2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
32 #include <asm/tlbflush.h>
34 #include <asm/kvm_para.h>
36 #include <asm/virtext.h>
39 #define __ex(x) __kvm_handle_fault_on_reboot(x)
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
44 #define IOPM_ALLOC_ORDER 2
45 #define MSRPM_ALLOC_ORDER 1
47 #define SEG_TYPE_LDT 2
48 #define SEG_TYPE_BUSY_TSS16 3
50 #define SVM_FEATURE_NPT (1 << 0)
51 #define SVM_FEATURE_LBRV (1 << 1)
52 #define SVM_FEATURE_SVML (1 << 2)
53 #define SVM_FEATURE_NRIP (1 << 3)
54 #define SVM_FEATURE_TSC_RATE (1 << 4)
55 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
56 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
57 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
58 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
60 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
61 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
62 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
64 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
66 static bool erratum_383_found __read_mostly
;
68 static const u32 host_save_user_msrs
[] = {
70 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
73 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
76 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
86 /* These are the merged vectors */
89 /* gpa pointers to the real vectors */
93 /* A VMEXIT is required but not yet emulated */
97 * If we vmexit during an instruction emulation we need this to restore
98 * the l1 guest rip after the emulation
100 unsigned long vmexit_rip
;
101 unsigned long vmexit_rsp
;
102 unsigned long vmexit_rax
;
104 /* cache for intercepts of the guest */
107 u32 intercept_exceptions
;
110 /* Nested Paging related state */
114 #define MSRPM_OFFSETS 16
115 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
118 struct kvm_vcpu vcpu
;
120 unsigned long vmcb_pa
;
121 struct svm_cpu_data
*svm_data
;
122 uint64_t asid_generation
;
123 uint64_t sysenter_esp
;
124 uint64_t sysenter_eip
;
128 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
140 struct nested_state nested
;
144 unsigned int3_injected
;
145 unsigned long int3_rip
;
149 #define MSR_INVALID 0xffffffffU
151 static struct svm_direct_access_msrs
{
152 u32 index
; /* Index of the MSR */
153 bool always
; /* True if intercept is always on */
154 } direct_access_msrs
[] = {
155 { .index
= MSR_STAR
, .always
= true },
156 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
158 { .index
= MSR_GS_BASE
, .always
= true },
159 { .index
= MSR_FS_BASE
, .always
= true },
160 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
161 { .index
= MSR_LSTAR
, .always
= true },
162 { .index
= MSR_CSTAR
, .always
= true },
163 { .index
= MSR_SYSCALL_MASK
, .always
= true },
165 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
166 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
167 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
168 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
169 { .index
= MSR_INVALID
, .always
= false },
172 /* enable NPT for AMD64 and X86 with PAE */
173 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
174 static bool npt_enabled
= true;
176 static bool npt_enabled
;
180 module_param(npt
, int, S_IRUGO
);
182 static int nested
= 1;
183 module_param(nested
, int, S_IRUGO
);
185 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
186 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
188 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
189 static int nested_svm_intercept(struct vcpu_svm
*svm
);
190 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
191 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
192 bool has_error_code
, u32 error_code
);
195 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
196 pause filter count */
197 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
198 VMCB_ASID
, /* ASID */
199 VMCB_INTR
, /* int_ctl, int_vector */
200 VMCB_NPT
, /* npt_en, nCR3, gPAT */
201 VMCB_CR
, /* CR0, CR3, CR4, EFER */
202 VMCB_DR
, /* DR6, DR7 */
203 VMCB_DT
, /* GDT, IDT */
204 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
205 VMCB_CR2
, /* CR2 only */
206 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
210 /* TPR and CR2 are always written before VMRUN */
211 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
213 static inline void mark_all_dirty(struct vmcb
*vmcb
)
215 vmcb
->control
.clean
= 0;
218 static inline void mark_all_clean(struct vmcb
*vmcb
)
220 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
221 & ~VMCB_ALWAYS_DIRTY_MASK
;
224 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
226 vmcb
->control
.clean
&= ~(1 << bit
);
229 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
231 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
234 static void recalc_intercepts(struct vcpu_svm
*svm
)
236 struct vmcb_control_area
*c
, *h
;
237 struct nested_state
*g
;
239 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
241 if (!is_guest_mode(&svm
->vcpu
))
244 c
= &svm
->vmcb
->control
;
245 h
= &svm
->nested
.hsave
->control
;
248 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
249 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
250 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
251 c
->intercept
= h
->intercept
| g
->intercept
;
254 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
256 if (is_guest_mode(&svm
->vcpu
))
257 return svm
->nested
.hsave
;
262 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
264 struct vmcb
*vmcb
= get_host_vmcb(svm
);
266 vmcb
->control
.intercept_cr
|= (1U << bit
);
268 recalc_intercepts(svm
);
271 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
273 struct vmcb
*vmcb
= get_host_vmcb(svm
);
275 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
277 recalc_intercepts(svm
);
280 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
282 struct vmcb
*vmcb
= get_host_vmcb(svm
);
284 return vmcb
->control
.intercept_cr
& (1U << bit
);
287 static inline void set_dr_intercept(struct vcpu_svm
*svm
, int bit
)
289 struct vmcb
*vmcb
= get_host_vmcb(svm
);
291 vmcb
->control
.intercept_dr
|= (1U << bit
);
293 recalc_intercepts(svm
);
296 static inline void clr_dr_intercept(struct vcpu_svm
*svm
, int bit
)
298 struct vmcb
*vmcb
= get_host_vmcb(svm
);
300 vmcb
->control
.intercept_dr
&= ~(1U << bit
);
302 recalc_intercepts(svm
);
305 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
307 struct vmcb
*vmcb
= get_host_vmcb(svm
);
309 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
311 recalc_intercepts(svm
);
314 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
316 struct vmcb
*vmcb
= get_host_vmcb(svm
);
318 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
320 recalc_intercepts(svm
);
323 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
325 struct vmcb
*vmcb
= get_host_vmcb(svm
);
327 vmcb
->control
.intercept
|= (1ULL << bit
);
329 recalc_intercepts(svm
);
332 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
334 struct vmcb
*vmcb
= get_host_vmcb(svm
);
336 vmcb
->control
.intercept
&= ~(1ULL << bit
);
338 recalc_intercepts(svm
);
341 static inline void enable_gif(struct vcpu_svm
*svm
)
343 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
346 static inline void disable_gif(struct vcpu_svm
*svm
)
348 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
351 static inline bool gif_set(struct vcpu_svm
*svm
)
353 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
356 static unsigned long iopm_base
;
358 struct kvm_ldttss_desc
{
361 unsigned base1
:8, type
:5, dpl
:2, p
:1;
362 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
365 } __attribute__((packed
));
367 struct svm_cpu_data
{
373 struct kvm_ldttss_desc
*tss_desc
;
375 struct page
*save_area
;
378 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
379 static uint32_t svm_features
;
381 struct svm_init_data
{
386 static u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
388 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
389 #define MSRS_RANGE_SIZE 2048
390 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
392 static u32
svm_msrpm_offset(u32 msr
)
397 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
398 if (msr
< msrpm_ranges
[i
] ||
399 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
402 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
403 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
405 /* Now we have the u8 offset - but need the u32 offset */
409 /* MSR not in any range */
413 #define MAX_INST_SIZE 15
415 static inline void clgi(void)
417 asm volatile (__ex(SVM_CLGI
));
420 static inline void stgi(void)
422 asm volatile (__ex(SVM_STGI
));
425 static inline void invlpga(unsigned long addr
, u32 asid
)
427 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
430 static int get_npt_level(void)
433 return PT64_ROOT_LEVEL
;
435 return PT32E_ROOT_LEVEL
;
439 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
441 vcpu
->arch
.efer
= efer
;
442 if (!npt_enabled
&& !(efer
& EFER_LMA
))
445 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
446 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
449 static int is_external_interrupt(u32 info
)
451 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
452 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
455 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
457 struct vcpu_svm
*svm
= to_svm(vcpu
);
460 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
461 ret
|= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
465 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
467 struct vcpu_svm
*svm
= to_svm(vcpu
);
470 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
472 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
476 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
478 struct vcpu_svm
*svm
= to_svm(vcpu
);
480 if (svm
->vmcb
->control
.next_rip
!= 0)
481 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
483 if (!svm
->next_rip
) {
484 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
486 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
489 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
490 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
491 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
493 kvm_rip_write(vcpu
, svm
->next_rip
);
494 svm_set_interrupt_shadow(vcpu
, 0);
497 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
498 bool has_error_code
, u32 error_code
,
501 struct vcpu_svm
*svm
= to_svm(vcpu
);
504 * If we are within a nested VM we'd better #VMEXIT and let the guest
505 * handle the exception
508 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
511 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
512 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
515 * For guest debugging where we have to reinject #BP if some
516 * INT3 is guest-owned:
517 * Emulate nRIP by moving RIP forward. Will fail if injection
518 * raises a fault that is not intercepted. Still better than
519 * failing in all cases.
521 skip_emulated_instruction(&svm
->vcpu
);
522 rip
= kvm_rip_read(&svm
->vcpu
);
523 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
524 svm
->int3_injected
= rip
- old_rip
;
527 svm
->vmcb
->control
.event_inj
= nr
529 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
530 | SVM_EVTINJ_TYPE_EXEPT
;
531 svm
->vmcb
->control
.event_inj_err
= error_code
;
534 static void svm_init_erratum_383(void)
540 if (!cpu_has_amd_erratum(amd_erratum_383
))
543 /* Use _safe variants to not break nested virtualization */
544 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
550 low
= lower_32_bits(val
);
551 high
= upper_32_bits(val
);
553 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
555 erratum_383_found
= true;
558 static int has_svm(void)
562 if (!cpu_has_svm(&msg
)) {
563 printk(KERN_INFO
"has_svm: %s\n", msg
);
570 static void svm_hardware_disable(void *garbage
)
575 static int svm_hardware_enable(void *garbage
)
578 struct svm_cpu_data
*sd
;
580 struct desc_ptr gdt_descr
;
581 struct desc_struct
*gdt
;
582 int me
= raw_smp_processor_id();
584 rdmsrl(MSR_EFER
, efer
);
585 if (efer
& EFER_SVME
)
589 printk(KERN_ERR
"svm_hardware_enable: err EOPNOTSUPP on %d\n",
593 sd
= per_cpu(svm_data
, me
);
596 printk(KERN_ERR
"svm_hardware_enable: svm_data is NULL on %d\n",
601 sd
->asid_generation
= 1;
602 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
603 sd
->next_asid
= sd
->max_asid
+ 1;
605 native_store_gdt(&gdt_descr
);
606 gdt
= (struct desc_struct
*)gdt_descr
.address
;
607 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
609 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
611 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
613 svm_init_erratum_383();
618 static void svm_cpu_uninit(int cpu
)
620 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
625 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
626 __free_page(sd
->save_area
);
630 static int svm_cpu_init(int cpu
)
632 struct svm_cpu_data
*sd
;
635 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
639 sd
->save_area
= alloc_page(GFP_KERNEL
);
644 per_cpu(svm_data
, cpu
) = sd
;
654 static bool valid_msr_intercept(u32 index
)
658 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
659 if (direct_access_msrs
[i
].index
== index
)
665 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
668 u8 bit_read
, bit_write
;
673 * If this warning triggers extend the direct_access_msrs list at the
674 * beginning of the file
676 WARN_ON(!valid_msr_intercept(msr
));
678 offset
= svm_msrpm_offset(msr
);
679 bit_read
= 2 * (msr
& 0x0f);
680 bit_write
= 2 * (msr
& 0x0f) + 1;
683 BUG_ON(offset
== MSR_INVALID
);
685 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
686 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
691 static void svm_vcpu_init_msrpm(u32
*msrpm
)
695 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
697 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
698 if (!direct_access_msrs
[i
].always
)
701 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
705 static void add_msr_offset(u32 offset
)
709 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
711 /* Offset already in list? */
712 if (msrpm_offsets
[i
] == offset
)
715 /* Slot used by another offset? */
716 if (msrpm_offsets
[i
] != MSR_INVALID
)
719 /* Add offset to list */
720 msrpm_offsets
[i
] = offset
;
726 * If this BUG triggers the msrpm_offsets table has an overflow. Just
727 * increase MSRPM_OFFSETS in this case.
