4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/security.h>
49 #include <linux/syscalls.h>
50 #include <linux/rmap.h>
51 #include <linux/tsacct_kern.h>
52 #include <linux/cn_proc.h>
53 #include <linux/audit.h>
55 #include <asm/uaccess.h>
56 #include <asm/mmu_context.h>
60 #include <linux/kmod.h>
64 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
65 int suid_dumpable
= 0;
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static LIST_HEAD(formats
);
70 static DEFINE_RWLOCK(binfmt_lock
);
72 int register_binfmt(struct linux_binfmt
* fmt
)
76 write_lock(&binfmt_lock
);
77 list_add(&fmt
->lh
, &formats
);
78 write_unlock(&binfmt_lock
);
82 EXPORT_SYMBOL(register_binfmt
);
84 void unregister_binfmt(struct linux_binfmt
* fmt
)
86 write_lock(&binfmt_lock
);
88 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(unregister_binfmt
);
93 static inline void put_binfmt(struct linux_binfmt
* fmt
)
95 module_put(fmt
->module
);
99 * Note that a shared library must be both readable and executable due to
102 * Also note that we take the address to load from from the file itself.
104 asmlinkage
long sys_uselib(const char __user
* library
)
110 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
115 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
118 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
122 file
= nameidata_to_filp(&nd
, O_RDONLY
);
123 error
= PTR_ERR(file
);
129 struct linux_binfmt
* fmt
;
131 read_lock(&binfmt_lock
);
132 list_for_each_entry(fmt
, &formats
, lh
) {
133 if (!fmt
->load_shlib
)
135 if (!try_module_get(fmt
->module
))
137 read_unlock(&binfmt_lock
);
138 error
= fmt
->load_shlib(file
);
139 read_lock(&binfmt_lock
);
141 if (error
!= -ENOEXEC
)
144 read_unlock(&binfmt_lock
);
150 release_open_intent(&nd
);
157 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
163 #ifdef CONFIG_STACK_GROWSUP
165 ret
= expand_stack_downwards(bprm
->vma
, pos
);
170 ret
= get_user_pages(current
, bprm
->mm
, pos
,
171 1, write
, 1, &page
, NULL
);
176 struct rlimit
*rlim
= current
->signal
->rlim
;
177 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
180 * Limit to 1/4-th the stack size for the argv+env strings.
182 * - the remaining binfmt code will not run out of stack space,
183 * - the program will have a reasonable amount of stack left
186 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
195 static void put_arg_page(struct page
*page
)
200 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
204 static void free_arg_pages(struct linux_binprm
*bprm
)
208 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
211 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
214 static int __bprm_mm_init(struct linux_binprm
*bprm
)
217 struct vm_area_struct
*vma
= NULL
;
218 struct mm_struct
*mm
= bprm
->mm
;
220 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
224 down_write(&mm
->mmap_sem
);
228 * Place the stack at the largest stack address the architecture
229 * supports. Later, we'll move this to an appropriate place. We don't
230 * use STACK_TOP because that can depend on attributes which aren't
233 vma
->vm_end
= STACK_TOP_MAX
;
234 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
236 vma
->vm_flags
= VM_STACK_FLAGS
;
237 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
238 err
= insert_vm_struct(mm
, vma
);
240 up_write(&mm
->mmap_sem
);
244 mm
->stack_vm
= mm
->total_vm
= 1;
245 up_write(&mm
->mmap_sem
);
247 bprm
->p
= vma
->vm_end
- sizeof(void *);
254 kmem_cache_free(vm_area_cachep
, vma
);
260 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
262 return len
<= MAX_ARG_STRLEN
;
267 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
272 page
= bprm
->page
[pos
/ PAGE_SIZE
];
273 if (!page
&& write
) {
274 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
277 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
283 static void put_arg_page(struct page
*page
)
287 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
290 __free_page(bprm
->page
[i
]);
291 bprm
->page
[i
] = NULL
;
295 static void free_arg_pages(struct linux_binprm
*bprm
)
299 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
300 free_arg_page(bprm
, i
);
303 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
308 static int __bprm_mm_init(struct linux_binprm
*bprm
)
310 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
314 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
316 return len
<= bprm
->p
;
319 #endif /* CONFIG_MMU */
322 * Create a new mm_struct and populate it with a temporary stack
323 * vm_area_struct. We don't have enough context at this point to set the stack
324 * flags, permissions, and offset, so we use temporary values. We'll update
325 * them later in setup_arg_pages().
