237 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
)) {
3238 pr_debug("vcpu %d received sipi with vector # %x\n",
3239 vcpu
->vcpu_id
, vcpu
->arch
.sipi_vector
);
3240 kvm_lapic_reset(vcpu
);
3241 r
= kvm_arch_vcpu_reset(vcpu
);
3244 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
3247 down_read(&vcpu
->kvm
->slots_lock
);
3252 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
)
3253 r
= vcpu_enter_guest(vcpu
, kvm_run
);
3255 up_read(&vcpu
->kvm
->slots_lock
);
3256 kvm_vcpu_block(vcpu
);
3257 down_read(&vcpu
->kvm
->slots_lock
);
3258 if (test_and_clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
))
3259 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
)
3260 vcpu
->arch
.mp_state
=
3261 KVM_MP_STATE_RUNNABLE
;
3262 if (vcpu
->arch
.mp_state
!= KVM_MP_STATE_RUNNABLE
)
3267 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
3269 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3270 ++vcpu
->stat
.request_irq_exits
;
3272 if (signal_pending(current
)) {
3274 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
3275 ++vcpu
->stat
.signal_exits
;
3277 if (need_resched()) {
3278 up_read(&vcpu
->kvm
->slots_lock
);
3280 down_read(&vcpu
->kvm
->slots_lock
);
3285 up_read(&vcpu
->kvm
->slots_lock
);
3286 post_kvm_run_save(vcpu
, kvm_run
);
3293 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
3300 if (vcpu
->sigset_active
)
3301 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
3303 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
3304 kvm_vcpu_block(vcpu
);
3305 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
3310 /* re-sync apic's tpr */
3311 if (!irqchip_in_kernel(vcpu
->kvm
))
3312 kvm_set_cr8(vcpu
, kvm_run
->cr8
);
3314 if (vcpu
->arch
.pio
.cur_count
) {
3315 r
= complete_pio(vcpu
);
3319 #if CONFIG_HAS_IOMEM
3320 if (vcpu
->mmio_needed
) {
3321 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
3322 vcpu
->mmio_read_completed
= 1;
3323 vcpu
->mmio_needed
= 0;
3325 down_read(&vcpu
->kvm
->slots_lock
);
3326 r
= emulate_instruction(vcpu
, kvm_run
,
3327 vcpu
->arch
.mmio_fault_cr2
, 0,
3328 EMULTYPE_NO_DECODE
);
3329 up_read(&vcpu
->kvm
->slots_lock
);
3330 if (r
== EMULATE_DO_MMIO
) {
3332 * Read-modify-write. Back to userspace.
3339 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
)
3340 kvm_register_write(vcpu
, VCPU_REGS_RAX
,
3341 kvm_run
->hypercall
.ret
);
3343 r
= __vcpu_run(vcpu
, kvm_run
);
3346 if (vcpu
->sigset_active
)
3347 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
3353 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3357 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3358 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3359 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3360 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3361 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3362 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3363 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3364 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3365 #ifdef CONFIG_X86_64
3366 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
3367 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
3368 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
3369 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
3370 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
3371 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
3372 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
3373 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
3376 regs
->rip
= kvm_rip_read(vcpu
);
3377 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
3380 * Don't leak debug flags in case they were set for guest debugging
3382 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
3383 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3390 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
3394 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
3395 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
3396 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
3397 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
3398 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
3399 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
3400 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
3401 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
3402 #ifdef CONFIG_X86_64
