2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
58 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
59 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
60 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
62 #ifndef PHYSICAL_PAGE_MASK
63 #define PHYSICAL_PAGE_MASK PAGE_MASK
66 /* global iommu list, set NULL for ignored DMAR units */
67 static struct intel_iommu
**g_iommus
;
69 static int rwbf_quirk
;
74 * 12-63: Context Ptr (12 - (haw-1))
81 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
82 static inline bool root_present(struct root_entry
*root
)
84 return (root
->val
& 1);
86 static inline void set_root_present(struct root_entry
*root
)
90 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
92 root
->val
|= value
& VTD_PAGE_MASK
;
95 static inline struct context_entry
*
96 get_context_addr_from_root(struct root_entry
*root
)
98 return (struct context_entry
*)
99 (root_present(root
)?phys_to_virt(
100 root
->val
& VTD_PAGE_MASK
) :
107 * 1: fault processing disable
108 * 2-3: translation type
109 * 12-63: address space root
115 struct context_entry
{
120 static inline bool context_present(struct context_entry
*context
)
122 return (context
->lo
& 1);
124 static inline void context_set_present(struct context_entry
*context
)
129 static inline void context_set_fault_enable(struct context_entry
*context
)
131 context
->lo
&= (((u64
)-1) << 2) | 1;
134 #define CONTEXT_TT_MULTI_LEVEL 0
136 static inline void context_set_translation_type(struct context_entry
*context
,
139 context
->lo
&= (((u64
)-1) << 4) | 3;
140 context
->lo
|= (value
& 3) << 2;
143 static inline void context_set_address_root(struct context_entry
*context
,
146 context
->lo
|= value
& VTD_PAGE_MASK
;
149 static inline void context_set_address_width(struct context_entry
*context
,
152 context
->hi
|= value
& 7;
155 static inline void context_set_domain_id(struct context_entry
*context
,
158 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
161 static inline void context_clear_entry(struct context_entry
*context
)
174 * 12-63: Host physcial address
180 static inline void dma_clear_pte(struct dma_pte
*pte
)
185 static inline void dma_set_pte_readable(struct dma_pte
*pte
)
187 pte
->val
|= DMA_PTE_READ
;
190 static inline void dma_set_pte_writable(struct dma_pte
*pte
)
192 pte
->val
|= DMA_PTE_WRITE
;
195 static inline void dma_set_pte_snp(struct dma_pte
*pte
)
197 pte
->val
|= DMA_PTE_SNP
;
200 static inline void dma_set_pte_prot(struct dma_pte
*pte
, unsigned long prot
)
202 pte
->val
= (pte
->val
& ~3) | (prot
& 3);
205 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
207 return (pte
->val
& VTD_PAGE_MASK
);
210 static inline void dma_set_pte_addr(struct dma_pte
*pte
, u64 addr
)
212 pte
->val
|= (addr
& VTD_PAGE_MASK
);
215 static inline bool dma_pte_present(struct dma_pte
*pte
)
217 return (pte
->val
& 3) != 0;
220 /* devices under the same p2p bridge are owned in one domain */
221 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
223 /* domain represents a virtual machine, more than one devices
224 * across iommus may be owned in one domain, e.g. kvm guest.
226 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
229 int id
; /* domain id */
230 unsigned long iommu_bmp
; /* bitmap of iommus this domain uses*/
232 struct list_head devices
; /* all devices' list */
233 struct iova_domain iovad
; /* iova's that belong to this domain */
235 struct dma_pte
*pgd
; /* virtual address */
236 spinlock_t mapping_lock
; /* page table lock */
237 int gaw
; /* max guest address width */
239 /* adjusted guest address width, 0 is level 2 30-bit */
242 int flags
; /* flags to find out type of domain */
244 int iommu_coherency
;/* indicate coherency of iommu access */
245 int iommu_snooping
; /* indicate snooping control feature*/
246 int iommu_count
; /* reference count of iommu */
247 spinlock_t iommu_lock
; /* protect iommu set in domain */
248 u64 max_addr
; /* maximum mapped address */
251 /* PCI domain-device relationship */
252 struct device_domain_info
{
253 struct list_head link
; /* link to domain siblings */
254 struct list_head global
; /* link to global list */
255 int segment
; /* PCI domain */
256 u8 bus
; /* PCI bus number */
257 u8 devfn
; /* PCI devfn number */
258 struct pci_dev
*dev
; /* it's NULL for PCIE-to-PCI bridge */
259 struct dmar_domain
*domain
; /* pointer to domain */
262 static void flush_unmaps_timeout(unsigned long data
);
264 DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
266 #define HIGH_WATER_MARK 250
267 struct deferred_flush_tables
{
269 struct iova
*iova
[HIGH_WATER_MARK
];
270 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
273 static struct deferred_flush_tables
*deferred_flush
;
275 /* bitmap for indexing intel_iommus */
276 static int g_num_of_iommus
;
278 static DEFINE_SPINLOCK(async_umap_flush_lock
);
279 static LIST_HEAD(unmaps_to_do
);
282 static long list_size
;
284 static void domain_remove_dev_info(struct dmar_domain
*domain
);
286 #ifdef CONFIG_DMAR_DEFAULT_ON
287 int dmar_disabled
= 0;
289 int dmar_disabled
= 1;
290 #endif /*CONFIG_DMAR_DEFAULT_ON*/
292 static int __initdata dmar_map_gfx
= 1;
293 static int dmar_forcedac
;
294 static int intel_iommu_strict
;
296 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
297 static DEFINE_SPINLOCK(device_domain_lock
);
298 static LIST_HEAD(device_domain_list
);
300 static struct iommu_ops intel_iommu_ops
;
302 static int __init
intel_iommu_setup(char *str
)
307 if (!strncmp(str
, "on", 2)) {
309 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
310 } else if (!strncmp(str
, "off", 3)) {
312 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
313 } else if (!strncmp(str
, "igfx_off", 8)) {
316 "Intel-IOMMU: disable GFX device mapping\n");
317 } else if (!strncmp(str
, "forcedac", 8)) {
319 "Intel-IOMMU: Forcing DAC for PCI devices\n");
321 } else if (!strncmp(str
, "strict", 6)) {
323 "Intel-IOMMU: disable batched IOTLB flush\n");
324 intel_iommu_strict
= 1;
327 str
+= strcspn(str
, ",");
333 __setup("intel_iommu=", intel_iommu_setup
);
335 static struct kmem_cache
*iommu_domain_cache
;
336 static struct kmem_cache
*iommu_devinfo_cache
;
337 static struct kmem_cache
*iommu_iova_cache
;
339 static inline void *iommu_kmem_cache_alloc(struct kmem_cache
*cachep
)
344 /* trying to avoid low memory issues */
345 flags
= current
->flags
& PF_MEMALLOC
;
346 current
->flags
|= PF_MEMALLOC
;
347 vaddr
= kmem_cache_alloc(cachep
, GFP_ATOMIC
);
348 current
->flags
&= (~PF_MEMALLOC
| flags
);
353 static inline void *alloc_pgtable_page(void)
358 /* trying to avoid low memory issues */
359 flags
= current
->flags
& PF_MEMALLOC
;
360 current
->flags
|= PF_MEMALLOC
;
361 vaddr
= (void *)get_zeroed_page(GFP_ATOMIC
);
362 current
->flags
&= (~PF_MEMALLOC
| flags
);
366 static inline void free_pgtable_page(void *vaddr
)
368 free_page((unsigned long)vaddr
);
371 static inline void *alloc_domain_mem(void)
373 return iommu_kmem_cache_alloc(iommu_domain_cache
);
376 static void free_domain_mem(void *vaddr
)
378 kmem_cache_free(iommu_domain_cache
, vaddr
);
381 static inline void * alloc_devinfo_mem(void)
383 return iommu_kmem_cache_alloc(iommu_devinfo_cache
);
386 static inline void free_devinfo_mem(void *vaddr
)
388 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
391 struct iova
*alloc_iova_mem(void)
393 return iommu_kmem_cache_alloc(iommu_iova_cache
);
396 void free_iova_mem(struct iova
*iova
)
398 kmem_cache_free(iommu_iova_cache
, iova
);
402 static inline int width_to_agaw(int width
);
404 /* calculate agaw for each iommu.
405 * "SAGAW" may be different across iommus, use a default agaw, and
406 * get a supported less agaw for iommus that don't support the default agaw.