327 int bprm_mm_init(struct linux_binprm
*bprm
)
330 struct mm_struct
*mm
= NULL
;
332 bprm
->mm
= mm
= mm_alloc();
337 err
= init_new_context(current
, mm
);
341 err
= __bprm_mm_init(bprm
);
357 * count() counts the number of strings in array ARGV.
359 static int count(char __user
* __user
* argv
, int max
)
367 if (get_user(p
, argv
))
381 * 'copy_strings()' copies argument/environment strings from the old
382 * processes's memory to the new process's stack. The call to get_user_pages()
383 * ensures the destination page is created and not swapped out.
385 static int copy_strings(int argc
, char __user
* __user
* argv
,
386 struct linux_binprm
*bprm
)
388 struct page
*kmapped_page
= NULL
;
390 unsigned long kpos
= 0;
398 if (get_user(str
, argv
+argc
) ||
399 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
404 if (!valid_arg_len(bprm
, len
)) {
409 /* We're going to work our way backwords. */
415 int offset
, bytes_to_copy
;
417 offset
= pos
% PAGE_SIZE
;
421 bytes_to_copy
= offset
;
422 if (bytes_to_copy
> len
)
425 offset
-= bytes_to_copy
;
426 pos
-= bytes_to_copy
;
427 str
-= bytes_to_copy
;
428 len
-= bytes_to_copy
;
430 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
433 page
= get_arg_page(bprm
, pos
, 1);
440 flush_kernel_dcache_page(kmapped_page
);
441 kunmap(kmapped_page
);
442 put_arg_page(kmapped_page
);
445 kaddr
= kmap(kmapped_page
);
446 kpos
= pos
& PAGE_MASK
;
447 flush_arg_page(bprm
, kpos
, kmapped_page
);
449 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
458 flush_kernel_dcache_page(kmapped_page
);
459 kunmap(kmapped_page
);
460 put_arg_page(kmapped_page
);
466 * Like copy_strings, but get argv and its values from kernel memory.
468 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
471 mm_segment_t oldfs
= get_fs();
473 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
477 EXPORT_SYMBOL(copy_strings_kernel
);
482 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
483 * the binfmt code determines where the new stack should reside, we shift it to
484 * its final location. The process proceeds as follows:
486 * 1) Use shift to calculate the new vma endpoints.
487 * 2) Extend vma to cover both the old and new ranges. This ensures the
488 * arguments passed to subsequent functions are consistent.
489 * 3) Move vma's page tables to the new range.
490 * 4) Free up any cleared pgd range.
491 * 5) Shrink the vma to cover only the new range.
493 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
495 struct mm_struct
*mm
= vma
->vm_mm
;
496 unsigned long old_start
= vma
->vm_start
;
497 unsigned long old_end
= vma
->vm_end
;
498 unsigned long length
= old_end
- old_start
;
499 unsigned long new_start
= old_start
- shift
;
500 unsigned long new_end
= old_end
- shift
;
501 struct mmu_gather
*tlb
;
503 BUG_ON(new_start
> new_end
);
506 * ensure there are no vmas between where we want to go
509 if (vma
!= find_vma(mm
, new_start
))
513 * cover the whole range: [new_start, old_end)
515 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
518 * move the page tables downwards, on failure we rely on
519 * process cleanup to remove whatever mess we made.
521 if (length
!= move_page_tables(vma
, old_start
,
522 vma
, new_start
, length
))
526 tlb
= tlb_gather_mmu(mm
, 0);
527 if (new_end
> old_start
) {
529 * when the old and new regions overlap clear from new_end.
531 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
532 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
535 * otherwise, clean from old_start; this is done to not touch
536 * the address space in [new_end, old_start) some architectures
537 * have constraints on va-space that make this illegal (IA64) -
538 * for the others its just a little faster.
540 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
541 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
543 tlb_finish_mmu(tlb
, new_end
, old_end
);
546 * shrink the vma to just the new range.
548 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
553 #define EXTRA_STACK_VM_PAGES 20 /* random */
556 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
557 * the stack is optionally relocated, and some extra space is added.