732 static void init_msrpm_offsets(void)
736 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
738 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
741 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
742 BUG_ON(offset
== MSR_INVALID
);
744 add_msr_offset(offset
);
748 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
750 u32
*msrpm
= svm
->msrpm
;
752 svm
->vmcb
->control
.lbr_ctl
= 1;
753 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
754 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
755 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
756 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
759 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
761 u32
*msrpm
= svm
->msrpm
;
763 svm
->vmcb
->control
.lbr_ctl
= 0;
764 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
765 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
766 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
767 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
770 static __init
int svm_hardware_setup(void)
773 struct page
*iopm_pages
;
777 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
782 iopm_va
= page_address(iopm_pages
);
783 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
784 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
786 init_msrpm_offsets();
788 if (boot_cpu_has(X86_FEATURE_NX
))
789 kvm_enable_efer_bits(EFER_NX
);
791 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
792 kvm_enable_efer_bits(EFER_FFXSR
);
795 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
796 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
799 for_each_possible_cpu(cpu
) {
800 r
= svm_cpu_init(cpu
);
805 svm_features
= cpuid_edx(SVM_CPUID_FUNC
);
807 if (!boot_cpu_has(X86_FEATURE_NPT
))
810 if (npt_enabled
&& !npt
) {
811 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
816 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
824 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
829 static __exit
void svm_hardware_unsetup(void)
833 for_each_possible_cpu(cpu
)
836 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
840 static void init_seg(struct vmcb_seg
*seg
)
843 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
844 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
849 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
852 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
857 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
859 struct vcpu_svm
*svm
= to_svm(vcpu
);
860 u64 g_tsc_offset
= 0;
862 if (is_guest_mode(vcpu
)) {
863 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
864 svm
->nested
.hsave
->control
.tsc_offset
;
865 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
868 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
870 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
873 static void svm_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
)
875 struct vcpu_svm
*svm
= to_svm(vcpu
);
877 svm
->vmcb
->control
.tsc_offset
+= adjustment
;
878 if (is_guest_mode(vcpu
))
879 svm
->nested
.hsave
->control
.tsc_offset
+= adjustment
;
880 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
883 static void init_vmcb(struct vcpu_svm
*svm
)
885 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
886 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
888 svm
->vcpu
.fpu_active
= 1;
889 svm
->vcpu
.arch
.hflags
= 0;
891 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
892 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
893 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
894 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
895 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
896 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
897 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
899 set_dr_intercept(svm
, INTERCEPT_DR0_READ
);
900 set_dr_intercept(svm
, INTERCEPT_DR1_READ
);
901 set_dr_intercept(svm
, INTERCEPT_DR2_READ
);
902 set_dr_intercept(svm
, INTERCEPT_DR3_READ
);
903 set_dr_intercept(svm
, INTERCEPT_DR4_READ
);
904 set_dr_intercept(svm
, INTERCEPT_DR5_READ
);
905 set_dr_intercept(svm
, INTERCEPT_DR6_READ
);
906 set_dr_intercept(svm
, INTERCEPT_DR7_READ
);
908 set_dr_intercept(svm
, INTERCEPT_DR0_WRITE
);
909 set_dr_intercept(svm
, INTERCEPT_DR1_WRITE
);
910 set_dr_intercept(svm
, INTERCEPT_DR2_WRITE
);
911 set_dr_intercept(svm
, INTERCEPT_DR3_WRITE
);
912 set_dr_intercept(svm
, INTERCEPT_DR4_WRITE
);
913 set_dr_intercept(svm
, INTERCEPT_DR5_WRITE
);
914 set_dr_intercept(svm
, INTERCEPT_DR6_WRITE
);
915 set_dr_intercept(svm
, INTERCEPT_DR7_WRITE
);
917 set_exception_intercept(svm
, PF_VECTOR
);
918 set_exception_intercept(svm
, UD_VECTOR
);
919 set_exception_intercept(svm
, MC_VECTOR
);
921 set_intercept(svm
, INTERCEPT_INTR
);
922 set_intercept(svm
, INTERCEPT_NMI
);
923 set_intercept(svm
, INTERCEPT_SMI
);
924 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
925 set_intercept(svm
, INTERCEPT_CPUID
);
926 set_intercept(svm
, INTERCEPT_INVD
);
927 set_intercept(svm
, INTERCEPT_HLT
);
928 set_intercept(svm
, INTERCEPT_INVLPG
);
929 set_intercept(svm
, INTERCEPT_INVLPGA
);
930 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
931 set_intercept(svm
, INTERCEPT_MSR_PROT
);
932 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
933 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
934 set_intercept(svm
, INTERCEPT_VMRUN
);
935 set_intercept(svm
, INTERCEPT_VMMCALL
);
936 set_intercept(svm
, INTERCEPT_VMLOAD
);
937 set_intercept(svm
, INTERCEPT_VMSAVE
);
938 set_intercept(svm
, INTERCEPT_STGI
);
939 set_intercept(svm
, INTERCEPT_CLGI
);
940 set_intercept(svm
, INTERCEPT_SKINIT
);
941 set_intercept(svm
, INTERCEPT_WBINVD
);
942 set_intercept(svm
, INTERCEPT_MONITOR
);
943 set_intercept(svm
, INTERCEPT_MWAIT
);
944 set_intercept(svm
, INTERCEPT_XSETBV
);
946 control
->iopm_base_pa
= iopm_base
;
947 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
948 control
->int_ctl
= V_INTR_MASKING_MASK
;
956 save
->cs
.selector
= 0xf000;
957 /* Executable/Readable Code Segment */
958 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
959 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
960 save
->cs
.limit
= 0xffff;
962 * cs.base should really be 0xffff0000, but vmx can't handle that, so
963 * be consistent with it.
965 * Replace when we have real mode working for vmx.
967 save
->cs
.base
= 0xf0000;
969 save
->gdtr
.limit
= 0xffff;
970 save
->idtr
.limit
= 0xffff;
972 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
973 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
975 svm_set_efer(&svm
->vcpu
, 0);
976 save
->dr6
= 0xffff0ff0;
979 save
->rip
= 0x0000fff0;
980 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
983 * This is the guest-visible cr0 value.
984 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
986 svm
->vcpu
.arch
.cr0
= 0;
987 (void)kvm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
989 save
->cr4
= X86_CR4_PAE
;
993 /* Setup VMCB for Nested Paging */
994 control
->nested_ctl
= 1;
995 clr_intercept(svm
, INTERCEPT_TASK_SWITCH
);
996 clr_intercept(svm
, INTERCEPT_INVLPG
);
997 clr_exception_intercept(svm
, PF_VECTOR
);
998 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
999 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1000 save
->g_pat
= 0x0007040600070406ULL
;
1004 svm
->asid_generation
= 0;
1006 svm
->nested
.vmcb
= 0;
1007 svm
->vcpu
.arch
.hflags
= 0;
1009 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1010 control
->pause_filter_count
= 3000;
1011 set_intercept(svm
, INTERCEPT_PAUSE
);
1014 mark_all_dirty(svm
->vmcb
);
1019 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
1021 struct vcpu_svm
*svm
= to_svm(vcpu
);
1025 if (!kvm_vcpu_is_bsp(vcpu
)) {
1026 kvm_rip_write(vcpu
, 0);
1027 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
1028 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
1030 vcpu
->arch
.regs_avail
= ~0;
1031 vcpu
->arch
.regs_dirty
= ~0;
1036 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1038 struct vcpu_svm
*svm
;
1040 struct page
*msrpm_pages
;
1041 struct page
*hsave_page
;
1042 struct page
*nested_msrpm_pages
;
1045 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1051 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1056 page
= alloc_page(GFP_KERNEL
);
1060 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1064 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1065 if (!nested_msrpm_pages
)
1068 hsave_page
= alloc_page(GFP_KERNEL
);
1072 svm
->nested
.hsave
= page_address(hsave_page
);
1074 svm
->msrpm
= page_address(msrpm_pages
);
1075 svm_vcpu_init_msrpm(svm
->msrpm
);
1077 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1078 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1080 svm
->vmcb
= page_address(page
);
1081 clear_page(svm
->vmcb
);
1082 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1083 svm
->asid_generation
= 0;
1085 kvm_write_tsc(&svm
->vcpu
, 0);
1087 err
= fx_init(&svm
->vcpu
);
1091 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1092 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
1093 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1098 __free_page(hsave_page
);
1100 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1102 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1106 kvm_vcpu_uninit(&svm
->vcpu
);
1108 kmem_cache_free(kvm_vcpu_cache
, svm
);
1110 return ERR_PTR(err
);
1113 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1115 struct vcpu_svm
*svm
= to_svm(vcpu
);
1117 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1118 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1119 __free_page(virt_to_page(svm
->nested
.hsave
));
1120 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1121 kvm_vcpu_uninit(vcpu
);
1122 kmem_cache_free(kvm_vcpu_cache
, svm
);
1125 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1127 struct vcpu_svm
*svm
= to_svm(vcpu
);
1130 if (unlikely(cpu
!= vcpu
->cpu
)) {
1131 svm
->asid_generation
= 0;
1132 mark_all_dirty(svm
->vmcb
);
1135 #ifdef CONFIG_X86_64
1136 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1138 savesegment(fs
, svm
->host
.fs
);
1139 savesegment(gs
, svm
->host
.gs
);
1140 svm
->host
.ldt
= kvm_read_ldt();
1142 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1143 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1146 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1148 struct vcpu_svm
*svm
= to_svm(vcpu
);
1151 ++vcpu
->stat
.host_state_reload
;
1152 kvm_load_ldt(svm
->host
.ldt
);
1153 #ifdef CONFIG_X86_64
1154 loadsegment(fs
, svm
->host
.fs
);
1155 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gs
);
1156 load_gs_index(svm
->host
.gs
);
1158 #ifdef CONFIG_X86_32_LAZY_GS
1159 loadsegment(gs
, svm
->host
.gs
);
1162 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1163 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1166 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1168 return to_svm(vcpu
)->vmcb
->save
.rflags
;
1171 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1173 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1176 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1179 case VCPU_EXREG_PDPTR
:
1180 BUG_ON(!npt_enabled
);
1181 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1188 static void svm_set_vintr(struct vcpu_svm
*svm
)
1190 set_intercept(svm
, INTERCEPT_VINTR
);
1193 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1195 clr_intercept(svm
, INTERCEPT_VINTR
);
1198 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1200 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1203 case VCPU_SREG_CS
: return &save
->cs
;
1204 case VCPU_SREG_DS
: return &save
->ds
;
1205 case VCPU_SREG_ES
: return &save
->es
;
1206 case VCPU_SREG_FS
: return &save
->fs
;
1207 case VCPU_SREG_GS
: return &save
->gs
;
1208 case VCPU_SREG_SS
: return &save
->ss
;
1209 case VCPU_SREG_TR
: return &save
->tr
;
1210 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1216 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1218 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1223 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1224 struct kvm_segment
*var
, int seg
)
1226 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1228 var
->base
= s
->base
;
1229 var
->limit
= s
->limit
;
1230 var
->selector
= s
->selector
;
1231 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1232 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1233 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1234 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1235 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1236 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1237 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1238 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
1241 * AMD's VMCB does not have an explicit unusable field, so emulate it
1242 * for cross vendor migration purposes by "not present"
1244 var
->unusable
= !var
->present
|| (var
->type
== 0);
1249 * SVM always stores 0 for the 'G' bit in the CS selector in
1250 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1251 * Intel's VMENTRY has a check on the 'G' bit.
