IPVS: fix netns if reading ip_vs_* procfs entries
[linux-2.6/linux-mips.git] / drivers / md / raid10.c
blob2da83d5665925eea27b441e954ca145569278055
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
56 * Number of guaranteed r10bios in case of extreme VM load:
58 #define NR_RAID10_BIOS 256
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 conf_t *conf = data;
66 int size = offsetof(struct r10bio_s, devs[conf->copies]);
68 /* allocate a r10bio with room for raid_disks entries in the bios array */
69 return kzalloc(size, gfp_flags);
72 static void r10bio_pool_free(void *r10_bio, void *data)
74 kfree(r10_bio);
77 /* Maximum size of each resync request */
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 /* amount of memory to reserve for resync requests */
81 #define RESYNC_WINDOW (1024*1024)
82 /* maximum number of concurrent requests, memory permitting */
83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 if (!r10_bio)
103 return NULL;
105 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
106 nalloc = conf->copies; /* resync */
107 else
108 nalloc = 2; /* recovery */
111 * Allocate bios.
113 for (j = nalloc ; j-- ; ) {
114 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
115 if (!bio)
116 goto out_free_bio;
117 r10_bio->devs[j].bio = bio;
120 * Allocate RESYNC_PAGES data pages and attach them
121 * where needed.
123 for (j = 0 ; j < nalloc; j++) {
124 bio = r10_bio->devs[j].bio;
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
130 bio->bi_io_vec[i].bv_page = page;
134 return r10_bio;
136 out_free_pages:
137 for ( ; i > 0 ; i--)
138 safe_put_page(bio->bi_io_vec[i-1].bv_page);
139 while (j--)
140 for (i = 0; i < RESYNC_PAGES ; i++)
141 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
142 j = -1;
143 out_free_bio:
144 while ( ++j < nalloc )
145 bio_put(r10_bio->devs[j].bio);
146 r10bio_pool_free(r10_bio, conf);
147 return NULL;
150 static void r10buf_pool_free(void *__r10_bio, void *data)
152 int i;
153 conf_t *conf = data;
154 r10bio_t *r10bio = __r10_bio;
155 int j;
157 for (j=0; j < conf->copies; j++) {
158 struct bio *bio = r10bio->devs[j].bio;
159 if (bio) {
160 for (i = 0; i < RESYNC_PAGES; i++) {
161 safe_put_page(bio->bi_io_vec[i].bv_page);
162 bio->bi_io_vec[i].bv_page = NULL;
164 bio_put(bio);
167 r10bio_pool_free(r10bio, conf);
170 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
172 int i;
174 for (i = 0; i < conf->copies; i++) {
175 struct bio **bio = & r10_bio->devs[i].bio;
176 if (*bio && *bio != IO_BLOCKED)
177 bio_put(*bio);
178 *bio = NULL;
182 static void free_r10bio(r10bio_t *r10_bio)
184 conf_t *conf = r10_bio->mddev->private;
187 * Wake up any possible resync thread that waits for the device
188 * to go idle.
190 allow_barrier(conf);
192 put_all_bios(conf, r10_bio);
193 mempool_free(r10_bio, conf->r10bio_pool);
196 static void put_buf(r10bio_t *r10_bio)
198 conf_t *conf = r10_bio->mddev->private;
200 mempool_free(r10_bio, conf->r10buf_pool);
202 lower_barrier(conf);
205 static void reschedule_retry(r10bio_t *r10_bio)
207 unsigned long flags;
208 mddev_t *mddev = r10_bio->mddev;
209 conf_t *conf = mddev->private;
211 spin_lock_irqsave(&conf->device_lock, flags);
212 list_add(&r10_bio->retry_list, &conf->retry_list);
213 conf->nr_queued ++;
214 spin_unlock_irqrestore(&conf->device_lock, flags);
216 /* wake up frozen array... */
217 wake_up(&conf->wait_barrier);
219 md_wakeup_thread(mddev->thread);
223 * raid_end_bio_io() is called when we have finished servicing a mirrored
224 * operation and are ready to return a success/failure code to the buffer
225 * cache layer.
227 static void raid_end_bio_io(r10bio_t *r10_bio)
229 struct bio *bio = r10_bio->master_bio;
231 bio_endio(bio,
232 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
233 free_r10bio(r10_bio);
237 * Update disk head position estimator based on IRQ completion info.
239 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
241 conf_t *conf = r10_bio->mddev->private;
243 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
244 r10_bio->devs[slot].addr + (r10_bio->sectors);
247 static void raid10_end_read_request(struct bio *bio, int error)
249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
250 r10bio_t *r10_bio = bio->bi_private;
251 int slot, dev;
252 conf_t *conf = r10_bio->mddev->private;
255 slot = r10_bio->read_slot;
256 dev = r10_bio->devs[slot].devnum;
258 * this branch is our 'one mirror IO has finished' event handler:
260 update_head_pos(slot, r10_bio);
262 if (uptodate) {
264 * Set R10BIO_Uptodate in our master bio, so that
265 * we will return a good error code to the higher
266 * levels even if IO on some other mirrored buffer fails.
268 * The 'master' represents the composite IO operation to
269 * user-side. So if something waits for IO, then it will
270 * wait for the 'master' bio.
272 set_bit(R10BIO_Uptodate, &r10_bio->state);
273 raid_end_bio_io(r10_bio);
274 } else {
276 * oops, read error:
278 char b[BDEVNAME_SIZE];
279 if (printk_ratelimit())
280 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
281 mdname(conf->mddev),
282 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
283 reschedule_retry(r10_bio);
286 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
289 static void raid10_end_write_request(struct bio *bio, int error)
291 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
292 r10bio_t *r10_bio = bio->bi_private;
293 int slot, dev;
294 conf_t *conf = r10_bio->mddev->private;
296 for (slot = 0; slot < conf->copies; slot++)
297 if (r10_bio->devs[slot].bio == bio)
298 break;
299 dev = r10_bio->devs[slot].devnum;
302 * this branch is our 'one mirror IO has finished' event handler:
304 if (!uptodate) {
305 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
306 /* an I/O failed, we can't clear the bitmap */
307 set_bit(R10BIO_Degraded, &r10_bio->state);
308 } else
310 * Set R10BIO_Uptodate in our master bio, so that
311 * we will return a good error code for to the higher
312 * levels even if IO on some other mirrored buffer fails.
314 * The 'master' represents the composite IO operation to
315 * user-side. So if something waits for IO, then it will
316 * wait for the 'master' bio.
318 set_bit(R10BIO_Uptodate, &r10_bio->state);
320 update_head_pos(slot, r10_bio);
324 * Let's see if all mirrored write operations have finished
325 * already.
327 if (atomic_dec_and_test(&r10_bio->remaining)) {
328 /* clear the bitmap if all writes complete successfully */
329 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
330 r10_bio->sectors,
331 !test_bit(R10BIO_Degraded, &r10_bio->state),
333 md_write_end(r10_bio->mddev);
334 raid_end_bio_io(r10_bio);
337 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
342 * RAID10 layout manager
343 * As well as the chunksize and raid_disks count, there are two
344 * parameters: near_copies and far_copies.
345 * near_copies * far_copies must be <= raid_disks.
346 * Normally one of these will be 1.
347 * If both are 1, we get raid0.
348 * If near_copies == raid_disks, we get raid1.
350 * Chunks are laid out in raid0 style with near_copies copies of the
351 * first chunk, followed by near_copies copies of the next chunk and
352 * so on.
353 * If far_copies > 1, then after 1/far_copies of the array has been assigned
354 * as described above, we start again with a device offset of near_copies.
355 * So we effectively have another copy of the whole array further down all
356 * the drives, but with blocks on different drives.
357 * With this layout, and block is never stored twice on the one device.
359 * raid10_find_phys finds the sector offset of a given virtual sector
360 * on each device that it is on.
362 * raid10_find_virt does the reverse mapping, from a device and a
363 * sector offset to a virtual address
366 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
368 int n,f;
369 sector_t sector;
370 sector_t chunk;
371 sector_t stripe;
372 int dev;
374 int slot = 0;
376 /* now calculate first sector/dev */
377 chunk = r10bio->sector >> conf->chunk_shift;
378 sector = r10bio->sector & conf->chunk_mask;
380 chunk *= conf->near_copies;
381 stripe = chunk;
382 dev = sector_div(stripe, conf->raid_disks);
383 if (conf->far_offset)
384 stripe *= conf->far_copies;
386 sector += stripe << conf->chunk_shift;
388 /* and calculate all the others */
389 for (n=0; n < conf->near_copies; n++) {
390 int d = dev;
391 sector_t s = sector;
392 r10bio->devs[slot].addr = sector;
393 r10bio->devs[slot].devnum = d;
394 slot++;
396 for (f = 1; f < conf->far_copies; f++) {
397 d += conf->near_copies;
398 if (d >= conf->raid_disks)
399 d -= conf->raid_disks;
400 s += conf->stride;
401 r10bio->devs[slot].devnum = d;
402 r10bio->devs[slot].addr = s;
403 slot++;
405 dev++;
406 if (dev >= conf->raid_disks) {
407 dev = 0;
408 sector += (conf->chunk_mask + 1);
411 BUG_ON(slot != conf->copies);
414 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
416 sector_t offset, chunk, vchunk;
418 offset = sector & conf->chunk_mask;
419 if (conf->far_offset) {
420 int fc;
421 chunk = sector >> conf->chunk_shift;
422 fc = sector_div(chunk, conf->far_copies);
423 dev -= fc * conf->near_copies;
424 if (dev < 0)
425 dev += conf->raid_disks;
426 } else {
427 while (sector >= conf->stride) {
428 sector -= conf->stride;
429 if (dev < conf->near_copies)
430 dev += conf->raid_disks - conf->near_copies;
431 else
432 dev -= conf->near_copies;
434 chunk = sector >> conf->chunk_shift;
436 vchunk = chunk * conf->raid_disks + dev;
437 sector_div(vchunk, conf->near_copies);
438 return (vchunk << conf->chunk_shift) + offset;
442 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
443 * @q: request queue
444 * @bvm: properties of new bio
445 * @biovec: the request that could be merged to it.