3403 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
3404 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
3405 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
3406 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
3407 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
3408 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
3409 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
3410 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
3414 kvm_rip_write(vcpu
, regs
->rip
);
3415 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
3418 vcpu
->arch
.exception
.pending
= false;
3425 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3426 struct kvm_segment
*var
, int seg
)
3428 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3431 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
3433 struct kvm_segment cs
;
3435 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
3439 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
3441 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
3442 struct kvm_sregs
*sregs
)
3444 struct descriptor_table dt
;
3449 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3450 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3451 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3452 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3453 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3454 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3456 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3457 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3459 kvm_x86_ops
->get_idt(vcpu
, &dt
);
3460 sregs
->idt
.limit
= dt
.limit
;
3461 sregs
->idt
.base
= dt
.base
;
3462 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
3463 sregs
->gdt
.limit
= dt
.limit
;
3464 sregs
->gdt
.base
= dt
.base
;
3466 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3467 sregs
->cr0
= vcpu
->arch
.cr0
;
3468 sregs
->cr2
= vcpu
->arch
.cr2
;
3469 sregs
->cr3
= vcpu
->arch
.cr3
;
3470 sregs
->cr4
= vcpu
->arch
.cr4
;
3471 sregs
->cr8
= kvm_get_cr8(vcpu
);
3472 sregs
->efer
= vcpu
->arch
.shadow_efer
;
3473 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
3475 if (irqchip_in_kernel(vcpu
->kvm
)) {
3476 memset(sregs
->interrupt_bitmap
, 0,
3477 sizeof sregs
->interrupt_bitmap
);
3478 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
3479 if (pending_vec
>= 0)
3480 set_bit(pending_vec
,
3481 (unsigned long *)sregs
->interrupt_bitmap
);
3483 memcpy(sregs
->interrupt_bitmap
, vcpu
->arch
.irq_pending
,
3484 sizeof sregs
->interrupt_bitmap
);
3491 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
3492 struct kvm_mp_state
*mp_state
)
3495 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
3500 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
3501 struct kvm_mp_state
*mp_state
)
3504 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
3509 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3510 struct kvm_segment
*var
, int seg
)
3512 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3515 static void seg_desct_to_kvm_desct(struct desc_struct
*seg_desc
, u16 selector
,
3516 struct kvm_segment
*kvm_desct
)
3518 kvm_desct
->base
= seg_desc
->base0
;
3519 kvm_desct
->base
|= seg_desc
->base1
<< 16;
3520 kvm_desct
->base
|= seg_desc
->base2
<< 24;
3521 kvm_desct
->limit
= seg_desc
->limit0
;
3522 kvm_desct
->limit
|= seg_desc
->limit
<< 16;
3524 kvm_desct
->limit
<<= 12;
3525 kvm_desct
->limit
|= 0xfff;
3527 kvm_desct
->selector
= selector
;
3528 kvm_desct
->type
= seg_desc
->type
;
3529 kvm_desct
->present
= seg_desc
->p
;
3530 kvm_desct
->dpl
= seg_desc
->dpl
;
3531 kvm_desct
->db
= seg_desc
->d
;
3532 kvm_desct
->s
= seg_desc
->s
;
3533 kvm_desct
->l
= seg_desc
->l
;
3534 kvm_desct
->g
= seg_desc
->g
;
3535 kvm_desct
->avl
= seg_desc
->avl
;
3537 kvm_desct
->unusable
= 1;
3539 kvm_desct
->unusable
= 0;
3540 kvm_desct
->padding
= 0;
3543 static void get_segment_descriptor_dtable(struct kvm_vcpu
*vcpu
,
3545 struct descriptor_table
*dtable
)
3547 if (selector
& 1 << 2) {
3548 struct kvm_segment kvm_seg
;
3550 kvm_get_segment(vcpu
, &kvm_seg
, VCPU_SREG_LDTR
);
3552 if (kvm_seg
.unusable
)
3555 dtable
->limit
= kvm_seg
.limit
;
3556 dtable
->base
= kvm_seg
.base
;
3559 kvm_x86_ops
->get_gdt(vcpu
, dtable
);
3562 /* allowed just for 8 bytes segments */