1253 var
->g
= s
->limit
> 0xfffff;
1257 * Work around a bug where the busy flag in the tr selector
1267 * The accessed bit must always be set in the segment
1268 * descriptor cache, although it can be cleared in the
1269 * descriptor, the cached bit always remains at 1. Since
1270 * Intel has a check on this, set it here to support
1271 * cross-vendor migration.
1278 * On AMD CPUs sometimes the DB bit in the segment
1279 * descriptor is left as 1, although the whole segment has
1280 * been made unusable. Clear it here to pass an Intel VMX
1281 * entry check when cross vendor migrating.
1289 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1291 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1296 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1298 struct vcpu_svm
*svm
= to_svm(vcpu
);
1300 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1301 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1304 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1306 struct vcpu_svm
*svm
= to_svm(vcpu
);
1308 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1309 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1310 mark_dirty(svm
->vmcb
, VMCB_DT
);
1313 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1315 struct vcpu_svm
*svm
= to_svm(vcpu
);
1317 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1318 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1321 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1323 struct vcpu_svm
*svm
= to_svm(vcpu
);
1325 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1326 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1327 mark_dirty(svm
->vmcb
, VMCB_DT
);
1330 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1334 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1338 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1342 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1344 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1345 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1347 if (!svm
->vcpu
.fpu_active
)
1348 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
1350 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1351 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1353 mark_dirty(svm
->vmcb
, VMCB_CR
);
1355 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
1356 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1357 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1359 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1360 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1364 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1366 struct vcpu_svm
*svm
= to_svm(vcpu
);
1368 if (is_guest_mode(vcpu
)) {
1370 * We are here because we run in nested mode, the host kvm
1371 * intercepts cr0 writes but the l1 hypervisor does not.
1372 * But the L1 hypervisor may intercept selective cr0 writes.
1373 * This needs to be checked here.
1375 unsigned long old
, new;
1377 /* Remove bits that would trigger a real cr0 write intercept */
1378 old
= vcpu
->arch
.cr0
& SVM_CR0_SELECTIVE_MASK
;
1379 new = cr0
& SVM_CR0_SELECTIVE_MASK
;
1382 /* cr0 write with ts and mp unchanged */
1383 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
1384 if (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
) {
1385 svm
->nested
.vmexit_rip
= kvm_rip_read(vcpu
);
1386 svm
->nested
.vmexit_rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
1387 svm
->nested
.vmexit_rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
1393 #ifdef CONFIG_X86_64
1394 if (vcpu
->arch
.efer
& EFER_LME
) {
1395 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1396 vcpu
->arch
.efer
|= EFER_LMA
;
1397 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1400 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1401 vcpu
->arch
.efer
&= ~EFER_LMA
;
1402 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1406 vcpu
->arch
.cr0
= cr0
;
1409 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1411 if (!vcpu
->fpu_active
)
1414 * re-enable caching here because the QEMU bios
1415 * does not do it - this results in some delay at
1418 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1419 svm
->vmcb
->save
.cr0
= cr0
;
1420 mark_dirty(svm
->vmcb
, VMCB_CR
);
1421 update_cr0_intercept(svm
);
1424 static void svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1426 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
1427 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1429 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1430 svm_flush_tlb(vcpu
);
1432 vcpu
->arch
.cr4
= cr4
;
1435 cr4
|= host_cr4_mce
;
1436 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1437 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1440 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1441 struct kvm_segment
*var
, int seg
)
1443 struct vcpu_svm
*svm
= to_svm(vcpu
);
1444 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1446 s
->base
= var
->base
;
1447 s
->limit
= var
->limit
;
1448 s
->selector
= var
->selector
;
1452 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1453 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1454 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1455 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1456 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1457 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1458 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1459 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1461 if (seg
== VCPU_SREG_CS
)
1463 = (svm
->vmcb
->save
.cs
.attrib
1464 >> SVM_SELECTOR_DPL_SHIFT
) & 3;
1466 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1469 static void update_db_intercept(struct kvm_vcpu
*vcpu
)
1471 struct vcpu_svm
*svm
= to_svm(vcpu
);
1473 clr_exception_intercept(svm
, DB_VECTOR
);
1474 clr_exception_intercept(svm
, BP_VECTOR
);
1476 if (svm
->nmi_singlestep
)
1477 set_exception_intercept(svm
, DB_VECTOR
);
1479 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1480 if (vcpu
->guest_debug
&
1481 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1482 set_exception_intercept(svm
, DB_VECTOR
);
1483 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1484 set_exception_intercept(svm
, BP_VECTOR
);
1486 vcpu
->guest_debug
= 0;
1489 static void svm_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1491 struct vcpu_svm
*svm
= to_svm(vcpu
);
1493 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1494 svm
->vmcb
->save
.dr7
= dbg
->arch
.debugreg
[7];
1496 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1498 mark_dirty(svm
->vmcb
, VMCB_DR
);
1500 update_db_intercept(vcpu
);
1503 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1505 if (sd
->next_asid
> sd
->max_asid
) {
1506 ++sd
->asid_generation
;
1508 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1511 svm
->asid_generation
= sd
->asid_generation
;
1512 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1514 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1517 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1519 struct vcpu_svm
*svm
= to_svm(vcpu
);
1521 svm
->vmcb
->save
.dr7
= value
;
1522 mark_dirty(svm
->vmcb
, VMCB_DR
);
1525 static int pf_interception(struct vcpu_svm
*svm
)
1527 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1531 switch (svm
->apf_reason
) {
1533 error_code
= svm
->vmcb
->control
.exit_info_1
;
1535 trace_kvm_page_fault(fault_address
, error_code
);
1536 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1537 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1538 r
= kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1539 svm
->vmcb
->control
.insn_bytes
,
1540 svm
->vmcb
->control
.insn_len
);
1542 case KVM_PV_REASON_PAGE_NOT_PRESENT
:
1543 svm
->apf_reason
= 0;
1544 local_irq_disable();
1545 kvm_async_pf_task_wait(fault_address
);
1548 case KVM_PV_REASON_PAGE_READY
:
1549 svm
->apf_reason
= 0;
1550 local_irq_disable();
1551 kvm_async_pf_task_wake(fault_address
);
1558 static int db_interception(struct vcpu_svm
*svm
)
1560 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1562 if (!(svm
->vcpu
.guest_debug
&
1563 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1564 !svm
->nmi_singlestep
) {
1565 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1569 if (svm
->nmi_singlestep
) {
1570 svm
->nmi_singlestep
= false;
1571 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1572 svm
->vmcb
->save
.rflags
&=
1573 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1574 update_db_intercept(&svm
->vcpu
);
1577 if (svm
->vcpu
.guest_debug
&
1578 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1579 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1580 kvm_run
->debug
.arch
.pc
=
1581 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1582 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1589 static int bp_interception(struct vcpu_svm
*svm
)
1591 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1593 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1594 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1595 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1599 static int ud_interception(struct vcpu_svm
*svm
)
1603 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
1604 if (er
!= EMULATE_DONE
)
1605 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1609 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1611 struct vcpu_svm
*svm
= to_svm(vcpu
);
1613 clr_exception_intercept(svm
, NM_VECTOR
);
1615 svm
->vcpu
.fpu_active
= 1;
1616 update_cr0_intercept(svm
);
1619 static int nm_interception(struct vcpu_svm
*svm
)
1621 svm_fpu_activate(&svm
->vcpu
);
1625 static bool is_erratum_383(void)
1630 if (!erratum_383_found
)
1633 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1637 /* Bit 62 may or may not be set for this mce */
1638 value
&= ~(1ULL << 62);
1640 if (value
!= 0xb600000000010015ULL
)
1643 /* Clear MCi_STATUS registers */
1644 for (i
= 0; i
< 6; ++i
)
1645 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1647 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1651 value
&= ~(1ULL << 2);
1652 low
= lower_32_bits(value
);
1653 high
= upper_32_bits(value
);
1655 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1658 /* Flush tlb to evict multi-match entries */
1664 static void svm_handle_mce(struct vcpu_svm
*svm
)
1666 if (is_erratum_383()) {
1668 * Erratum 383 triggered. Guest state is corrupt so kill the
1671 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1673 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1679 * On an #MC intercept the MCE handler is not called automatically in
1680 * the host. So do it by hand here.
1684 /* not sure if we ever come back to this point */
1689 static int mc_interception(struct vcpu_svm
*svm
)
1694 static int shutdown_interception(struct vcpu_svm
*svm
)
1696 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1699 * VMCB is undefined after a SHUTDOWN intercept
1700 * so reinitialize it.