447 * Return amount of bytes we can accept at this offset
448 * If near_copies == raid_disk, there are no striping issues,
449 * but in that case, the function isn't called at all.
451 static int raid10_mergeable_bvec(struct request_queue *q,
452 struct bvec_merge_data *bvm,
453 struct bio_vec *biovec)
455 mddev_t *mddev = q->queuedata;
456 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
457 int max;
458 unsigned int chunk_sectors = mddev->chunk_sectors;
459 unsigned int bio_sectors = bvm->bi_size >> 9;
461 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
462 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
463 if (max <= biovec->bv_len && bio_sectors == 0)
464 return biovec->bv_len;
465 else
466 return max;
470 * This routine returns the disk from which the requested read should
471 * be done. There is a per-array 'next expected sequential IO' sector
472 * number - if this matches on the next IO then we use the last disk.
473 * There is also a per-disk 'last know head position' sector that is
474 * maintained from IRQ contexts, both the normal and the resync IO
475 * completion handlers update this position correctly. If there is no
476 * perfect sequential match then we pick the disk whose head is closest.
478 * If there are 2 mirrors in the same 2 devices, performance degrades
479 * because position is mirror, not device based.
481 * The rdev for the device selected will have nr_pending incremented.
485 * FIXME: possibly should rethink readbalancing and do it differently
486 * depending on near_copies / far_copies geometry.
488 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
490 const sector_t this_sector = r10_bio->sector;
491 int disk, slot, nslot;
492 const int sectors = r10_bio->sectors;
493 sector_t new_distance, current_distance;
494 mdk_rdev_t *rdev;
496 raid10_find_phys(conf, r10_bio);
497 rcu_read_lock();
499 * Check if we can balance. We can balance on the whole
500 * device if no resync is going on (recovery is ok), or below
501 * the resync window. We take the first readable disk when
502 * above the resync window.
504 if (conf->mddev->recovery_cp < MaxSector
505 && (this_sector + sectors >= conf->next_resync)) {
506 /* make sure that disk is operational */
507 slot = 0;
508 disk = r10_bio->devs[slot].devnum;
510 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
511 r10_bio->devs[slot].bio == IO_BLOCKED ||
512 !test_bit(In_sync, &rdev->flags)) {
513 slot++;
514 if (slot == conf->copies) {
515 slot = 0;
516 disk = -1;
517 break;
519 disk = r10_bio->devs[slot].devnum;
521 goto rb_out;
525 /* make sure the disk is operational */
526 slot = 0;
527 disk = r10_bio->devs[slot].devnum;
528 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
529 r10_bio->devs[slot].bio == IO_BLOCKED ||
530 !test_bit(In_sync, &rdev->flags)) {
531 slot ++;
532 if (slot == conf->copies) {
533 disk = -1;
534 goto rb_out;
536 disk = r10_bio->devs[slot].devnum;
540 current_distance = abs(r10_bio->devs[slot].addr -
541 conf->mirrors[disk].head_position);
543 /* Find the disk whose head is closest,
544 * or - for far > 1 - find the closest to partition beginning */
546 for (nslot = slot; nslot < conf->copies; nslot++) {
547 int ndisk = r10_bio->devs[nslot].devnum;
550 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
551 r10_bio->devs[nslot].bio == IO_BLOCKED ||
552 !test_bit(In_sync, &rdev->flags))
553 continue;
555 /* This optimisation is debatable, and completely destroys
556 * sequential read speed for 'far copies' arrays. So only
557 * keep it for 'near' arrays, and review those later.
559 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
560 disk = ndisk;
561 slot = nslot;
562 break;
565 /* for far > 1 always use the lowest address */
566 if (conf->far_copies > 1)
567 new_distance = r10_bio->devs[nslot].addr;
568 else
569 new_distance = abs(r10_bio->devs[nslot].addr -
570 conf->mirrors[ndisk].head_position);
571 if (new_distance < current_distance) {
572 current_distance = new_distance;
573 disk = ndisk;
574 slot = nslot;
578 rb_out:
579 r10_bio->read_slot = slot;
580 /* conf->next_seq_sect = this_sector + sectors;*/
582 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
583 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
584 else
585 disk = -1;
586 rcu_read_unlock();
588 return disk;
591 static int raid10_congested(void *data, int bits)
593 mddev_t *mddev = data;
594 conf_t *conf = mddev->private;
595 int i, ret = 0;
597 if (mddev_congested(mddev, bits))
598 return 1;
599 rcu_read_lock();
600 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
602 if (rdev && !test_bit(Faulty, &rdev->flags)) {
603 struct request_queue *q = bdev_get_queue(rdev->bdev);
605 ret |= bdi_congested(&q->backing_dev_info, bits);
608 rcu_read_unlock();
609 return ret;
612 static void flush_pending_writes(conf_t *conf)
614 /* Any writes that have been queued but are awaiting
615 * bitmap updates get flushed here.
617 spin_lock_irq(&conf->device_lock);
619 if (conf->pending_bio_list.head) {
620 struct bio *bio;
621 bio = bio_list_get(&conf->pending_bio_list);
622 spin_unlock_irq(&conf->device_lock);
623 /* flush any pending bitmap writes to disk
624 * before proceeding w/ I/O */
625 bitmap_unplug(conf->mddev->bitmap);
627 while (bio) { /* submit pending writes */
628 struct bio *next = bio->bi_next;
629 bio->bi_next = NULL;
630 generic_make_request(bio);
631 bio = next;
633 } else
634 spin_unlock_irq(&conf->device_lock);
637 static void md_kick_device(mddev_t *mddev)
639 blk_flush_plug(current);
640 md_wakeup_thread(mddev->thread);
643 /* Barriers....
644 * Sometimes we need to suspend IO while we do something else,
645 * either some resync/recovery, or reconfigure the array.
646 * To do this we raise a 'barrier'.
647 * The 'barrier' is a counter that can be raised multiple times
648 * to count how many activities are happening which preclude
649 * normal IO.
650 * We can only raise the barrier if there is no pending IO.
651 * i.e. if nr_pending == 0.
652 * We choose only to raise the barrier if no-one is waiting for the
653 * barrier to go down. This means that as soon as an IO request
654 * is ready, no other operations which require a barrier will start
655 * until the IO request has had a chance.
657 * So: regular IO calls 'wait_barrier'. When that returns there
658 * is no backgroup IO happening, It must arrange to call
659 * allow_barrier when it has finished its IO.
660 * backgroup IO calls must call raise_barrier. Once that returns
661 * there is no normal IO happeing. It must arrange to call
662 * lower_barrier when the particular background IO completes.
665 static void raise_barrier(conf_t *conf, int force)
667 BUG_ON(force && !conf->barrier);
668 spin_lock_irq(&conf->resync_lock);
670 /* Wait until no block IO is waiting (unless 'force') */
671 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
672 conf->resync_lock, md_kick_device(conf->mddev));
674 /* block any new IO from starting */
675 conf->barrier++;
677 /* No wait for all pending IO to complete */
678 wait_event_lock_irq(conf->wait_barrier,
679 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
680 conf->resync_lock, md_kick_device(conf->mddev));
682 spin_unlock_irq(&conf->resync_lock);
685 static void lower_barrier(conf_t *conf)
687 unsigned long flags;
688 spin_lock_irqsave(&conf->resync_lock, flags);
689 conf->barrier--;
690 spin_unlock_irqrestore(&conf->resync_lock, flags);
691 wake_up(&conf->wait_barrier);
694 static void wait_barrier(conf_t *conf)
696 spin_lock_irq(&conf->resync_lock);
697 if (conf->barrier) {
698 conf->nr_waiting++;
699 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
700 conf->resync_lock,
701 md_kick_device(conf->mddev));
702 conf->nr_waiting--;
704 conf->nr_pending++;
705 spin_unlock_irq(&conf->resync_lock);
708 static void allow_barrier(conf_t *conf)
710 unsigned long flags;
711 spin_lock_irqsave(&conf->resync_lock, flags);
712 conf->nr_pending--;
713 spin_unlock_irqrestore(&conf->resync_lock, flags);
714 wake_up(&conf->wait_barrier);
717 static void freeze_array(conf_t *conf)
719 /* stop syncio and normal IO and wait for everything to
720 * go quiet.
