ACPI: pci_root: simplify list traversals
[linux-2.6/linux-acpi-2.6.git] / drivers / md / dm.c
blob424f7b048c304e8f2a4c7da7e325abbbd1859b53
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-uevent.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 #include <trace/block.h>
25 #define DM_MSG_PREFIX "core"
27 static const char *_name = DM_NAME;
29 static unsigned int major = 0;
30 static unsigned int _major = 0;
32 static DEFINE_SPINLOCK(_minor_lock);
34 * For bio-based dm.
35 * One of these is allocated per bio.
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
46 * For bio-based dm.
47 * One of these is allocated per target within a bio. Hopefully
48 * this will be simplified out one day.
50 struct dm_target_io {
51 struct dm_io *io;
52 struct dm_target *ti;
53 union map_info info;
56 DEFINE_TRACE(block_bio_complete);
59 * For request-based dm.
60 * One of these is allocated per request.
62 struct dm_rq_target_io {
63 struct mapped_device *md;
64 struct dm_target *ti;
65 struct request *orig, clone;
66 int error;
67 union map_info info;
71 * For request-based dm.
72 * One of these is allocated per bio.
74 struct dm_rq_clone_bio_info {
75 struct bio *orig;
76 struct request *rq;
79 union map_info *dm_get_mapinfo(struct bio *bio)
81 if (bio && bio->bi_private)
82 return &((struct dm_target_io *)bio->bi_private)->info;
83 return NULL;
86 #define MINOR_ALLOCED ((void *)-1)
89 * Bits for the md->flags field.
91 #define DMF_BLOCK_IO_FOR_SUSPEND 0
92 #define DMF_SUSPENDED 1
93 #define DMF_FROZEN 2
94 #define DMF_FREEING 3
95 #define DMF_DELETING 4
96 #define DMF_NOFLUSH_SUSPENDING 5
97 #define DMF_QUEUE_IO_TO_THREAD 6
100 * Work processed by per-device workqueue.
102 struct mapped_device {
103 struct rw_semaphore io_lock;
104 struct mutex suspend_lock;
105 rwlock_t map_lock;
106 atomic_t holders;
107 atomic_t open_count;
109 unsigned long flags;
111 struct request_queue *queue;
112 struct gendisk *disk;
113 char name[16];
115 void *interface_ptr;
118 * A list of ios that arrived while we were suspended.
120 atomic_t pending;
121 wait_queue_head_t wait;
122 struct work_struct work;
123 struct bio_list deferred;
124 spinlock_t deferred_lock;
127 * An error from the barrier request currently being processed.
129 int barrier_error;
132 * Processing queue (flush/barriers)
134 struct workqueue_struct *wq;
137 * The current mapping.
139 struct dm_table *map;
142 * io objects are allocated from here.
144 mempool_t *io_pool;
145 mempool_t *tio_pool;
147 struct bio_set *bs;
150 * Event handling.
152 atomic_t event_nr;
153 wait_queue_head_t eventq;
154 atomic_t uevent_seq;
155 struct list_head uevent_list;
156 spinlock_t uevent_lock; /* Protect access to uevent_list */
159 * freeze/thaw support require holding onto a super block
161 struct super_block *frozen_sb;
162 struct block_device *suspended_bdev;
164 /* forced geometry settings */
165 struct hd_geometry geometry;
167 /* sysfs handle */
168 struct kobject kobj;
171 #define MIN_IOS 256
172 static struct kmem_cache *_io_cache;
173 static struct kmem_cache *_tio_cache;
174 static struct kmem_cache *_rq_tio_cache;
175 static struct kmem_cache *_rq_bio_info_cache;
177 static int __init local_init(void)
179 int r = -ENOMEM;
181 /* allocate a slab for the dm_ios */
182 _io_cache = KMEM_CACHE(dm_io, 0);
183 if (!_io_cache)
184 return r;
186 /* allocate a slab for the target ios */
187 _tio_cache = KMEM_CACHE(dm_target_io, 0);
188 if (!_tio_cache)
189 goto out_free_io_cache;
191 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
192 if (!_rq_tio_cache)
193 goto out_free_tio_cache;
195 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
196 if (!_rq_bio_info_cache)
197 goto out_free_rq_tio_cache;
199 r = dm_uevent_init();
200 if (r)
201 goto out_free_rq_bio_info_cache;
203 _major = major;
204 r = register_blkdev(_major, _name);
205 if (r < 0)
206 goto out_uevent_exit;
208 if (!_major)
209 _major = r;
211 return 0;
213 out_uevent_exit:
214 dm_uevent_exit();
215 out_free_rq_bio_info_cache:
216 kmem_cache_destroy(_rq_bio_info_cache);
217 out_free_rq_tio_cache:
218 kmem_cache_destroy(_rq_tio_cache);
219 out_free_tio_cache:
220 kmem_cache_destroy(_tio_cache);
221 out_free_io_cache:
222 kmem_cache_destroy(_io_cache);
224 return r;
227 static void local_exit(void)
229 kmem_cache_destroy(_rq_bio_info_cache);
230 kmem_cache_destroy(_rq_tio_cache);
231 kmem_cache_destroy(_tio_cache);
232 kmem_cache_destroy(_io_cache);
233 unregister_blkdev(_major, _name);
234 dm_uevent_exit();
236 _major = 0;
238 DMINFO("cleaned up");
241 static int (*_inits[])(void) __initdata = {
242 local_init,
243 dm_target_init,
244 dm_linear_init,
245 dm_stripe_init,
246 dm_kcopyd_init,
247 dm_interface_init,
250 static void (*_exits[])(void) = {
251 local_exit,
252 dm_target_exit,
253 dm_linear_exit,
254 dm_stripe_exit,
255 dm_kcopyd_exit,
256 dm_interface_exit,
259 static int __init dm_init(void)
261 const int count = ARRAY_SIZE(_inits);
263 int r, i;
265 for (i = 0; i < count; i++) {
266 r = _inits[i]();
267 if (r)
268 goto bad;
271 return 0;
273 bad:
274 while (i--)
275 _exits[i]();
277 return r;
280 static void __exit dm_exit(void)
282 int i = ARRAY_SIZE(_exits);
284 while (i--)
285 _exits[i]();
289 * Block device functions
291 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
293 struct mapped_device *md;
295 spin_lock(&_minor_lock);
297 md = bdev->bd_disk->private_data;
298 if (!md)
299 goto out;
301 if (test_bit(DMF_FREEING, &md->flags) ||
302 test_bit(DMF_DELETING, &md->flags)) {
303 md = NULL;
304 goto out;
307 dm_get(md);
308 atomic_inc(&md->open_count);
310 out:
311 spin_unlock(&_minor_lock);
313 return md ? 0 : -ENXIO;
316 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
318 struct mapped_device *md = disk->private_data;
319 atomic_dec(&md->open_count);
320 dm_put(md);
321 return 0;
324 int dm_open_count(struct mapped_device *md)
326 return atomic_read(&md->open_count);
330 * Guarantees nothing is using the device before it's deleted.