1702 clear_page(svm
->vmcb
);
1705 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1709 static int io_interception(struct vcpu_svm
*svm
)
1711 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1712 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1713 int size
, in
, string
;
1716 ++svm
->vcpu
.stat
.io_exits
;
1717 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1718 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1720 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
1722 port
= io_info
>> 16;
1723 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1724 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1725 skip_emulated_instruction(&svm
->vcpu
);
1727 return kvm_fast_pio_out(vcpu
, size
, port
);
1730 static int nmi_interception(struct vcpu_svm
*svm
)
1735 static int intr_interception(struct vcpu_svm
*svm
)
1737 ++svm
->vcpu
.stat
.irq_exits
;
1741 static int nop_on_interception(struct vcpu_svm
*svm
)
1746 static int halt_interception(struct vcpu_svm
*svm
)
1748 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1749 skip_emulated_instruction(&svm
->vcpu
);
1750 return kvm_emulate_halt(&svm
->vcpu
);
1753 static int vmmcall_interception(struct vcpu_svm
*svm
)
1755 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1756 skip_emulated_instruction(&svm
->vcpu
);
1757 kvm_emulate_hypercall(&svm
->vcpu
);
1761 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
1763 struct vcpu_svm
*svm
= to_svm(vcpu
);
1765 return svm
->nested
.nested_cr3
;
1768 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
1771 struct vcpu_svm
*svm
= to_svm(vcpu
);
1773 svm
->vmcb
->control
.nested_cr3
= root
;
1774 mark_dirty(svm
->vmcb
, VMCB_NPT
);
1775 svm_flush_tlb(vcpu
);
1778 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
1779 struct x86_exception
*fault
)
1781 struct vcpu_svm
*svm
= to_svm(vcpu
);
1783 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
1784 svm
->vmcb
->control
.exit_code_hi
= 0;
1785 svm
->vmcb
->control
.exit_info_1
= fault
->error_code
;
1786 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
1788 nested_svm_vmexit(svm
);
1791 static int nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
1795 r
= kvm_init_shadow_mmu(vcpu
, &vcpu
->arch
.mmu
);
1797 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
1798 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
1799 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
1800 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
1801 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
1806 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
1808 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
1811 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1813 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
1814 || !is_paging(&svm
->vcpu
)) {
1815 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1819 if (svm
->vmcb
->save
.cpl
) {
1820 kvm_inject_gp(&svm
->vcpu
, 0);
1827 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1828 bool has_error_code
, u32 error_code
)
1832 if (!is_guest_mode(&svm
->vcpu
))
1835 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1836 svm
->vmcb
->control
.exit_code_hi
= 0;
1837 svm
->vmcb
->control
.exit_info_1
= error_code
;
1838 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1840 vmexit
= nested_svm_intercept(svm
);
1841 if (vmexit
== NESTED_EXIT_DONE
)
1842 svm
->nested
.exit_required
= true;
1847 /* This function returns true if it is save to enable the irq window */
1848 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
1850 if (!is_guest_mode(&svm
->vcpu
))
1853 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1856 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1860 * if vmexit was already requested (by intercepted exception
1861 * for instance) do not overwrite it with "external interrupt"
1864 if (svm
->nested
.exit_required
)
1867 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1868 svm
->vmcb
->control
.exit_info_1
= 0;
1869 svm
->vmcb
->control
.exit_info_2
= 0;
1871 if (svm
->nested
.intercept
& 1ULL) {
1873 * The #vmexit can't be emulated here directly because this
1874 * code path runs with irqs and preemtion disabled. A
1875 * #vmexit emulation might sleep. Only signal request for
1878 svm
->nested
.exit_required
= true;
1879 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
1886 /* This function returns true if it is save to enable the nmi window */
1887 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
1889 if (!is_guest_mode(&svm
->vcpu
))
1892 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
1895 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
1896 svm
->nested
.exit_required
= true;
1901 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
1907 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
1908 if (is_error_page(page
))
1916 kvm_release_page_clean(page
);
1917 kvm_inject_gp(&svm
->vcpu
, 0);
1922 static void nested_svm_unmap(struct page
*page
)
1925 kvm_release_page_dirty(page
);
1928 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
1934 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
1935 return NESTED_EXIT_HOST
;
1937 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
1938 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
1942 if (kvm_read_guest(svm
->vcpu
.kvm
, gpa
, &val
, 1))
1945 return val
? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
1948 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
1950 u32 offset
, msr
, value
;
1953 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
1954 return NESTED_EXIT_HOST
;
1956 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
1957 offset
= svm_msrpm_offset(msr
);
1958 write
= svm
->vmcb
->control
.exit_info_1
& 1;
1959 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
1961 if (offset
== MSR_INVALID
)
1962 return NESTED_EXIT_DONE
;
1964 /* Offset is in 32 bit units but need in 8 bit units */
1967 if (kvm_read_guest(svm
->vcpu
.kvm
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
1968 return NESTED_EXIT_DONE
;
1970 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
1973 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
1975 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1977 switch (exit_code
) {
1980 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
1981 return NESTED_EXIT_HOST
;
1983 /* For now we are always handling NPFs when using them */
1985 return NESTED_EXIT_HOST
;
1987 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
1988 /* When we're shadowing, trap PFs, but not async PF */
1989 if (!npt_enabled
&& svm
->apf_reason
== 0)
1990 return NESTED_EXIT_HOST
;
1992 case SVM_EXIT_EXCP_BASE
+ NM_VECTOR
:
1993 nm_interception(svm
);
1999 return NESTED_EXIT_CONTINUE
;
2003 * If this function returns true, this #vmexit was already handled
2005 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2007 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2008 int vmexit
= NESTED_EXIT_HOST
;
2010 switch (exit_code
) {
2012 vmexit
= nested_svm_exit_handled_msr(svm
);
2015 vmexit
= nested_svm_intercept_ioio(svm
);
2017 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2018 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2019 if (svm
->nested
.intercept_cr
& bit
)
2020 vmexit
= NESTED_EXIT_DONE
;
2023 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2024 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2025 if (svm
->nested
.intercept_dr
& bit
)
2026 vmexit
= NESTED_EXIT_DONE
;
2029 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2030 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2031 if (svm
->nested
.intercept_exceptions
& excp_bits
)
2032 vmexit
= NESTED_EXIT_DONE
;
2033 /* async page fault always cause vmexit */
2034 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2035 svm
->apf_reason
!= 0)
2036 vmexit
= NESTED_EXIT_DONE
;
2039 case SVM_EXIT_ERR
: {
2040 vmexit
= NESTED_EXIT_DONE
;
2044 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2045 if (svm
->nested
.intercept
& exit_bits
)
2046 vmexit
= NESTED_EXIT_DONE
;
2053 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2057 vmexit
= nested_svm_intercept(svm
);
2059 if (vmexit
== NESTED_EXIT_DONE
)
2060 nested_svm_vmexit(svm
);
2065 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2067 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2068 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2070 dst
->intercept_cr
= from
->intercept_cr
;
2071 dst
->intercept_dr
= from
->intercept_dr
;
2072 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2073 dst
->intercept
= from
->intercept
;
2074 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2075 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2076 dst
->tsc_offset
= from
->tsc_offset
;
2077 dst
->asid
= from
->asid
;
2078 dst
->tlb_ctl
= from
->tlb_ctl
;
2079 dst
->int_ctl
= from
->int_ctl
;
2080 dst
->int_vector
= from
->int_vector
;
2081 dst
->int_state
= from
->int_state
;
2082 dst
->exit_code
= from
->exit_code
;
2083 dst
->exit_code_hi
= from
->exit_code_hi
;
2084 dst
->exit_info_1
= from
->exit_info_1
;
2085 dst
->exit_info_2
= from
->exit_info_2
;
2086 dst
->exit_int_info
= from
->exit_int_info
;
2087 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2088 dst
->nested_ctl
= from
->nested_ctl
;
2089 dst
->event_inj
= from
->event_inj
;
2090 dst
->event_inj_err
= from
->event_inj_err
;
2091 dst
->nested_cr3
= from
->nested_cr3
;
2092 dst
->lbr_ctl
= from
->lbr_ctl
;
2095 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2097 struct vmcb
*nested_vmcb
;
2098 struct vmcb
*hsave
= svm
->nested
.hsave
;
2099 struct vmcb
*vmcb
= svm
->vmcb
;
2102 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2103 vmcb
->control
.exit_info_1
,
2104 vmcb
->control
.exit_info_2
,
2105 vmcb
->control
.exit_int_info
,
2106 vmcb
->control
.exit_int_info_err
);
2108 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2112 /* Exit Guest-Mode */
2113 leave_guest_mode(&svm
->vcpu
);
2114 svm
->nested
.vmcb
= 0;
2116 /* Give the current vmcb to the guest */
2119 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2120 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2121 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2122 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2123 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2124 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2125 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2126 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2127 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2128 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2129 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2130 nested_vmcb
->save
.rflags
= vmcb
->save
.rflags
;
2131 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2132 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2133 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2134 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2135 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2136 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2138 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2139 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2140 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2141 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2142 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2143 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2144 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2145 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2146 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2147 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2150 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2151 * to make sure that we do not lose injected events. So check event_inj
2152 * here and copy it to exit_int_info if it is valid.
2153 * Exit_int_info and event_inj can't be both valid because the case
2154 * below only happens on a VMRUN instruction intercept which has
2155 * no valid exit_int_info set.
2157 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2158 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2160 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2161 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2164 nested_vmcb
->control
.tlb_ctl
= 0;
2165 nested_vmcb
->control
.event_inj
= 0;
2166 nested_vmcb
->control
.event_inj_err
= 0;
2168 /* We always set V_INTR_MASKING and remember the old value in hflags */
2169 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2170 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2172 /* Restore the original control entries */
2173 copy_vmcb_control_area(vmcb
, hsave
);
2175 kvm_clear_exception_queue(&svm