559 int setup_arg_pages(struct linux_binprm
*bprm
,
560 unsigned long stack_top
,
561 int executable_stack
)
564 unsigned long stack_shift
;
565 struct mm_struct
*mm
= current
->mm
;
566 struct vm_area_struct
*vma
= bprm
->vma
;
567 struct vm_area_struct
*prev
= NULL
;
568 unsigned long vm_flags
;
569 unsigned long stack_base
;
571 #ifdef CONFIG_STACK_GROWSUP
572 /* Limit stack size to 1GB */
573 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
574 if (stack_base
> (1 << 30))
575 stack_base
= 1 << 30;
577 /* Make sure we didn't let the argument array grow too large. */
578 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
581 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
583 stack_shift
= vma
->vm_start
- stack_base
;
584 mm
->arg_start
= bprm
->p
- stack_shift
;
585 bprm
->p
= vma
->vm_end
- stack_shift
;
587 stack_top
= arch_align_stack(stack_top
);
588 stack_top
= PAGE_ALIGN(stack_top
);
589 stack_shift
= vma
->vm_end
- stack_top
;
591 bprm
->p
-= stack_shift
;
592 mm
->arg_start
= bprm
->p
;
596 bprm
->loader
-= stack_shift
;
597 bprm
->exec
-= stack_shift
;
599 down_write(&mm
->mmap_sem
);
600 vm_flags
= vma
->vm_flags
;
603 * Adjust stack execute permissions; explicitly enable for
604 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
605 * (arch default) otherwise.
607 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
609 else if (executable_stack
== EXSTACK_DISABLE_X
)
610 vm_flags
&= ~VM_EXEC
;
611 vm_flags
|= mm
->def_flags
;
613 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
619 /* Move stack pages down in memory. */
621 ret
= shift_arg_pages(vma
, stack_shift
);
623 up_write(&mm
->mmap_sem
);
628 #ifdef CONFIG_STACK_GROWSUP
629 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
631 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
633 ret
= expand_stack(vma
, stack_base
);
638 up_write(&mm
->mmap_sem
);
641 EXPORT_SYMBOL(setup_arg_pages
);
643 #endif /* CONFIG_MMU */
645 struct file
*open_exec(const char *name
)
651 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
655 struct inode
*inode
= nd
.dentry
->d_inode
;
656 file
= ERR_PTR(-EACCES
);
657 if (S_ISREG(inode
->i_mode
)) {
658 int err
= vfs_permission(&nd
, MAY_EXEC
);
661 file
= nameidata_to_filp(&nd
, O_RDONLY
);
663 err
= deny_write_access(file
);
673 release_open_intent(&nd
);
679 EXPORT_SYMBOL(open_exec
);
681 int kernel_read(struct file
*file
, unsigned long offset
,
682 char *addr
, unsigned long count
)
690 /* The cast to a user pointer is valid due to the set_fs() */
691 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
696 EXPORT_SYMBOL(kernel_read
);
698 static int exec_mmap(struct mm_struct
*mm
)
700 struct task_struct
*tsk
;
701 struct mm_struct
* old_mm
, *active_mm
;
703 /* Notify parent that we're no longer interested in the old VM */
705 old_mm
= current
->mm
;
706 mm_release(tsk
, old_mm
);
710 * Make sure that if there is a core dump in progress
711 * for the old mm, we get out and die instead of going
712 * through with the exec. We must hold mmap_sem around
713 * checking core_waiters and changing tsk->mm. The
714 * core-inducing thread will increment core_waiters for
715 * each thread whose ->mm == old_mm.
717 down_read(&old_mm
->mmap_sem
);
718 if (unlikely(old_mm
->core_waiters
)) {
719 up_read(&old_mm
->mmap_sem
);
724 active_mm
= tsk
->active_mm
;
727 activate_mm(active_mm
, mm
);
729 arch_pick_mmap_layout(mm
);
731 up_read(&old_mm
->mmap_sem
);
732 BUG_ON(active_mm
!= old_mm
);
741 * This function makes sure the current process has its own signal table,
742 * so that flush_signal_handlers can later reset the handlers without
743 * disturbing other processes. (Other processes might share the signal
744 * table via the CLONE_SIGHAND option to clone().)
746 static int de_thread(struct task_struct
*tsk
)
748 struct signal_struct
*sig
= tsk
->signal
;
749 struct sighand_struct
*oldsighand
= tsk
->sighand
;
750 spinlock_t
*lock
= &oldsighand
->siglock
;
751 struct task_struct
*leader
= NULL
;
754 if (thread_group_empty(tsk
))
755 goto no_thread_group
;
758 * Kill all other threads in the thread group.