721 * We increment barrier and nr_waiting, and then
722 * wait until nr_pending match nr_queued+1
723 * This is called in the context of one normal IO request
724 * that has failed. Thus any sync request that might be pending
725 * will be blocked by nr_pending, and we need to wait for
726 * pending IO requests to complete or be queued for re-try.
727 * Thus the number queued (nr_queued) plus this request (1)
728 * must match the number of pending IOs (nr_pending) before
729 * we continue.
731 spin_lock_irq(&conf->resync_lock);
732 conf->barrier++;
733 conf->nr_waiting++;
734 wait_event_lock_irq(conf->wait_barrier,
735 conf->nr_pending == conf->nr_queued+1,
736 conf->resync_lock,
737 ({ flush_pending_writes(conf);
738 md_kick_device(conf->mddev); }));
739 spin_unlock_irq(&conf->resync_lock);
742 static void unfreeze_array(conf_t *conf)
744 /* reverse the effect of the freeze */
745 spin_lock_irq(&conf->resync_lock);
746 conf->barrier--;
747 conf->nr_waiting--;
748 wake_up(&conf->wait_barrier);
749 spin_unlock_irq(&conf->resync_lock);
752 static int make_request(mddev_t *mddev, struct bio * bio)
754 conf_t *conf = mddev->private;
755 mirror_info_t *mirror;
756 r10bio_t *r10_bio;
757 struct bio *read_bio;
758 int i;
759 int chunk_sects = conf->chunk_mask + 1;
760 const int rw = bio_data_dir(bio);
761 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
762 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
763 unsigned long flags;
764 mdk_rdev_t *blocked_rdev;
766 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
767 md_flush_request(mddev, bio);
768 return 0;
771 /* If this request crosses a chunk boundary, we need to
772 * split it. This will only happen for 1 PAGE (or less) requests.
774 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
775 > chunk_sects &&
776 conf->near_copies < conf->raid_disks)) {
777 struct bio_pair *bp;
778 /* Sanity check -- queue functions should prevent this happening */
779 if (bio->bi_vcnt != 1 ||
780 bio->bi_idx != 0)
781 goto bad_map;
782 /* This is a one page bio that upper layers
783 * refuse to split for us, so we need to split it.
785 bp = bio_split(bio,
786 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
788 /* Each of these 'make_request' calls will call 'wait_barrier'.
789 * If the first succeeds but the second blocks due to the resync
790 * thread raising the barrier, we will deadlock because the
791 * IO to the underlying device will be queued in generic_make_request
792 * and will never complete, so will never reduce nr_pending.
793 * So increment nr_waiting here so no new raise_barriers will
794 * succeed, and so the second wait_barrier cannot block.
796 spin_lock_irq(&conf->resync_lock);
797 conf->nr_waiting++;
798 spin_unlock_irq(&conf->resync_lock);
800 if (make_request(mddev, &bp->bio1))
801 generic_make_request(&bp->bio1);
802 if (make_request(mddev, &bp->bio2))
803 generic_make_request(&bp->bio2);
805 spin_lock_irq(&conf->resync_lock);
806 conf->nr_waiting--;
807 wake_up(&conf->wait_barrier);
808 spin_unlock_irq(&conf->resync_lock);
810 bio_pair_release(bp);
811 return 0;
812 bad_map:
813 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
814 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
815 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
817 bio_io_error(bio);
818 return 0;
821 md_write_start(mddev, bio);
824 * Register the new request and wait if the reconstruction
825 * thread has put up a bar for new requests.
826 * Continue immediately if no resync is active currently.
828 wait_barrier(conf);
830 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
832 r10_bio->master_bio = bio;
833 r10_bio->sectors = bio->bi_size >> 9;
835 r10_bio->mddev = mddev;
836 r10_bio->sector = bio->bi_sector;
837 r10_bio->state = 0;
839 if (rw == READ) {
841 * read balancing logic:
843 int disk = read_balance(conf, r10_bio);
844 int slot = r10_bio->read_slot;
845 if (disk < 0) {
846 raid_end_bio_io(r10_bio);
847 return 0;
849 mirror = conf->mirrors + disk;
851 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
853 r10_bio->devs[slot].bio = read_bio;
855 read_bio->bi_sector = r10_bio->devs[slot].addr +
856 mirror->rdev->data_offset;
857 read_bio->bi_bdev = mirror->rdev->bdev;
858 read_bio->bi_end_io = raid10_end_read_request;
859 read_bio->bi_rw = READ | do_sync;
860 read_bio->bi_private = r10_bio;
862 generic_make_request(read_bio);
863 return 0;
867 * WRITE:
869 /* first select target devices under rcu_lock and
870 * inc refcount on their rdev. Record them by setting
871 * bios[x] to bio
873 raid10_find_phys(conf, r10_bio);
874 retry_write:
875 blocked_rdev = NULL;
876 rcu_read_lock();
877 for (i = 0; i < conf->copies; i++) {
878 int d = r10_bio->devs[i].devnum;
879 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
880 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
881 atomic_inc(&rdev->nr_pending);
882 blocked_rdev = rdev;
883 break;
885 if (rdev && !test_bit(Faulty, &rdev->flags)) {
886 atomic_inc(&rdev->nr_pending);
887 r10_bio->devs[i].bio = bio;
888 } else {
889 r10_bio->devs[i].bio = NULL;
890 set_bit(R10BIO_Degraded, &r10_bio->state);
893 rcu_read_unlock();
895 if (unlikely(blocked_rdev)) {
896 /* Have to wait for this device to get unblocked, then retry */
897 int j;
898 int d;
900 for (j = 0; j < i; j++)
901 if (r10_bio->devs[j].bio) {
902 d = r10_bio->devs[j].devnum;
903 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
905 allow_barrier(conf);
906 md_wait_for_blocked_rdev(blocked_rdev, mddev);
907 wait_barrier(conf);
908 goto retry_write;
911 atomic_set(&r10_bio->remaining, 1);
912 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
914 for (i = 0; i < conf->copies; i++) {
915 struct bio *mbio;
916 int d = r10_bio->devs[i].devnum;
917 if (!r10_bio->devs[i].bio)
918 continue;
920 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
921 r10_bio->devs[i].bio = mbio;
923 mbio->bi_sector = r10_bio->devs[i].addr+
924 conf->mirrors[d].rdev->data_offset;
925 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
926 mbio->bi_end_io = raid10_end_write_request;
927 mbio->bi_rw = WRITE | do_sync | do_fua;
928 mbio->bi_private = r10_bio;
930 atomic_inc(&r10_bio->remaining);
931 spin_lock_irqsave(&conf->device_lock, flags);
932 bio_list_add(&conf->pending_bio_list, mbio);
933 spin_unlock_irqrestore(&conf->device_lock, flags);
936 if (atomic_dec_and_test(&r10_bio->remaining)) {
937 /* This matches the end of raid10_end_write_request() */
938 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
939 r10_bio->sectors,
940 !test_bit(R10BIO_Degraded, &r10_bio->state),
942 md_write_end(mddev);
943 raid_end_bio_io(r10_bio);
946 /* In case raid10d snuck in to freeze_array */
947 wake_up(&conf->wait_barrier);
949 if (do_sync || !mddev->bitmap)
950 md_wakeup_thread(mddev->thread);
952 return 0;
955 static void status(struct seq_file *seq, mddev_t *mddev)
957 conf_t *conf = mddev->private;
958 int i;
960 if (conf->near_copies < conf->raid_disks)
961 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
962 if (conf->near_copies > 1)
963 seq_printf(seq, " %d near-copies", conf->near_copies);
964 if (conf->far_copies > 1) {
965 if (conf->far_offset)
966 seq_printf(seq, " %d offset-copies", conf->far_copies);
967 else
968 seq_printf(seq, " %d far-copies", conf->far_copies);
970 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
971 conf->raid_disks - mddev->degraded);
972 for (i = 0; i < conf->raid_disks; i++)
973 seq_printf(seq, "%s",
974 conf->mirrors[i].rdev &&
975 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
976 seq_printf(seq, "]");
979 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
981 char b[BDEVNAME_SIZE];
982 conf_t *conf = mddev->private;
985 * If it is not operational, then we have already marked it as dead
986 * else if it is the last working disks, ignore the error, let the
987 * next level up know.
988 * else mark the drive as failed
990 if (test_bit(In_sync, &rdev->flags)
991 && conf->raid_disks-mddev->degraded == 1)
993 * Don't fail the drive, just return an IO error.
994 * The test should really be more sophisticated than
995 * "working_disks == 1", but it isn't critical, and
996 * can wait until we do more sophisticated "is the drive
997 * really dead" tests...