->vcpu
);
2176 kvm_clear_interrupt_queue(&svm
->vcpu
);
2178 svm
->nested
.nested_cr3
= 0;
2180 /* Restore selected save entries */
2181 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2182 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2183 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2184 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2185 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2186 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2187 svm
->vmcb
->save
.rflags
= hsave
->save
.rflags
;
2188 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2189 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2190 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2192 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2193 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2195 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2197 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2198 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2199 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2200 svm
->vmcb
->save
.dr7
= 0;
2201 svm
->vmcb
->save
.cpl
= 0;
2202 svm
->vmcb
->control
.exit_int_info
= 0;
2204 mark_all_dirty(svm
->vmcb
);
2206 nested_svm_unmap(page
);
2208 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2209 kvm_mmu_reset_context(&svm
->vcpu
);
2210 kvm_mmu_load(&svm
->vcpu
);
2215 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2218 * This function merges the msr permission bitmaps of kvm and the
2219 * nested vmcb. It is omptimized in that it only merges the parts where
2220 * the kvm msr permission bitmap may contain zero bits
2224 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2227 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2231 if (msrpm_offsets
[i
] == 0xffffffff)
2234 p
= msrpm_offsets
[i
];
2235 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2237 if (kvm_read_guest(svm
->vcpu
.kvm
, offset
, &value
, 4))
2240 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2243 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2248 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2250 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2253 if (vmcb
->control
.asid
== 0)
2256 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2262 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2264 struct vmcb
*nested_vmcb
;
2265 struct vmcb
*hsave
= svm
->nested
.hsave
;
2266 struct vmcb
*vmcb
= svm
->vmcb
;
2270 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2272 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2276 if (!nested_vmcb_checks(nested_vmcb
)) {
2277 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2278 nested_vmcb
->control
.exit_code_hi
= 0;
2279 nested_vmcb
->control
.exit_info_1
= 0;
2280 nested_vmcb
->control
.exit_info_2
= 0;
2282 nested_svm_unmap(page
);
2287 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2288 nested_vmcb
->save
.rip
,
2289 nested_vmcb
->control
.int_ctl
,
2290 nested_vmcb
->control
.event_inj
,
2291 nested_vmcb
->control
.nested_ctl
);
2293 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2294 nested_vmcb
->control
.intercept_cr
>> 16,
2295 nested_vmcb
->control
.intercept_exceptions
,
2296 nested_vmcb
->control
.intercept
);
2298 /* Clear internal status */
2299 kvm_clear_exception_queue(&svm
->vcpu
);
2300 kvm_clear_interrupt_queue(&svm
->vcpu
);
2303 * Save the old vmcb, so we don't need to pick what we save, but can
2304 * restore everything when a VMEXIT occurs
2306 hsave
->save
.es
= vmcb
->save
.es
;
2307 hsave
->save
.cs
= vmcb
->save
.cs
;
2308 hsave
->save
.ss
= vmcb
->save
.ss
;
2309 hsave
->save
.ds
= vmcb
->save
.ds
;
2310 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2311 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2312 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2313 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2314 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2315 hsave
->save
.rflags
= vmcb
->save
.rflags
;
2316 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2317 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2318 hsave
->save
.rax
= vmcb
->save
.rax
;
2320 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2322 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2324 copy_vmcb_control_area(hsave
, vmcb
);
2326 if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_IF
)
2327 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2329 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2331 if (nested_vmcb
->control
.nested_ctl
) {
2332 kvm_mmu_unload(&svm
->vcpu
);
2333 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2334 nested_svm_init_mmu_context(&svm
->vcpu
);
2337 /* Load the nested guest state */
2338 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2339 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2340 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2341 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2342 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2343 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2344 svm
->vmcb
->save
.rflags
= nested_vmcb
->save
.rflags
;
2345 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2346 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2347 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2349 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2350 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2352 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2354 /* Guest paging mode is active - reset mmu */
2355 kvm_mmu_reset_context(&svm
->vcpu
);
2357 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2358 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2359 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2360 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2362 /* In case we don't even reach vcpu_run, the fields are not updated */
2363 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2364 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2365 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2366 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
2367 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
2368 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
2370 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
2371 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
2373 /* cache intercepts */
2374 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
2375 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
2376 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
2377 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
2379 svm_flush_tlb(&svm
->vcpu
);
2380 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
2381 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
2382 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
2384 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
2386 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
2387 /* We only want the cr8 intercept bits of the guest */
2388 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
2389 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2392 /* We don't want to see VMMCALLs from a nested guest */
2393 clr_intercept(svm
, INTERCEPT_VMMCALL
);
2395 svm
->vmcb
->control
.lbr_ctl
= nested_vmcb
->control
.lbr_ctl
;
2396 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
2397 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
2398 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
2399 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
2400 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
2402 nested_svm_unmap(page
);
2404 /* Enter Guest-Mode */
2405 enter_guest_mode(&svm
->vcpu
);
2408 * Merge guest and host intercepts - must be called with vcpu in
2409 * guest-mode to take affect here
2411 recalc_intercepts(svm
);
2413 svm
->nested
.vmcb
= vmcb_gpa
;
2417 mark_all_dirty(svm
->vmcb
);
2422 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
2424 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
2425 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
2426 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
2427 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
2428 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
2429 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
2430 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
2431 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
2432 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
2433 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
2434 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
2435 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
2438 static int vmload_interception(struct vcpu_svm
*svm
)
2440 struct vmcb
*nested_vmcb
;
2443 if (nested_svm_check_permissions(svm
))
2446 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2447 skip_emulated_instruction(&svm
->vcpu
);
2449 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2453 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
2454 nested_svm_unmap(page
);
2459 static int vmsave_interception(struct vcpu_svm
*svm
)
2461 struct vmcb
*nested_vmcb
;
2464 if (nested_svm_check_permissions(svm
))
2467 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2468 skip_emulated_instruction(&svm
->vcpu
);
2470 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2474 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
2475 nested_svm_unmap(page
);
2480 static int vmrun_interception(struct vcpu_svm
*svm
)
2482 if (nested_svm_check_permissions(svm
))
2485 /* Save rip after vmrun instruction */
2486 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
2488 if (!nested_svm_vmrun(svm
))
2491 if (!nested_svm_vmrun_msrpm(svm
))
2498 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2499 svm
->vmcb
->control
.exit_code_hi
= 0;
2500 svm
->vmcb
->control
.exit_info_1
= 0;
2501 svm
->vmcb
->control
.exit_info_2
= 0;
2503 nested_svm_vmexit(svm
);
2508 static int stgi_interception(struct vcpu_svm
*svm
)
2510 if (nested_svm_check_permissions(svm
))
2513 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2514 skip_emulated_instruction(&svm
->vcpu
);
2515 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2522 static int clgi_interception(struct vcpu_svm
*svm
)
2524 if (nested_svm_check_permissions(svm
))
2527 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2528 skip_emulated_instruction(&svm
->vcpu
);
2532 /* After a CLGI no interrupts should come */
2533 svm_clear_vintr(svm
);
2534 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2536 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2541 static int invlpga_interception(struct vcpu_svm
*svm
)
2543 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2545 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, vcpu
->arch
.regs
[VCPU_REGS_RCX
],
2546 vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2548 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2549 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2551 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2552 skip_emulated_instruction(&svm
->vcpu
);
2556 static int skinit_interception(struct vcpu_svm
*svm
)
2558 trace_kvm_skinit(svm
->vmcb
->save
.rip
, svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
]);
2560 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2564 static int xsetbv_interception(struct vcpu_svm
*svm
)
2566 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2567 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
2569 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2570 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2571 skip_emulated_instruction(&svm
->vcpu
);
2577 static int invalid_op_interception(struct vcpu_svm
*svm
)
2579 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2583 static int task_switch_interception(struct vcpu_svm
*svm
)
2587 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2588 SVM_EXITINTINFO_TYPE_MASK
;
2589 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2591 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2593 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2594 bool has_error_code
= false;
2597 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2599 if (svm
->vmcb
->control
.exit_info_2
&
2600 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2601 reason
= TASK_SWITCH_IRET
;
2602 else if (svm
->vmcb
->control
.exit_info_2
&
2603 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2604 reason
= TASK_SWITCH_JMP
;
2606 reason
= TASK_SWITCH_GATE
;
2608 reason
= TASK_SWITCH_CALL
;
2610 if (reason
== TASK_SWITCH_GATE
) {
2612 case SVM_EXITINTINFO_TYPE_NMI
:
2613 svm
->vcpu
.arch
.nmi_injected