408 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
413 sagaw
= cap_sagaw(iommu
->cap
);
414 for (agaw
= width_to_agaw(DEFAULT_DOMAIN_ADDRESS_WIDTH
);
416 if (test_bit(agaw
, &sagaw
))
423 /* in native case, each domain is related to only one iommu */
424 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
428 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
430 iommu_id
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
431 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
434 return g_iommus
[iommu_id
];
437 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
441 domain
->iommu_coherency
= 1;
443 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
444 for (; i
< g_num_of_iommus
; ) {
445 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
446 domain
->iommu_coherency
= 0;
449 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
453 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
457 domain
->iommu_snooping
= 1;
459 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
460 for (; i
< g_num_of_iommus
; ) {
461 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
462 domain
->iommu_snooping
= 0;
465 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
469 /* Some capabilities may be different across iommus */
470 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
472 domain_update_iommu_coherency(domain
);
473 domain_update_iommu_snooping(domain
);
476 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
478 struct dmar_drhd_unit
*drhd
= NULL
;
481 for_each_drhd_unit(drhd
) {
484 if (segment
!= drhd
->segment
)
487 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
488 if (drhd
->devices
[i
] &&
489 drhd
->devices
[i
]->bus
->number
== bus
&&
490 drhd
->devices
[i
]->devfn
== devfn
)
492 if (drhd
->devices
[i
] &&
493 drhd
->devices
[i
]->subordinate
&&
494 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
495 drhd
->devices
[i
]->subordinate
->subordinate
>= bus
)
499 if (drhd
->include_all
)
506 static void domain_flush_cache(struct dmar_domain
*domain
,
507 void *addr
, int size
)
509 if (!domain
->iommu_coherency
)
510 clflush_cache_range(addr
, size
);
513 /* Gets context entry for a given bus and devfn */
514 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
517 struct root_entry
*root
;
518 struct context_entry
*context
;
519 unsigned long phy_addr
;
522 spin_lock_irqsave(&iommu
->lock
, flags
);
523 root
= &iommu
->root_entry
[bus
];
524 context
= get_context_addr_from_root(root
);
526 context
= (struct context_entry
*)alloc_pgtable_page();
528 spin_unlock_irqrestore(&iommu
->lock
, flags
);
531 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
532 phy_addr
= virt_to_phys((void *)context
);
533 set_root_value(root
, phy_addr
);
534 set_root_present(root
);
535 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
537 spin_unlock_irqrestore(&iommu
->lock
, flags
);
538 return &context
[devfn
];
541 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
543 struct root_entry
*root
;
544 struct context_entry
*context
;
548 spin_lock_irqsave(&iommu
->lock
, flags
);
549 root
= &iommu
->root_entry
[bus
];
550 context
= get_context_addr_from_root(root
);
555 ret
= context_present(&context
[devfn
]);
557 spin_unlock_irqrestore(&iommu
->lock
, flags
);
561 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
563 struct root_entry
*root
;
564 struct context_entry
*context
;
567 spin_lock_irqsave(&iommu
->lock
, flags
);
568 root
= &iommu
->root_entry
[bus
];
569 context
= get_context_addr_from_root(root
);
571 context_clear_entry(&context
[devfn
]);
572 __iommu_flush_cache(iommu
, &context
[devfn
], \
575 spin_unlock_irqrestore(&iommu
->lock
, flags
);
578 static void free_context_table(struct intel_iommu
*iommu
)
580 struct root_entry
*root
;
583 struct context_entry
*context
;
585 spin_lock_irqsave(&iommu
->lock
, flags
);
586 if (!iommu
->root_entry
) {
589 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
590 root
= &iommu
->root_entry
[i
];
591 context
= get_context_addr_from_root(root
);
593 free_pgtable_page(context
);
595 free_pgtable_page(iommu
->root_entry
);
596 iommu
->root_entry
= NULL
;
598 spin_unlock_irqrestore(&iommu
->lock
, flags
);
601 /* page table handling */
602 #define LEVEL_STRIDE (9)
603 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
605 static inline int agaw_to_level(int agaw
)
610 static inline int agaw_to_width(int agaw
)
612 return 30 + agaw
* LEVEL_STRIDE
;
616 static inline int width_to_agaw(int width
)
618 return (width
- 30) / LEVEL_STRIDE
;
621 static inline unsigned int level_to_offset_bits(int level
)
623 return (12 + (level
- 1) * LEVEL_STRIDE
);
626 static inline int address_level_offset(u64 addr
, int level
)
628 return ((addr
>> level_to_offset_bits(level
)) & LEVEL_MASK
);
631 static inline u64
level_mask(int level
)
633 return ((u64
)-1 << level_to_offset_bits(level
));
636 static inline u64
level_size(int level
)
638 return ((u64
)1 << level_to_offset_bits(level
));
641 static inline u64
align_to_level(u64 addr
, int level
)
643 return ((addr
+ level_size(level
) - 1) & level_mask(level
));
646 static struct dma_pte
* addr_to_dma_pte(struct dmar_domain
*domain
, u64 addr
)
648 int addr_width
= agaw_to_width(domain
->agaw
);
649 struct dma_pte
*parent
, *pte
= NULL
;
650 int level
= agaw_to_level(domain
->agaw
);
654 BUG_ON(!domain
->pgd
);
656 addr
&= (((u64
)1) << addr_width
) - 1;
657 parent
= domain
->pgd
;
659 spin_lock_irqsave(&domain
->mapping_lock
, flags
);
663 offset
= address_level_offset(addr
, level
);
664 pte
= &parent
[offset
];
668 if (!dma_pte_present(pte
)) {
669 tmp_page
= alloc_pgtable_page();
672 spin_unlock_irqrestore(&domain
->mapping_lock
,
676 domain_flush_cache(domain
, tmp_page
, PAGE_SIZE
);
677 dma_set_pte_addr(pte
, virt_to_phys(tmp_page
));
679 * high level table always sets r/w, last level page
680 * table control read/write
682 dma_set_pte_readable(pte
);
683 dma_set_pte_writable(pte
);
684 domain_flush_cache(domain
, pte
, sizeof(*pte
));
686 parent
= phys_to_virt(dma_pte_addr(pte
));
690 spin_unlock_irqrestore(&domain
->mapping_lock
, flags
);
694 /* return address's pte at specific level */
695 static struct dma_pte
*dma_addr_level_pte(struct dmar_domain
*domain
, u64 addr
,
698 struct dma_pte
*parent
, *pte
= NULL
;
699 int total
= agaw_to_level(domain
->agaw
);
702 parent
= domain
->pgd
;
703 while (level
<= total
) {
704 offset
= address_level_offset(addr
, total
);
705 pte
= &parent
[offset
];
709 if (!dma_pte_present(pte
))
711 parent
= phys_to_virt(dma_pte_addr(pte
));
717 /* clear one page's page table */
718 static void dma_pte_clear_one(struct dmar_domain
*domain
, u64 addr
)
720 struct dma_pte
*pte
= NULL
;
722 /* get last level pte */
723 pte
= dma_addr_level_pte(domain
, addr
, 1);
727 domain_flush_cache(domain
, pte
, sizeof(*pte
));
731 /* clear last level pte, a tlb flush should be followed */
732 static void dma_pte_clear_range(struct dmar_domain
*domain
, u64 start
, u64 end
)
734 int addr_width
= agaw_to_width(domain
->agaw
);
737 start
&= (((u64
)1) << addr_width
) - 1;
738 end
&= (((u64
)1) << addr_width
) - 1;
739 /* in case it's partial page */
741 end
= PAGE_ALIGN(end
);
742 npages
= (end
- start
) / VTD_PAGE_SIZE
;
744 /* we don't need lock here, nobody else touches the iova range */
746 dma_pte_clear_one(domain
, start
);
747 start
+= VTD_PAGE_SIZE
;
751 /* free page table pages. last level pte should already be cleared */
752 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
755 int addr_width
= agaw_to_width(domain
->agaw
);
757 int total
= agaw_to_level(domain
->agaw
);
761 start
&= (((u64
)1) << addr_width
) - 1;
762 end
&= (((u64
)1) << addr_width
) - 1;
764 /* we don't need lock here, nobody else touches the iova range */
766 while (level
<= total
) {
767 tmp
= align_to_level(start
, level
);
768 if (tmp
>= end
|| (tmp
+ level_size(level
) > end
))
772 pte
= dma_addr_level_pte(domain
, tmp
, level
);
775 phys_to_virt(dma_pte_addr(pte
)));
777 domain_flush_cache(domain
, pte
, sizeof(*pte
));
779 tmp
+= level_size(level
);
784 if (start
== 0 && end
>= ((((u64
)1) << addr_width
) - 1)) {
785 free_pgtable_page(domain
->pgd
);
791 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
793 struct root_entry
*root
;
796 root
= (struct root_entry
*)alloc_pgtable_page();
800 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
802 spin_lock_irqsave(&iommu
->lock
, flags
);
803 iommu
->root_entry
= root
;
804 spin_unlock_irqrestore(&iommu
->lock
, flags
);
809 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
815 addr
= iommu
->root_entry
;
817 spin_lock_irqsave(&iommu
->register_lock
, flag
);
818 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
820 cmd
= iommu
->gcmd
| DMA_GCMD_SRTP
;
821 writel(cmd
, iommu
->reg
+ DMAR_GCMD_REG
);
823 /* Make sure hardware complete it */
824 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
825 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
827 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
830 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
835 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
837 val
= iommu
->gcmd
| DMA_GCMD_WBF
;
839 spin_lock_irqsave(&iommu
->register_lock
, flag
);
840 writel(val
, iommu
->reg
+ DMAR_GCMD_REG
);
842 /* Make sure hardware complete it */
843 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
844 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
846 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
849 /* return value determine if we need a write buffer flush */
850 static int __iommu_flush_context(struct intel_iommu
*iommu
,
851 u16 did
, u16 source_id
, u8 function_mask
, u64 type
,
852 int non_present_entry_flush
)
858 * In the non-present entry flush case, if hardware doesn't cache
859 * non-present entry we do nothing and if hardware cache non-present
860 * entry, we flush entries of domain 0 (the domain id is used to cache
861 * any non-present entries)
863 if (non_present_entry_flush
) {
864 if (!cap_caching_mode(iommu
->cap
))
871 case DMA_CCMD_GLOBAL_INVL
:
872 val
= DMA_CCMD_GLOBAL_INVL
;
874 case DMA_CCMD_DOMAIN_INVL
:
875 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
877 case DMA_CCMD_DEVICE_INVL
:
878 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
879 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
886 spin_lock_irqsave(&iommu
->register_lock
, flag
);
887 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
889 /* Make sure hardware complete it */
890 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
891 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
893 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
895 /* flush context entry will implicitly flush write buffer */
899 /* return value determine if we need a write buffer flush */
900 static int __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
901 u64 addr
, unsigned int size_order
, u64 type
,
902 int non_present_entry_flush
)
904 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
905 u64 val
= 0, val_iva
= 0;
909 * In the non-present entry flush case, if hardware doesn't cache
910 * non-present entry we do nothing and if hardware cache non-present
911 * entry, we flush entries of domain 0 (the domain id is used to cache
912 * any non-present entries)
914 if (non_present_entry_flush
) {
915 if (!cap_caching_mode(iommu
->cap
))
922 case DMA_TLB_GLOBAL_FLUSH
:
923 /* global flush doesn't need set IVA_REG */
924 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
926 case DMA_TLB_DSI_FLUSH
:
927 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
929 case DMA_TLB_PSI_FLUSH
:
930 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
931 /* Note: always flush non-leaf currently */
932 val_iva
= size_order
| addr
;
937 /* Note: set drain read/write */
940 * This is probably to be super secure.. Looks like we can
941 * ignore it without any impact.