3563 static int load_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3564 struct desc_struct
*seg_desc
)
3567 struct descriptor_table dtable
;
3568 u16 index
= selector
>> 3;
3570 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3572 if (dtable
.limit
< index
* 8 + 7) {
3573 kvm_queue_exception_e(vcpu
, GP_VECTOR
, selector
& 0xfffc);
3576 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3578 return kvm_read_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3581 /* allowed just for 8 bytes segments */
3582 static int save_guest_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3583 struct desc_struct
*seg_desc
)
3586 struct descriptor_table dtable
;
3587 u16 index
= selector
>> 3;
3589 get_segment_descriptor_dtable(vcpu
, selector
, &dtable
);
3591 if (dtable
.limit
< index
* 8 + 7)
3593 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, dtable
.base
);
3595 return kvm_write_guest(vcpu
->kvm
, gpa
, seg_desc
, 8);
3598 static u32
get_tss_base_addr(struct kvm_vcpu
*vcpu
,
3599 struct desc_struct
*seg_desc
)
3603 base_addr
= seg_desc
->base0
;
3604 base_addr
|= (seg_desc
->base1
<< 16);
3605 base_addr
|= (seg_desc
->base2
<< 24);
3607 return vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, base_addr
);
3610 static u16
get_segment_selector(struct kvm_vcpu
*vcpu
, int seg
)
3612 struct kvm_segment kvm_seg
;
3614 kvm_get_segment(vcpu
, &kvm_seg
, seg
);
3615 return kvm_seg
.selector
;
3618 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu
*vcpu
,
3620 struct kvm_segment
*kvm_seg
)
3622 struct desc_struct seg_desc
;
3624 if (load_guest_segment_descriptor(vcpu
, selector
, &seg_desc
))
3626 seg_desct_to_kvm_desct(&seg_desc
, selector
, kvm_seg
);
3630 static int kvm_load_realmode_segment(struct kvm_vcpu
*vcpu
, u16 selector
, int seg
)
3632 struct kvm_segment segvar
= {
3633 .base
= selector
<< 4,
3635 .selector
= selector
,
3646 kvm_x86_ops
->set_segment(vcpu
, &segvar
, seg
);
3650 int kvm_load_segment_descriptor(struct kvm_vcpu
*vcpu
, u16 selector
,
3651 int type_bits
, int seg
)
3653 struct kvm_segment kvm_seg
;
3655 if (!(vcpu
->arch
.cr0
& X86_CR0_PE
))
3656 return kvm_load_realmode_segment(vcpu
, selector
, seg
);
3657 if (load_segment_descriptor_to_kvm_desct(vcpu
, selector
, &kvm_seg
))
3659 kvm_seg
.type
|= type_bits
;
3661 if (seg
!= VCPU_SREG_SS
&& seg
!= VCPU_SREG_CS
&&
3662 seg
!= VCPU_SREG_LDTR
)
3664 kvm_seg
.unusable
= 1;
3666 kvm_set_segment(vcpu
, &kvm_seg
, seg
);
3670 static void save_state_to_tss32(struct kvm_vcpu
*vcpu
,
3671 struct tss_segment_32
*tss
)
3673 tss
->cr3
= vcpu
->arch
.cr3
;
3674 tss
->eip
= kvm_rip_read(vcpu
);
3675 tss
->eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3676 tss
->eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3677 tss
->ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3678 tss
->edx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3679 tss
->ebx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3680 tss
->esp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3681 tss
->ebp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3682 tss
->esi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3683 tss
->edi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3684 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3685 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3686 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3687 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3688 tss
->fs
= get_segment_selector(vcpu
, VCPU_SREG_FS
);
3689 tss
->gs
= get_segment_selector(vcpu
, VCPU_SREG_GS
);
3690 tss
->ldt_selector
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3691 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3694 static int load_state_from_tss32(struct kvm_vcpu
*vcpu
,
3695 struct tss_segment_32
*tss
)
3697 kvm_set_cr3(vcpu
, tss
->cr3
);
3699 kvm_rip_write(vcpu
, tss
->eip
);
3700 kvm_x86_ops
->set_rflags(vcpu
, tss
->eflags
| 2);
3702 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->eax
);
3703 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->ecx
);
3704 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->edx
);
3705 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->ebx
);
3706 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->esp
);
3707 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->ebp
);
3708 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->esi