759 * We must hold tasklist_lock to call zap_other_threads.
761 read_lock(&tasklist_lock
);
763 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
765 * Another group action in progress, just
766 * return so that the signal is processed.
768 spin_unlock_irq(lock
);
769 read_unlock(&tasklist_lock
);
774 * child_reaper ignores SIGKILL, change it now.
775 * Reparenting needs write_lock on tasklist_lock,
776 * so it is safe to do it under read_lock.
778 if (unlikely(tsk
->group_leader
== task_child_reaper(tsk
)))
779 task_active_pid_ns(tsk
)->child_reaper
= tsk
;
781 zap_other_threads(tsk
);
782 read_unlock(&tasklist_lock
);
785 * Account for the thread group leader hanging around:
788 if (!thread_group_leader(tsk
)) {
791 * The SIGALRM timer survives the exec, but needs to point
792 * at us as the new group leader now. We have a race with
793 * a timer firing now getting the old leader, so we need to
794 * synchronize with any firing (by calling del_timer_sync)
795 * before we can safely let the old group leader die.
798 spin_unlock_irq(lock
);
799 if (hrtimer_cancel(&sig
->real_timer
))
800 hrtimer_restart(&sig
->real_timer
);
804 sig
->notify_count
= count
;
805 sig
->group_exit_task
= tsk
;
806 while (atomic_read(&sig
->count
) > count
) {
807 __set_current_state(TASK_UNINTERRUPTIBLE
);
808 spin_unlock_irq(lock
);
812 spin_unlock_irq(lock
);
815 * At this point all other threads have exited, all we have to
816 * do is to wait for the thread group leader to become inactive,
817 * and to assume its PID:
819 if (!thread_group_leader(tsk
)) {
820 leader
= tsk
->group_leader
;
822 sig
->notify_count
= -1;
824 write_lock_irq(&tasklist_lock
);
825 if (likely(leader
->exit_state
))
827 __set_current_state(TASK_UNINTERRUPTIBLE
);
828 write_unlock_irq(&tasklist_lock
);
833 * The only record we have of the real-time age of a
834 * process, regardless of execs it's done, is start_time.
835 * All the past CPU time is accumulated in signal_struct
836 * from sister threads now dead. But in this non-leader
837 * exec, nothing survives from the original leader thread,
838 * whose birth marks the true age of this process now.
839 * When we take on its identity by switching to its PID, we
840 * also take its birthdate (always earlier than our own).
842 tsk
->start_time
= leader
->start_time
;
844 BUG_ON(!same_thread_group(leader
, tsk
));
845 BUG_ON(has_group_leader_pid(tsk
));
847 * An exec() starts a new thread group with the
848 * TGID of the previous thread group. Rehash the
849 * two threads with a switched PID, and release
850 * the former thread group leader:
853 /* Become a process group leader with the old leader's pid.
854 * The old leader becomes a thread of the this thread group.
855 * Note: The old leader also uses this pid until release_task
856 * is called. Odd but simple and correct.
858 detach_pid(tsk
, PIDTYPE_PID
);
859 tsk
->pid
= leader
->pid
;
860 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
861 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
862 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
863 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
865 tsk
->group_leader
= tsk
;
866 leader
->group_leader
= tsk
;
868 tsk
->exit_signal
= SIGCHLD
;
870 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
871 leader
->exit_state
= EXIT_DEAD
;
873 write_unlock_irq(&tasklist_lock
);
876 sig
->group_exit_task
= NULL
;
877 sig
->notify_count
= 0;
879 * There may be one thread left which is just exiting,
880 * but it's safe to stop telling the group to kill themselves.
887 release_task(leader
);
889 if (atomic_read(&oldsighand
->count
) != 1) {
890 struct sighand_struct
*newsighand
;
892 * This ->sighand is shared with the CLONE_SIGHAND
893 * but not CLONE_THREAD task, switch to the new one.