943 if (cap_read_drain(iommu
->cap
))
944 val
|= DMA_TLB_READ_DRAIN
;
946 if (cap_write_drain(iommu
->cap
))
947 val
|= DMA_TLB_WRITE_DRAIN
;
949 spin_lock_irqsave(&iommu
->register_lock
, flag
);
950 /* Note: Only uses first TLB reg currently */
952 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
953 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
955 /* Make sure hardware complete it */
956 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
957 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
959 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
961 /* check IOTLB invalidation granularity */
962 if (DMA_TLB_IAIG(val
) == 0)
963 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
964 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
965 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
966 (unsigned long long)DMA_TLB_IIRG(type
),
967 (unsigned long long)DMA_TLB_IAIG(val
));
968 /* flush iotlb entry will implicitly flush write buffer */
972 static int iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
973 u64 addr
, unsigned int pages
, int non_present_entry_flush
)
977 BUG_ON(addr
& (~VTD_PAGE_MASK
));
980 /* Fallback to domain selective flush if no PSI support */
981 if (!cap_pgsel_inv(iommu
->cap
))
982 return iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
984 non_present_entry_flush
);
987 * PSI requires page size to be 2 ^ x, and the base address is naturally
988 * aligned to the size
990 mask
= ilog2(__roundup_pow_of_two(pages
));
991 /* Fallback to domain selective flush if size is too big */
992 if (mask
> cap_max_amask_val(iommu
->cap
))
993 return iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
994 DMA_TLB_DSI_FLUSH
, non_present_entry_flush
);
996 return iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
998 non_present_entry_flush
);
1001 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1004 unsigned long flags
;
1006 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1007 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1008 pmen
&= ~DMA_PMEN_EPM
;
1009 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1011 /* wait for the protected region status bit to clear */
1012 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1013 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1015 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1018 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1021 unsigned long flags
;
1023 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1024 writel(iommu
->gcmd
|DMA_GCMD_TE
, iommu
->reg
+ DMAR_GCMD_REG
);
1026 /* Make sure hardware complete it */
1027 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1028 readl
, (sts
& DMA_GSTS_TES
), sts
);
1030 iommu
->gcmd
|= DMA_GCMD_TE
;
1031 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1035 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1040 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1041 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1042 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1044 /* Make sure hardware complete it */
1045 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1046 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1048 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1053 static int iommu_init_domains(struct intel_iommu
*iommu
)
1055 unsigned long ndomains
;
1056 unsigned long nlongs
;
1058 ndomains
= cap_ndoms(iommu
->cap
);
1059 pr_debug("Number of Domains supportd <%ld>\n", ndomains
);
1060 nlongs
= BITS_TO_LONGS(ndomains
);
1062 /* TBD: there might be 64K domains,
1063 * consider other allocation for future chip
1065 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1066 if (!iommu
->domain_ids
) {
1067 printk(KERN_ERR
"Allocating domain id array failed\n");
1070 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1072 if (!iommu
->domains
) {
1073 printk(KERN_ERR
"Allocating domain array failed\n");
1074 kfree(iommu
->domain_ids
);
1078 spin_lock_init(&iommu
->lock
);
1081 * if Caching mode is set, then invalid translations are tagged
1082 * with domainid 0. Hence we need to pre-allocate it.
1084 if (cap_caching_mode(iommu
->cap
))
1085 set_bit(0, iommu
->domain_ids
);
1090 static void domain_exit(struct dmar_domain
*domain
);
1091 static void vm_domain_exit(struct dmar_domain
*domain
);
1093 void free_dmar_iommu(struct intel_iommu
*iommu
)
1095 struct dmar_domain
*domain
;
1097 unsigned long flags
;
1099 i
= find_first_bit(iommu
->domain_ids
, cap_ndoms(iommu
->cap
));
1100 for (; i
< cap_ndoms(iommu
->cap
); ) {
1101 domain
= iommu
->domains
[i
];
1102 clear_bit(i
, iommu
->domain_ids
);
1104 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1105 if (--domain
->iommu_count
== 0) {
1106 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1107 vm_domain_exit(domain
);
1109 domain_exit(domain
);
1111 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1113 i
= find_next_bit(iommu
->domain_ids
,
1114 cap_ndoms(iommu
->cap
), i
+1);
1117 if (iommu
->gcmd
& DMA_GCMD_TE
)
1118 iommu_disable_translation(iommu
);
1121 set_irq_data(iommu
->irq
, NULL
);
1122 /* This will mask the irq */
1123 free_irq(iommu
->irq
, iommu
);
1124 destroy_irq(iommu
->irq
);
1127 kfree(iommu
->domains
);
1128 kfree(iommu
->domain_ids
);
1130 g_iommus
[iommu
->seq_id
] = NULL
;
1132 /* if all iommus are freed, free g_iommus */
1133 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1138 if (i
== g_num_of_iommus
)
1141 /* free context mapping */
1142 free_context_table(iommu
);
1145 static struct dmar_domain
* iommu_alloc_domain(struct intel_iommu
*iommu
)
1148 unsigned long ndomains
;
1149 struct dmar_domain
*domain
;
1150 unsigned long flags
;
1152 domain
= alloc_domain_mem();
1156 ndomains
= cap_ndoms(iommu
->cap
);
1158 spin_lock_irqsave(&iommu
->lock
, flags
);
1159 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1160 if (num
>= ndomains
) {
1161 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1162 free_domain_mem(domain
);
1163 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1167 set_bit(num
, iommu
->domain_ids
);
1169 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
1170 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1172 iommu
->domains
[num
] = domain
;
1173 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1178 static void iommu_free_domain(struct dmar_domain
*domain
)
1180 unsigned long flags
;
1181 struct intel_iommu
*iommu
;
1183 iommu
= domain_get_iommu(domain
);
1185 spin_lock_irqsave(&iommu
->lock
, flags
);
1186 clear_bit(domain
->id
, iommu
->domain_ids
);
1187 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1190 static struct iova_domain reserved_iova_list
;
1191 static struct lock_class_key reserved_alloc_key
;
1192 static struct lock_class_key reserved_rbtree_key
;
1194 static void dmar_init_reserved_ranges(void)
1196 struct pci_dev
*pdev
= NULL
;
1201 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1203 lockdep_set_class(&reserved_iova_list
.iova_alloc_lock
,
1204 &reserved_alloc_key
);
1205 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1206 &reserved_rbtree_key
);
1208 /* IOAPIC ranges shouldn't be accessed by DMA */
1209 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1210 IOVA_PFN(IOAPIC_RANGE_END
));
1212 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1214 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1215 for_each_pci_dev(pdev
) {
1218 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1219 r
= &pdev
->resource
[i
];
1220 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1223 addr
&= PHYSICAL_PAGE_MASK
;
1224 size
= r
->end
- addr
;
1225 size
= PAGE_ALIGN(size
);
1226 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(addr
),
1227 IOVA_PFN(size
+ addr
) - 1);
1229 printk(KERN_ERR
"Reserve iova failed\n");
1235 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1237 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1240 static inline int guestwidth_to_adjustwidth(int gaw
)
1243 int r
= (gaw
- 12) % 9;
1254 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1256 struct intel_iommu
*iommu
;
1257 int adjust_width
, agaw
;
1258 unsigned long sagaw
;
1260 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1261 spin_lock_init(&domain
->mapping_lock
);
1262 spin_lock_init(&domain
->iommu_lock
);
1264 domain_reserve_special_ranges(domain
);
1266 /* calculate AGAW */
1267 iommu
= domain_get_iommu(domain
);
1268 if (guest_width
> cap_mgaw(iommu
->cap
))
1269 guest_width
= cap_mgaw(iommu
->cap
);
1270 domain
->gaw
= guest_width
;
1271 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1272 agaw
= width_to_agaw(adjust_width
);
1273 sagaw
= cap_sagaw(iommu
->cap
);
1274 if (!test_bit(agaw
, &sagaw
)) {
1275 /* hardware doesn't support it, choose a bigger one */
1276 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1277 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1281 domain
->agaw
= agaw
;
1282 INIT_LIST_HEAD(&domain
->devices
);
1284 if (ecap_coherent(iommu
->ecap
))
1285 domain
->iommu_coherency
= 1;
1287 domain
->iommu_coherency
= 0;
1289 if (ecap_sc_support(iommu
->ecap
))
1290 domain
->iommu_snooping
= 1;
1292 domain
->iommu_snooping
= 0;
1294 domain
->iommu_count
= 1;
1296 /* always allocate the top pgd */
1297 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
1300 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1304 static void domain_exit(struct dmar_domain
*domain
)
1308 /* Domain 0 is reserved, so dont process it */
1312 domain_remove_dev_info(domain
);
1314 put_iova_domain(&domain
->iovad
);
1315 end
= DOMAIN_MAX_ADDR(domain
->gaw
);
1316 end
= end
& (~PAGE_MASK
);
1319 dma_pte_clear_range(domain
, 0, end
);
1321 /* free page tables */
1322 dma_pte_free_pagetable(domain
, 0, end
);
1324 iommu_free_domain(domain
);
1325 free_domain_mem(domain
);
1328 static int domain_context_mapping_one(struct dmar_domain
*domain
,
1329 int segment
, u8 bus
, u8 devfn
)
1331 struct context_entry
*context
;
1332 unsigned long flags
;
1333 struct intel_iommu
*iommu
;
1334 struct dma_pte
*pgd
;
1336 unsigned long ndomains
;
1340 pr_debug("Set context mapping for %02x:%02x.%d\n",
1341 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1342 BUG_ON(!domain
->pgd
);
1344 iommu
= device_to_iommu(segment
, bus
, devfn
);
1348 context
= device_to_context_entry(iommu
, bus
, devfn
);
1351 spin_lock_irqsave(&iommu
->lock
, flags
);
1352 if (context_present(context
)) {
1353 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1360 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
) {
1363 /* find an available domain id for this device in iommu */
1364 ndomains
= cap_ndoms(iommu
->cap
);
1365 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1366 for (; num
< ndomains
; ) {
1367 if (iommu
->domains
[num
] == domain
) {
1372 num
= find_next_bit(iommu
->domain_ids
,
1373 cap_ndoms(iommu
->cap
), num
+1);
1377 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1378 if (num
>= ndomains
) {
1379 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1380 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1384 set_bit(num
, iommu
->domain_ids
);
1385 iommu
->domains
[num
] = domain
;
1389 /* Skip top levels of page tables for
1390 * iommu which has less agaw than default.