= false;
2615 case SVM_EXITINTINFO_TYPE_EXEPT
:
2616 if (svm
->vmcb
->control
.exit_info_2
&
2617 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2618 has_error_code
= true;
2620 (u32
)svm
->vmcb
->control
.exit_info_2
;
2622 kvm_clear_exception_queue(&svm
->vcpu
);
2624 case SVM_EXITINTINFO_TYPE_INTR
:
2625 kvm_clear_interrupt_queue(&svm
->vcpu
);
2632 if (reason
!= TASK_SWITCH_GATE
||
2633 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2634 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2635 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2636 skip_emulated_instruction(&svm
->vcpu
);
2638 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, reason
,
2639 has_error_code
, error_code
) == EMULATE_FAIL
) {
2640 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2641 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2642 svm
->vcpu
.run
->internal
.ndata
= 0;
2648 static int cpuid_interception(struct vcpu_svm
*svm
)
2650 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2651 kvm_emulate_cpuid(&svm
->vcpu
);
2655 static int iret_interception(struct vcpu_svm
*svm
)
2657 ++svm
->vcpu
.stat
.nmi_window_exits
;
2658 clr_intercept(svm
, INTERCEPT_IRET
);
2659 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2660 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2664 static int invlpg_interception(struct vcpu_svm
*svm
)
2666 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2667 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2669 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2670 skip_emulated_instruction(&svm
->vcpu
);
2674 static int emulate_on_interception(struct vcpu_svm
*svm
)
2676 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2679 #define CR_VALID (1ULL << 63)
2681 static int cr_interception(struct vcpu_svm
*svm
)
2687 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2688 return emulate_on_interception(svm
);
2690 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2691 return emulate_on_interception(svm
);
2693 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2694 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2697 if (cr
>= 16) { /* mov to cr */
2699 val
= kvm_register_read(&svm
->vcpu
, reg
);
2702 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2705 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2708 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2711 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2714 WARN(1, "unhandled write to CR%d", cr
);
2715 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2718 } else { /* mov from cr */
2721 val
= kvm_read_cr0(&svm
->vcpu
);
2724 val
= svm
->vcpu
.arch
.cr2
;
2727 val
= kvm_read_cr3(&svm
->vcpu
);
2730 val
= kvm_read_cr4(&svm
->vcpu
);
2733 val
= kvm_get_cr8(&svm
->vcpu
);
2736 WARN(1, "unhandled read from CR%d", cr
);
2737 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2740 kvm_register_write(&svm
->vcpu
, reg
, val
);
2742 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2747 static int cr0_write_interception(struct vcpu_svm
*svm
)
2749 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2752 r
= cr_interception(svm
);
2754 if (svm
->nested
.vmexit_rip
) {
2755 kvm_register_write(vcpu
, VCPU_REGS_RIP
, svm
->nested
.vmexit_rip
);
2756 kvm_register_write(vcpu
, VCPU_REGS_RSP
, svm
->nested
.vmexit_rsp
);
2757 kvm_register_write(vcpu
, VCPU_REGS_RAX
, svm
->nested
.vmexit_rax
);
2758 svm
->nested
.vmexit_rip
= 0;
2764 static int dr_interception(struct vcpu_svm
*svm
)
2770 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
2771 return emulate_on_interception(svm
);
2773 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2774 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
2776 if (dr
>= 16) { /* mov to DRn */
2777 val
= kvm_register_read(&svm
->vcpu
, reg
);
2778 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
2780 err
= kvm_get_dr(&svm
->vcpu
, dr
, &val
);
2782 kvm_register_write(&svm
->vcpu
, reg
, val
);
2785 skip_emulated_instruction(&svm
->vcpu
);
2790 static int cr8_write_interception(struct vcpu_svm
*svm
)
2792 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2795 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2796 /* instruction emulation calls kvm_set_cr8() */
2797 r
= cr_interception(svm
);
2798 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
2799 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2802 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2804 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2808 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
2810 struct vcpu_svm
*svm
= to_svm(vcpu
);
2813 case MSR_IA32_TSC
: {
2814 struct vmcb
*vmcb
= get_host_vmcb(svm
);
2816 *data
= vmcb
->control
.tsc_offset
+ native_read_tsc();
2820 *data
= svm
->vmcb
->save
.star
;
2822 #ifdef CONFIG_X86_64
2824 *data
= svm
->vmcb
->save
.lstar
;
2827 *data
= svm
->vmcb
->save
.cstar
;
2829 case MSR_KERNEL_GS_BASE
:
2830 *data
= svm
->vmcb
->save
.kernel_gs_base
;
2832 case MSR_SYSCALL_MASK
:
2833 *data
= svm
->vmcb
->save
.sfmask
;
2836 case MSR_IA32_SYSENTER_CS
:
2837 *data
= svm
->vmcb
->save
.sysenter_cs
;
2839 case MSR_IA32_SYSENTER_EIP
:
2840 *data
= svm
->sysenter_eip
;
2842 case MSR_IA32_SYSENTER_ESP
:
2843 *data
= svm
->sysenter_esp
;
2846 * Nobody will change the following 5 values in the VMCB so we can
2847 * safely return them on rdmsr. They will always be 0 until LBRV is
2850 case MSR_IA32_DEBUGCTLMSR
:
2851 *data
= svm
->vmcb
->save
.dbgctl
;
2853 case MSR_IA32_LASTBRANCHFROMIP
:
2854 *data
= svm
->vmcb
->save
.br_from
;
2856 case MSR_IA32_LASTBRANCHTOIP
:
2857 *data
= svm
->vmcb
->save
.br_to
;
2859 case MSR_IA32_LASTINTFROMIP
:
2860 *data
= svm
->vmcb
->save
.last_excp_from
;
2862 case MSR_IA32_LASTINTTOIP
:
2863 *data
= svm
->vmcb
->save
.last_excp_to
;
2865 case MSR_VM_HSAVE_PA
:
2866 *data
= svm
->nested
.hsave_msr
;
2869 *data
= svm
->nested
.vm_cr_msr
;
2871 case MSR_IA32_UCODE_REV
:
2875 return kvm_get_msr_common(vcpu
, ecx
, data
);
2880 static int rdmsr_interception(struct vcpu_svm
*svm
)
2882 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2885 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
)) {
2886 trace_kvm_msr_read_ex(ecx
);
2887 kvm_inject_gp(&svm
->vcpu
, 0);
2889 trace_kvm_msr_read(ecx
, data
);
2891 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
2892 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
2893 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2894 skip_emulated_instruction(&svm
->vcpu
);
2899 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
2901 struct vcpu_svm
*svm
= to_svm(vcpu
);
2902 int svm_dis
, chg_mask
;
2904 if (data
& ~SVM_VM_CR_VALID_MASK
)
2907 chg_mask
= SVM_VM_CR_VALID_MASK
;
2909 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
2910 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
2912 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
2913 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
2915 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
2917 /* check for svm_disable while efer.svme is set */
2918 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
2924 static int svm_set_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64 data
)
2926 struct vcpu_svm
*svm
= to_svm(vcpu
);
2930 kvm_write_tsc(vcpu
, data
);
2933 svm
->vmcb
->save
.star
= data
;
2935 #ifdef CONFIG_X86_64
2937 svm
->vmcb
->save
.lstar
= data
;
2940 svm
->vmcb
->save
.cstar
= data
;
2942 case MSR_KERNEL_GS_BASE
:
2943 svm
->vmcb
->save
.kernel_gs_base
= data
;
2945 case MSR_SYSCALL_MASK
:
2946 svm
->vmcb
->save
.sfmask
= data
;
2949 case MSR_IA32_SYSENTER_CS
:
2950 svm
->vmcb
->save
.sysenter_cs
= data
;
2952 case MSR_IA32_SYSENTER_EIP
:
2953 svm
->sysenter_eip
= data
;
2954 svm
->vmcb
->save
.sysenter_eip
= data
;
2956 case MSR_IA32_SYSENTER_ESP
:
2957 svm
->sysenter_esp
= data
;
2958 svm
->vmcb
->save
.sysenter_esp
= data
;
2960 case MSR_IA32_DEBUGCTLMSR
:
2961 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
2962 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2966 if (data
& DEBUGCTL_RESERVED_BITS
)
2969 svm
->vmcb
->save
.dbgctl
= data
;
2970 mark_dirty(svm
->vmcb
, VMCB_LBR
);
2971 if (data
& (1ULL<<0))
2972 svm_enable_lbrv(svm
);
2974 svm_disable_lbrv(svm
);
2976 case MSR_VM_HSAVE_PA
:
2977 svm
->nested
.hsave_msr
= data
;
2980 return svm_set_vm_cr(vcpu
, data
);
2982 pr_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
2985 return kvm_set_msr_common(vcpu
, ecx
, data
);
2990 static int wrmsr_interception(struct vcpu_svm
*svm
)
2992 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2993 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
2994 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2997 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2998 if (svm_set_msr(&svm
->vcpu
, ecx
, data
)) {
2999 trace_kvm_msr_write_ex(ecx
, data
);
3000 kvm_inject_gp(&svm
->vcpu
, 0);
3002 trace_kvm_msr_write(ecx
, data
);
3003 skip_emulated_instruction(&svm
->vcpu
);
3008 static int msr_interception(struct vcpu_svm
*svm
)
3010 if (svm
->vmcb
->control
.exit_info_1
)
3011 return wrmsr_interception(svm
);
3013 return rdmsr_interception(svm
);
3016 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3018 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3020 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3021 svm_clear_vintr(svm
);
3022 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3023 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3025 * If the user space waits to inject interrupts, exit as soon as
3028 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
3029 kvm_run
->request_interrupt_window
&&
3030 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
3031 ++svm
->vcpu
.stat
.irq_window_exits
;
3032 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3039 static int pause_interception(struct vcpu_svm
*svm
)
3041 kvm_vcpu_on_spin(&(svm
->vcpu
));
3045 static int (*svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
3046 [SVM_EXIT_READ_CR0
] = cr_interception
,
3047 [SVM_EXIT_READ_CR3
] = cr_interception
,
3048 [SVM_EXIT_READ_CR4
] = cr_interception
,
3049 [SVM_EXIT_READ_CR8
] = cr_interception
,
3050 [SVM_EXIT_CR0_SEL_WRITE
] = emulate_on_interception
,
3051 [SVM_EXIT_WRITE_CR0
] = cr0_write_interception
,
3052 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
3053 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
3054 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
3055 [SVM_EXIT_READ_DR0
] = dr_interception
,
3056 [SVM_EXIT_READ_DR1
] = dr_interception
,
3057 [SVM_EXIT_READ_DR2
] = dr_interception
,
3058 [SVM_EXIT_READ_DR3
] = dr_interception
,
3059 [SVM_EXIT_READ_DR4
] = dr_interception
,
3060 [SVM_EXIT_READ_DR5
] = dr_interception
,
3061 [SVM_EXIT_READ_DR6
] = dr_interception
,
3062 [SVM_EXIT_READ_DR7
] = dr_interception
,
3063 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
3064 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
3065 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
3066 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
3067 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
3068 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
3069 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
3070 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
3071 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
3072 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
3073 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
3074 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
3075 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
3076 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
3077 [SVM_EXIT_INTR
] = intr_interception
,
3078 [SVM_EXIT_NMI
] = nmi_interception
,
3079 [SVM_EXIT_SMI
] = nop_on_interception
,
3080 [SVM_EXIT_INIT
] = nop_on_interception
,
3081 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
3082 [SVM_EXIT_CPUID
] = cpuid_interception
,
3083 [SVM_EXIT_IRET
] = iret_interception
,
3084 [SVM_EXIT_INVD
] = emulate_on_interception
,
3085 [SVM_EXIT_PAUSE
] = pause_interception
,
3086 [SVM_EXIT_HLT
] = halt_interception
,
3087 [SVM_EXIT_INVLPG
] = invlpg_interception
,
3088 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
3089 [SVM_EXIT_IOIO
] = io_interception
,
3090 [SVM_EXIT_MSR
] = msr_interception
,
3091 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
3092 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
3093 [SVM_EXIT_VMRUN
] = vmrun_interception
,
3094 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
3095 [SVM_EXIT_VMLOAD
] = vmload_interception
,
3096 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
3097 [SVM_EXIT_STGI
] = stgi_interception
,
3098 [SVM_EXIT_CLGI
] = clgi_interception