999 return;
1000 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1001 unsigned long flags;
1002 spin_lock_irqsave(&conf->device_lock, flags);
1003 mddev->degraded++;
1004 spin_unlock_irqrestore(&conf->device_lock, flags);
1006 * if recovery is running, make sure it aborts.
1008 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1010 set_bit(Faulty, &rdev->flags);
1011 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1012 printk(KERN_ALERT
1013 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1014 "md/raid10:%s: Operation continuing on %d devices.\n",
1015 mdname(mddev), bdevname(rdev->bdev, b),
1016 mdname(mddev), conf->raid_disks - mddev->degraded);
1019 static void print_conf(conf_t *conf)
1021 int i;
1022 mirror_info_t *tmp;
1024 printk(KERN_DEBUG "RAID10 conf printout:\n");
1025 if (!conf) {
1026 printk(KERN_DEBUG "(!conf)\n");
1027 return;
1029 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1030 conf->raid_disks);
1032 for (i = 0; i < conf->raid_disks; i++) {
1033 char b[BDEVNAME_SIZE];
1034 tmp = conf->mirrors + i;
1035 if (tmp->rdev)
1036 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1037 i, !test_bit(In_sync, &tmp->rdev->flags),
1038 !test_bit(Faulty, &tmp->rdev->flags),
1039 bdevname(tmp->rdev->bdev,b));
1043 static void close_sync(conf_t *conf)
1045 wait_barrier(conf);
1046 allow_barrier(conf);
1048 mempool_destroy(conf->r10buf_pool);
1049 conf->r10buf_pool = NULL;
1052 /* check if there are enough drives for
1053 * every block to appear on atleast one
1055 static int enough(conf_t *conf)
1057 int first = 0;
1059 do {
1060 int n = conf->copies;
1061 int cnt = 0;
1062 while (n--) {
1063 if (conf->mirrors[first].rdev)
1064 cnt++;
1065 first = (first+1) % conf->raid_disks;
1067 if (cnt == 0)
1068 return 0;
1069 } while (first != 0);
1070 return 1;
1073 static int raid10_spare_active(mddev_t *mddev)
1075 int i;
1076 conf_t *conf = mddev->private;
1077 mirror_info_t *tmp;
1078 int count = 0;
1079 unsigned long flags;
1082 * Find all non-in_sync disks within the RAID10 configuration
1083 * and mark them in_sync
1085 for (i = 0; i < conf->raid_disks; i++) {
1086 tmp = conf->mirrors + i;
1087 if (tmp->rdev
1088 && !test_bit(Faulty, &tmp->rdev->flags)
1089 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1090 count++;
1091 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1094 spin_lock_irqsave(&conf->device_lock, flags);
1095 mddev->degraded -= count;
1096 spin_unlock_irqrestore(&conf->device_lock, flags);
1098 print_conf(conf);
1099 return count;
1103 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1105 conf_t *conf = mddev->private;
1106 int err = -EEXIST;
1107 int mirror;
1108 mirror_info_t *p;
1109 int first = 0;
1110 int last = conf->raid_disks - 1;
1112 if (mddev->recovery_cp < MaxSector)
1113 /* only hot-add to in-sync arrays, as recovery is
1114 * very different from resync
1116 return -EBUSY;
1117 if (!enough(conf))
1118 return -EINVAL;
1120 if (rdev->raid_disk >= 0)
1121 first = last = rdev->raid_disk;
1123 if (rdev->saved_raid_disk >= 0 &&
1124 rdev->saved_raid_disk >= first &&
1125 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1126 mirror = rdev->saved_raid_disk;
1127 else
1128 mirror = first;
1129 for ( ; mirror <= last ; mirror++)
1130 if ( !(p=conf->mirrors+mirror)->rdev) {
1132 disk_stack_limits(mddev->gendisk, rdev->bdev,
1133 rdev->data_offset << 9);
1134 /* as we don't honour merge_bvec_fn, we must
1135 * never risk violating it, so limit
1136 * ->max_segments to one lying with a single
1137 * page, as a one page request is never in
1138 * violation.
1140 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1141 blk_queue_max_segments(mddev->queue, 1);
1142 blk_queue_segment_boundary(mddev->queue,
1143 PAGE_CACHE_SIZE - 1);
1146 p->head_position = 0;
1147 rdev->raid_disk = mirror;
1148 err = 0;
1149 if (rdev->saved_raid_disk != mirror)
1150 conf->fullsync = 1;
1151 rcu_assign_pointer(p->rdev, rdev);
1152 break;
1155 md_integrity_add_rdev(rdev, mddev);
1156 print_conf(conf);
1157 return err;
1160 static int raid10_remove_disk(mddev_t *mddev, int number)
1162 conf_t *conf = mddev->private;
1163 int err = 0;
1164 mdk_rdev_t *rdev;
1165 mirror_info_t *p = conf->mirrors+ number;
1167 print_conf(conf);
1168 rdev = p->rdev;
1169 if (rdev) {
1170 if (test_bit(In_sync, &rdev->flags) ||
1171 atomic_read(&rdev->nr_pending)) {
1172 err = -EBUSY;
1173 goto abort;
1175 /* Only remove faulty devices in recovery
1176 * is not possible.
1178 if (!test_bit(Faulty, &rdev->flags) &&
1179 enough(conf)) {
1180 err = -EBUSY;
1181 goto abort;
1183 p->rdev = NULL;
1184 synchronize_rcu();
1185 if (atomic_read(&rdev->nr_pending)) {
1186 /* lost the race, try later */
1187 err = -EBUSY;
1188 p->rdev = rdev;
1189 goto abort;
1191 err = md_integrity_register(mddev);
1193 abort:
1195 print_conf(conf);
1196 return err;
1200 static void end_sync_read(struct bio *bio, int error)
1202 r10bio_t *r10_bio = bio->bi_private;
1203 conf_t *conf = r10_bio->mddev->private;
1204 int i,d;
1206 for (i=0; i<conf->copies; i++)
1207 if (r10_bio->devs[i].bio == bio)
1208 break;
1209 BUG_ON(i == conf->copies);
1210 update_head_pos(i, r10_bio);
1211 d = r10_bio->devs[i].devnum;
1213 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1214 set_bit(R10BIO_Uptodate, &r10_bio->state);
1215 else {
1216 atomic_add(r10_bio->sectors,
1217 &conf->mirrors[d].rdev->corrected_errors);
1218 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1219 md_error(r10_bio->mddev,
1220 conf->mirrors[d].rdev);
1223 /* for reconstruct, we always reschedule after a read.
1224 * for resync, only after all reads
1226 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1227 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1228 atomic_dec_and_test(&r10_bio->remaining)) {
1229 /* we have read all the blocks,
1230 * do the comparison in process context in raid10d
1232 reschedule_retry(r10_bio);
1236 static void end_sync_write(struct bio *bio, int error)
1238 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1239 r10bio_t *r10_bio = bio->bi_private;
1240 mddev_t *mddev = r10_bio->mddev;
1241 conf_t *conf = mddev->private;
1242 int i,d;
1244 for (i = 0; i < conf->copies; i++)
1245 if (r10_bio->devs[i].bio == bio)
1246 break;
1247 d = r10_bio->devs[i].devnum;
1249 if (!uptodate)
1250 md_error(mddev, conf->mirrors[d].rdev);
1252 update_head_pos(i, r10_bio);
1254 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1255 while (atomic_dec_and_test(&r10_bio->remaining)) {
1256 if (r10_bio->master_bio == NULL) {
1257 /* the primary of several recovery bios */
1258 sector_t s = r10_bio->sectors;
1259 put_buf(r10_bio);
1260 md_done_sync(mddev, s, 1);
1261 break;
1262 } else {
1263 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1264 put_buf(r10_bio);
1265 r10_bio = r10_bio2;
1271 * Note: sync and recover and handled very differently for raid10
1272 * This code is for resync.
1273 * For resync, we read through virtual addresses and read all blocks.
1274 * If there is any error, we schedule a write. The lowest numbered
1275 * drive is authoritative.
1276 * However requests come for physical address, so we need to map.
1277 * For every physical address there are raid_disks/copies virtual addresses,
1278 * which is always are least one, but is not necessarly an integer.
1279 * This means that a physical address can span multiple chunks, so we may
1280 * have to submit multiple io requests for a single sync request.
1283 * We check if all blocks are in-sync and only write to blocks that
1284 * aren't in sync
1286 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1288 conf_t *conf = mddev->private;
1289 int i, first;
1290 struct bio *tbio, *fbio;
1292 atomic_set(&r10_bio->remaining, 1);
1294 /* find the first device with a block */
1295 for (i=0; i<conf->copies; i++)
1296 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1297 break;
1299 if (i == conf->copies)
1300 goto done;
1302 first = i;
1303 fbio = r10_bio->devs[i].bio;
1305 /* now find blocks with errors */
1306 for (i=0 ; i < conf->copies ; i++) {
1307 int j, d;
1308 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1310 tbio = r10_bio->devs[i].bio;
1312 if (tbio->bi_end_io != end_sync_read)
1313 continue;
1314 if (i == first)
1315 continue;
1316 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1317 /* We know that the bi_io_vec layout is the same for
1318 * both 'first' and 'i', so we just compare them.