1392 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1393 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1394 if (!dma_pte_present(pgd
)) {
1395 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1401 context_set_domain_id(context
, id
);
1402 context_set_address_width(context
, iommu
->agaw
);
1403 context_set_address_root(context
, virt_to_phys(pgd
));
1404 context_set_translation_type(context
, CONTEXT_TT_MULTI_LEVEL
);
1405 context_set_fault_enable(context
);
1406 context_set_present(context
);
1407 domain_flush_cache(domain
, context
, sizeof(*context
));
1409 /* it's a non-present to present mapping */
1410 if (iommu
->flush
.flush_context(iommu
, domain
->id
,
1411 (((u16
)bus
) << 8) | devfn
, DMA_CCMD_MASK_NOBIT
,
1412 DMA_CCMD_DEVICE_INVL
, 1))
1413 iommu_flush_write_buffer(iommu
);
1415 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_DSI_FLUSH
, 0);
1417 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1419 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1420 if (!test_and_set_bit(iommu
->seq_id
, &domain
->iommu_bmp
)) {
1421 domain
->iommu_count
++;
1422 domain_update_iommu_cap(domain
);
1424 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1429 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
)
1432 struct pci_dev
*tmp
, *parent
;
1434 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1435 pdev
->bus
->number
, pdev
->devfn
);
1439 /* dependent device mapping */
1440 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1443 /* Secondary interface's bus number and devfn 0 */
1444 parent
= pdev
->bus
->self
;
1445 while (parent
!= tmp
) {
1446 ret
= domain_context_mapping_one(domain
,
1447 pci_domain_nr(parent
->bus
),
1448 parent
->bus
->number
,
1452 parent
= parent
->bus
->self
;
1454 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
1455 return domain_context_mapping_one(domain
,
1456 pci_domain_nr(tmp
->subordinate
),
1457 tmp
->subordinate
->number
, 0);
1458 else /* this is a legacy PCI bridge */
1459 return domain_context_mapping_one(domain
,
1460 pci_domain_nr(tmp
->bus
),
1465 static int domain_context_mapped(struct pci_dev
*pdev
)
1468 struct pci_dev
*tmp
, *parent
;
1469 struct intel_iommu
*iommu
;
1471 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1476 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1479 /* dependent device mapping */
1480 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1483 /* Secondary interface's bus number and devfn 0 */
1484 parent
= pdev
->bus
->self
;
1485 while (parent
!= tmp
) {
1486 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1490 parent
= parent
->bus
->self
;
1493 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1496 return device_context_mapped(iommu
, tmp
->bus
->number
,
1501 domain_page_mapping(struct dmar_domain
*domain
, dma_addr_t iova
,
1502 u64 hpa
, size_t size
, int prot
)
1504 u64 start_pfn
, end_pfn
;
1505 struct dma_pte
*pte
;
1507 int addr_width
= agaw_to_width(domain
->agaw
);
1509 hpa
&= (((u64
)1) << addr_width
) - 1;
1511 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1514 start_pfn
= ((u64
)hpa
) >> VTD_PAGE_SHIFT
;
1515 end_pfn
= (VTD_PAGE_ALIGN(((u64
)hpa
) + size
)) >> VTD_PAGE_SHIFT
;
1517 while (start_pfn
< end_pfn
) {
1518 pte
= addr_to_dma_pte(domain
, iova
+ VTD_PAGE_SIZE
* index
);
1521 /* We don't need lock here, nobody else
1522 * touches the iova range
1524 BUG_ON(dma_pte_addr(pte
));
1525 dma_set_pte_addr(pte
, start_pfn
<< VTD_PAGE_SHIFT
);
1526 dma_set_pte_prot(pte
, prot
);
1527 if (prot
& DMA_PTE_SNP
)
1528 dma_set_pte_snp(pte
);
1529 domain_flush_cache(domain
, pte
, sizeof(*pte
));
1536 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1541 clear_context_table(iommu
, bus
, devfn
);
1542 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1543 DMA_CCMD_GLOBAL_INVL
, 0);
1544 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
1545 DMA_TLB_GLOBAL_FLUSH
, 0);
1548 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1550 struct device_domain_info
*info
;
1551 unsigned long flags
;
1552 struct intel_iommu
*iommu
;
1554 spin_lock_irqsave(&device_domain_lock
, flags
);
1555 while (!list_empty(&domain
->devices
)) {
1556 info
= list_entry(domain
->devices
.next
,
1557 struct device_domain_info
, link
);
1558 list_del(&info
->link
);
1559 list_del(&info
->global
);
1561 info
->dev
->dev
.archdata
.iommu
= NULL
;
1562 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1564 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1565 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1566 free_devinfo_mem(info
);
1568 spin_lock_irqsave(&device_domain_lock
, flags
);
1570 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1575 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1577 static struct dmar_domain
*
1578 find_domain(struct pci_dev
*pdev
)
1580 struct device_domain_info
*info
;
1582 /* No lock here, assumes no domain exit in normal case */
1583 info
= pdev
->dev
.archdata
.iommu
;
1585 return info
->domain
;
1589 /* domain is initialized */
1590 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1592 struct dmar_domain
*domain
, *found
= NULL
;
1593 struct intel_iommu
*iommu
;
1594 struct dmar_drhd_unit
*drhd
;
1595 struct device_domain_info
*info
, *tmp
;
1596 struct pci_dev
*dev_tmp
;
1597 unsigned long flags
;
1598 int bus
= 0, devfn
= 0;
1601 domain
= find_domain(pdev
);
1605 segment
= pci_domain_nr(pdev
->bus
);
1607 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1609 if (dev_tmp
->is_pcie
) {
1610 bus
= dev_tmp
->subordinate
->number
;
1613 bus
= dev_tmp
->bus
->number
;
1614 devfn
= dev_tmp
->devfn
;
1616 spin_lock_irqsave(&device_domain_lock
, flags
);
1617 list_for_each_entry(info
, &device_domain_list
, global
) {
1618 if (info
->segment
== segment
&&
1619 info
->bus
== bus
&& info
->devfn
== devfn
) {
1620 found
= info
->domain
;
1624 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1625 /* pcie-pci bridge already has a domain, uses it */
1632 /* Allocate new domain for the device */
1633 drhd
= dmar_find_matched_drhd_unit(pdev
);
1635 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
1639 iommu
= drhd
->iommu
;
1641 domain
= iommu_alloc_domain(iommu
);
1645 if (domain_init(domain
, gaw
)) {
1646 domain_exit(domain
);
1650 /* register pcie-to-pci device */
1652 info
= alloc_devinfo_mem();
1654 domain_exit(domain
);
1657 info
->segment
= segment
;
1659 info
->devfn
= devfn
;
1661 info
->domain
= domain
;
1662 /* This domain is shared by devices under p2p bridge */
1663 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
1665 /* pcie-to-pci bridge already has a domain, uses it */
1667 spin_lock_irqsave(&device_domain_lock
, flags
);
1668 list_for_each_entry(tmp
, &device_domain_list
, global
) {
1669 if (tmp
->segment
== segment
&&
1670 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
1671 found
= tmp
->domain
;
1676 free_devinfo_mem(info
);
1677 domain_exit(domain
);
1680 list_add(&info
->link
, &domain
->devices
);
1681 list_add(&info
->global
, &device_domain_list
);
1683 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1687 info
= alloc_devinfo_mem();
1690 info
->segment
= segment
;
1691 info
->bus
= pdev
->bus
->number
;
1692 info
->devfn
= pdev
->devfn
;
1694 info
->domain
= domain
;
1695 spin_lock_irqsave(&device_domain_lock
, flags
);
1696 /* somebody is fast */
1697 found
= find_domain(pdev
);
1698 if (found
!= NULL
) {
1699 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1700 if (found
!= domain
) {
1701 domain_exit(domain
);
1704 free_devinfo_mem(info
);
1707 list_add(&info
->link
, &domain
->devices
);
1708 list_add(&info
->global
, &device_domain_list
);
1709 pdev
->dev
.archdata
.iommu
= info
;
1710 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1713 /* recheck it here, maybe others set it */
1714 return find_domain(pdev
);
1717 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
1718 unsigned long long start
,
1719 unsigned long long end
)
1721 struct dmar_domain
*domain
;
1723 unsigned long long base
;
1727 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1728 pci_name(pdev
), start
, end
);
1729 /* page table init */
1730 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
1734 /* The address might not be aligned */
1735 base
= start
& PAGE_MASK
;
1737 size
= PAGE_ALIGN(size
);
1738 if (!reserve_iova(&domain
->iovad