895 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
899 atomic_set(&newsighand
->count
, 1);
900 memcpy(newsighand
->action
, oldsighand
->action
,
901 sizeof(newsighand
->action
));
903 write_lock_irq(&tasklist_lock
);
904 spin_lock(&oldsighand
->siglock
);
905 rcu_assign_pointer(tsk
->sighand
, newsighand
);
906 spin_unlock(&oldsighand
->siglock
);
907 write_unlock_irq(&tasklist_lock
);
909 __cleanup_sighand(oldsighand
);
912 BUG_ON(!thread_group_leader(tsk
));
917 * These functions flushes out all traces of the currently running executable
918 * so that a new one can be started
920 static void flush_old_files(struct files_struct
* files
)
925 spin_lock(&files
->file_lock
);
927 unsigned long set
, i
;
931 fdt
= files_fdtable(files
);
932 if (i
>= fdt
->max_fds
)
934 set
= fdt
->close_on_exec
->fds_bits
[j
];
937 fdt
->close_on_exec
->fds_bits
[j
] = 0;
938 spin_unlock(&files
->file_lock
);
939 for ( ; set
; i
++,set
>>= 1) {
944 spin_lock(&files
->file_lock
);
947 spin_unlock(&files
->file_lock
);
950 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
952 /* buf must be at least sizeof(tsk->comm) in size */
954 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
959 void set_task_comm(struct task_struct
*tsk
, char *buf
)
962 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
966 int flush_old_exec(struct linux_binprm
* bprm
)
970 struct files_struct
*files
;
971 char tcomm
[sizeof(current
->comm
)];
974 * Make sure we have a private signal table and that
975 * we are unassociated from the previous thread group.
977 retval
= de_thread(current
);
982 * Make sure we have private file handles. Ask the
983 * fork helper to do the work for us and the exit
984 * helper to do the cleanup of the old one.
986 files
= current
->files
; /* refcounted so safe to hold */
987 retval
= unshare_files();
991 * Release all of the old mmap stuff
993 retval
= exec_mmap(bprm
->mm
);
997 bprm
->mm
= NULL
; /* We're using it now */
999 /* This is the point of no return */
1000 put_files_struct(files
);
1002 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1004 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
1005 set_dumpable(current
->mm
, 1);
1007 set_dumpable(current
->mm
, suid_dumpable
);
1009 name
= bprm
->filename
;
1011 /* Copies the binary name from after last slash */
1012 for (i
=0; (ch
= *(name
++)) != '\0';) {
1014 i
= 0; /* overwrite what we wrote */
1016 if (i
< (sizeof(tcomm
) - 1))
1020 set_task_comm(current
, tcomm
);
1022 current
->flags
&= ~PF_RANDOMIZE
;
1025 /* Set the new mm task size. We have to do that late because it may
1026 * depend on TIF_32BIT which is only updated in flush_thread() on
1027 * some architectures like powerpc
1029 current
->mm
->task_size
= TASK_SIZE
;
1031 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1033 set_dumpable(current
->mm
, suid_dumpable
);
1034 current
->pdeath_signal
= 0;
1035 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1036 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1038 set_dumpable(current
->mm
, suid_dumpable
);
1041 /* An exec changes our domain. We are no longer part of the thread
1044 current
->self_exec_id
++;
1046 flush_signal_handlers(current
, 0);
1047 flush_old_files(current
->files
);
1052 reset_files_struct(current
, files
);
1057 EXPORT_SYMBOL(flush_old_exec
);
1060 * Fill the binprm structure from the inode.
1061 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1063 int prepare_binprm(struct linux_binprm
*bprm
)
1066 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1069 mode
= inode
->i_mode
;
1070 if (bprm
->file
->f_op
== NULL
)
1073 bprm
->e_uid
= current
->euid
;
1074 bprm
->e_gid
= current
->egid
;
1076 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1078 if (mode
& S_ISUID
) {
1079 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1080 bprm
->e_uid
= inode
->i_uid
;
1085 * If setgid is set but no group execute bit then this
1086 * is a candidate for mandatory locking, not a setgid
1089 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1090 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1091 bprm
->e_gid
= inode
->i_gid
;
1095 /* fill in binprm security blob */
1096 retval
= security_bprm_set(bprm
);
1100 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1101 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1104 EXPORT_SYMBOL(prepare_binprm
);
1106 static int unsafe_exec(struct task_struct
*p
)
1109 if (p
->ptrace
& PT_PTRACED
) {
1110 if (p
->ptrace
& PT_PTRACE_CAP
)
1111 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1113 unsafe
|= LSM_UNSAFE_PTRACE
;
1115 if (atomic_read(&p
->fs
->count
) > 1 ||
1116 atomic_read(&p
->files
->count
) > 1 ||
1117 atomic_read(&p
->sighand
->count
) > 1)
1118 unsafe
|= LSM_UNSAFE_SHARE
;
1123 void compute_creds(struct linux_binprm
*bprm
)
1127 if (bprm
->e_uid
!= current
->uid
) {
1129 current
->pdeath_signal
= 0;
1134 unsafe
= unsafe_exec(current
);
1135 security_bprm_apply_creds(bprm
, unsafe
);
1136 task_unlock(current
);
1137 security_bprm_post_apply_creds(bprm
);
1139 EXPORT_SYMBOL(compute_creds
);
1142 * Arguments are '\0' separated strings found at the location bprm->p
1143 * points to; chop off the first by relocating brpm->p to right after
1144 * the first '\0' encountered.