);
3709 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->edi
);
3711 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt_selector
, 0, VCPU_SREG_LDTR
))
3714 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3717 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3720 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3723 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3726 if (kvm_load_segment_descriptor(vcpu
, tss
->fs
, 1, VCPU_SREG_FS
))
3729 if (kvm_load_segment_descriptor(vcpu
, tss
->gs
, 1, VCPU_SREG_GS
))
3734 static void save_state_to_tss16(struct kvm_vcpu
*vcpu
,
3735 struct tss_segment_16
*tss
)
3737 tss
->ip
= kvm_rip_read(vcpu
);
3738 tss
->flag
= kvm_x86_ops
->get_rflags(vcpu
);
3739 tss
->ax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
3740 tss
->cx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
3741 tss
->dx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
3742 tss
->bx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
3743 tss
->sp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
3744 tss
->bp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
3745 tss
->si
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
3746 tss
->di
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
3748 tss
->es
= get_segment_selector(vcpu
, VCPU_SREG_ES
);
3749 tss
->cs
= get_segment_selector(vcpu
, VCPU_SREG_CS
);
3750 tss
->ss
= get_segment_selector(vcpu
, VCPU_SREG_SS
);
3751 tss
->ds
= get_segment_selector(vcpu
, VCPU_SREG_DS
);
3752 tss
->ldt
= get_segment_selector(vcpu
, VCPU_SREG_LDTR
);
3753 tss
->prev_task_link
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3756 static int load_state_from_tss16(struct kvm_vcpu
*vcpu
,
3757 struct tss_segment_16
*tss
)
3759 kvm_rip_write(vcpu
, tss
->ip
);
3760 kvm_x86_ops
->set_rflags(vcpu
, tss
->flag
| 2);
3761 kvm_register_write(vcpu
, VCPU_REGS_RAX
, tss
->ax
);
3762 kvm_register_write(vcpu
, VCPU_REGS_RCX
, tss
->cx
);
3763 kvm_register_write(vcpu
, VCPU_REGS_RDX
, tss
->dx
);
3764 kvm_register_write(vcpu
, VCPU_REGS_RBX
, tss
->bx
);
3765 kvm_register_write(vcpu
, VCPU_REGS_RSP
, tss
->sp
);
3766 kvm_register_write(vcpu
, VCPU_REGS_RBP
, tss
->bp
);
3767 kvm_register_write(vcpu
, VCPU_REGS_RSI
, tss
->si
);
3768 kvm_register_write(vcpu
, VCPU_REGS_RDI
, tss
->di
);
3770 if (kvm_load_segment_descriptor(vcpu
, tss
->ldt
, 0, VCPU_SREG_LDTR
))
3773 if (kvm_load_segment_descriptor(vcpu
, tss
->es
, 1, VCPU_SREG_ES
))
3776 if (kvm_load_segment_descriptor(vcpu
, tss
->cs
, 9, VCPU_SREG_CS
))
3779 if (kvm_load_segment_descriptor(vcpu
, tss
->ss
, 1, VCPU_SREG_SS
))
3782 if (kvm_load_segment_descriptor(vcpu
, tss
->ds
, 1, VCPU_SREG_DS
))
3787 static int kvm_task_switch_16(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3789 struct desc_struct
*nseg_desc
)
3791 struct tss_segment_16 tss_segment_16
;
3794 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3795 sizeof tss_segment_16
))
3798 save_state_to_tss16(vcpu
, &tss_segment_16
);
3800 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_16
,
3801 sizeof tss_segment_16
))
3804 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3805 &tss_segment_16
, sizeof tss_segment_16
))
3808 if (load_state_from_tss16(vcpu
, &tss_segment_16
))
3816 static int kvm_task_switch_32(struct kvm_vcpu
*vcpu
, u16 tss_selector
,
3818 struct desc_struct
*nseg_desc
)
3820 struct tss_segment_32 tss_segment_32
;
3823 if (kvm_read_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3824 sizeof tss_segment_32
))
3827 save_state_to_tss32(vcpu
, &tss_segment_32
);
3829 if (kvm_write_guest(vcpu
->kvm
, old_tss_base
, &tss_segment_32
,
3830 sizeof tss_segment_32
))
3833 if (kvm_read_guest(vcpu
->kvm
, get_tss_base_addr(vcpu
, nseg_desc
),
3834 &tss_segment_32
, sizeof tss_segment_32
))
3837 if (load_state_from_tss32(vcpu
, &tss_segment_32
))
3845 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int reason
)
3847 struct kvm_segment tr_seg
;
3848 struct desc_struct cseg_desc
;
3849 struct desc_struct nseg_desc
;
3851 u32 old_tss_base
= get_segment_base(vcpu
, VCPU_SREG_TR
);
3852 u16 old_tss_sel
= get_segment_selector(vcpu
, VCPU_SREG_TR
);
3854 old_tss_base
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, old_tss_base
);
3856 /* FIXME: Handle errors. Failure to read either TSS or their
3857 * descriptors should generate a pagefault.