, IOVA_PFN(base
),
1739 IOVA_PFN(base
+ size
) - 1)) {
1740 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
1745 pr_debug("Mapping reserved region %lx@%llx for %s\n",
1746 size
, base
, pci_name(pdev
));
1748 * RMRR range might have overlap with physical memory range,
1751 dma_pte_clear_range(domain
, base
, base
+ size
);
1753 ret
= domain_page_mapping(domain
, base
, base
, size
,
1754 DMA_PTE_READ
|DMA_PTE_WRITE
);
1758 /* context entry init */
1759 ret
= domain_context_mapping(domain
, pdev
);
1763 domain_exit(domain
);
1768 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
1769 struct pci_dev
*pdev
)
1771 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
1773 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
1774 rmrr
->end_address
+ 1);
1777 #ifdef CONFIG_DMAR_GFX_WA
1778 struct iommu_prepare_data
{
1779 struct pci_dev
*pdev
;
1783 static int __init
iommu_prepare_work_fn(unsigned long start_pfn
,
1784 unsigned long end_pfn
, void *datax
)
1786 struct iommu_prepare_data
*data
;
1788 data
= (struct iommu_prepare_data
*)datax
;
1790 data
->ret
= iommu_prepare_identity_map(data
->pdev
,
1791 start_pfn
<<PAGE_SHIFT
, end_pfn
<<PAGE_SHIFT
);
1796 static int __init
iommu_prepare_with_active_regions(struct pci_dev
*pdev
)
1799 struct iommu_prepare_data data
;
1804 for_each_online_node(nid
) {
1805 work_with_active_regions(nid
, iommu_prepare_work_fn
, &data
);
1812 static void __init
iommu_prepare_gfx_mapping(void)
1814 struct pci_dev
*pdev
= NULL
;
1817 for_each_pci_dev(pdev
) {
1818 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
||
1819 !IS_GFX_DEVICE(pdev
))
1821 printk(KERN_INFO
"IOMMU: gfx device %s 1-1 mapping\n",
1823 ret
= iommu_prepare_with_active_regions(pdev
);
1825 printk(KERN_ERR
"IOMMU: mapping reserved region failed\n");
1828 #else /* !CONFIG_DMAR_GFX_WA */
1829 static inline void iommu_prepare_gfx_mapping(void)
1835 #ifdef CONFIG_DMAR_FLOPPY_WA
1836 static inline void iommu_prepare_isa(void)
1838 struct pci_dev
*pdev
;
1841 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
1845 printk(KERN_INFO
"IOMMU: Prepare 0-16M unity mapping for LPC\n");
1846 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024);
1849 printk(KERN_ERR
"IOMMU: Failed to create 0-64M identity map, "
1850 "floppy might not work\n");
1854 static inline void iommu_prepare_isa(void)
1858 #endif /* !CONFIG_DMAR_FLPY_WA */
1860 static int __init
init_dmars(void)
1862 struct dmar_drhd_unit
*drhd
;
1863 struct dmar_rmrr_unit
*rmrr
;
1864 struct pci_dev
*pdev
;
1865 struct intel_iommu
*iommu
;
1871 * initialize and program root entry to not present
1874 for_each_drhd_unit(drhd
) {
1877 * lock not needed as this is only incremented in the single
1878 * threaded kernel __init code path all other access are read
1883 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
1886 printk(KERN_ERR
"Allocating global iommu array failed\n");
1891 deferred_flush
= kzalloc(g_num_of_iommus
*
1892 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
1893 if (!deferred_flush
) {
1899 for_each_drhd_unit(drhd
) {
1903 iommu
= drhd
->iommu
;
1904 g_iommus
[iommu
->seq_id
] = iommu
;
1906 ret
= iommu_init_domains(iommu
);
1912 * we could share the same root & context tables
1913 * amoung all IOMMU's. Need to Split it later.
1915 ret
= iommu_alloc_root_entry(iommu
);
1917 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
1923 * Start from the sane iommu hardware state.
1925 for_each_drhd_unit(drhd
) {
1929 iommu
= drhd
->iommu
;
1932 * If the queued invalidation is already initialized by us
1933 * (for example, while enabling interrupt-remapping) then
1934 * we got the things already rolling from a sane state.
1940 * Clear any previous faults.
1942 dmar_fault(-1, iommu
);
1944 * Disable queued invalidation if supported and already enabled
1945 * before OS handover.
1947 dmar_disable_qi(iommu
);
1950 for_each_drhd_unit(drhd
) {
1954 iommu
= drhd
->iommu
;
1956 if (dmar_enable_qi(iommu
)) {
1958 * Queued Invalidate not enabled, use Register Based
1961 iommu
->flush
.flush_context
= __iommu_flush_context
;
1962 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
1963 printk(KERN_INFO
"IOMMU 0x%Lx: using Register based "
1965 (unsigned long long)drhd
->reg_base_addr
);
1967 iommu
->flush
.flush_context
= qi_flush_context
;
1968 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
1969 printk(KERN_INFO
"IOMMU 0x%Lx: using Queued "
1971 (unsigned long long)drhd
->reg_base_addr
);
1975 #ifdef CONFIG_INTR_REMAP
1976 if (!intr_remapping_enabled
) {
1977 ret
= enable_intr_remapping(0);
1980 "IOMMU: enable interrupt remapping failed\n");
1986 * for each dev attached to rmrr
1988 * locate drhd for dev, alloc domain for dev
1989 * allocate free domain
1990 * allocate page table entries for rmrr
1991 * if context not allocated for bus
1992 * allocate and init context
1993 * set present in root table for this bus
1994 * init context with domain, translation etc
1998 for_each_rmrr_units(rmrr
) {
1999 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2000 pdev
= rmrr
->devices
[i
];
2001 /* some BIOS lists non-exist devices in DMAR table */
2004 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2007 "IOMMU: mapping reserved region failed\n");
2011 iommu_prepare_gfx_mapping();
2013 iommu_prepare_isa();
2018 * global invalidate context cache
2019 * global invalidate iotlb
2020 * enable translation
2022 for_each_drhd_unit(drhd
) {
2025 iommu
= drhd
->iommu
;
2027 iommu_flush_write_buffer(iommu
);
2029 ret
= dmar_set_interrupt(iommu
);
2033 iommu_set_root_entry(iommu
);
2035 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
,
2037 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
,
2039 iommu_disable_protect_mem_regions(iommu
);
2041 ret
= iommu_enable_translation(iommu
);
2048 for_each_drhd_unit(drhd
) {
2051 iommu
= drhd
->iommu
;
2058 static inline u64
aligned_size(u64 host_addr
, size_t size
)
2061 addr
= (host_addr
& (~PAGE_MASK
)) + size
;
2062 return PAGE_ALIGN(addr
);
2066 iommu_alloc_iova(struct dmar_domain
*domain
, size_t size
, u64 end
)
2070 /* Make sure it's in range */
2071 end
= min_t(u64
, DOMAIN_MAX_ADDR(domain
->gaw
), end
);
2072 if (!size
|| (IOVA_START_ADDR
+ size
> end
))
2075 piova
= alloc_iova(&domain
->iovad
,
2076 size
>> PAGE_SHIFT
, IOVA_PFN(end
), 1);
2080 static struct iova
*
2081 __intel_alloc_iova(struct device
*dev
, struct dmar_domain
*domain
,
2082 size_t size
, u64 dma_mask
)
2084 struct pci_dev
*pdev
= to_pci_dev(dev
);
2085 struct iova
*iova
= NULL
;
2087 if (dma_mask
<= DMA_BIT_MASK(32) || dmar_forcedac
)
2088 iova
= iommu_alloc_iova(domain
, size
, dma_mask
);
2091 * First try to allocate an io virtual address in
2092 * DMA_BIT_MASK(32) and if that fails then try allocating
2095 iova
= iommu_alloc_iova(domain
, size
, DMA_BIT_MASK(32));
2097 iova
= iommu_alloc_iova(domain
, size
, dma_mask
);
2101 printk(KERN_ERR
"Allocating iova for %s failed", pci_name(pdev
));
2108 static struct dmar_domain
*
2109 get_valid_domain_for_dev(struct pci_dev
*pdev
)
2111 struct dmar_domain
*domain
;
2114 domain
= get_domain_for_dev(pdev
,
2115 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2118 "Allocating domain for %s failed", pci_name(pdev
));
2122 /* make sure context mapping is ok */
2123 if (unlikely(!domain_context_mapped(pdev
))) {
2124 ret
= domain_context_mapping(domain
, pdev
);
2127 "Domain context map for %s failed",
2136 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2137 size_t size
, int dir
, u64 dma_mask
)
2139 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2140 struct dmar_domain
*domain
;
2141 phys_addr_t start_paddr
;
2145 struct intel_iommu
*iommu
;
2147 BUG_ON(dir
== DMA_NONE
);
2148 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2151 domain
= get_valid_domain_for_dev(pdev
);
2155 iommu
= domain_get_iommu(domain
);
2156 size
= aligned_size((u64
)paddr
, size
);
2158 iova
= __intel_alloc_iova(hwdev
, domain
, size
, pdev
->dma_mask
);
2162 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2165 * Check if DMAR supports zero-length reads on write only
2168 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2169 !cap_zlr(iommu
->cap
))
2170 prot
|= DMA_PTE_READ
;
2171 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2172 prot
|= DMA_PTE_WRITE
;
2174 * paddr - (paddr + size) might be partial page, we should map the whole