1146 int remove_arg_zero(struct linux_binprm
*bprm
)
1149 unsigned long offset
;
1157 offset
= bprm
->p
& ~PAGE_MASK
;
1158 page
= get_arg_page(bprm
, bprm
->p
, 0);
1163 kaddr
= kmap_atomic(page
, KM_USER0
);
1165 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1166 offset
++, bprm
->p
++)
1169 kunmap_atomic(kaddr
, KM_USER0
);
1172 if (offset
== PAGE_SIZE
)
1173 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1174 } while (offset
== PAGE_SIZE
);
1183 EXPORT_SYMBOL(remove_arg_zero
);
1186 * cycle the list of binary formats handler, until one recognizes the image
1188 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1191 struct linux_binfmt
*fmt
;
1193 /* handle /sbin/loader.. */
1195 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1197 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1198 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1201 unsigned long loader
;
1203 allow_write_access(bprm
->file
);
1207 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1209 file
= open_exec("/sbin/loader");
1210 retval
= PTR_ERR(file
);
1214 /* Remember if the application is TASO. */
1215 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1218 bprm
->loader
= loader
;
1219 retval
= prepare_binprm(bprm
);
1222 /* should call search_binary_handler recursively here,
1223 but it does not matter */
1227 retval
= security_bprm_check(bprm
);
1231 /* kernel module loader fixup */
1232 /* so we don't try to load run modprobe in kernel space. */
1235 retval
= audit_bprm(bprm
);
1240 for (try=0; try<2; try++) {
1241 read_lock(&binfmt_lock
);
1242 list_for_each_entry(fmt
, &formats
, lh
) {
1243 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1246 if (!try_module_get(fmt
->module
))
1248 read_unlock(&binfmt_lock
);
1249 retval
= fn(bprm
, regs
);
1252 allow_write_access(bprm
->file
);
1256 current
->did_exec
= 1;
1257 proc_exec_connector(current
);
1260 read_lock(&binfmt_lock
);
1262 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1265 read_unlock(&binfmt_lock
);
1269 read_unlock(&binfmt_lock
);
1270 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1274 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1275 if (printable(bprm
->buf
[0]) &&
1276 printable(bprm
->buf
[1]) &&
1277 printable(bprm
->buf
[2]) &&
1278 printable(bprm
->buf
[3]))
1279 break; /* -ENOEXEC */
1280 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1287 EXPORT_SYMBOL(search_binary_handler
);
1290 * sys_execve() executes a new program.