332 int dm_lock_for_deletion(struct mapped_device *md)
334 int r = 0;
336 spin_lock(&_minor_lock);
338 if (dm_open_count(md))
339 r = -EBUSY;
340 else
341 set_bit(DMF_DELETING, &md->flags);
343 spin_unlock(&_minor_lock);
345 return r;
348 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
350 struct mapped_device *md = bdev->bd_disk->private_data;
352 return dm_get_geometry(md, geo);
355 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
356 unsigned int cmd, unsigned long arg)
358 struct mapped_device *md = bdev->bd_disk->private_data;
359 struct dm_table *map = dm_get_table(md);
360 struct dm_target *tgt;
361 int r = -ENOTTY;
363 if (!map || !dm_table_get_size(map))
364 goto out;
366 /* We only support devices that have a single target */
367 if (dm_table_get_num_targets(map) != 1)
368 goto out;
370 tgt = dm_table_get_target(map, 0);
372 if (dm_suspended(md)) {
373 r = -EAGAIN;
374 goto out;
377 if (tgt->type->ioctl)
378 r = tgt->type->ioctl(tgt, cmd, arg);
380 out:
381 dm_table_put(map);
383 return r;
386 static struct dm_io *alloc_io(struct mapped_device *md)
388 return mempool_alloc(md->io_pool, GFP_NOIO);
391 static void free_io(struct mapped_device *md, struct dm_io *io)
393 mempool_free(io, md->io_pool);
396 static struct dm_target_io *alloc_tio(struct mapped_device *md)
398 return mempool_alloc(md->tio_pool, GFP_NOIO);
401 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
403 mempool_free(tio, md->tio_pool);
406 static void start_io_acct(struct dm_io *io)
408 struct mapped_device *md = io->md;
409 int cpu;
411 io->start_time = jiffies;
413 cpu = part_stat_lock();
414 part_round_stats(cpu, &dm_disk(md)->part0);
415 part_stat_unlock();
416 dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
419 static void end_io_acct(struct dm_io *io)
421 struct mapped_device *md = io->md;
422 struct bio *bio = io->bio;
423 unsigned long duration = jiffies - io->start_time;
424 int pending, cpu;
425 int rw = bio_data_dir(bio);
427 cpu = part_stat_lock();
428 part_round_stats(cpu, &dm_disk(md)->part0);
429 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
430 part_stat_unlock();
433 * After this is decremented the bio must not be touched if it is
434 * a barrier.
436 dm_disk(md)->part0.in_flight = pending =
437 atomic_dec_return(&md->pending);
439 /* nudge anyone waiting on suspend queue */
440 if (!pending)
441 wake_up(&md->wait);
445 * Add the bio to the list of deferred io.
447 static void queue_io(struct mapped_device *md, struct bio *bio)
449 down_write(&md->io_lock);
451 spin_lock_irq(&md->deferred_lock);
452 bio_list_add(&md->deferred, bio);
453 spin_unlock_irq(&md->deferred_lock);
455 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
456 queue_work(md->wq, &md->work);
458 up_write(&md->io_lock);
462 * Everyone (including functions in this file), should use this
463 * function to access the md->map field, and make sure they call
464 * dm_table_put() when finished.
466 struct dm_table *dm_get_table(struct mapped_device *md)
468 struct dm_table *t;
470 read_lock(&md->map_lock);
471 t = md->map;
472 if (t)
473 dm_table_get(t);
474 read_unlock(&md->map_lock);
476 return t;
480 * Get the geometry associated with a dm device
482 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
484 *geo = md->geometry;
486 return 0;
490 * Set the geometry of a device.
492 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
494 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
496 if (geo->start > sz) {
497 DMWARN("Start sector is beyond the geometry limits.");
498 return -EINVAL;
501 md->geometry = *geo;
503 return 0;
506 /*-----------------------------------------------------------------
507 * CRUD START:
508 * A more elegant soln is in the works that uses the queue
509 * merge fn, unfortunately there are a couple of changes to
510 * the block layer that I want to make for this. So in the
511 * interests of getting something for people to use I give
512 * you this clearly demarcated crap.