2175 * page. Note: if two part of one page are separately mapped, we
2176 * might have two guest_addr mapping to the same host paddr, but this
2177 * is not a big problem
2179 ret
= domain_page_mapping(domain
, start_paddr
,
2180 ((u64
)paddr
) & PHYSICAL_PAGE_MASK
,
2185 /* it's a non-present to present mapping */
2186 ret
= iommu_flush_iotlb_psi(iommu
, domain
->id
,
2187 start_paddr
, size
>> VTD_PAGE_SHIFT
, 1);
2189 iommu_flush_write_buffer(iommu
);
2191 return start_paddr
+ ((u64
)paddr
& (~PAGE_MASK
));
2195 __free_iova(&domain
->iovad
, iova
);
2196 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2197 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2201 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2202 unsigned long offset
, size_t size
,
2203 enum dma_data_direction dir
,
2204 struct dma_attrs
*attrs
)
2206 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2207 dir
, to_pci_dev(dev
)->dma_mask
);
2210 static void flush_unmaps(void)
2216 /* just flush them all */
2217 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2218 struct intel_iommu
*iommu
= g_iommus
[i
];
2222 if (deferred_flush
[i
].next
) {
2223 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2224 DMA_TLB_GLOBAL_FLUSH
, 0);
2225 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2226 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
,
2227 deferred_flush
[i
].iova
[j
]);
2229 deferred_flush
[i
].next
= 0;
2236 static void flush_unmaps_timeout(unsigned long data
)
2238 unsigned long flags
;
2240 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2242 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2245 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2247 unsigned long flags
;
2249 struct intel_iommu
*iommu
;
2251 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2252 if (list_size
== HIGH_WATER_MARK
)
2255 iommu
= domain_get_iommu(dom
);
2256 iommu_id
= iommu
->seq_id
;
2258 next
= deferred_flush
[iommu_id
].next
;
2259 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2260 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2261 deferred_flush
[iommu_id
].next
++;
2264 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2268 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2271 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2272 size_t size
, enum dma_data_direction dir
,
2273 struct dma_attrs
*attrs
)
2275 struct pci_dev
*pdev
= to_pci_dev(dev
);
2276 struct dmar_domain
*domain
;
2277 unsigned long start_addr
;
2279 struct intel_iommu
*iommu
;
2281 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2283 domain
= find_domain(pdev
);
2286 iommu
= domain_get_iommu(domain
);
2288 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2292 start_addr
= iova
->pfn_lo
<< PAGE_SHIFT
;
2293 size
= aligned_size((u64
)dev_addr
, size
);
2295 pr_debug("Device %s unmapping: %zx@%llx\n",
2296 pci_name(pdev
), size
, (unsigned long long)start_addr
);
2298 /* clear the whole page */
2299 dma_pte_clear_range(domain
, start_addr
, start_addr
+ size
);
2300 /* free page tables */
2301 dma_pte_free_pagetable(domain
, start_addr
, start_addr
+ size
);
2302 if (intel_iommu_strict
) {
2303 if (iommu_flush_iotlb_psi(iommu
,
2304 domain
->id
, start_addr
, size
>> VTD_PAGE_SHIFT
, 0))
2305 iommu_flush_write_buffer(iommu
);
2307 __free_iova(&domain
->iovad
, iova
);
2309 add_unmap(domain
, iova
);
2311 * queue up the release of the unmap to save the 1/6th of the
2312 * cpu used up by the iotlb flush operation...
2317 static void intel_unmap_single(struct device
*dev
, dma_addr_t dev_addr
, size_t size
,
2320 intel_unmap_page(dev
, dev_addr
, size
, dir
, NULL
);
2323 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
2324 dma_addr_t
*dma_handle
, gfp_t flags
)
2329 size
= PAGE_ALIGN(size
);
2330 order
= get_order(size
);
2331 flags
&= ~(GFP_DMA
| GFP_DMA32
);
2333 vaddr
= (void *)__get_free_pages(flags
, order
);
2336 memset(vaddr
, 0, size
);
2338 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
2340 hwdev
->coherent_dma_mask
);
2343 free_pages((unsigned long)vaddr
, order
);
2347 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
2348 dma_addr_t dma_handle
)
2352 size
= PAGE_ALIGN(size
);
2353 order
= get_order(size
);
2355 intel_unmap_single(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
2356 free_pages((unsigned long)vaddr
, order
);
2359 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
2360 int nelems
, enum dma_data_direction dir
,
2361 struct dma_attrs
*attrs
)
2364 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2365 struct dmar_domain
*domain
;
2366 unsigned long start_addr
;
2370 struct scatterlist
*sg
;
2371 struct intel_iommu
*iommu
;
2373 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2376 domain
= find_domain(pdev
);
2379 iommu
= domain_get_iommu(domain
);
2381 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
2384 for_each_sg(sglist
, sg
, nelems
, i
) {
2385 addr
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2386 size
+= aligned_size((u64
)addr
, sg
->length
);
2389 start_addr
= iova
->pfn_lo
<< PAGE_SHIFT
;
2391 /* clear the whole page */
2392 dma_pte_clear_range(domain
, start_addr
, start_addr
+ size
);
2393 /* free page tables */
2394 dma_pte_free_pagetable(domain
, start_addr
, start_addr
+ size
);
2396 if (iommu_flush_iotlb_psi(iommu
, domain
->id
, start_addr
,
2397 size
>> VTD_PAGE_SHIFT
, 0))
2398 iommu_flush_write_buffer(iommu
);
2401 __free_iova(&domain
->iovad
, iova
);
2404 static int intel_nontranslate_map_sg(struct device
*hddev
,
2405 struct scatterlist
*sglist
, int nelems
, int dir
)
2408 struct scatterlist
*sg
;
2410 for_each_sg(sglist
, sg
, nelems
, i
) {
2411 BUG_ON(!sg_page(sg
));
2412 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2413 sg
->dma_length
= sg
->length
;
2418 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
2419 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2423 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2424 struct dmar_domain
*domain
;
2428 struct iova
*iova
= NULL
;
2430 struct scatterlist
*sg
;
2431 unsigned long start_addr
;
2432 struct intel_iommu
*iommu
;
2434 BUG_ON(dir
== DMA_NONE
);
2435 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2436 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
2438 domain
= get_valid_domain_for_dev(pdev
);
2442 iommu
= domain_get_iommu(domain
);
2444 for_each_sg(sglist
, sg
, nelems
, i
) {
2445 addr
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2446 size
+= aligned_size((u64
)addr
, sg
->length
);
2449 iova
= __intel_alloc_iova(hwdev
, domain
, size
, pdev
->dma_mask
);
2451 sglist
->dma_length
= 0;
2456 * Check if DMAR supports zero-length reads on write only
2459 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2460 !cap_zlr(iommu
->cap
))
2461 prot
|= DMA_PTE_READ
;
2462 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2463 prot
|= DMA_PTE_WRITE
;
2465 start_addr
= iova
->pfn_lo
<< PAGE_SHIFT
;
2467 for_each_sg(sglist
, sg
, nelems
, i
) {
2468 addr
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2469 size
= aligned_size((u64
)addr
, sg
->length
);
2470 ret
= domain_page_mapping(domain
, start_addr
+ offset
,
2471 ((u64
)addr
) & PHYSICAL_PAGE_MASK
,
2474 /* clear the page */
2475 dma_pte_clear_range(domain
, start_addr
,
2476 start_addr
+ offset
);
2477 /* free page tables */
2478 dma_pte_free_pagetable(domain
, start_addr
,
2479 start_addr
+ offset
);
2481 __free_iova(&domain
->iovad
, iova
);
2484 sg
->dma_address
= start_addr
+ offset
+
2485 ((u64
)addr
& (~PAGE_MASK
));
2486 sg
->dma_length
= sg
->length
;
2490 /* it's a non-present to present mapping */
2491 if (iommu_flush_iotlb_psi(iommu
, domain
->id
,
2492 start_addr
, offset
>> VTD_PAGE_SHIFT
, 1))
2493 iommu_flush_write_buffer(iommu
);
2497 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2502 struct dma_map_ops intel_dma_ops
= {
2503 .alloc_coherent
= intel_alloc_coherent
,
2504 .free_coherent
= intel_free_coherent
,
2505 .map_sg
= intel_map_sg
,
2506 .unmap_sg
= intel_unmap_sg
,
2507 .map_page
= intel_map_page
,
2508 .unmap_page
= intel_unmap_page
,
2509 .mapping_error
= intel_mapping_error
,
2512 static inline int iommu_domain_cache_init(void)
2516 iommu_domain_cache
= kmem_cache_create("iommu_domain",
2517 sizeof(struct dmar_domain
),
2522 if (!iommu_domain_cache
) {