3859 if (load_guest_segment_descriptor(vcpu
, tss_selector
, &nseg_desc
))
3862 if (load_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
))
3865 if (reason
!= TASK_SWITCH_IRET
) {
3868 cpl
= kvm_x86_ops
->get_cpl(vcpu
);
3869 if ((tss_selector
& 3) > nseg_desc
.dpl
|| cpl
> nseg_desc
.dpl
) {
3870 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
3875 if (!nseg_desc
.p
|| (nseg_desc
.limit0
| nseg_desc
.limit
<< 16) < 0x67) {
3876 kvm_queue_exception_e(vcpu
, TS_VECTOR
, tss_selector
& 0xfffc);
3880 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
3881 cseg_desc
.type
&= ~(1 << 1); //clear the B flag
3882 save_guest_segment_descriptor(vcpu
, old_tss_sel
, &cseg_desc
);
3885 if (reason
== TASK_SWITCH_IRET
) {
3886 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3887 kvm_x86_ops
->set_rflags(vcpu
, eflags
& ~X86_EFLAGS_NT
);
3890 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
3892 if (nseg_desc
.type
& 8)
3893 ret
= kvm_task_switch_32(vcpu
, tss_selector
, old_tss_base
,
3896 ret
= kvm_task_switch_16(vcpu
, tss_selector
, old_tss_base
,
3899 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
) {
3900 u32 eflags
= kvm_x86_ops
->get_rflags(vcpu
);
3901 kvm_x86_ops
->set_rflags(vcpu
, eflags
| X86_EFLAGS_NT
);
3904 if (reason
!= TASK_SWITCH_IRET
) {
3905 nseg_desc
.type
|= (1 << 1);
3906 save_guest_segment_descriptor(vcpu
, tss_selector
,
3910 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->arch
.cr0
| X86_CR0_TS
);
3911 seg_desct_to_kvm_desct(&nseg_desc
, tss_selector
, &tr_seg
);
3913 kvm_set_segment(vcpu
, &tr_seg
, VCPU_SREG_TR
);
3917 EXPORT_SYMBOL_GPL(kvm_task_switch
);
3919 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
3920 struct kvm_sregs
*sregs
)
3922 int mmu_reset_needed
= 0;
3923 int i
, pending_vec
, max_bits
;
3924 struct descriptor_table dt
;
3928 dt
.limit
= sregs
->idt
.limit
;
3929 dt
.base
= sregs
->idt
.base
;
3930 kvm_x86_ops
->set_idt(vcpu
, &dt
);
3931 dt
.limit
= sregs
->gdt
.limit
;
3932 dt
.base
= sregs
->gdt
.base
;
3933 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
3935 vcpu
->arch
.cr2
= sregs
->cr2
;
3936 mmu_reset_needed
|= vcpu
->arch
.cr3
!= sregs
->cr3
;
3937 vcpu
->arch
.cr3
= sregs
->cr3
;
3939 kvm_set_cr8(vcpu
, sregs
->cr8
);
3941 mmu_reset_needed
|= vcpu
->arch
.shadow_efer
!= sregs
->efer
;
3942 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
3943 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
3945 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
3947 mmu_reset_needed
|= vcpu
->arch
.cr0
!= sregs
->cr0
;
3948 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
3949 vcpu
->arch
.cr0
= sregs
->cr0
;
3951 mmu_reset_needed
|= vcpu
->arch
.cr4
!= sregs
->cr4
;
3952 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
3953 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
3954 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
3956 if (mmu_reset_needed
)
3957 kvm_mmu_reset_context(vcpu
);
3959 if (!irqchip_in_kernel(vcpu
->kvm
)) {
3960 memcpy(vcpu
->arch
.irq_pending
, sregs
->interrupt_bitmap
,
3961 sizeof vcpu
->arch
.irq_pending
);
3962 vcpu
->arch
.irq_summary
= 0;
3963 for (i
= 0; i
< ARRAY_SIZE(vcpu
->arch
.irq_pending
); ++i
)
3964 if (vcpu
->arch
.irq_pending
[i
])
3965 __set_bit(i
, &vcpu
->arch
.irq_summary
);
3967 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
3968 pending_vec
= find_first_bit(
3969 (const unsigned long *)sregs
->interrupt_bitmap
,
3971 /* Only pending external irq is handled here */
3972 if (pending_vec
< max_bits
) {
3973 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
3974 pr_debug("Set back pending irq %d\n",