513 *---------------------------------------------------------------*/
515 static int __noflush_suspending(struct mapped_device *md)
517 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
521 * Decrements the number of outstanding ios that a bio has been
522 * cloned into, completing the original io if necc.
524 static void dec_pending(struct dm_io *io, int error)
526 unsigned long flags;
527 int io_error;
528 struct bio *bio;
529 struct mapped_device *md = io->md;
531 /* Push-back supersedes any I/O errors */
532 if (error && !(io->error > 0 && __noflush_suspending(md)))
533 io->error = error;
535 if (atomic_dec_and_test(&io->io_count)) {
536 if (io->error == DM_ENDIO_REQUEUE) {
538 * Target requested pushing back the I/O.
540 spin_lock_irqsave(&md->deferred_lock, flags);
541 if (__noflush_suspending(md))
542 bio_list_add_head(&md->deferred, io->bio);
543 else
544 /* noflush suspend was interrupted. */
545 io->error = -EIO;
546 spin_unlock_irqrestore(&md->deferred_lock, flags);
549 io_error = io->error;
550 bio = io->bio;
552 if (bio_barrier(bio)) {
554 * There can be just one barrier request so we use
555 * a per-device variable for error reporting.
556 * Note that you can't touch the bio after end_io_acct
558 md->barrier_error = io_error;
559 end_io_acct(io);
560 } else {
561 end_io_acct(io);
563 if (io_error != DM_ENDIO_REQUEUE) {
564 trace_block_bio_complete(md->queue, bio);
566 bio_endio(bio, io_error);
570 free_io(md, io);
574 static void clone_endio(struct bio *bio, int error)
576 int r = 0;
577 struct dm_target_io *tio = bio->bi_private;
578 struct dm_io *io = tio->io;
579 struct mapped_device *md = tio->io->md;
580 dm_endio_fn endio = tio->ti->type->end_io;
582 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
583 error = -EIO;
585 if (endio) {
586 r = endio(tio->ti, bio, error, &tio->info);
587 if (r < 0 || r == DM_ENDIO_REQUEUE)
589 * error and requeue request are handled
590 * in dec_pending().
592 error = r;
593 else if (r == DM_ENDIO_INCOMPLETE)
594 /* The target will handle the io */
595 return;
596 else if (r) {
597 DMWARN("unimplemented target endio return value: %d", r);
598 BUG();
603 * Store md for cleanup instead of tio which is about to get freed.
605 bio->bi_private = md->bs;
607 free_tio(md, tio);
608 bio_put(bio);
609 dec_pending(io, error);
612 static sector_t max_io_len(struct mapped_device *md,
613 sector_t sector, struct dm_target *ti)
615 sector_t offset = sector - ti->begin;
616 sector_t len = ti->len - offset;
619 * Does the target need to split even further ?
621 if (ti->split_io) {
622 sector_t boundary;
623 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
624 - offset;
625 if (len > boundary)
626 len = boundary;
629 return len;
632 static void __map_bio(struct dm_target *ti, struct bio *clone,
633 struct dm_target_io *tio)
635 int r;
636 sector_t sector;
637 struct mapped_device *md;
640 * Sanity checks.
642 BUG_ON(!clone->bi_size);
644 clone->bi_end_io = clone_endio;
645 clone->bi_private = tio;
648 * Map the clone. If r == 0 we don't need to do
649 * anything, the target has assumed ownership of
650 * this io.
652 atomic_inc(&tio->io->io_count);
653 sector = clone->bi_sector;
654 r = ti->type->map(ti, clone, &tio->info);
655 if (r == DM_MAPIO_REMAPPED) {
656 /* the bio has been remapped so dispatch it */
658 trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
659 tio->io->bio->bi_bdev->bd_dev,
660 clone->bi_sector, sector);
662 generic_make_request(clone);
663 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
664 /* error the io and bail out, or requeue it if needed */
665 md = tio->io->md;
666 dec_pending(tio->io, r);
668 * Store bio_set for cleanup.
670 clone->bi_private = md->bs;
671 bio_put(clone);
672 free_tio(md, tio);
673 } else if (r) {
674 DMWARN("unimplemented target map return value: %d", r);
675 BUG();
679 struct clone_info {
680 struct mapped_device *md;
681 struct dm_table *map;
682 struct bio *bio;
683 struct dm_io *io;
684 sector_t sector;
685 sector_t sector_count;
686 unsigned short idx;
689 static void dm_bio_destructor(struct bio *bio)
691 struct bio_set *bs = bio->bi_private;
693 bio_free(bio, bs);
697 * Creates a little bio that is just does part of a bvec.
699 static struct bio *split_bvec(struct bio *bio, sector_t sector,
700 unsigned short idx, unsigned int offset,
701 unsigned int len, struct bio_set *bs)
703 struct bio *clone;
704 struct bio_vec *bv = bio->bi_io_vec + idx;
706 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
707 clone->bi_destructor = dm_bio_destructor;
708 *clone->bi_io_vec = *bv;
710 clone->bi_sector = sector;
711 clone->bi_bdev = bio->bi_bdev;
712 clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
713 clone->bi_vcnt = 1;
714 clone->bi_size = to_bytes(len);
715 clone->bi_io_vec->bv_offset = offset;
716 clone->bi_io_vec->bv_len = clone->bi_size;
717 clone->bi_flags |= 1 << BIO_CLONED;
719 if (bio_integrity(bio)) {
720 bio_integrity_clone(clone, bio, GFP_NOIO);
721 bio_integrity_trim(clone,
722 bio_sector_offset(bio, idx, offset), len);
725 return clone;
729 * Creates a bio that consists of range of complete bvecs.