2523 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
2530 static inline int iommu_devinfo_cache_init(void)
2534 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
2535 sizeof(struct device_domain_info
),
2539 if (!iommu_devinfo_cache
) {
2540 printk(KERN_ERR
"Couldn't create devinfo cache\n");
2547 static inline int iommu_iova_cache_init(void)
2551 iommu_iova_cache
= kmem_cache_create("iommu_iova",
2552 sizeof(struct iova
),
2556 if (!iommu_iova_cache
) {
2557 printk(KERN_ERR
"Couldn't create iova cache\n");
2564 static int __init
iommu_init_mempool(void)
2567 ret
= iommu_iova_cache_init();
2571 ret
= iommu_domain_cache_init();
2575 ret
= iommu_devinfo_cache_init();
2579 kmem_cache_destroy(iommu_domain_cache
);
2581 kmem_cache_destroy(iommu_iova_cache
);
2586 static void __init
iommu_exit_mempool(void)
2588 kmem_cache_destroy(iommu_devinfo_cache
);
2589 kmem_cache_destroy(iommu_domain_cache
);
2590 kmem_cache_destroy(iommu_iova_cache
);
2594 static void __init
init_no_remapping_devices(void)
2596 struct dmar_drhd_unit
*drhd
;
2598 for_each_drhd_unit(drhd
) {
2599 if (!drhd
->include_all
) {
2601 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
2602 if (drhd
->devices
[i
] != NULL
)
2604 /* ignore DMAR unit if no pci devices exist */
2605 if (i
== drhd
->devices_cnt
)
2613 for_each_drhd_unit(drhd
) {
2615 if (drhd
->ignored
|| drhd
->include_all
)
2618 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
2619 if (drhd
->devices
[i
] &&
2620 !IS_GFX_DEVICE(drhd
->devices
[i
]))
2623 if (i
< drhd
->devices_cnt
)
2626 /* bypass IOMMU if it is just for gfx devices */
2628 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
2629 if (!drhd
->devices
[i
])
2631 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
2636 #ifdef CONFIG_SUSPEND
2637 static int init_iommu_hw(void)
2639 struct dmar_drhd_unit
*drhd
;
2640 struct intel_iommu
*iommu
= NULL
;
2642 for_each_active_iommu(iommu
, drhd
)
2644 dmar_reenable_qi(iommu
);
2646 for_each_active_iommu(iommu
, drhd
) {
2647 iommu_flush_write_buffer(iommu
);
2649 iommu_set_root_entry(iommu
);
2651 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
2652 DMA_CCMD_GLOBAL_INVL
, 0);
2653 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2654 DMA_TLB_GLOBAL_FLUSH
, 0);
2655 iommu_disable_protect_mem_regions(iommu
);
2656 iommu_enable_translation(iommu
);
2662 static void iommu_flush_all(void)
2664 struct dmar_drhd_unit
*drhd
;
2665 struct intel_iommu
*iommu
;
2667 for_each_active_iommu(iommu
, drhd
) {
2668 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
2669 DMA_CCMD_GLOBAL_INVL
, 0);
2670 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2671 DMA_TLB_GLOBAL_FLUSH
, 0);
2675 static int iommu_suspend(struct sys_device
*dev
, pm_message_t state
)
2677 struct dmar_drhd_unit
*drhd
;
2678 struct intel_iommu
*iommu
= NULL
;
2681 for_each_active_iommu(iommu
, drhd
) {
2682 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
2684 if (!iommu
->iommu_state
)
2690 for_each_active_iommu(iommu
, drhd
) {
2691 iommu_disable_translation(iommu
);
2693 spin_lock_irqsave(&iommu
->register_lock
, flag
);
2695 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
2696 readl(iommu
->reg
+ DMAR_FECTL_REG
);
2697 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
2698 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
2699 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
2700 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
2701 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
2702 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
2704 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
2709 for_each_active_iommu(iommu
, drhd
)
2710 kfree(iommu
->iommu_state
);
2715 static int iommu_resume(struct sys_device
*dev
)
2717 struct dmar_drhd_unit
*drhd
;
2718 struct intel_iommu
*iommu
= NULL
;
2721 if (init_iommu_hw()) {
2722 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
2726 for_each_active_iommu(iommu
, drhd
) {
2728 spin_lock_irqsave(&iommu
->register_lock
, flag
);
2730 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
2731 iommu
->reg
+ DMAR_FECTL_REG
);
2732 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
2733 iommu
->reg
+ DMAR_FEDATA_REG
);
2734 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
2735 iommu
->reg
+ DMAR_FEADDR_REG
);
2736 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
2737 iommu
->reg
+ DMAR_FEUADDR_REG
);
2739 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
2742 for_each_active_iommu(iommu
, drhd
)
2743 kfree(iommu
->iommu_state
);
2748 static struct sysdev_class iommu_sysclass
= {
2750 .resume
= iommu_resume
,
2751 .suspend
= iommu_suspend
,
2754 static struct sys_device device_iommu
= {
2755 .cls
= &iommu_sysclass
,
2758 static int __init
init_iommu_sysfs(void)
2762 error
= sysdev_class_register(&iommu_sysclass
);
2766 error
= sysdev_register(&device_iommu
);
2768 sysdev_class_unregister(&iommu_sysclass
);
2774 static int __init
init_iommu_sysfs(void)
2778 #endif /* CONFIG_PM */
2780 int __init
intel_iommu_init(void)
2784 if (dmar_table_init())
2787 if (dmar_dev_scope_init())
2791 * Check the need for DMA-remapping initialization now.
2792 * Above initialization will also be used by Interrupt-remapping.
2794 if (no_iommu
|| swiotlb
|| dmar_disabled
)
2797 iommu_init_mempool();
2798 dmar_init_reserved_ranges();
2800 init_no_remapping_devices();
2804 printk(KERN_ERR
"IOMMU: dmar init failed\n");
2805 put_iova_domain(&reserved_iova_list
);
2806 iommu_exit_mempool();
2810 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
2812 init_timer(&unmap_timer
);
2814 dma_ops
= &intel_dma_ops
;
2817 register_iommu(&intel_iommu_ops
);
2822 static int vm_domain_add_dev_info(struct dmar_domain
*domain
,
2823 struct pci_dev
*pdev
)
2825 struct device_domain_info
*info
;
2826 unsigned long flags
;
2828 info
= alloc_devinfo_mem();
2832 info
->segment
= pci_domain_nr(pdev
->bus
);
2833 info
->bus
= pdev
->bus
->number
;
2834 info
->devfn
= pdev
->devfn
;
2836 info
->domain
= domain
;
2838 spin_lock_irqsave(&device_domain_lock
, flags
);
2839 list_add(&info
->link
, &domain
->devices
);
2840 list_add(&info
->global
, &device_domain_list
);
2841 pdev
->dev
.archdata
.iommu
= info
;
2842 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2847 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
2848 struct pci_dev
*pdev
)
2850 struct pci_dev
*tmp
, *parent
;
2852 if (!iommu
|| !pdev
)
2855 /* dependent device detach */
2856 tmp
= pci_find_upstream_pcie_bridge(pdev
);
2857 /* Secondary interface's bus number and devfn 0 */
2859 parent
= pdev
->bus
->self
;
2860 while (parent
!= tmp
) {
2861 iommu_detach_dev(iommu
, parent
->bus
->number
,
2863 parent
= parent
->bus
->self
;
2865 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
2866 iommu_detach_dev(iommu
,
2867 tmp
->subordinate
->number
, 0);
2868 else /* this is a legacy PCI bridge */
2869 iommu_detach_dev(iommu
, tmp
->bus
->number
,
2874 static void vm_domain_remove_one_dev_info(struct dmar_domain
*domain
,
2875 struct pci_dev
*pdev
)
2877 struct device_domain_info
*info
;
2878 struct intel_iommu
*iommu
;
2879 unsigned long flags
;
2881 struct list_head
*entry
, *tmp
;
2883 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
2888 spin_lock_irqsave(&device_domain_lock
, flags
);
2889 list_for_each_safe(entry
, tmp
, &domain
->devices
) {
2890 info
= list_entry(entry
, struct device_domain_info
, link
);
2891 /* No need to compare PCI domain; it has to be the same */
2892 if (info
->bus
== pdev
->bus
->number
&&
2893 info
->devfn
== pdev
->devfn
) {
2894 list_del(&info
->link
);
2895 list_del(&info
->global
);
2897 info
->dev
->dev
.archdata
.iommu
= NULL
;
2898 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2900 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
2901 iommu_detach_dependent_devices(iommu
, pdev
);
2902 free_devinfo_mem(info
);
2904 spin_lock_irqsave(&device_domain_lock
, flags
);
2912 /* if there is no other devices under the same iommu
2913 * owned by this domain, clear this iommu in iommu_bmp
2914 * update iommu count and coherency
2916 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
2922 unsigned long tmp_flags
;
2923 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
2924 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
2925 domain
->iommu_count
--;
