2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations prepare_write and/or commit_write are not available on the
45 * Anton Altaparmakov, 16 Feb 2005
48 * - Advisory locking is ignored here.
49 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
53 #include <linux/config.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/sched.h>
58 #include <linux/file.h>
59 #include <linux/stat.h>
60 #include <linux/errno.h>
61 #include <linux/major.h>
62 #include <linux/wait.h>
63 #include <linux/blkdev.h>
64 #include <linux/blkpg.h>
65 #include <linux/init.h>
66 #include <linux/devfs_fs_kernel.h>
67 #include <linux/smp_lock.h>
68 #include <linux/swap.h>
69 #include <linux/slab.h>
70 #include <linux/loop.h>
71 #include <linux/suspend.h>
72 #include <linux/writeback.h>
73 #include <linux/buffer_head.h> /* for invalidate_bdev() */
74 #include <linux/completion.h>
75 #include <linux/highmem.h>
76 #include <linux/gfp.h>
78 #include <asm/uaccess.h>
80 static int max_loop
= 8;
81 static struct loop_device
*loop_dev
;
82 static struct gendisk
**disks
;
87 static int transfer_none(struct loop_device
*lo
, int cmd
,
88 struct page
*raw_page
, unsigned raw_off
,
89 struct page
*loop_page
, unsigned loop_off
,
90 int size
, sector_t real_block
)
92 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
93 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
96 memcpy(loop_buf
, raw_buf
, size
);
98 memcpy(raw_buf
, loop_buf
, size
);
100 kunmap_atomic(raw_buf
, KM_USER0
);
101 kunmap_atomic(loop_buf
, KM_USER1
);
106 static int transfer_xor(struct loop_device
*lo
, int cmd
,
107 struct page
*raw_page
, unsigned raw_off
,
108 struct page
*loop_page
, unsigned loop_off
,
109 int size
, sector_t real_block
)
111 char *raw_buf
= kmap_atomic(raw_page
, KM_USER0
) + raw_off
;
112 char *loop_buf
= kmap_atomic(loop_page
, KM_USER1
) + loop_off
;
113 char *in
, *out
, *key
;
124 key
= lo
->lo_encrypt_key
;
125 keysize
= lo
->lo_encrypt_key_size
;
126 for (i
= 0; i
< size
; i
++)
127 *out
++ = *in
++ ^ key
[(i
& 511) % keysize
];
129 kunmap_atomic(raw_buf
, KM_USER0
);
130 kunmap_atomic(loop_buf
, KM_USER1
);
135 static int xor_init(struct loop_device
*lo
, const struct loop_info64
*info
)
137 if (unlikely(info
->lo_encrypt_key_size
<= 0))
142 static struct loop_func_table none_funcs
= {
143 .number
= LO_CRYPT_NONE
,
144 .transfer
= transfer_none
,
147 static struct loop_func_table xor_funcs
= {
148 .number
= LO_CRYPT_XOR
,
149 .transfer
= transfer_xor
,
153 /* xfer_funcs[0] is special - its release function is never called */
154 static struct loop_func_table
*xfer_funcs
[MAX_LO_CRYPT
] = {
159 static loff_t
get_loop_size(struct loop_device
*lo
, struct file
*file
)
161 loff_t size
, offset
, loopsize
;
163 /* Compute loopsize in bytes */
164 size
= i_size_read(file
->f_mapping
->host
);
165 offset
= lo
->lo_offset
;
166 loopsize
= size
- offset
;
167 if (lo
->lo_sizelimit
> 0 && lo
->lo_sizelimit
< loopsize
)
168 loopsize
= lo
->lo_sizelimit
;
171 * Unfortunately, if we want to do I/O on the device,
172 * the number of 512-byte sectors has to fit into a sector_t.
174 return loopsize
>> 9;
178 figure_loop_size(struct loop_device
*lo
)
180 loff_t size
= get_loop_size(lo
, lo
->lo_backing_file
);
181 sector_t x
= (sector_t
)size
;
183 if (unlikely((loff_t
)x
!= size
))
186 set_capacity(disks
[lo
->lo_number
], x
);
191 lo_do_transfer(struct loop_device
*lo
, int cmd
,
192 struct page
*rpage
, unsigned roffs
,
193 struct page
*lpage
, unsigned loffs
,
194 int size
, sector_t rblock
)
196 if (unlikely(!lo
->transfer
))
199 return lo
->transfer(lo
, cmd
, rpage
, roffs
, lpage
, loffs
, size
, rblock
);
203 * do_lo_send_aops - helper for writing data to a loop device
205 * This is the fast version for backing filesystems which implement the address
206 * space operations prepare_write and commit_write.