731 static struct bio *clone_bio(struct bio *bio, sector_t sector,
732 unsigned short idx, unsigned short bv_count,
733 unsigned int len, struct bio_set *bs)
735 struct bio *clone;
737 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
738 __bio_clone(clone, bio);
739 clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
740 clone->bi_destructor = dm_bio_destructor;
741 clone->bi_sector = sector;
742 clone->bi_idx = idx;
743 clone->bi_vcnt = idx + bv_count;
744 clone->bi_size = to_bytes(len);
745 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
747 if (bio_integrity(bio)) {
748 bio_integrity_clone(clone, bio, GFP_NOIO);
750 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
751 bio_integrity_trim(clone,
752 bio_sector_offset(bio, idx, 0), len);
755 return clone;
758 static int __clone_and_map(struct clone_info *ci)
760 struct bio *clone, *bio = ci->bio;
761 struct dm_target *ti;
762 sector_t len = 0, max;
763 struct dm_target_io *tio;
765 ti = dm_table_find_target(ci->map, ci->sector);
766 if (!dm_target_is_valid(ti))
767 return -EIO;
769 max = max_io_len(ci->md, ci->sector, ti);
772 * Allocate a target io object.
774 tio = alloc_tio(ci->md);
775 tio->io = ci->io;
776 tio->ti = ti;
777 memset(&tio->info, 0, sizeof(tio->info));
779 if (ci->sector_count <= max) {
781 * Optimise for the simple case where we can do all of
782 * the remaining io with a single clone.
784 clone = clone_bio(bio, ci->sector, ci->idx,
785 bio->bi_vcnt - ci->idx, ci->sector_count,
786 ci->md->bs);
787 __map_bio(ti, clone, tio);
788 ci->sector_count = 0;
790 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
792 * There are some bvecs that don't span targets.
793 * Do as many of these as possible.
795 int i;
796 sector_t remaining = max;
797 sector_t bv_len;
799 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
800 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
802 if (bv_len > remaining)
803 break;
805 remaining -= bv_len;
806 len += bv_len;
809 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
810 ci->md->bs);
811 __map_bio(ti, clone, tio);
813 ci->sector += len;
814 ci->sector_count -= len;
815 ci->idx = i;
817 } else {
819 * Handle a bvec that must be split between two or more targets.
821 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
822 sector_t remaining = to_sector(bv->bv_len);
823 unsigned int offset = 0;
825 do {
826 if (offset) {
827 ti = dm_table_find_target(ci->map, ci->sector);
828 if (!dm_target_is_valid(ti))
829 return -EIO;
831 max = max_io_len(ci->md, ci->sector, ti);
833 tio = alloc_tio(ci->md);
834 tio->io = ci->io;
835 tio->ti = ti;
836 memset(&tio->info, 0, sizeof(tio->info));
839 len = min(remaining, max);
841 clone = split_bvec(bio, ci->sector, ci->idx,
842 bv->bv_offset + offset, len,
843 ci->md->bs);
845 __map_bio(ti, clone, tio);
847 ci->sector += len;
848 ci->sector_count -= len;
849 offset += to_bytes(len);
850 } while (remaining -= len);
852 ci->idx++;
855 return 0;
859 * Split the bio into several clones and submit it to targets.
861 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
863 struct clone_info ci;
864 int error = 0;
866 ci.map = dm_get_table(md);
867 if (unlikely(!ci.map)) {
868 if (!bio_barrier(bio))
869 bio_io_error(bio);
870 else
871 md->barrier_error = -EIO;
872 return;
875 ci.md = md;
876 ci.bio = bio;
877 ci.io = alloc_io(md);
878 ci.io->error = 0;
879 atomic_set(&ci.io->io_count, 1);
880 ci.io->bio = bio;
881 ci.io->md = md;
882 ci.sector = bio->bi_sector;
883 ci.sector_count = bio_sectors(bio);
884 ci.idx = bio->bi_idx;
886 start_io_acct(ci.io);
887 while (ci.sector_count && !error)
888 error = __clone_and_map(&ci);
890 /* drop the extra reference count */
891 dec_pending(ci.io, error);
892 dm_table_put(ci.map);
894 /*-----------------------------------------------------------------
895 * CRUD END
896 *---------------------------------------------------------------*/
898 static int dm_merge_bvec(struct request_queue *q,
899 struct bvec_merge_data *bvm,
900 struct bio_vec *biovec)
902 struct mapped_device *md = q->queuedata;
903 struct dm_table *map = dm_get_table(md);
904 struct dm_target *ti;
905 sector_t max_sectors;
906 int max_size = 0;
908 if (unlikely(!map))
909 goto out;
911 ti = dm_table_find_target(map, bvm->bi_sector);
912 if (!dm_target_is_valid(ti))
913 goto out_table;
916 * Find maximum amount of I/O that won't need splitting
918 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
919 (sector_t) BIO_MAX_SECTORS);
920 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
921 if (max_size < 0)
922 max_size = 0;
925 * merge_bvec_fn() returns number of bytes
926 * it can accept at this offset
927 * max is precomputed maximal io size
929 if (max_size && ti->type->merge)
930 max_size = ti->type->merge(ti, bvm, biovec, max_size);
932 out_table:
933 dm_table_put(map);
935 out:
937 * Always allow an entire first page
939 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
940 max_size = biovec->bv_len;
942 return max_size;
946 * The request function that just remaps the bio built up by
947 * dm_merge_bvec.