3977 kvm_pic_clear_isr_ack(vcpu
->kvm
);
3980 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
3981 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
3982 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
3983 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
3984 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
3985 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
3987 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
3988 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
3990 /* Older userspace won't unhalt the vcpu on reset. */
3991 if (vcpu
->vcpu_id
== 0 && kvm_rip_read(vcpu
) == 0xfff0 &&
3992 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
3993 !(vcpu
->arch
.cr0
& X86_CR0_PE
))
3994 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4001 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
4002 struct kvm_guest_debug
*dbg
)
4008 if ((dbg
->control
& (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) ==
4009 (KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
)) {
4010 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
4011 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
4012 vcpu
->arch
.switch_db_regs
=
4013 (dbg
->arch
.debugreg
[7] & DR7_BP_EN_MASK
);
4015 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
4016 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
4017 vcpu
->arch
.switch_db_regs
= (vcpu
->arch
.dr7
& DR7_BP_EN_MASK
);
4020 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
4022 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
4023 kvm_queue_exception(vcpu
, DB_VECTOR
);
4024 else if (dbg
->control
& KVM_GUESTDBG_INJECT_BP
)
4025 kvm_queue_exception(vcpu
, BP_VECTOR
);
4033 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
4034 * we have asm/x86/processor.h
4045 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
4046 #ifdef CONFIG_X86_64
4047 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
4049 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
4054 * Translate a guest virtual address to a guest physical address.
4056 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
4057 struct kvm_translation
*tr
)
4059 unsigned long vaddr
= tr
->linear_address
;
4063 down_read(&vcpu
->kvm
->slots_lock
);
4064 gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, vaddr
);
4065 up_read(&vcpu
->kvm
->slots_lock
);
4066 tr
->physical_address
= gpa
;
4067 tr
->valid
= gpa
!= UNMAPPED_GVA
;
4075 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4077 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4081 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
4082 fpu
->fcw
= fxsave
->cwd
;
4083 fpu
->fsw
= fxsave
->swd
;
4084 fpu
->ftwx
= fxsave
->twd
;
4085 fpu
->last_opcode
= fxsave
->fop
;
4086 fpu
->last_ip
= fxsave
->rip
;
4087 fpu
->last_dp
= fxsave
->rdp
;
4088 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
4095 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
4097 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->arch
.guest_fx_image
;
4101 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
4102 fxsave
->cwd
= fpu
->fcw
;
4103 fxsave
->swd
= fpu
->fsw
;
4104 fxsave
->twd
= fpu
->ftwx
;
4105 fxsave
->fop
= fpu
->last_opcode
;
4106 fxsave
->rip
= fpu
->last_ip
;
4107 fxsave
->rdp
= fpu
->last_dp
;
4108 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
4115 void fx_init(struct kvm_vcpu
*vcpu
)
4117 unsigned after_mxcsr_mask
;
4120 * Touch the fpu the first time in non atomic context as if
4121 * this is the first fpu instruction the exception handler
4122 * will fire before the instruction returns and it'll have to
4123 * allocate ram with GFP_KERNEL.