1292 int do_execve(char * filename
,
1293 char __user
*__user
*argv
,
1294 char __user
*__user
*envp
,
1295 struct pt_regs
* regs
)
1297 struct linux_binprm
*bprm
;
1299 unsigned long env_p
;
1303 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1307 file
= open_exec(filename
);
1308 retval
= PTR_ERR(file
);
1315 bprm
->filename
= filename
;
1316 bprm
->interp
= filename
;
1318 retval
= bprm_mm_init(bprm
);
1322 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1323 if ((retval
= bprm
->argc
) < 0)
1326 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1327 if ((retval
= bprm
->envc
) < 0)
1330 retval
= security_bprm_alloc(bprm
);
1334 retval
= prepare_binprm(bprm
);
1338 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1342 bprm
->exec
= bprm
->p
;
1343 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1348 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1351 bprm
->argv_len
= env_p
- bprm
->p
;
1353 retval
= search_binary_handler(bprm
,regs
);
1355 /* execve success */
1356 free_arg_pages(bprm
);
1357 security_bprm_free(bprm
);
1358 acct_update_integrals(current
);
1364 free_arg_pages(bprm
);
1366 security_bprm_free(bprm
);
1374 allow_write_access(bprm
->file
);
1384 int set_binfmt(struct linux_binfmt
*new)
1386 struct linux_binfmt
*old
= current
->binfmt
;
1389 if (!try_module_get(new->module
))
1392 current
->binfmt
= new;
1394 module_put(old
->module
);
1398 EXPORT_SYMBOL(set_binfmt
);
1400 /* format_corename will inspect the pattern parameter, and output a
1401 * name into corename, which must have space for at least
1402 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1404 static int format_corename(char *corename
, const char *pattern
, long signr
)
1406 const char *pat_ptr
= pattern
;
1407 char *out_ptr
= corename
;
1408 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1410 int pid_in_pattern
= 0;
1413 if (*pattern
== '|')
1416 /* Repeat as long as we have more pattern to process and more output
1419 if (*pat_ptr
!= '%') {
1420 if (out_ptr
== out_end
)
1422 *out_ptr
++ = *pat_ptr
++;
1424 switch (*++pat_ptr
) {
1427 /* Double percent, output one percent */
1429 if (out_ptr
== out_end
)
1436 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1437 "%d", task_tgid_vnr(current
));
1438 if (rc
> out_end
- out_ptr
)
1444 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1445 "%d", current
->uid
);
1446 if (rc
> out_end
- out_ptr
)
1452 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1453 "%d", current
->gid
);
1454 if (rc
> out_end
- out_ptr
)
1458 /* signal that caused the coredump */
1460 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1462 if (rc
> out_end
- out_ptr
)
1466 /* UNIX time of coredump */
1469 do_gettimeofday(&tv
);
1470 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1472 if (rc
> out_end
- out_ptr
)
1479 down_read(&uts_sem
);
1480 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1481 "%s", utsname()->nodename
);
1483 if (rc
> out_end
- out_ptr
)
1489 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1490 "%s", current
->comm
);
1491 if (rc
> out_end
- out_ptr
)
1495 /* core limit size */
1497 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1498 "%lu", current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
);
1499 if (rc
> out_end
- out_ptr
)
1509 /* Backward compatibility with core_uses_pid:
1511 * If core_pattern does not include a %p (as is the default)
1512 * and core_uses_pid is set, then .%pid will be appended to
1513 * the filename. Do not do this for piped commands. */
1514 if (!ispipe
&& !pid_in_pattern
1515 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1516 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1517 ".%d", task_tgid_vnr(current
));
1518 if (rc
> out_end
- out_ptr
)
1527 static void zap_process(struct task_struct
*start
)
1529 struct task_struct
*t
;
1531 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1532 start
->signal
->group_stop_count
= 0;
1536 if (t
!= current
&& t
->mm
) {
1537 t
->mm
->core_waiters
++;
1538 sigaddset(&t
->pending
.signal
, SIGKILL
);
1539 signal_wake_up(t
, 1);
1541 } while ((t
= next_thread(t
)) != start
);
1544 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1547 struct task_struct
*g
, *p
;
1548 unsigned long flags
;
1551 spin_lock_irq(&tsk
->sighand
->siglock
);
1552 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
1553 tsk
->signal
->group_exit_code
= exit_code
;
1557 spin_unlock_irq(&tsk
->sighand
->siglock
);
1561 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1565 for_each_process(g
) {
1566 if (g
== tsk
->group_leader
)
1574 * p->sighand can't disappear, but
1575 * may be changed by de_thread()
1577 lock_task_sighand(p
, &flags
);
1579 unlock_task_sighand(p
, &flags
);
1583 } while ((p
= next_thread(p
)) != g
);
1587 return mm
->core_waiters
;
1590 static int coredump_wait(int exit_code
)
1592 struct task_struct
*tsk
= current
;
1593 struct mm_struct
*mm
= tsk
->mm
;
1594 struct completion startup_done
;
1595 struct completion
*vfork_done
;
1598 init_completion(&mm
->core_done
);
1599 init_completion(&startup_done
);
1600 mm
->core_startup_done
= &startup_done
;
1602 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1603 up_write(&mm
->mmap_sem
);
1605 if (unlikely(core_waiters
< 0))
1609 * Make sure nobody is waiting for us to release the VM,
1610 * otherwise we can deadlock when we wait on each other
1612 vfork_done
= tsk
->vfork_done
;
1614 tsk
->vfork_done
= NULL
;
1615 complete(vfork_done
);
1619 wait_for_completion(&startup_done
);
1621 BUG_ON(mm
->core_waiters
);
1622 return core_waiters
;
1626 * set_dumpable converts traditional three-value dumpable to two flags and
1627 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1628 * these bits are not changed atomically. So get_dumpable can observe the
1629 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1630 * return either old dumpable or new one by paying attention to the order of
1631 * modifying the bits.