2926 domain_update_iommu_cap(domain
);
2927 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
2930 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2933 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
2935 struct device_domain_info
*info
;
2936 struct intel_iommu
*iommu
;
2937 unsigned long flags1
, flags2
;
2939 spin_lock_irqsave(&device_domain_lock
, flags1
);
2940 while (!list_empty(&domain
->devices
)) {
2941 info
= list_entry(domain
->devices
.next
,
2942 struct device_domain_info
, link
);
2943 list_del(&info
->link
);
2944 list_del(&info
->global
);
2946 info
->dev
->dev
.archdata
.iommu
= NULL
;
2948 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
2950 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
2951 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
2952 iommu_detach_dependent_devices(iommu
, info
->dev
);
2954 /* clear this iommu in iommu_bmp, update iommu count
2957 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
2958 if (test_and_clear_bit(iommu
->seq_id
,
2959 &domain
->iommu_bmp
)) {
2960 domain
->iommu_count
--;
2961 domain_update_iommu_cap(domain
);
2963 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
2965 free_devinfo_mem(info
);
2966 spin_lock_irqsave(&device_domain_lock
, flags1
);
2968 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
2971 /* domain id for virtual machine, it won't be set in context */
2972 static unsigned long vm_domid
;
2974 static int vm_domain_min_agaw(struct dmar_domain
*domain
)
2977 int min_agaw
= domain
->agaw
;
2979 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
2980 for (; i
< g_num_of_iommus
; ) {
2981 if (min_agaw
> g_iommus
[i
]->agaw
)
2982 min_agaw
= g_iommus
[i
]->agaw
;
2984 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
2990 static struct dmar_domain
*iommu_alloc_vm_domain(void)
2992 struct dmar_domain
*domain
;
2994 domain
= alloc_domain_mem();
2998 domain
->id
= vm_domid
++;
2999 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
3000 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3005 static int vm_domain_init(struct dmar_domain
*domain
, int guest_width
)
3009 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3010 spin_lock_init(&domain
->mapping_lock
);
3011 spin_lock_init(&domain
->iommu_lock
);
3013 domain_reserve_special_ranges(domain
);
3015 /* calculate AGAW */
3016 domain
->gaw
= guest_width
;
3017 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3018 domain
->agaw
= width_to_agaw(adjust_width
);
3020 INIT_LIST_HEAD(&domain
->devices
);
3022 domain
->iommu_count
= 0;
3023 domain
->iommu_coherency
= 0;
3024 domain
->max_addr
= 0;
3026 /* always allocate the top pgd */
3027 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
3030 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3034 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3036 unsigned long flags
;
3037 struct dmar_drhd_unit
*drhd
;
3038 struct intel_iommu
*iommu
;
3040 unsigned long ndomains
;
3042 for_each_drhd_unit(drhd
) {
3045 iommu
= drhd
->iommu
;
3047 ndomains
= cap_ndoms(iommu
->cap
);
3048 i
= find_first_bit(iommu
->domain_ids
, ndomains
);
3049 for (; i
< ndomains
; ) {
3050 if (iommu
->domains
[i
] == domain
) {
3051 spin_lock_irqsave(&iommu
->lock
, flags
);
3052 clear_bit(i
, iommu
->domain_ids
);
3053 iommu
->domains
[i
] = NULL
;
3054 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3057 i
= find_next_bit(iommu
->domain_ids
, ndomains
, i
+1);
3062 static void vm_domain_exit(struct dmar_domain
*domain
)
3066 /* Domain 0 is reserved, so dont process it */
3070 vm_domain_remove_all_dev_info(domain
);
3072 put_iova_domain(&domain
->iovad
);
3073 end
= DOMAIN_MAX_ADDR(domain
->gaw
);
3074 end
= end
& (~VTD_PAGE_MASK
);
3077 dma_pte_clear_range(domain
, 0, end
);
3079 /* free page tables */
3080 dma_pte_free_pagetable(domain
, 0, end
);
3082 iommu_free_vm_domain(domain
);
3083 free_domain_mem(domain
);
3086 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3088 struct dmar_domain
*dmar_domain
;
3090 dmar_domain
= iommu_alloc_vm_domain();
3093 "intel_iommu_domain_init: dmar_domain == NULL\n");
3096 if (vm_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3098 "intel_iommu_domain_init() failed\n");
3099 vm_domain_exit(dmar_domain
);
3102 domain
->priv
= dmar_domain
;
3107 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
3109 struct dmar_domain
*dmar_domain
= domain
->priv
;
3111 domain
->priv
= NULL
;
3112 vm_domain_exit(dmar_domain
);
3115 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
3118 struct dmar_domain
*dmar_domain
= domain
->priv
;
3119 struct pci_dev
*pdev
= to_pci_dev(dev
);
3120 struct intel_iommu
*iommu
;
3125 /* normally pdev is not mapped */
3126 if (unlikely(domain_context_mapped(pdev
))) {
3127 struct dmar_domain
*old_domain
;
3129 old_domain
= find_domain(pdev
);
3131 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
3132 vm_domain_remove_one_dev_info(old_domain
, pdev
);
3134 domain_remove_dev_info(old_domain
);
3138 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3143 /* check if this iommu agaw is sufficient for max mapped address */
3144 addr_width
= agaw_to_width(iommu
->agaw
);
3145 end
= DOMAIN_MAX_ADDR(addr_width
);
3146 end
= end
& VTD_PAGE_MASK
;
3147 if (end
< dmar_domain
->max_addr
) {
3148 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3149 "sufficient for the mapped address (%llx)\n",
3150 __func__
, iommu
->agaw
, dmar_domain
->max_addr
);
3154 ret
= domain_context_mapping(dmar_domain
, pdev
);
3158 ret
= vm_domain_add_dev_info(dmar_domain
, pdev
);
3162 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
3165 struct dmar_domain
*dmar_domain
= domain
->priv
;
3166 struct pci_dev
*pdev
= to_pci_dev(dev
);
3168 vm_domain_remove_one_dev_info(dmar_domain
, pdev
);
3171 static int intel_iommu_map_range(struct iommu_domain
*domain
,
3172 unsigned long iova
, phys_addr_t hpa
,
3173 size_t size
, int iommu_prot
)
3175 struct dmar_domain
*dmar_domain
= domain
->priv
;
3181 if (iommu_prot
& IOMMU_READ
)
3182 prot
|= DMA_PTE_READ
;
3183 if (iommu_prot
& IOMMU_WRITE
)
3184 prot
|= DMA_PTE_WRITE
;
3185 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
3186 prot
|= DMA_PTE_SNP
;
3188 max_addr
= (iova
& VTD_PAGE_MASK
) + VTD_PAGE_ALIGN(size
);
3189 if (dmar_domain
->max_addr
< max_addr
) {
3193 /* check if minimum agaw is sufficient for mapped address */
3194 min_agaw
= vm_domain_min_agaw(dmar_domain
);
3195 addr_width
= agaw_to_width(min_agaw
);
3196 end
= DOMAIN_MAX_ADDR(addr_width
);
3197 end
= end
& VTD_PAGE_MASK
;
3198 if (end
< max_addr
) {
3199 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3200 "sufficient for the mapped address (%llx)\n",
3201 __func__
, min_agaw
, max_addr
);
3204 dmar_domain
->max_addr
= max_addr
;
3207 ret
= domain_page_mapping(dmar_domain
, iova
, hpa
, size
, prot
);
3211 static void intel_iommu_unmap_range(struct iommu_domain
*domain
,
3212 unsigned long iova
, size_t size
)
3214 struct dmar_domain
*dmar_domain
= domain
->priv
;
3217 /* The address might not be aligned */
3218 base
= iova
& VTD_PAGE_MASK
;
3219 size
= VTD_PAGE_ALIGN(size
);
3220 dma_pte_clear_range(dmar_domain
, base
, base
+ size
);
3222 if (dmar_domain
->max_addr
== base
+ size
)
3223 dmar_domain
->max_addr
= base
;
3226 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
3229 struct dmar_domain
*dmar_domain
= domain
->priv
;
3230 struct dma_pte
*pte
;
3233 pte
= addr_to_dma_pte(dmar_domain
, iova
);
3235 phys
= dma_pte_addr(pte
);
3240 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
3243 struct dmar_domain
*dmar_domain
= domain
->priv
;
3245 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
3246 return dmar_domain
->iommu_snooping
;
3251 static struct iommu_ops intel_iommu_ops
= {
3252 .domain_init
= intel_iommu_domain_init
,
3253 .domain_destroy
= intel_iommu_domain_destroy
,
3254 .attach_dev
= intel_iommu_attach_device
,
3255 .detach_dev
= intel_iommu_detach_device
,
3256 .map
= intel_iommu_map_range
,
3257 .unmap
= intel_iommu_unmap_range
,
3258 .iova_to_phys
= intel_iommu_iova_to_phys
,
3259 .domain_has_cap
= intel_iommu_domain_has_cap
,
3262 static void __devinit
quirk_iommu_rwbf(struct pci_dev
*dev
)
3265 * Mobile 4 Series Chipset neglects to set RWBF capability,
3268 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
3272 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);