949 static int dm_request(struct request_queue *q, struct bio *bio)
951 int rw = bio_data_dir(bio);
952 struct mapped_device *md = q->queuedata;
953 int cpu;
955 down_read(&md->io_lock);
957 cpu = part_stat_lock();
958 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
959 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
960 part_stat_unlock();
963 * If we're suspended or the thread is processing barriers
964 * we have to queue this io for later.
966 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
967 unlikely(bio_barrier(bio))) {
968 up_read(&md->io_lock);
970 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
971 bio_rw(bio) == READA) {
972 bio_io_error(bio);
973 return 0;
976 queue_io(md, bio);
978 return 0;
981 __split_and_process_bio(md, bio);
982 up_read(&md->io_lock);
983 return 0;
986 static void dm_unplug_all(struct request_queue *q)
988 struct mapped_device *md = q->queuedata;
989 struct dm_table *map = dm_get_table(md);
991 if (map) {
992 dm_table_unplug_all(map);
993 dm_table_put(map);
997 static int dm_any_congested(void *congested_data, int bdi_bits)
999 int r = bdi_bits;
1000 struct mapped_device *md = congested_data;
1001 struct dm_table *map;
1003 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1004 map = dm_get_table(md);
1005 if (map) {
1006 r = dm_table_any_congested(map, bdi_bits);
1007 dm_table_put(map);
1011 return r;
1014 /*-----------------------------------------------------------------
1015 * An IDR is used to keep track of allocated minor numbers.
1016 *---------------------------------------------------------------*/
1017 static DEFINE_IDR(_minor_idr);
1019 static void free_minor(int minor)
1021 spin_lock(&_minor_lock);
1022 idr_remove(&_minor_idr, minor);
1023 spin_unlock(&_minor_lock);
1027 * See if the device with a specific minor # is free.
1029 static int specific_minor(int minor)
1031 int r, m;
1033 if (minor >= (1 << MINORBITS))
1034 return -EINVAL;
1036 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1037 if (!r)
1038 return -ENOMEM;
1040 spin_lock(&_minor_lock);
1042 if (idr_find(&_minor_idr, minor)) {
1043 r = -EBUSY;
1044 goto out;
1047 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1048 if (r)
1049 goto out;
1051 if (m != minor) {
1052 idr_remove(&_minor_idr, m);
1053 r = -EBUSY;
1054 goto out;
1057 out:
1058 spin_unlock(&_minor_lock);
1059 return r;
1062 static int next_free_minor(int *minor)
1064 int r, m;
1066 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1067 if (!r)
1068 return -ENOMEM;
1070 spin_lock(&_minor_lock);
1072 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1073 if (r)
1074 goto out;
1076 if (m >= (1 << MINORBITS)) {
1077 idr_remove(&_minor_idr, m);
1078 r = -ENOSPC;
1079 goto out;
1082 *minor = m;
1084 out:
1085 spin_unlock(&_minor_lock);
1086 return r;
1089 static struct block_device_operations dm_blk_dops;
1091 static void dm_wq_work(struct work_struct *work);
1094 * Allocate and initialise a blank device with a given minor.
1096 static struct mapped_device *alloc_dev(int minor)
1098 int r;
1099 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1100 void *old_md;
1102 if (!md) {
1103 DMWARN("unable to allocate device, out of memory.");
1104 return NULL;
1107 if (!try_module_get(THIS_MODULE))
1108 goto bad_module_get;
1110 /* get a minor number for the dev */
1111 if (minor == DM_ANY_MINOR)
1112 r = next_free_minor(&minor);
1113 else
1114 r = specific_minor(minor);
1115 if (r < 0)
1116 goto bad_minor;
1118 init_rwsem(&md->io_lock);
1119 mutex_init(&md->suspend_lock);
1120 spin_lock_init(&md->deferred_lock);
1121 rwlock_init(&md->map_lock);
1122 atomic_set(&md->holders, 1);
1123 atomic_set(&md->open_count, 0);
1124 atomic_set(&md->event_nr, 0);
1125 atomic_set(&md->uevent_seq, 0);
1126 INIT_LIST_HEAD(&md->uevent_list);
1127 spin_lock_init(&md->uevent_lock);
1129 md->queue = blk_alloc_queue(GFP_KERNEL);
1130 if (!md->queue)
1131 goto bad_queue;
1133 md->queue->queuedata = md;
1134 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1135 md->queue->backing_dev_info.congested_data = md;
1136 blk_queue_make_request(md->queue, dm_request);