1633 * dumpable | mm->flags (binary)
1634 * old new | initial interim final
1635 * ---------+-----------------------
1643 * (*) get_dumpable regards interim value of 10 as 11.
1645 void set_dumpable(struct mm_struct
*mm
, int value
)
1649 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1651 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1654 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1656 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1659 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1661 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1666 int get_dumpable(struct mm_struct
*mm
)
1670 ret
= mm
->flags
& 0x3;
1671 return (ret
>= 2) ? 2 : ret
;
1674 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1676 char corename
[CORENAME_MAX_SIZE
+ 1];
1677 struct mm_struct
*mm
= current
->mm
;
1678 struct linux_binfmt
* binfmt
;
1679 struct inode
* inode
;
1682 int fsuid
= current
->fsuid
;
1685 unsigned long core_limit
= current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
;
1686 char **helper_argv
= NULL
;
1687 int helper_argc
= 0;
1690 audit_core_dumps(signr
);
1692 binfmt
= current
->binfmt
;
1693 if (!binfmt
|| !binfmt
->core_dump
)
1695 down_write(&mm
->mmap_sem
);
1697 * If another thread got here first, or we are not dumpable, bail out.
1699 if (mm
->core_waiters
|| !get_dumpable(mm
)) {
1700 up_write(&mm
->mmap_sem
);
1705 * We cannot trust fsuid as being the "true" uid of the
1706 * process nor do we know its entire history. We only know it
1707 * was tainted so we dump it as root in mode 2.
1709 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1710 flag
= O_EXCL
; /* Stop rewrite attacks */
1711 current
->fsuid
= 0; /* Dump root private */
1714 retval
= coredump_wait(exit_code
);
1719 * Clear any false indication of pending signals that might
1720 * be seen by the filesystem code called to write the core file.
1722 clear_thread_flag(TIF_SIGPENDING
);
1725 * lock_kernel() because format_corename() is controlled by sysctl, which
1726 * uses lock_kernel()
1729 ispipe
= format_corename(corename
, core_pattern
, signr
);
1732 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1733 * to a pipe. Since we're not writing directly to the filesystem
1734 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1735 * created unless the pipe reader choses to write out the core file
1736 * at which point file size limits and permissions will be imposed
1737 * as it does with any other process
1739 if ((!ispipe
) && (core_limit
< binfmt
->min_coredump
))
1743 helper_argv
= argv_split(GFP_KERNEL
, corename
+1, &helper_argc
);
1744 /* Terminate the string before the first option */
1745 delimit
= strchr(corename
, ' ');
1748 delimit
= strrchr(helper_argv
[0], '/');
1752 delimit
= helper_argv
[0];
1753 if (!strcmp(delimit
, current
->comm
)) {
1754 printk(KERN_NOTICE
"Recursive core dump detected, "
1759 core_limit
= RLIM_INFINITY
;
1761 /* SIGPIPE can happen, but it's just never processed */
1762 if (call_usermodehelper_pipe(corename
+1, helper_argv
, NULL
,
1764 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1769 file
= open_pathname(AT_FDCWD
, corename
,
1770 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1774 inode
= file
->f_path
.dentry
->d_inode
;
1775 if (inode
->i_nlink
> 1)
1776 goto close_fail
; /* multiple links - don't dump */
1777 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1780 /* AK: actually i see no reason to not allow this for named pipes etc.,
1781 but keep the previous behaviour for now. */
1782 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1786 if (!file
->f_op
->write
)
1788 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1791 retval
= binfmt
->core_dump(signr
, regs
, file
, core_limit
);
1794 current
->signal
->group_exit_code
|= 0x80;
1796 filp_close(file
, NULL
);
1799 argv_free(helper_argv
);
1801 current
->fsuid
= fsuid
;
1802 complete_all(&mm
->core_done
);