4126 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4128 /* Initialize guest FPU by resetting ours and saving into guest's */
4130 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4132 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4133 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4136 vcpu
->arch
.cr0
|= X86_CR0_ET
;
4137 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
4138 vcpu
->arch
.guest_fx_image
.mxcsr
= 0x1f80;
4139 memset((void *)&vcpu
->arch
.guest_fx_image
+ after_mxcsr_mask
,
4140 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
4142 EXPORT_SYMBOL_GPL(fx_init
);
4144 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
4146 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
4149 vcpu
->guest_fpu_loaded
= 1;
4150 kvm_fx_save(&vcpu
->arch
.host_fx_image
);
4151 kvm_fx_restore(&vcpu
->arch
.guest_fx_image
);
4153 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
4155 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
4157 if (!vcpu
->guest_fpu_loaded
)
4160 vcpu
->guest_fpu_loaded
= 0;
4161 kvm_fx_save(&vcpu
->arch
.guest_fx_image
);
4162 kvm_fx_restore(&vcpu
->arch
.host_fx_image
);
4163 ++vcpu
->stat
.fpu_reload
;
4165 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
4167 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
4169 if (vcpu
->arch
.time_page
) {
4170 kvm_release_page_dirty(vcpu
->arch
.time_page
);
4171 vcpu
->arch
.time_page
= NULL
;
4174 kvm_x86_ops
->vcpu_free(vcpu
);
4177 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
4180 return kvm_x86_ops
->vcpu_create(kvm
, id
);
4183 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
4187 /* We do fxsave: this must be aligned. */
4188 BUG_ON((unsigned long)&vcpu
->arch
.host_fx_image
& 0xF);
4190 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
4192 r
= kvm_arch_vcpu_reset(vcpu
);
4194 r
= kvm_mmu_setup(vcpu
);
4201 kvm_x86_ops
->vcpu_free(vcpu
);
4205 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
4208 kvm_mmu_unload(vcpu
);
4211 kvm_x86_ops
->vcpu_free(vcpu
);
4214 int kvm_arch_vcpu_reset(struct kvm_vcpu
*vcpu
)
4216 vcpu
->arch
.nmi_pending
= false;
4217 vcpu
->arch
.nmi_injected
= false;
4219 vcpu
->arch
.switch_db_regs
= 0;
4220 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
4221 vcpu
->arch
.dr6
= DR6_FIXED_1
;
4222 vcpu
->arch
.dr7
= DR7_FIXED_1
;
4224 return kvm_x86_ops
->vcpu_reset(vcpu
);
4227 void kvm_arch_hardware_enable(void *garbage
)
4229 kvm_x86_ops
->hardware_enable(garbage
);
4232 void kvm_arch_hardware_disable(void *garbage
)
4234 kvm_x86_ops
->hardware_disable(garbage
);
4237 int kvm_arch_hardware_setup(void)
4239 return kvm_x86_ops
->hardware_setup();
4242 void kvm_arch_hardware_unsetup(void)
4244 kvm_x86_ops
->hardware_unsetup();
4247 void kvm_arch_check_processor_compat(void *rtn
)
4249 kvm_x86_ops
->check_processor_compatibility(rtn
);
4252 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
4258 BUG_ON(vcpu
->kvm
== NULL
);
4261 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4262 if (!irqchip_in_kernel(kvm
) || vcpu
->vcpu_id
== 0)
4263 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
4265 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
4267 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
4272 vcpu
->arch
.pio_data
= page_address(page
);
4274 r
= kvm_mmu_create(vcpu
);
4276 goto fail_free_pio_data
;
4278 if (irqchip_in_kernel(kvm
)) {
4279 r
= kvm_create_lapic(vcpu
);
4281 goto fail_mmu_destroy
;
4287 kvm_mmu_destroy(vcpu
);
4289 free_page((unsigned long)vcpu
->arch
.pio_data
);
4294 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
4296 kvm_free_lapic(vcpu
);
4297 down_read(&vcpu
->kvm
->slots_lock
);
4298 kvm_mmu_destroy(vcpu
);
4299 up_read(&vcpu
->kvm
->slots_lock
);
4300 free_page((unsigned long)vcpu
->arch
.pio_data
);
4303 struct kvm
*kvm_arch_create_vm(void)
4305 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
4308 return ERR_PTR(-ENOMEM
);
4310 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
4311 INIT_LIST_HEAD(&kvm
->arch
.oos_global_pages
);
4312 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
4314 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4315 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
4317 rdtscll(kvm
->arch
.vm_init_tsc
);
4322 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
4325 kvm_mmu_unload(vcpu
);
4329 static void kvm_free_vcpus(struct kvm
*kvm
)
4334 * Unpin any mmu pages first.