1319 * All vec entries are PAGE_SIZE;
1321 for (j = 0; j < vcnt; j++)
1322 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1323 page_address(tbio->bi_io_vec[j].bv_page),
1324 PAGE_SIZE))
1325 break;
1326 if (j == vcnt)
1327 continue;
1328 mddev->resync_mismatches += r10_bio->sectors;
1330 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1331 /* Don't fix anything. */
1332 continue;
1333 /* Ok, we need to write this bio
1334 * First we need to fixup bv_offset, bv_len and
1335 * bi_vecs, as the read request might have corrupted these
1337 tbio->bi_vcnt = vcnt;
1338 tbio->bi_size = r10_bio->sectors << 9;
1339 tbio->bi_idx = 0;
1340 tbio->bi_phys_segments = 0;
1341 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1342 tbio->bi_flags |= 1 << BIO_UPTODATE;
1343 tbio->bi_next = NULL;
1344 tbio->bi_rw = WRITE;
1345 tbio->bi_private = r10_bio;
1346 tbio->bi_sector = r10_bio->devs[i].addr;
1348 for (j=0; j < vcnt ; j++) {
1349 tbio->bi_io_vec[j].bv_offset = 0;
1350 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1352 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1353 page_address(fbio->bi_io_vec[j].bv_page),
1354 PAGE_SIZE);
1356 tbio->bi_end_io = end_sync_write;
1358 d = r10_bio->devs[i].devnum;
1359 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1360 atomic_inc(&r10_bio->remaining);
1361 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1363 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1364 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1365 generic_make_request(tbio);
1368 done:
1369 if (atomic_dec_and_test(&r10_bio->remaining)) {
1370 md_done_sync(mddev, r10_bio->sectors, 1);
1371 put_buf(r10_bio);
1376 * Now for the recovery code.
1377 * Recovery happens across physical sectors.
1378 * We recover all non-is_sync drives by finding the virtual address of
1379 * each, and then choose a working drive that also has that virt address.
1380 * There is a separate r10_bio for each non-in_sync drive.
1381 * Only the first two slots are in use. The first for reading,
1382 * The second for writing.
1386 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1388 conf_t *conf = mddev->private;
1389 int i, d;
1390 struct bio *bio, *wbio;
1393 /* move the pages across to the second bio
1394 * and submit the write request
1396 bio = r10_bio->devs[0].bio;
1397 wbio = r10_bio->devs[1].bio;
1398 for (i=0; i < wbio->bi_vcnt; i++) {
1399 struct page *p = bio->bi_io_vec[i].bv_page;
1400 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1401 wbio->bi_io_vec[i].bv_page = p;
1403 d = r10_bio->devs[1].devnum;
1405 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1406 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1407 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1408 generic_make_request(wbio);
1409 else
1410 bio_endio(wbio, -EIO);
1415 * Used by fix_read_error() to decay the per rdev read_errors.
1416 * We halve the read error count for every hour that has elapsed
1417 * since the last recorded read error.
1420 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1422 struct timespec cur_time_mon;
1423 unsigned long hours_since_last;
1424 unsigned int read_errors = atomic_read(&rdev->read_errors);
1426 ktime_get_ts(&cur_time_mon);
1428 if (rdev->last_read_error.tv_sec == 0 &&
1429 rdev->last_read_error.tv_nsec == 0) {
1430 /* first time we've seen a read error */
1431 rdev->last_read_error = cur_time_mon;
1432 return;
1435 hours_since_last = (cur_time_mon.tv_sec -
1436 rdev->last_read_error.tv_sec) / 3600;
1438 rdev->last_read_error = cur_time_mon;
1441 * if hours_since_last is > the number of bits in read_errors
1442 * just set read errors to 0. We do this to avoid
1443 * overflowing the shift of read_errors by hours_since_last.
1445 if (hours_since_last >= 8 * sizeof(read_errors))
1446 atomic_set(&rdev->read_errors, 0);
1447 else
1448 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1452 * This is a kernel thread which:
1454 * 1. Retries failed read operations on working mirrors.
1455 * 2. Updates the raid superblock when problems encounter.
1456 * 3. Performs writes following reads for array synchronising.
1459 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1461 int sect = 0; /* Offset from r10_bio->sector */
1462 int sectors = r10_bio->sectors;
1463 mdk_rdev_t*rdev;
1464 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1465 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1467 rcu_read_lock();
1468 rdev = rcu_dereference(conf->mirrors[d].rdev);
1469 if (rdev) { /* If rdev is not NULL */
1470 char b[BDEVNAME_SIZE];
1471 int cur_read_error_count = 0;
1473 bdevname(rdev->bdev, b);
1475 if (test_bit(Faulty, &rdev->flags)) {
1476 rcu_read_unlock();
1477 /* drive has already been failed, just ignore any
1478 more fix_read_error() attempts */
1479 return;
1482 check_decay_read_errors(mddev, rdev);
1483 atomic_inc(&rdev->read_errors);
1484 cur_read_error_count = atomic_read(&rdev->read_errors);
1485 if (cur_read_error_count > max_read_errors) {
1486 rcu_read_unlock();
1487 printk(KERN_NOTICE
1488 "md/raid10:%s: %s: Raid device exceeded "
1489 "read_error threshold "
1490 "[cur %d:max %d]\n",
1491 mdname(mddev),
1492 b, cur_read_error_count, max_read_errors);
1493 printk(KERN_NOTICE
1494 "md/raid10:%s: %s: Failing raid "
1495 "device\n", mdname(mddev), b);
1496 md_error(mddev, conf->mirrors[d].rdev);
1497 return;
1500 rcu_read_unlock();
1502 while(sectors) {
1503 int s = sectors;
1504 int sl = r10_bio->read_slot;
1505 int success = 0;
1506 int start;
1508 if (s > (PAGE_SIZE>>9))
1509 s = PAGE_SIZE >> 9;
1511 rcu_read_lock();
1512 do {
1513 d = r10_bio->devs[sl].devnum;
1514 rdev = rcu_dereference(conf->mirrors[d].rdev);
1515 if (rdev &&
1516 test_bit(In_sync, &rdev->flags)) {
1517 atomic_inc(&rdev->nr_pending);
1518 rcu_read_unlock();
1519 success = sync_page_io(rdev,
1520 r10_bio->devs[sl].addr +
1521 sect,
1522 s<<9,
1523 conf->tmppage, READ, false);
1524 rdev_dec_pending(rdev, mddev);
1525 rcu_read_lock();
1526 if (success)
1527 break;
1529 sl++;
1530 if (sl == conf->copies)
1531 sl = 0;
1532 } while (!success && sl != r10_bio->read_slot);
1533 rcu_read_unlock();
1535 if (!success) {
1536 /* Cannot read from anywhere -- bye bye array */
1537 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1538 md_error(mddev, conf->mirrors[dn].rdev);
1539 break;
1542 start = sl;
1543 /* write it back and re-read */
1544 rcu_read_lock();
1545 while (sl != r10_bio->read_slot) {
1546 char b[BDEVNAME_SIZE];
1548 if (sl==0)
1549 sl = conf->copies;
1550 sl--;
1551 d = r10_bio->devs[sl].devnum;
1552 rdev = rcu_dereference(conf->mirrors[d].rdev);
1553 if (rdev &&
1554 test_bit(In_sync, &rdev->flags)) {
1555 atomic_inc(&rdev->nr_pending);
1556 rcu_read_unlock();
1557 atomic_add(s, &rdev->corrected_errors);
1558 if (sync_page_io(rdev,
1559 r10_bio->devs[sl].addr +
1560 sect,
1561 s<<9, conf->tmppage, WRITE, false)
1562 == 0) {
1563 /* Well, this device is dead */
1564 printk(KERN_NOTICE
1565 "md/raid10:%s: read correction "
1566 "write failed"
1567 " (%d sectors at %llu on %s)\n",
1568 mdname(mddev), s,
1569 (unsigned long long)(sect+
1570 rdev->data_offset),
1571 bdevname(rdev->bdev, b));
1572 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1573 "drive\n",
1574 mdname(mddev),
1575 bdevname(rdev->bdev, b));
1576 md_error(mddev, rdev);
1578 rdev_dec_pending(rdev, mddev);
1579 rcu_read_lock();
1582 sl = start;
1583 while (sl != r10_bio->read_slot) {
1585 if (sl==0)
1586 sl = conf->copies;
1587 sl--;
1588 d = r10_bio->devs[sl].devnum;
1589 rdev = rcu_dereference(conf->mirrors[d].rdev);
1590 if (rdev &&
1591 test_bit(In_sync, &rdev->flags)) {
1592 char b[BDEVNAME_SIZE];
1593 atomic_inc(&rdev->nr_pending);
1594 rcu_read_unlock();
1595 if (sync_page_io(rdev,
1596 r10_bio->devs[sl].addr +
1597 sect,
1598 s<<9, conf->tmppage,
1599 READ, false) == 0) {
1600 /* Well, this device is dead */
1601 printk(KERN_NOTICE
1602 "md/raid10:%s: unable to read back "
1603 "corrected sectors"
1604 " (%d sectors at %llu on %s)\n",
1605 mdname(mddev), s,
1606 (unsigned long long)(sect+
1607 rdev->data_offset),
1608 bdevname(rdev->bdev, b));
1609 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1610 mdname(mddev),
1611 bdevname(rdev->bdev, b));
1613 md_error(mddev, rdev);
1614 } else {
1615 printk(KERN_INFO
1616 "md/raid10:%s: read error corrected"
1617 " (%d sectors at %llu on %s)\n",
1618 mdname(mddev), s,
1619 (unsigned long long)(sect+
1620 rdev->data_offset),
1621 bdevname(rdev->bdev, b));
1624 rdev_dec_pending(rdev, mddev);
1625 rcu_read_lock();
1628 rcu_read_unlock();
1630 sectors -= s;
1631 sect += s;
1635 static void raid10d(mddev_t *mddev)
1637 r10bio_t *r10_bio;
1638 struct bio *bio;
1639 unsigned long flags;
1640 conf_t *conf = mddev->private;
1641 struct list_head *head = &conf->retry_list;
1642 mdk_rdev_t *rdev;
1644 md_check_recovery(mddev);
1646 for (;;) {
1647 char b[BDEVNAME_SIZE];
1649 flush_pending_writes(conf);
1651 spin_lock_irqsave(&conf->device_lock, flags);
1652 if (list_empty(head)) {
1653 spin_unlock_irqrestore(&conf->device_lock, flags);
1654 break;
1656 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1657 list_del(head->prev);
1658 conf->nr_queued--;
1659 spin_unlock_irqrestore(&conf->device_lock, flags);
1661 mddev = r10_bio->mddev;
1662 conf = mddev->private;
1663 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1664 sync_request_write(mddev, r10_bio);
1665 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1666 recovery_request_write(mddev, r10_bio);
1667 else {
1668 int mirror;
1669 /* we got a read error. Maybe the drive is bad. Maybe just
1670 * the block and we can fix it.