1137 blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
1138 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1139 md->queue->unplug_fn = dm_unplug_all;
1140 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1142 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1143 if (!md->io_pool)
1144 goto bad_io_pool;
1146 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1147 if (!md->tio_pool)
1148 goto bad_tio_pool;
1150 md->bs = bioset_create(16, 0);
1151 if (!md->bs)
1152 goto bad_no_bioset;
1154 md->disk = alloc_disk(1);
1155 if (!md->disk)
1156 goto bad_disk;
1158 atomic_set(&md->pending, 0);
1159 init_waitqueue_head(&md->wait);
1160 INIT_WORK(&md->work, dm_wq_work);
1161 init_waitqueue_head(&md->eventq);
1163 md->disk->major = _major;
1164 md->disk->first_minor = minor;
1165 md->disk->fops = &dm_blk_dops;
1166 md->disk->queue = md->queue;
1167 md->disk->private_data = md;
1168 sprintf(md->disk->disk_name, "dm-%d", minor);
1169 add_disk(md->disk);
1170 format_dev_t(md->name, MKDEV(_major, minor));
1172 md->wq = create_singlethread_workqueue("kdmflush");
1173 if (!md->wq)
1174 goto bad_thread;
1176 /* Populate the mapping, nobody knows we exist yet */
1177 spin_lock(&_minor_lock);
1178 old_md = idr_replace(&_minor_idr, md, minor);
1179 spin_unlock(&_minor_lock);
1181 BUG_ON(old_md != MINOR_ALLOCED);
1183 return md;
1185 bad_thread:
1186 put_disk(md->disk);
1187 bad_disk:
1188 bioset_free(md->bs);
1189 bad_no_bioset:
1190 mempool_destroy(md->tio_pool);
1191 bad_tio_pool:
1192 mempool_destroy(md->io_pool);
1193 bad_io_pool:
1194 blk_cleanup_queue(md->queue);
1195 bad_queue:
1196 free_minor(minor);
1197 bad_minor:
1198 module_put(THIS_MODULE);
1199 bad_module_get:
1200 kfree(md);
1201 return NULL;
1204 static void unlock_fs(struct mapped_device *md);
1206 static void free_dev(struct mapped_device *md)
1208 int minor = MINOR(disk_devt(md->disk));
1210 if (md->suspended_bdev) {
1211 unlock_fs(md);
1212 bdput(md->suspended_bdev);
1214 destroy_workqueue(md->wq);
1215 mempool_destroy(md->tio_pool);
1216 mempool_destroy(md->io_pool);
1217 bioset_free(md->bs);
1218 blk_integrity_unregister(md->disk);
1219 del_gendisk(md->disk);
1220 free_minor(minor);
1222 spin_lock(&_minor_lock);
1223 md->disk->private_data = NULL;
1224 spin_unlock(&_minor_lock);
1226 put_disk(md->disk);
1227 blk_cleanup_queue(md->queue);
1228 module_put(THIS_MODULE);
1229 kfree(md);
1233 * Bind a table to the device.
1235 static void event_callback(void *context)
1237 unsigned long flags;
1238 LIST_HEAD(uevents);
1239 struct mapped_device *md = (struct mapped_device *) context;
1241 spin_lock_irqsave(&md->uevent_lock, flags);
1242 list_splice_init(&md->uevent_list, &uevents);
1243 spin_unlock_irqrestore(&md->uevent_lock, flags);
1245 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1247 atomic_inc(&md->event_nr);
1248 wake_up(&md->eventq);
1251 static void __set_size(struct mapped_device *md, sector_t size)
1253 set_capacity(md->disk, size);
1255 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1256 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1257 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1260 static int __bind(struct mapped_device *md, struct dm_table *t)
1262 struct request_queue *q = md->queue;
1263 sector_t size;
1265 size = dm_table_get_size(t);
1268 * Wipe any geometry if the size of the table changed.
1270 if (size != get_capacity(md->disk))
1271 memset(&md->geometry, 0, sizeof(md->geometry));
1273 if (md->suspended_bdev)
1274 __set_size(md, size);
1276 if (!size) {
1277 dm_table_destroy(t);
1278 return 0;
1281 dm_table_event_callback(t, event_callback, md);
1283 write_lock(&md->map_lock);
1284 md->map = t;
1285 dm_table_set_restrictions(t, q);
1286 write_unlock(&md->map_lock);
1288 return 0;
1291 static void __unbind(struct mapped_device *md)
1293 struct dm_table *map = md->map;
1295 if (!map)
1296 return;
1298 dm_table_event_callback(map, NULL, NULL);
1299 write_lock(&md->map_lock);
1300 md->map = NULL;
1301 write_unlock(&md->map_lock);
1302 dm_table_destroy(map);
1306 * Constructor for a new device.