4336 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
4338 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
4339 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
4340 if (kvm
->vcpus
[i
]) {
4341 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
4342 kvm
->vcpus
[i
] = NULL
;
4348 void kvm_arch_sync_events(struct kvm
*kvm
)
4350 kvm_free_all_assigned_devices(kvm
);
4353 void kvm_arch_destroy_vm(struct kvm
*kvm
)
4355 kvm_iommu_unmap_guest(kvm
);
4357 kfree(kvm
->arch
.vpic
);
4358 kfree(kvm
->arch
.vioapic
);
4359 kvm_free_vcpus(kvm
);
4360 kvm_free_physmem(kvm
);
4361 if (kvm
->arch
.apic_access_page
)
4362 put_page(kvm
->arch
.apic_access_page
);
4363 if (kvm
->arch
.ept_identity_pagetable
)
4364 put_page(kvm
->arch
.ept_identity_pagetable
);
4368 int kvm_arch_set_memory_region(struct kvm
*kvm
,
4369 struct kvm_userspace_memory_region
*mem
,
4370 struct kvm_memory_slot old
,
4373 int npages
= mem
->memory_size
>> PAGE_SHIFT
;
4374 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[mem
->slot
];
4376 /*To keep backward compatibility with older userspace,
4377 *x86 needs to hanlde !user_alloc case.
4380 if (npages
&& !old
.rmap
) {
4381 unsigned long userspace_addr
;
4383 down_write(¤t
->mm
->mmap_sem
);
4384 userspace_addr
= do_mmap(NULL
, 0,
4386 PROT_READ
| PROT_WRITE
,
4387 MAP_PRIVATE
| MAP_ANONYMOUS
,
4389 up_write(¤t
->mm
->mmap_sem
);
4391 if (IS_ERR((void *)userspace_addr
))
4392 return PTR_ERR((void *)userspace_addr
);
4394 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4395 spin_lock(&kvm
->mmu_lock
);
4396 memslot
->userspace_addr
= userspace_addr
;
4397 spin_unlock(&kvm
->mmu_lock
);
4399 if (!old
.user_alloc
&& old
.rmap
) {
4402 down_write(¤t
->mm
->mmap_sem
);
4403 ret
= do_munmap(current
->mm
, old
.userspace_addr
,
4404 old
.npages
* PAGE_SIZE
);
4405 up_write(¤t
->mm
->mmap_sem
);
4408 "kvm_vm_ioctl_set_memory_region: "
4409 "failed to munmap memory\n");
4414 if (!kvm
->arch
.n_requested_mmu_pages
) {
4415 unsigned int nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
4416 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
4419 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
4420 kvm_flush_remote_tlbs(kvm
);
4425 void kvm_arch_flush_shadow(struct kvm
*kvm
)
4427 kvm_mmu_zap_all(kvm
);
4430 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
4432 return vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
4433 || vcpu
->arch
.mp_state
== KVM_MP_STATE_SIPI_RECEIVED
4434 || vcpu
->arch
.nmi_pending
;
4437 static void vcpu_kick_intr(void *info
)
4440 struct kvm_vcpu
*vcpu
= (struct kvm_vcpu
*)info
;
4441 printk(KERN_DEBUG
"vcpu_kick_intr %p \n", vcpu
);
4445 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
4447 int ipi_pcpu
= vcpu
->cpu
;
4448 int cpu
= get_cpu();
4450 if (waitqueue_active(&vcpu
->wq
)) {
4451 wake_up_interruptible(&vcpu
->wq
);
4452 ++vcpu
->stat
.halt_wakeup
;
4455 * We may be called synchronously with irqs disabled in guest mode,
4456 * So need not to call smp_call_function_single() in that case.
4458 if (vcpu
->guest_mode
&& vcpu
->cpu
!= cpu
)
4459 smp_call_function_single(ipi_pcpu
, vcpu_kick_intr
, vcpu
, 0);