1671 * We freeze all other IO, and try reading the block from
1672 * other devices. When we find one, we re-write
1673 * and check it that fixes the read error.
1674 * This is all done synchronously while the array is
1675 * frozen.
1677 if (mddev->ro == 0) {
1678 freeze_array(conf);
1679 fix_read_error(conf, mddev, r10_bio);
1680 unfreeze_array(conf);
1683 bio = r10_bio->devs[r10_bio->read_slot].bio;
1684 r10_bio->devs[r10_bio->read_slot].bio =
1685 mddev->ro ? IO_BLOCKED : NULL;
1686 mirror = read_balance(conf, r10_bio);
1687 if (mirror == -1) {
1688 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1689 " read error for block %llu\n",
1690 mdname(mddev),
1691 bdevname(bio->bi_bdev,b),
1692 (unsigned long long)r10_bio->sector);
1693 raid_end_bio_io(r10_bio);
1694 bio_put(bio);
1695 } else {
1696 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1697 bio_put(bio);
1698 rdev = conf->mirrors[mirror].rdev;
1699 if (printk_ratelimit())
1700 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1701 " another mirror\n",
1702 mdname(mddev),
1703 bdevname(rdev->bdev,b),
1704 (unsigned long long)r10_bio->sector);
1705 bio = bio_clone_mddev(r10_bio->master_bio,
1706 GFP_NOIO, mddev);
1707 r10_bio->devs[r10_bio->read_slot].bio = bio;
1708 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1709 + rdev->data_offset;
1710 bio->bi_bdev = rdev->bdev;
1711 bio->bi_rw = READ | do_sync;
1712 bio->bi_private = r10_bio;
1713 bio->bi_end_io = raid10_end_read_request;
1714 generic_make_request(bio);
1717 cond_resched();
1722 static int init_resync(conf_t *conf)
1724 int buffs;
1726 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1727 BUG_ON(conf->r10buf_pool);
1728 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1729 if (!conf->r10buf_pool)
1730 return -ENOMEM;
1731 conf->next_resync = 0;
1732 return 0;
1736 * perform a "sync" on one "block"
1738 * We need to make sure that no normal I/O request - particularly write
1739 * requests - conflict with active sync requests.
1741 * This is achieved by tracking pending requests and a 'barrier' concept
1742 * that can be installed to exclude normal IO requests.
1744 * Resync and recovery are handled very differently.
1745 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1747 * For resync, we iterate over virtual addresses, read all copies,
1748 * and update if there are differences. If only one copy is live,
1749 * skip it.
1750 * For recovery, we iterate over physical addresses, read a good
1751 * value for each non-in_sync drive, and over-write.
1753 * So, for recovery we may have several outstanding complex requests for a
1754 * given address, one for each out-of-sync device. We model this by allocating
1755 * a number of r10_bio structures, one for each out-of-sync device.
1756 * As we setup these structures, we collect all bio's together into a list
1757 * which we then process collectively to add pages, and then process again
1758 * to pass to generic_make_request.
1760 * The r10_bio structures are linked using a borrowed master_bio pointer.
1761 * This link is counted in ->remaining. When the r10_bio that points to NULL
1762 * has its remaining count decremented to 0, the whole complex operation
1763 * is complete.
1767 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1769 conf_t *conf = mddev->private;
1770 r10bio_t *r10_bio;
1771 struct bio *biolist = NULL, *bio;
1772 sector_t max_sector, nr_sectors;
1773 int disk;
1774 int i;
1775 int max_sync;
1776 sector_t sync_blocks;
1778 sector_t sectors_skipped = 0;
1779 int chunks_skipped = 0;
1781 if (!conf->r10buf_pool)
1782 if (init_resync(conf))
1783 return 0;
1785 skipped:
1786 max_sector = mddev->dev_sectors;
1787 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1788 max_sector = mddev->resync_max_sectors;
1789 if (sector_nr >= max_sector) {
1790 /* If we aborted, we need to abort the
1791 * sync on the 'current' bitmap chucks (there can
1792 * be several when recovering multiple devices).
1793 * as we may have started syncing it but not finished.
1794 * We can find the current address in
1795 * mddev->curr_resync, but for recovery,
1796 * we need to convert that to several
1797 * virtual addresses.
1799 if (mddev->curr_resync < max_sector) { /* aborted */
1800 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1801 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1802 &sync_blocks, 1);
1803 else for (i=0; i<conf->raid_disks; i++) {
1804 sector_t sect =
1805 raid10_find_virt(conf, mddev->curr_resync, i);
1806 bitmap_end_sync(mddev->bitmap, sect,
1807 &sync_blocks, 1);
1809 } else /* completed sync */
1810 conf->fullsync = 0;
1812 bitmap_close_sync(mddev->bitmap);
1813 close_sync(conf);
1814 *skipped = 1;
1815 return sectors_skipped;
1817 if (chunks_skipped >= conf->raid_disks) {
1818 /* if there has been nothing to do on any drive,
1819 * then there is nothing to do at all..
1821 *skipped = 1;
1822 return (max_sector - sector_nr) + sectors_skipped;
1825 if (max_sector > mddev->resync_max)
1826 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1828 /* make sure whole request will fit in a chunk - if chunks
1829 * are meaningful
1831 if (conf->near_copies < conf->raid_disks &&
1832 max_sector > (sector_nr | conf->chunk_mask))
1833 max_sector = (sector_nr | conf->chunk_mask) + 1;
1835 * If there is non-resync activity waiting for us then
1836 * put in a delay to throttle resync.
1838 if (!go_faster && conf->nr_waiting)
1839 msleep_interruptible(1000);
1841 /* Again, very different code for resync and recovery.
1842 * Both must result in an r10bio with a list of bios that
1843 * have bi_end_io, bi_sector, bi_bdev set,
1844 * and bi_private set to the r10bio.
1845 * For recovery, we may actually create several r10bios
1846 * with 2 bios in each, that correspond to the bios in the main one.
1847 * In this case, the subordinate r10bios link back through a
1848 * borrowed master_bio pointer, and the counter in the master
1849 * includes a ref from each subordinate.
1851 /* First, we decide what to do and set ->bi_end_io
1852 * To end_sync_read if we want to read, and
1853 * end_sync_write if we will want to write.