1308 int dm_create(int minor, struct mapped_device **result)
1310 struct mapped_device *md;
1312 md = alloc_dev(minor);
1313 if (!md)
1314 return -ENXIO;
1316 dm_sysfs_init(md);
1318 *result = md;
1319 return 0;
1322 static struct mapped_device *dm_find_md(dev_t dev)
1324 struct mapped_device *md;
1325 unsigned minor = MINOR(dev);
1327 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1328 return NULL;
1330 spin_lock(&_minor_lock);
1332 md = idr_find(&_minor_idr, minor);
1333 if (md && (md == MINOR_ALLOCED ||
1334 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1335 test_bit(DMF_FREEING, &md->flags))) {
1336 md = NULL;
1337 goto out;
1340 out:
1341 spin_unlock(&_minor_lock);
1343 return md;
1346 struct mapped_device *dm_get_md(dev_t dev)
1348 struct mapped_device *md = dm_find_md(dev);
1350 if (md)
1351 dm_get(md);
1353 return md;
1356 void *dm_get_mdptr(struct mapped_device *md)
1358 return md->interface_ptr;
1361 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1363 md->interface_ptr = ptr;
1366 void dm_get(struct mapped_device *md)
1368 atomic_inc(&md->holders);
1371 const char *dm_device_name(struct mapped_device *md)
1373 return md->name;
1375 EXPORT_SYMBOL_GPL(dm_device_name);
1377 void dm_put(struct mapped_device *md)
1379 struct dm_table *map;
1381 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1383 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1384 map = dm_get_table(md);
1385 idr_replace(&_minor_idr, MINOR_ALLOCED,
1386 MINOR(disk_devt(dm_disk(md))));
1387 set_bit(DMF_FREEING, &md->flags);
1388 spin_unlock(&_minor_lock);
1389 if (!dm_suspended(md)) {
1390 dm_table_presuspend_targets(map);
1391 dm_table_postsuspend_targets(map);
1393 dm_sysfs_exit(md);
1394 dm_table_put(map);
1395 __unbind(md);
1396 free_dev(md);
1399 EXPORT_SYMBOL_GPL(dm_put);
1401 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1403 int r = 0;
1404 DECLARE_WAITQUEUE(wait, current);
1406 dm_unplug_all(md->queue);
1408 add_wait_queue(&md->wait, &wait);
1410 while (1) {
1411 set_current_state(interruptible);
1413 smp_mb();
1414 if (!atomic_read(&md->pending))
1415 break;
1417 if (interruptible == TASK_INTERRUPTIBLE &&
1418 signal_pending(current)) {
1419 r = -EINTR;
1420 break;
1423 io_schedule();
1425 set_current_state(TASK_RUNNING);
1427 remove_wait_queue(&md->wait, &wait);
1429 return r;
1432 static int dm_flush(struct mapped_device *md)
1434 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
1435 return 0;
1438 static void process_barrier(struct mapped_device *md, struct bio *bio)
1440 int error = dm_flush(md);
1442 if (unlikely(error)) {
1443 bio_endio(bio, error);
1444 return;
1446 if (bio_empty_barrier(bio)) {
1447 bio_endio(bio, 0);
1448 return;
1451 __split_and_process_bio(md, bio);
1453 error = dm_flush(md);
1455 if (!error && md->barrier_error)
1456 error = md->barrier_error;
1458 if (md->barrier_error != DM_ENDIO_REQUEUE)
1459 bio_endio(bio, error);
1463 * Process the deferred bios
1465 static void dm_wq_work(struct work_struct *work)
1467 struct mapped_device *md = container_of(work, struct mapped_device,
1468 work);
1469 struct bio *c;
1471 down_write(&md->io_lock);
1473 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1474 spin_lock_irq(&md->deferred_lock);
1475 c = bio_list_pop(&md->deferred);
1476 spin_unlock_irq(&md->deferred_lock);
1478 if (!c) {
1479 clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1480 break;
1483 up_write(&md->io_lock);
1485 if (bio_barrier(c))
1486 process_barrier(md, c);
1487 else
1488 __split_and_process_bio(md, c);
1490 down_write(&md->io_lock);
1493 up_write(&md->io_lock);
1496 static void dm_queue_flush(struct mapped_device *md)
1498 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1499 smp_mb__after_clear_bit();
1500 queue_work(md->wq, &md->work);
1504 * Swap in a new table (destroying old one).
1506 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1508 int r = -EINVAL;
1510 mutex_lock(&md->suspend_lock);
1512 /* device must be suspended */
1513 if (!dm_suspended(md))
1514 goto out;
1516 /* without bdev, the device size cannot be changed */
1517 if (!md->suspended_bdev)
1518 if (get_capacity(md->disk) != dm_table_get_size(table))
1519 goto out;
1521 __unbind(md);
1522 r = __bind(md, table);
1524 out:
1525 mutex_unlock(&md->suspend_lock);
1526 return r;
1530 * Functions to lock and unlock any filesystem running on the
1531 * device.
1533 static int lock_fs(struct mapped_device *md)
1535 int r;
1537 WARN_ON(md->frozen_sb);
1539 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1540 if (IS_ERR(md->frozen_sb)) {
1541 r = PTR_ERR(md->frozen_sb);
1542 md->frozen_sb = NULL;
1543 return r;
1546 set_bit(DMF_FROZEN, &md->flags);
1548 /* don't bdput right now, we don't want the bdev
1549 * to go away while it is locked.
1551 return 0;
1554 static void unlock_fs(struct mapped_device *md)
1556 if (!test_bit(DMF_FROZEN, &md->flags))
1557 return;
1559 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1560 md->frozen_sb = NULL;
1561 clear_bit(DMF_FROZEN, &md->flags);
1565 * We need to be able to change a mapping table under a mounted
1566 * filesystem. For example we might want to move some data in
1567 * the background. Before the table can be swapped with
1568 * dm_bind_table, dm_suspend must be called to flush any in
1569 * flight bios and ensure that any further io gets deferred.
1571 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1573 struct dm_table *map = NULL;
1574 int r = 0;
1575 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1576 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1578 mutex_lock(&md->suspend_lock);
1580 if (dm_suspended(md)) {
1581 r = -EINVAL;
1582 goto out_unlock;
1585 map = dm_get_table(md);
1588 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1589 * This flag is cleared before dm_suspend returns.
1591 if (noflush)
1592 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1594 /* This does not get reverted if there's an error later. */
1595 dm_table_presuspend_targets(map);
1597 /* bdget() can stall if the pending I/Os are not flushed */
1598 if (!noflush) {
1599 md->suspended_bdev = bdget_disk(md->disk, 0);
1600 if (!md->suspended_bdev) {
1601 DMWARN("bdget failed in dm_suspend");
1602 r = -ENOMEM;
1603 goto out;
1607 * Flush I/O to the device. noflush supersedes do_lockfs,
1608 * because lock_fs() needs to flush I/Os.