,
3099 [SVM_EXIT_SKINIT
] = skinit_interception
,
3100 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
3101 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
3102 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
3103 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
3104 [SVM_EXIT_NPF
] = pf_interception
,
3107 void dump_vmcb(struct kvm_vcpu
*vcpu
)
3109 struct vcpu_svm
*svm
= to_svm(vcpu
);
3110 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3111 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
3113 pr_err("VMCB Control Area:\n");
3114 pr_err("cr_read: %04x\n", control
->intercept_cr
& 0xffff);
3115 pr_err("cr_write: %04x\n", control
->intercept_cr
>> 16);
3116 pr_err("dr_read: %04x\n", control
->intercept_dr
& 0xffff);
3117 pr_err("dr_write: %04x\n", control
->intercept_dr
>> 16);
3118 pr_err("exceptions: %08x\n", control
->intercept_exceptions
);
3119 pr_err("intercepts: %016llx\n", control
->intercept
);
3120 pr_err("pause filter count: %d\n", control
->pause_filter_count
);
3121 pr_err("iopm_base_pa: %016llx\n", control
->iopm_base_pa
);
3122 pr_err("msrpm_base_pa: %016llx\n", control
->msrpm_base_pa
);
3123 pr_err("tsc_offset: %016llx\n", control
->tsc_offset
);
3124 pr_err("asid: %d\n", control
->asid
);
3125 pr_err("tlb_ctl: %d\n", control
->tlb_ctl
);
3126 pr_err("int_ctl: %08x\n", control
->int_ctl
);
3127 pr_err("int_vector: %08x\n", control
->int_vector
);
3128 pr_err("int_state: %08x\n", control
->int_state
);
3129 pr_err("exit_code: %08x\n", control
->exit_code
);
3130 pr_err("exit_info1: %016llx\n", control
->exit_info_1
);
3131 pr_err("exit_info2: %016llx\n", control
->exit_info_2
);
3132 pr_err("exit_int_info: %08x\n", control
->exit_int_info
);
3133 pr_err("exit_int_info_err: %08x\n", control
->exit_int_info_err
);
3134 pr_err("nested_ctl: %lld\n", control
->nested_ctl
);
3135 pr_err("nested_cr3: %016llx\n", control
->nested_cr3
);
3136 pr_err("event_inj: %08x\n", control
->event_inj
);
3137 pr_err("event_inj_err: %08x\n", control
->event_inj_err
);
3138 pr_err("lbr_ctl: %lld\n", control
->lbr_ctl
);
3139 pr_err("next_rip: %016llx\n", control
->next_rip
);
3140 pr_err("VMCB State Save Area:\n");
3141 pr_err("es: s: %04x a: %04x l: %08x b: %016llx\n",
3142 save
->es
.selector
, save
->es
.attrib
,
3143 save
->es
.limit
, save
->es
.base
);
3144 pr_err("cs: s: %04x a: %04x l: %08x b: %016llx\n",
3145 save
->cs
.selector
, save
->cs
.attrib
,
3146 save
->cs
.limit
, save
->cs
.base
);
3147 pr_err("ss: s: %04x a: %04x l: %08x b: %016llx\n",
3148 save
->ss
.selector
, save
->ss
.attrib
,
3149 save
->ss
.limit
, save
->ss
.base
);
3150 pr_err("ds: s: %04x a: %04x l: %08x b: %016llx\n",
3151 save
->ds
.selector
, save
->ds
.attrib
,
3152 save
->ds
.limit
, save
->ds
.base
);
3153 pr_err("fs: s: %04x a: %04x l: %08x b: %016llx\n",
3154 save
->fs
.selector
, save
->fs
.attrib
,
3155 save
->fs
.limit
, save
->fs
.base
);
3156 pr_err("gs: s: %04x a: %04x l: %08x b: %016llx\n",
3157 save
->gs
.selector
, save
->gs
.attrib
,
3158 save
->gs
.limit
, save
->gs
.base
);
3159 pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
3160 save
->gdtr
.selector
, save
->gdtr
.attrib
,
3161 save
->gdtr
.limit
, save
->gdtr
.base
);
3162 pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
3163 save
->ldtr
.selector
, save
->ldtr
.attrib
,
3164 save
->ldtr
.limit
, save
->ldtr
.base
);
3165 pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
3166 save
->idtr
.selector
, save
->idtr
.attrib
,
3167 save
->idtr
.limit
, save
->idtr
.base
);
3168 pr_err("tr: s: %04x a: %04x l: %08x b: %016llx\n",
3169 save
->tr
.selector
, save
->tr
.attrib
,
3170 save
->tr
.limit
, save
->tr
.base
);
3171 pr_err("cpl: %d efer: %016llx\n",
3172 save
->cpl
, save
->efer
);
3173 pr_err("cr0: %016llx cr2: %016llx\n",
3174 save
->cr0
, save
->cr2
);
3175 pr_err("cr3: %016llx cr4: %016llx\n",
3176 save
->cr3
, save
->cr4
);
3177 pr_err("dr6: %016llx dr7: %016llx\n",
3178 save
->dr6
, save
->dr7
);
3179 pr_err("rip: %016llx rflags: %016llx\n",
3180 save
->rip
, save
->rflags
);
3181 pr_err("rsp: %016llx rax: %016llx\n",
3182 save
->rsp
, save
->rax
);
3183 pr_err("star: %016llx lstar: %016llx\n",
3184 save
->star
, save
->lstar
);
3185 pr_err("cstar: %016llx sfmask: %016llx\n",
3186 save
->cstar
, save
->sfmask
);
3187 pr_err("kernel_gs_base: %016llx sysenter_cs: %016llx\n",
3188 save
->kernel_gs_base
, save
->sysenter_cs
);
3189 pr_err("sysenter_esp: %016llx sysenter_eip: %016llx\n",
3190 save
->sysenter_esp
, save
->sysenter_eip
);
3191 pr_err("gpat: %016llx dbgctl: %016llx\n",
3192 save
->g_pat
, save
->dbgctl
);
3193 pr_err("br_from: %016llx br_to: %016llx\n",
3194 save
->br_from
, save
->br_to
);
3195 pr_err("excp_from: %016llx excp_to: %016llx\n",
3196 save
->last_excp_from
, save
->last_excp_to
);
3200 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3202 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
3204 *info1
= control
->exit_info_1
;
3205 *info2
= control
->exit_info_2
;
3208 static int handle_exit(struct kvm_vcpu
*vcpu
)
3210 struct vcpu_svm
*svm
= to_svm(vcpu
);
3211 struct kvm_run
*kvm_run
= vcpu
->run
;
3212 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3214 trace_kvm_exit(exit_code
, vcpu
, KVM_ISA_SVM
);
3216 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
3217 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
3219 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
3221 if (unlikely(svm
->nested
.exit_required
)) {
3222 nested_svm_vmexit(svm
);
3223 svm
->nested
.exit_required
= false;
3228 if (is_guest_mode(vcpu
)) {
3231 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
3232 svm
->vmcb
->control
.exit_info_1
,
3233 svm
->vmcb
->control
.exit_info_2
,
3234 svm
->vmcb
->control
.exit_int_info
,
3235 svm
->vmcb
->control
.exit_int_info_err
);
3237 vmexit
= nested_svm_exit_special(svm
);
3239 if (vmexit
== NESTED_EXIT_CONTINUE
)
3240 vmexit
= nested_svm_exit_handled(svm
);
3242 if (vmexit
== NESTED_EXIT_DONE
)
3246 svm_complete_interrupts(svm
);
3248 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
3249 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3250 kvm_run
->fail_entry
.hardware_entry_failure_reason
3251 = svm
->vmcb
->control
.exit_code
;
3252 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3257 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
3258 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
3259 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
3260 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
3261 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
3263 __func__
, svm
->vmcb
->control
.exit_int_info
,
3266 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
3267 || !svm_exit_handlers
[exit_code
]) {
3268 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3269 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
3273 return svm_exit_handlers
[exit_code
](svm
);
3276 static void reload_tss(struct kvm_vcpu
*vcpu
)
3278 int cpu
= raw_smp_processor_id();
3280 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3281 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
3285 static void pre_svm_run(struct vcpu_svm
*svm
)
3287 int cpu
= raw_smp_processor_id();
3289 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3291 /* FIXME: handle wraparound of asid_generation */
3292 if (svm
->asid_generation
!= sd
->asid_generation
)
3296 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3298 struct vcpu_svm
*svm
= to_svm(vcpu
);
3300 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3301 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3302 set_intercept(svm
, INTERCEPT_IRET
);
3303 ++vcpu
->stat
.nmi_injections
;
3306 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
3308 struct vmcb_control_area
*control
;
3310 control
= &svm
->vmcb
->control
;
3311 control
->int_vector
= irq
;
3312 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
3313 control
->int_ctl
|= V_IRQ_MASK
|
3314 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
3315 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3318 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3320 struct vcpu_svm
*svm
= to_svm(vcpu
);
3322 BUG_ON(!(gif_set(svm
)));
3324 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3325 ++vcpu
->stat
.irq_injections
;
3327 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3328 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3331 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3333 struct vcpu_svm
*svm
= to_svm(vcpu
);
3335 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3342 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3345 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3347 struct vcpu_svm
*svm
= to_svm(vcpu
);
3348 struct vmcb
*vmcb
= svm
->vmcb
;
3350 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3351 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3352 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3357 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3359 struct vcpu_svm
*svm
= to_svm(vcpu
);
3361 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3364 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3366 struct vcpu_svm
*svm
= to_svm(vcpu
);
3369 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3370 set_intercept(svm
, INTERCEPT_IRET
);
3372 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3373 clr_intercept(svm
, INTERCEPT_IRET
);
3377 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3379 struct vcpu_svm
*svm
= to_svm(vcpu
);
3380 struct vmcb
*vmcb
= svm
->vmcb
;
3383 if (!gif_set(svm
) ||
3384 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3387 ret
= !!(vmcb
->save
.rflags
& X86_EFLAGS_IF
);
3389 if (is_guest_mode(vcpu
))
3390 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
3395 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3397 struct vcpu_svm
*svm
= to_svm(vcpu
);
3400 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3401 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3402 * get that intercept, this function will be called again though and
3403 * we'll get the vintr intercept.
3405 if (gif_set(svm
) && nested_svm_intr(svm
)) {
3407 svm_inject_irq(svm
, 0x0);
3411 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3413 struct vcpu_svm
*svm
= to_svm(vcpu
);
3415 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3417 return; /* IRET will cause a vm exit */
3420 * Something prevents NMI from been injected. Single step over possible
3421 * problem (IRET or exception injection or interrupt shadow)
3423 svm
->nmi_singlestep
= true;
3424 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3425 update_db_intercept(vcpu
);
3428 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3433 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
3435 struct vcpu_svm
*svm
= to_svm(vcpu
);
3437 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3438 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3440 svm
->asid_generation
--;
3443 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3447 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3449 struct vcpu_svm
*svm
= to_svm(vcpu
);
3451 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3454 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3455 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3456 kvm_set_cr8(vcpu
, cr8
);
3460 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3462 struct vcpu_svm
*svm
= to_svm(vcpu
);
3465 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3468 cr8
= kvm_get_cr8(vcpu
);
3469 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3470 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3473 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3477 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3478 unsigned int3_injected
= svm
->int3_injected
;
3480 svm
->int3_injected
= 0;
3483 * If we've made progress since setting HF_IRET_MASK, we've
3484 * executed an IRET and can allow NMI injection.
3486 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3487 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3488 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3489 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3492 svm
->vcpu
.arch
.nmi_injected
= false;
3493 kvm_clear_exception_queue(&svm
->vcpu
);
3494 kvm_clear_interrupt_queue(&svm
->vcpu
);
3496 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3499 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3501 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3502 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3505 case SVM_EXITINTINFO_TYPE_NMI
:
3506 svm
->vcpu
.arch
.nmi_injected
= true;
3508 case SVM_EXITINTINFO_TYPE_EXEPT
:
3510 * In case of software exceptions, do not reinject the vector,
3511 * but re-execute the instruction instead. Rewind RIP first
3512 * if we emulated INT3 before.
3514 if (kvm_exception_is_soft(vector
)) {
3515 if (vector
== BP_VECTOR
&& int3_injected
&&
3516 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3517 kvm_rip_write(&svm
->vcpu
,
3518 kvm_rip_read(&svm
->vcpu
) -
3522 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3523 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3524 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3527 kvm_requeue_exception(&svm
->vcpu
, vector
);
3529 case SVM_EXITINTINFO_TYPE_INTR
:
3530 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3537 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3539 struct vcpu_svm
*svm
= to_svm(vcpu
);
3540 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3542 control
->exit_int_info
= control
->event_inj
;
3543 control
->exit_int_info_err
= control
->event_inj_err
;
3544 control
->event_inj
= 0;
3545 svm_complete_interrupts(svm
);
3548 #ifdef CONFIG_X86_64
3554 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3556 struct vcpu_svm
*svm
= to_svm(vcpu
);
3558 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3559 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3560 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3563 * A vmexit emulation is required before the vcpu can be executed
3566 if (unlikely(svm
->nested
.exit_required
))
3571 sync_lapic_to_cr8(vcpu
);
3573 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3580 "push %%"R
"bp; \n\t"
3581 "mov %c[rbx](%[svm]), %%"R
"bx \n\t"
3582 "mov %c[rcx](%[svm]), %%"R
"cx \n\t"
3583 "mov %c[rdx](%[svm]), %%"R
"dx \n\t"
3584 "mov %c[rsi](%[svm]), %%"R
"si \n\t"
3585 "mov %c[rdi](%[svm]), %%"R
"di \n\t"
3586 "mov %c[rbp](%[svm]), %%"R
"bp \n\t"
3587 #ifdef CONFIG_X86_64
3588 "mov %c[r8](%[svm]), %%r8 \n\t"
3589 "mov %c[r9](%[svm]), %%r9 \n\t"
3590 "mov %c[r10](%[svm]), %%r10 \n\t"
3591 "mov %c[r11](%[svm]), %%r11 \n\t"
3592 "mov %c[r12](%[svm]), %%r12 \n\t"
3593 "mov %c[r13](%[svm]), %%r13 \n\t"
3594 "mov %c[r14](%[svm]), %%r14 \n\t"
3595 "mov %c[r15](%[svm]), %%r15 \n\t"
3598 /* Enter guest mode */
3600 "mov %c[vmcb](%[svm]), %%"R
"ax \n\t"
3601 __ex(SVM_VMLOAD
) "\n\t"
3602 __ex(SVM_VMRUN
) "\n\t"
3603 __ex(SVM_VMSAVE
) "\n\t"
3606 /* Save guest registers, load host registers */
3607 "mov %%"R
"bx, %c[rbx](%[svm]) \n\t"
3608 "mov %%"R
"cx, %c[rcx](%[svm]) \n\t"
3609 "mov %%"R
"dx, %c[rdx](%[svm]) \n\t"
3610 "mov %%"R
"si, %c[rsi](%[svm]) \n\t"
3611 "mov %%"R
"di, %c[rdi](%[svm]) \n\t"
3612 "mov %%"R
"bp, %c[rbp](%[svm]) \n\t"
3613 #ifdef CONFIG_X86_64
3614 "mov %%r8, %c[r8](%[svm]) \n\t"
3615 "mov %%r9, %c[r9](%[svm]) \n\t"
3616 "mov %%r10, %c[r10](%[svm]) \n\t"
3617 "mov %%r11, %c[r11](%[svm]) \n\t"
3618 "mov %%r12, %c[r12](%[svm]) \n\t"
3619 "mov %%r13, %c[r13](%[svm]) \n\t"
3620 "mov %%r14, %c[r14](%[svm]) \n\t"
3621 "mov %%r15, %c[r15](%[svm]) \n\t"
3626 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
3627 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3628 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3629 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3630 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3631 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3632 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
3633 #ifdef CONFIG_X86_64
3634 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3635 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3636 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3637 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3638 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3639 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3640 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3641 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
3644 , R
"bx", R
"cx", R
"dx", R
"si", R
"di"
3645 #ifdef CONFIG_X86_64
3646 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3650 #ifdef CONFIG_X86_64
3651 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3653 loadsegment(fs
, svm
->host
.fs
);
3654 #ifndef CONFIG_X86_32_LAZY_GS
3655 loadsegment(gs
, svm
->host
.gs
);
3661 local_irq_disable();
3663 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3664 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3665 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3666 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3668 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3669 kvm_before_handle_nmi(&svm
->vcpu
);
3673 /* Any pending NMI will happen here */
3675 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3676 kvm_after_handle_nmi(&svm
->vcpu
);
3678 sync_cr8_to_lapic(vcpu
);
3682 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
3684 /* if exit due to PF check for async PF */
3685 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
3686 svm
->apf_reason
= kvm_read_and_reset_pf_reason();
3689 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
3690 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
3694 * We need to handle MC intercepts here before the vcpu has a chance to
3695 * change the physical cpu
3697 if (unlikely(svm
->vmcb
->control
.exit_code
==
3698 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
3699 svm_handle_mce(svm
);
3701 mark_all_clean(svm
->vmcb
);
3706 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3708 struct vcpu_svm
*svm
= to_svm(vcpu
);
3710 svm
->vmcb
->save
.cr3
= root
;
3711 mark_dirty(svm
->vmcb
, VMCB_CR
);
3712 svm_flush_tlb(vcpu
);
3715 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3717 struct vcpu_svm
*svm
= to_svm(vcpu
);
3719 svm
->vmcb
->control
.nested_cr3
= root
;
3720 mark_dirty(svm
->vmcb
, VMCB_NPT
);
3722 /* Also sync guest cr3 here in case we live migrate */
3723 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
3724 mark_dirty(svm
->vmcb
, VMCB_CR
);
3726 svm_flush_tlb(vcpu
);
3729 static int is_disabled(void)
3733 rdmsrl(MSR_VM_CR
, vm_cr
);
3734 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
3741 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3744 * Patch in the VMMCALL instruction:
3746 hypercall
[0] = 0x0f;
3747 hypercall
[1] = 0x01;
3748 hypercall
[2] = 0xd9;
3751 static void svm_check_processor_compat(void *rtn
)
3756 static bool svm_cpu_has_accelerated_tpr(void)
3761 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3766 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
3770 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
3775 entry
->ecx
|= (1 << 2); /* Set SVM bit */
3778 entry
->eax
= 1; /* SVM revision 1 */
3779 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
3780 ASID emulation to nested SVM */
3781 entry
->ecx
= 0; /* Reserved */
3782 entry
->edx
= 0; /* Per default do not support any
3783 additional features */
3785 /* Support next_rip if host supports it */
3786 if (boot_cpu_has(X86_FEATURE_NRIPS
))
3787 entry
->edx
|= SVM_FEATURE_NRIP
;
3789 /* Support NPT for the guest if enabled */
3791 entry
->edx
|= SVM_FEATURE_NPT
;
3797 static const struct trace_print_flags svm_exit_reasons_str
[] = {
3798 { SVM_EXIT_READ_CR0
, "read_cr0" },
3799 { SVM_EXIT_READ_CR3
, "read_cr3" },
3800 { SVM_EXIT_READ_CR4
, "read_cr4" },
3801 { SVM_EXIT_READ_CR8
, "read_cr8" },
3802 { SVM_EXIT_WRITE_CR0
, "write_cr0" },
3803 { SVM_EXIT_WRITE_CR3
, "write_cr3" },
3804 { SVM_EXIT_WRITE_CR4
, "write_cr4" },
3805 { SVM_EXIT_WRITE_CR8
, "write_cr8" },
3806 { SVM_EXIT_READ_DR0
, "read_dr0" },
3807 { SVM_EXIT_READ_DR1
, "read_dr1" },
3808 { SVM_EXIT_READ_DR2
, "read_dr2" },
3809 { SVM_EXIT_READ_DR3
, "read_dr3" },
3810 { SVM_EXIT_WRITE_DR0
, "write_dr0" },
3811 { SVM_EXIT_WRITE_DR1
, "write_dr1" },
3812 { SVM_EXIT_WRITE_DR2
, "write_dr2" },
3813 { SVM_EXIT_WRITE_DR3
, "write_dr3" },
3814 { SVM_EXIT_WRITE_DR5
, "write_dr5" },
3815 { SVM_EXIT_WRITE_DR7
, "write_dr7" },
3816 { SVM_EXIT_EXCP_BASE
+ DB_VECTOR
, "DB excp" },
3817 { SVM_EXIT_EXCP_BASE
+ BP_VECTOR
, "BP excp" },
3818 { SVM_EXIT_EXCP_BASE
+ UD_VECTOR
, "UD excp" },
3819 { SVM_EXIT_EXCP_BASE
+ PF_VECTOR
, "PF excp" },
3820 { SVM_EXIT_EXCP_BASE
+ NM_VECTOR
, "NM excp" },
3821 { SVM_EXIT_EXCP_BASE
+ MC_VECTOR
, "MC excp" },
3822 { SVM_EXIT_INTR
, "interrupt" },
3823 { SVM_EXIT_NMI
, "nmi" },
3824 { SVM_EXIT_SMI
, "smi" },
3825 { SVM_EXIT_INIT
, "init" },
3826 { SVM_EXIT_VINTR
, "vintr" },
3827 { SVM_EXIT_CPUID
, "cpuid" },
3828 { SVM_EXIT_INVD
, "invd" },
3829 { SVM_EXIT_HLT
, "hlt" },
3830 { SVM_EXIT_INVLPG
, "invlpg" },
3831 { SVM_EXIT_INVLPGA
, "invlpga" },
3832 { SVM_EXIT_IOIO
, "io" },
3833 { SVM_EXIT_MSR
, "msr" },
3834 { SVM_EXIT_TASK_SWITCH
, "task_switch" },
3835 { SVM_EXIT_SHUTDOWN
, "shutdown" },
3836 { SVM_EXIT_VMRUN
, "vmrun" },
3837 { SVM_EXIT_VMMCALL
, "hypercall" },
3838 { SVM_EXIT_VMLOAD
, "vmload" },
3839 { SVM_EXIT_VMSAVE
, "vmsave" },
3840 { SVM_EXIT_STGI
, "stgi" },
3841 { SVM_EXIT_CLGI
, "clgi" },
3842 { SVM_EXIT_SKINIT
, "skinit" },
3843 { SVM_EXIT_WBINVD
, "wbinvd" },
3844 { SVM_EXIT_MONITOR
, "monitor" },
3845 { SVM_EXIT_MWAIT
, "mwait" },
3846 { SVM_EXIT_XSETBV
, "xsetbv" },
3847 { SVM_EXIT_NPF
, "npf" },
3851 static int svm_get_lpage_level(void)
3853 return PT_PDPE_LEVEL
;
3856 static bool svm_rdtscp_supported(void)
3861 static bool svm_has_wbinvd_exit(void)
3866 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
3868 struct vcpu_svm
*svm
= to_svm(vcpu
);
3870 set_exception_intercept(svm
, NM_VECTOR
);
3871 update_cr0_intercept(svm
);
3874 static struct kvm_x86_ops svm_x86_ops
= {
3875 .cpu_has_kvm_support
= has_svm
,
3876 .disabled_by_bios
= is_disabled
,
3877 .hardware_setup
= svm_hardware_setup
,
3878 .hardware_unsetup
= svm_hardware_unsetup
,
3879 .check_processor_compatibility
= svm_check_processor_compat
,
3880 .hardware_enable
= svm_hardware_enable
,
3881 .hardware_disable
= svm_hardware_disable
,
3882 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
3884 .vcpu_create
= svm_create_vcpu
,
3885 .vcpu_free
= svm_free_vcpu
,
3886 .vcpu_reset
= svm_vcpu_reset
,
3888 .prepare_guest_switch
= svm_prepare_guest_switch
,
3889 .vcpu_load
= svm_vcpu_load
,
3890 .vcpu_put
= svm_vcpu_put
,
3892 .set_guest_debug
= svm_guest_debug
,
3893 .get_msr
= svm_get_msr
,
3894 .set_msr
= svm_set_msr
,
3895 .get_segment_base
= svm_get_segment_base
,
3896 .get_segment
= svm_get_segment
,
3897 .set_segment
= svm_set_segment
,
3898 .get_cpl
= svm_get_cpl
,
3899 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
3900 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
3901 .decache_cr3
= svm_decache_cr3
,
3902 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
3903 .set_cr0
= svm_set_cr0
,
3904 .set_cr3
= svm_set_cr3
,
3905 .set_cr4
= svm_set_cr4
,
3906 .set_efer
= svm_set_efer
,
3907 .get_idt
= svm_get_idt
,
3908 .set_idt
= svm_set_idt
,
3909 .get_gdt
= svm_get_gdt
,
3910 .set_gdt
= svm_set_gdt
,
3911 .set_dr7
= svm_set_dr7
,
3912 .cache_reg
= svm_cache_reg
,
3913 .get_rflags
= svm_get_rflags
,
3914 .set_rflags
= svm_set_rflags
,
3915 .fpu_activate
= svm_fpu_activate
,
3916 .fpu_deactivate
= svm_fpu_deactivate
,
3918 .tlb_flush
= svm_flush_tlb
,
3920 .run
= svm_vcpu_run
,
3921 .handle_exit
= handle_exit
,
3922 .skip_emulated_instruction
= skip_emulated_instruction
,
3923 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
3924 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
3925 .patch_hypercall
= svm_patch_hypercall
,
3926 .set_irq
= svm_set_irq
,
3927 .set_nmi
= svm_inject_nmi
,
3928 .queue_exception
= svm_queue_exception
,
3929 .cancel_injection
= svm_cancel_injection
,
3930 .interrupt_allowed
= svm_interrupt_allowed
,
3931 .nmi_allowed
= svm_nmi_allowed
,
3932 .get_nmi_mask
= svm_get_nmi_mask
,
3933 .set_nmi_mask
= svm_set_nmi_mask
,
3934 .enable_nmi_window
= enable_nmi_window
,
3935 .enable_irq_window
= enable_irq_window
,
3936 .update_cr8_intercept
= update_cr8_intercept
,
3938 .set_tss_addr
= svm_set_tss_addr
,
3939 .get_tdp_level
= get_npt_level
,
3940 .get_mt_mask
= svm_get_mt_mask
,
3942 .get_exit_info
= svm_get_exit_info
,
3943 .exit_reasons_str
= svm_exit_reasons_str
,
3945 .get_lpage_level
= svm_get_lpage_level
,
3947 .cpuid_update
= svm_cpuid_update
,
3949 .rdtscp_supported
= svm_rdtscp_supported
,
3951 .set_supported_cpuid
= svm_set_supported_cpuid
,
3953 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
3955 .write_tsc_offset
= svm_write_tsc_offset
,
3956 .adjust_tsc_offset
= svm_adjust_tsc_offset
,
3958 .set_tdp_cr3
= set_tdp_cr3
,
3961 static int __init
svm_init(void)
3963 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
3964 __alignof__(struct vcpu_svm
), THIS_MODULE
);
3967 static void __exit
svm_exit(void)
3972 module_init(svm_init
)
3973 module_exit(svm_exit
)