1856 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1857 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1858 /* recovery... the complicated one */
1859 int j, k;
1860 r10_bio = NULL;
1862 for (i=0 ; i<conf->raid_disks; i++)
1863 if (conf->mirrors[i].rdev &&
1864 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1865 int still_degraded = 0;
1866 /* want to reconstruct this device */
1867 r10bio_t *rb2 = r10_bio;
1868 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1869 int must_sync;
1870 /* Unless we are doing a full sync, we only need
1871 * to recover the block if it is set in the bitmap
1873 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1874 &sync_blocks, 1);
1875 if (sync_blocks < max_sync)
1876 max_sync = sync_blocks;
1877 if (!must_sync &&
1878 !conf->fullsync) {
1879 /* yep, skip the sync_blocks here, but don't assume
1880 * that there will never be anything to do here
1882 chunks_skipped = -1;
1883 continue;
1886 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1887 raise_barrier(conf, rb2 != NULL);
1888 atomic_set(&r10_bio->remaining, 0);
1890 r10_bio->master_bio = (struct bio*)rb2;
1891 if (rb2)
1892 atomic_inc(&rb2->remaining);
1893 r10_bio->mddev = mddev;
1894 set_bit(R10BIO_IsRecover, &r10_bio->state);
1895 r10_bio->sector = sect;
1897 raid10_find_phys(conf, r10_bio);
1899 /* Need to check if the array will still be
1900 * degraded
1902 for (j=0; j<conf->raid_disks; j++)
1903 if (conf->mirrors[j].rdev == NULL ||
1904 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1905 still_degraded = 1;
1906 break;
1909 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1910 &sync_blocks, still_degraded);
1912 for (j=0; j<conf->copies;j++) {
1913 int d = r10_bio->devs[j].devnum;
1914 if (conf->mirrors[d].rdev &&
1915 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1916 /* This is where we read from */
1917 bio = r10_bio->devs[0].bio;
1918 bio->bi_next = biolist;
1919 biolist = bio;
1920 bio->bi_private = r10_bio;
1921 bio->bi_end_io = end_sync_read;
1922 bio->bi_rw = READ;
1923 bio->bi_sector = r10_bio->devs[j].addr +
1924 conf->mirrors[d].rdev->data_offset;
1925 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1926 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1927 atomic_inc(&r10_bio->remaining);
1928 /* and we write to 'i' */
1930 for (k=0; k<conf->copies; k++)
1931 if (r10_bio->devs[k].devnum == i)
1932 break;
1933 BUG_ON(k == conf->copies);
1934 bio = r10_bio->devs[1].bio;
1935 bio->bi_next = biolist;
1936 biolist = bio;
1937 bio->bi_private = r10_bio;
1938 bio->bi_end_io = end_sync_write;
1939 bio->bi_rw = WRITE;
1940 bio->bi_sector = r10_bio->devs[k].addr +
1941 conf->mirrors[i].rdev->data_offset;
1942 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1944 r10_bio->devs[0].devnum = d;
1945 r10_bio->devs[1].devnum = i;
1947 break;
1950 if (j == conf->copies) {
1951 /* Cannot recover, so abort the recovery */
1952 put_buf(r10_bio);
1953 if (rb2)
1954 atomic_dec(&rb2->remaining);
1955 r10_bio = rb2;
1956 if (!test_and_set_bit(MD_RECOVERY_INTR,
1957 &mddev->recovery))
1958 printk(KERN_INFO "md/raid10:%s: insufficient "
1959 "working devices for recovery.\n",
1960 mdname(mddev));
1961 break;
1964 if (biolist == NULL) {
1965 while (r10_bio) {
1966 r10bio_t *rb2 = r10_bio;
1967 r10_bio = (r10bio_t*) rb2->master_bio;
1968 rb2->master_bio = NULL;
1969 put_buf(rb2);
1971 goto giveup;
1973 } else {
1974 /* resync. Schedule a read for every block at this virt offset */
1975 int count = 0;
1977 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1979 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1980 &sync_blocks, mddev->degraded) &&
1981 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1982 /* We can skip this block */
1983 *skipped = 1;
1984 return sync_blocks + sectors_skipped;
1986 if (sync_blocks < max_sync)
1987 max_sync = sync_blocks;
1988 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1990 r10_bio->mddev = mddev;
1991 atomic_set(&r10_bio->remaining, 0);
1992 raise_barrier(conf, 0);
1993 conf->next_resync = sector_nr;
1995 r10_bio->master_bio = NULL;
1996 r10_bio->sector = sector_nr;
1997 set_bit(R10BIO_IsSync, &r10_bio->state);
1998 raid10_find_phys(conf, r10_bio);
1999 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2001 for (i=0; i<conf->copies; i++) {
2002 int d = r10_bio->devs[i].devnum;
2003 bio = r10_bio->devs[i].bio;
2004 bio->bi_end_io = NULL;
2005 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2006 if (conf->mirrors[d].rdev == NULL ||
2007 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2008 continue;
2009 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2010 atomic_inc(&r10_bio->remaining);
2011 bio->bi_next = biolist;
2012 biolist = bio;
2013 bio->bi_private = r10_bio;
2014 bio->bi_end_io = end_sync_read;
2015 bio->bi_rw = READ;
2016 bio->bi_sector = r10_bio->devs[i].addr +
2017 conf->mirrors[d].rdev->data_offset;
2018 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2019 count++;
2022 if (count < 2) {
2023 for (i=0; i<conf->copies; i++) {
2024 int d = r10_bio->devs[i].devnum;
2025 if (r10_bio->devs[i].bio->bi_end_io)
2026 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2028 put_buf(r10_bio);
2029 biolist = NULL;
2030 goto giveup;
2034 for (bio = biolist; bio ; bio=bio->bi_next) {
2036 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2037 if (bio->bi_end_io)
2038 bio->bi_flags |= 1 << BIO_UPTODATE;
2039 bio->bi_vcnt = 0;
2040 bio->bi_idx = 0;
2041 bio->bi_phys_segments = 0;
2042 bio->bi_size = 0;
2045 nr_sectors = 0;
2046 if (sector_nr + max_sync < max_sector)
2047 max_sector = sector_nr + max_sync;
2048 do {
2049 struct page *page;
2050 int len = PAGE_SIZE;
2051 disk = 0;
2052 if (sector_nr + (len>>9) > max_sector)
2053 len = (max_sector - sector_nr) << 9;
2054 if (len == 0)
2055 break;
2056 for (bio= biolist ; bio ; bio=bio->bi_next) {
2057 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2058 if (bio_add_page(bio, page, len, 0) == 0) {
2059 /* stop here */
2060 struct bio *bio2;
2061 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2062 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2063 /* remove last page from this bio */
2064 bio2->bi_vcnt--;
2065 bio2->bi_size -= len;
2066 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2068 goto bio_full;
2070 disk = i;
2072 nr_sectors += len>>9;
2073 sector_nr += len>>9;
2074 } while (biolist->bi_vcnt < RESYNC_PAGES);
2075 bio_full:
2076 r10_bio->sectors = nr_sectors;
2078 while (biolist) {
2079 bio = biolist;
2080 biolist = biolist->bi_next;
2082 bio->bi_next = NULL;
2083 r10_bio = bio->bi_private;
2084 r10_bio->sectors = nr_sectors;
2086 if (bio->bi_end_io == end_sync_read) {
2087 md_sync_acct(bio->bi_bdev, nr_sectors);
2088 generic_make_request(bio);
2092 if (sectors_skipped)
2093 /* pretend they weren't skipped, it makes
2094 * no important difference in this case
2096 md_done_sync(mddev, sectors_skipped, 1);
2098 return sectors_skipped + nr_sectors;
2099 giveup:
2100 /* There is nowhere to write, so all non-sync
2101 * drives must be failed, so try the next chunk...
2103 if (sector_nr + max_sync < max_sector)
2104 max_sector = sector_nr + max_sync;
2106 sectors_skipped += (max_sector - sector_nr);
2107 chunks_skipped ++;
2108 sector_nr = max_sector;
2109 goto skipped;
2112 static sector_t
2113 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2115 sector_t size;
2116 conf_t *conf = mddev->private;
2118 if (!raid_disks)
2119 raid_disks = conf->raid_disks;
2120 if (!sectors)
2121 sectors = conf->dev_sectors;
2123 size = sectors >> conf->chunk_shift;
2124 sector_div(size, conf->far_copies);
2125 size = size * raid_disks;
2126 sector_div(size, conf->near_copies);
2128 return size << conf->chunk_shift;
2132 static conf_t *setup_conf(mddev_t *mddev)
2134 conf_t *conf = NULL;
2135 int nc, fc, fo;
2136 sector_t stride, size;
2137 int err = -EINVAL;
2139 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2140 !is_power_of_2(mddev->new_chunk_sectors)) {
2141 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2142 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2143 mdname(mddev), PAGE_SIZE);
2144 goto out;
2147 nc = mddev->new_layout & 255;
2148 fc = (mddev->new_layout >> 8) & 255;
2149 fo = mddev->new_layout & (1<<16);
2151 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2152 (mddev->new_layout >> 17)) {
2153 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2154 mdname(mddev), mddev->new_layout);
2155 goto out;
2158 err = -ENOMEM;
2159 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2160 if (!conf)
2161 goto out;
2163 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2164 GFP_KERNEL);
2165 if (!conf->mirrors)
2166 goto out;
2168 conf->tmppage = alloc_page(GFP_KERNEL);
2169 if (!conf->tmppage)
2170 goto out;
2173 conf->raid_disks = mddev->raid_disks;
2174 conf->near_copies = nc;
2175 conf->far_copies = fc;
2176 conf->copies = nc*fc;
2177 conf->far_offset = fo;
2178 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2179 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2181 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2182 r10bio_pool_free, conf);
2183 if (!conf->r10bio_pool)
2184 goto out;
2186 size = mddev->dev_sectors >> conf->chunk_shift;
2187 sector_div(size, fc);
2188 size = size * conf->raid_disks;
2189 sector_div(size, nc);
2190 /* 'size' is now the number of chunks in the array */
2191 /* calculate "used chunks per device" in 'stride' */
2192 stride = size * conf->copies;
2194 /* We need to round up when dividing by raid_disks to
2195 * get the stride size.