1610 if (do_lockfs) {
1611 r = lock_fs(md);
1612 if (r)
1613 goto out;
1618 * Here we must make sure that no processes are submitting requests
1619 * to target drivers i.e. no one may be executing
1620 * __split_and_process_bio. This is called from dm_request and
1621 * dm_wq_work.
1623 * To get all processes out of __split_and_process_bio in dm_request,
1624 * we take the write lock. To prevent any process from reentering
1625 * __split_and_process_bio from dm_request, we set
1626 * DMF_QUEUE_IO_TO_THREAD.
1628 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1629 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1630 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1631 * further calls to __split_and_process_bio from dm_wq_work.
1633 down_write(&md->io_lock);
1634 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1635 set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
1636 up_write(&md->io_lock);
1638 flush_workqueue(md->wq);
1641 * At this point no more requests are entering target request routines.
1642 * We call dm_wait_for_completion to wait for all existing requests
1643 * to finish.
1645 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
1647 down_write(&md->io_lock);
1648 if (noflush)
1649 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1650 up_write(&md->io_lock);
1652 /* were we interrupted ? */
1653 if (r < 0) {
1654 dm_queue_flush(md);
1656 unlock_fs(md);
1657 goto out; /* pushback list is already flushed, so skip flush */
1661 * If dm_wait_for_completion returned 0, the device is completely
1662 * quiescent now. There is no request-processing activity. All new
1663 * requests are being added to md->deferred list.
1666 dm_table_postsuspend_targets(map);
1668 set_bit(DMF_SUSPENDED, &md->flags);
1670 out:
1671 if (r && md->suspended_bdev) {
1672 bdput(md->suspended_bdev);
1673 md->suspended_bdev = NULL;
1676 dm_table_put(map);
1678 out_unlock:
1679 mutex_unlock(&md->suspend_lock);
1680 return r;
1683 int dm_resume(struct mapped_device *md)
1685 int r = -EINVAL;
1686 struct dm_table *map = NULL;
1688 mutex_lock(&md->suspend_lock);
1689 if (!dm_suspended(md))
1690 goto out;
1692 map = dm_get_table(md);
1693 if (!map || !dm_table_get_size(map))
1694 goto out;
1696 r = dm_table_resume_targets(map);
1697 if (r)
1698 goto out;
1700 dm_queue_flush(md);
1702 unlock_fs(md);
1704 if (md->suspended_bdev) {
1705 bdput(md->suspended_bdev);
1706 md->suspended_bdev = NULL;
1709 clear_bit(DMF_SUSPENDED, &md->flags);
1711 dm_table_unplug_all(map);
1713 dm_kobject_uevent(md);
1715 r = 0;
1717 out:
1718 dm_table_put(map);
1719 mutex_unlock(&md->suspend_lock);
1721 return r;
1724 /*-----------------------------------------------------------------
1725 * Event notification.
1726 *---------------------------------------------------------------*/
1727 void dm_kobject_uevent(struct mapped_device *md)
1729 kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
1732 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1734 return atomic_add_return(1, &md->uevent_seq);
1737 uint32_t dm_get_event_nr(struct mapped_device *md)
1739 return atomic_read(&md->event_nr);
1742 int dm_wait_event(struct mapped_device *md, int event_nr)
1744 return wait_event_interruptible(md->eventq,
1745 (event_nr != atomic_read(&md->event_nr)));
1748 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1750 unsigned long flags;
1752 spin_lock_irqsave(&md->uevent_lock, flags);
1753 list_add(elist, &md->uevent_list);
1754 spin_unlock_irqrestore(&md->uevent_lock, flags);
1758 * The gendisk is only valid as long as you have a reference
1759 * count on 'md'.
1761 struct gendisk *dm_disk(struct mapped_device *md)
1763 return md->disk;
1766 struct kobject *dm_kobject(struct mapped_device *md)
1768 return &md->kobj;
1772 * struct mapped_device should not be exported outside of dm.c
1773 * so use this check to verify that kobj is part of md structure
1775 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
1777 struct mapped_device *md;
1779 md = container_of(kobj, struct mapped_device, kobj);
1780 if (&md->kobj != kobj)
1781 return NULL;
1783 dm_get(md);
1784 return md;
1787 int dm_suspended(struct mapped_device *md)
1789 return test_bit(DMF_SUSPENDED, &md->flags);
1792 int dm_noflush_suspending(struct dm_target *ti)
1794 struct mapped_device *md = dm_table_get_md(ti->table);
1795 int r = __noflush_suspending(md);
1797 dm_put(md);
1799 return r;
1801 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1803 static struct block_device_operations dm_blk_dops = {
1804 .open = dm_blk_open,
1805 .release = dm_blk_close,
1806 .ioctl = dm_blk_ioctl,
1807 .getgeo = dm_blk_getgeo,
1808 .owner = THIS_MODULE
1811 EXPORT_SYMBOL(dm_get_mapinfo);
1814 * module hooks
1816 module_init(dm_init);
1817 module_exit(dm_exit);
1819 module_param(major, uint, 0);
1820 MODULE_PARM_DESC(major, "The major number of the device mapper");
1821 MODULE_DESCRIPTION(DM_NAME " driver");
1822 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1823 MODULE_LICENSE("GPL");