2197 stride += conf->raid_disks - 1;
2198 sector_div(stride, conf->raid_disks);
2200 conf->dev_sectors = stride << conf->chunk_shift;
2202 if (fo)
2203 stride = 1;
2204 else
2205 sector_div(stride, fc);
2206 conf->stride = stride << conf->chunk_shift;
2209 spin_lock_init(&conf->device_lock);
2210 INIT_LIST_HEAD(&conf->retry_list);
2212 spin_lock_init(&conf->resync_lock);
2213 init_waitqueue_head(&conf->wait_barrier);
2215 conf->thread = md_register_thread(raid10d, mddev, NULL);
2216 if (!conf->thread)
2217 goto out;
2219 conf->mddev = mddev;
2220 return conf;
2222 out:
2223 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2224 mdname(mddev));
2225 if (conf) {
2226 if (conf->r10bio_pool)
2227 mempool_destroy(conf->r10bio_pool);
2228 kfree(conf->mirrors);
2229 safe_put_page(conf->tmppage);
2230 kfree(conf);
2232 return ERR_PTR(err);
2235 static int run(mddev_t *mddev)
2237 conf_t *conf;
2238 int i, disk_idx, chunk_size;
2239 mirror_info_t *disk;
2240 mdk_rdev_t *rdev;
2241 sector_t size;
2244 * copy the already verified devices into our private RAID10
2245 * bookkeeping area. [whatever we allocate in run(),
2246 * should be freed in stop()]
2249 if (mddev->private == NULL) {
2250 conf = setup_conf(mddev);
2251 if (IS_ERR(conf))
2252 return PTR_ERR(conf);
2253 mddev->private = conf;
2255 conf = mddev->private;
2256 if (!conf)
2257 goto out;
2259 mddev->thread = conf->thread;
2260 conf->thread = NULL;
2262 chunk_size = mddev->chunk_sectors << 9;
2263 blk_queue_io_min(mddev->queue, chunk_size);
2264 if (conf->raid_disks % conf->near_copies)
2265 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2266 else
2267 blk_queue_io_opt(mddev->queue, chunk_size *
2268 (conf->raid_disks / conf->near_copies));
2270 list_for_each_entry(rdev, &mddev->disks, same_set) {
2271 disk_idx = rdev->raid_disk;
2272 if (disk_idx >= conf->raid_disks
2273 || disk_idx < 0)
2274 continue;
2275 disk = conf->mirrors + disk_idx;
2277 disk->rdev = rdev;
2278 disk_stack_limits(mddev->gendisk, rdev->bdev,
2279 rdev->data_offset << 9);
2280 /* as we don't honour merge_bvec_fn, we must never risk
2281 * violating it, so limit max_segments to 1 lying
2282 * within a single page.
2284 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2285 blk_queue_max_segments(mddev->queue, 1);
2286 blk_queue_segment_boundary(mddev->queue,
2287 PAGE_CACHE_SIZE - 1);
2290 disk->head_position = 0;
2292 /* need to check that every block has at least one working mirror */
2293 if (!enough(conf)) {
2294 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2295 mdname(mddev));
2296 goto out_free_conf;
2299 mddev->degraded = 0;
2300 for (i = 0; i < conf->raid_disks; i++) {
2302 disk = conf->mirrors + i;
2304 if (!disk->rdev ||
2305 !test_bit(In_sync, &disk->rdev->flags)) {
2306 disk->head_position = 0;
2307 mddev->degraded++;
2308 if (disk->rdev)
2309 conf->fullsync = 1;
2313 if (mddev->recovery_cp != MaxSector)
2314 printk(KERN_NOTICE "md/raid10:%s: not clean"
2315 " -- starting background reconstruction\n",
2316 mdname(mddev));
2317 printk(KERN_INFO
2318 "md/raid10:%s: active with %d out of %d devices\n",
2319 mdname(mddev), conf->raid_disks - mddev->degraded,
2320 conf->raid_disks);
2322 * Ok, everything is just fine now
2324 mddev->dev_sectors = conf->dev_sectors;
2325 size = raid10_size(mddev, 0, 0);
2326 md_set_array_sectors(mddev, size);
2327 mddev->resync_max_sectors = size;
2329 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2330 mddev->queue->backing_dev_info.congested_data = mddev;
2332 /* Calculate max read-ahead size.
2333 * We need to readahead at least twice a whole stripe....
2334 * maybe...
2337 int stripe = conf->raid_disks *
2338 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2339 stripe /= conf->near_copies;
2340 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2341 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2344 if (conf->near_copies < conf->raid_disks)
2345 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2347 if (md_integrity_register(mddev))
2348 goto out_free_conf;
2350 return 0;
2352 out_free_conf:
2353 md_unregister_thread(mddev->thread);
2354 if (conf->r10bio_pool)
2355 mempool_destroy(conf->r10bio_pool);
2356 safe_put_page(conf->tmppage);
2357 kfree(conf->mirrors);
2358 kfree(conf);
2359 mddev->private = NULL;
2360 out:
2361 return -EIO;
2364 static int stop(mddev_t *mddev)
2366 conf_t *conf = mddev->private;
2368 raise_barrier(conf, 0);
2369 lower_barrier(conf);
2371 md_unregister_thread(mddev->thread);
2372 mddev->thread = NULL;
2373 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2374 if (conf->r10bio_pool)
2375 mempool_destroy(conf->r10bio_pool);
2376 kfree(conf->mirrors);
2377 kfree(conf);
2378 mddev->private = NULL;
2379 return 0;
2382 static void raid10_quiesce(mddev_t *mddev, int state)
2384 conf_t *conf = mddev->private;
2386 switch(state) {
2387 case 1:
2388 raise_barrier(conf, 0);
2389 break;
2390 case 0:
2391 lower_barrier(conf);
2392 break;
2396 static void *raid10_takeover_raid0(mddev_t *mddev)
2398 mdk_rdev_t *rdev;
2399 conf_t *conf;
2401 if (mddev->degraded > 0) {
2402 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2403 mdname(mddev));
2404 return ERR_PTR(-EINVAL);
2407 /* Set new parameters */
2408 mddev->new_level = 10;
2409 /* new layout: far_copies = 1, near_copies = 2 */
2410 mddev->new_layout = (1<<8) + 2;
2411 mddev->new_chunk_sectors = mddev->chunk_sectors;
2412 mddev->delta_disks = mddev->raid_disks;
2413 mddev->raid_disks *= 2;
2414 /* make sure it will be not marked as dirty */
2415 mddev->recovery_cp = MaxSector;
2417 conf = setup_conf(mddev);
2418 if (!IS_ERR(conf)) {
2419 list_for_each_entry(rdev, &mddev->disks, same_set)
2420 if (rdev->raid_disk >= 0)
2421 rdev->new_raid_disk = rdev->raid_disk * 2;
2422 conf->barrier = 1;
2425 return conf;
2428 static void *raid10_takeover(mddev_t *mddev)
2430 struct raid0_private_data *raid0_priv;
2432 /* raid10 can take over:
2433 * raid0 - providing it has only two drives
2435 if (mddev->level == 0) {
2436 /* for raid0 takeover only one zone is supported */
2437 raid0_priv = mddev->private;
2438 if (raid0_priv->nr_strip_zones > 1) {
2439 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2440 " with more than one zone.\n",
2441 mdname(mddev));
2442 return ERR_PTR(-EINVAL);
2444 return raid10_takeover_raid0(mddev);
2446 return ERR_PTR(-EINVAL);
2449 static struct mdk_personality raid10_personality =
2451 .name = "raid10",
2452 .level = 10,
2453 .owner = THIS_MODULE,
2454 .make_request = make_request,
2455 .run = run,
2456 .stop = stop,
2457 .status = status,
2458 .error_handler = error,
2459 .hot_add_disk = raid10_add_disk,
2460 .hot_remove_disk= raid10_remove_disk,
2461 .spare_active = raid10_spare_active,
2462 .sync_request = sync_request,
2463 .quiesce = raid10_quiesce,
2464 .size = raid10_size,
2465 .takeover = raid10_takeover,
2468 static int __init raid_init(void)
2470 return register_md_personality(&raid10_personality);
2473 static void raid_exit(void)
2475 unregister_md_personality(&raid10_personality);
2478 module_init(raid_init);
2479 module_exit(raid_exit);
2480 MODULE_LICENSE("GPL");
2481 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2482 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2483 MODULE_ALIAS("md-raid10");
2484 MODULE_ALIAS("md-level-10");