208 static int do_lo_send_aops(struct loop_device
*lo
, struct bio_vec
*bvec
,
209 int bsize
, loff_t pos
, struct page
*page
)
211 struct file
*file
= lo
->lo_backing_file
; /* kudos to NFsckingS */
212 struct address_space
*mapping
= file
->f_mapping
;
213 struct address_space_operations
*aops
= mapping
->a_ops
;
215 unsigned offset
, bv_offs
;
218 down(&mapping
->host
->i_sem
);
219 index
= pos
>> PAGE_CACHE_SHIFT
;
220 offset
= pos
& ((pgoff_t
)PAGE_CACHE_SIZE
- 1);
221 bv_offs
= bvec
->bv_offset
;
228 IV
= ((sector_t
)index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
229 size
= PAGE_CACHE_SIZE
- offset
;
232 page
= grab_cache_page(mapping
, index
);
235 if (unlikely(aops
->prepare_write(file
, page
, offset
,
238 transfer_result
= lo_do_transfer(lo
, WRITE
, page
, offset
,
239 bvec
->bv_page
, bv_offs
, size
, IV
);
240 if (unlikely(transfer_result
)) {
244 * The transfer failed, but we still write the data to
245 * keep prepare/commit calls balanced.
247 printk(KERN_ERR
"loop: transfer error block %llu\n",
248 (unsigned long long)index
);
249 kaddr
= kmap_atomic(page
, KM_USER0
);
250 memset(kaddr
+ offset
, 0, size
);
251 kunmap_atomic(kaddr
, KM_USER0
);
253 flush_dcache_page(page
);
254 if (unlikely(aops
->commit_write(file
, page
, offset
,
257 if (unlikely(transfer_result
))
265 page_cache_release(page
);
268 up(&mapping
->host
->i_sem
);
272 page_cache_release(page
);
279 * __do_lo_send_write - helper for writing data to a loop device
281 * This helper just factors out common code between do_lo_send_direct_write()
282 * and do_lo_send_write().
284 static inline int __do_lo_send_write(struct file
*file
,
285 u8 __user
*buf
, const int len
, loff_t pos
)
288 mm_segment_t old_fs
= get_fs();
291 bw
= file
->f_op
->write(file
, buf
, len
, &pos
);
293 if (likely(bw
== len
))
295 printk(KERN_ERR
"loop: Write error at byte offset %llu, length %i.\n",
296 (unsigned long long)pos
, len
);
303 * do_lo_send_direct_write - helper for writing data to a loop device
305 * This is the fast, non-transforming version for backing filesystems which do
306 * not implement the address space operations prepare_write and commit_write.
307 * It uses the write file operation which should be present on all writeable
310 static int do_lo_send_direct_write(struct loop_device
*lo
,
311 struct bio_vec
*bvec
, int bsize
, loff_t pos
, struct page
*page
)
313 ssize_t bw
= __do_lo_send_write(lo
->lo_backing_file
,
314 (u8 __user
*)kmap(bvec
->bv_page
) + bvec
->bv_offset
,
316 kunmap(bvec
->bv_page
);
322 * do_lo_send_write - helper for writing data to a loop device
324 * This is the slow, transforming version for filesystems which do not
325 * implement the address space operations prepare_write and commit_write. It
326 * uses the write file operation which should be present on all writeable
329 * Using fops->write is slower than using aops->{prepare,commit}_write in the
330 * transforming case because we need to double buffer the data as we cannot do
331 * the transformations in place as we do not have direct access to the
332 * destination pages of the backing file.
334 static int do_lo_send_write(struct loop_device
*lo
, struct bio_vec
*bvec
,
335 int bsize
, loff_t pos
, struct page
*page
)
337 int ret
= lo_do_transfer(lo
, WRITE
, page
, 0, bvec
->bv_page
,
338 bvec
->bv_offset
, bvec
->bv_len
, pos
>> 9);
340 return __do_lo_send_write(lo
->lo_backing_file
,
341 (u8 __user
*)page_address(page
), bvec
->bv_len
,
343 printk(KERN_ERR
"loop: Transfer error at byte offset %llu, "
344 "length %i.\n", (unsigned long long)pos
, bvec
->bv_len
);
350 static int lo_send(struct loop_device
*lo
, struct bio
*bio
, int bsize
,
353 int (*do_lo_send
)(struct loop_device
*, struct bio_vec
*, int, loff_t
,
355 struct bio_vec
*bvec
;
356 struct page
*page
= NULL
;
359 do_lo_send
= do_lo_send_aops
;
360 if (!(lo
->lo_flags
& LO_FLAGS_USE_AOPS
)) {
361 do_lo_send
= do_lo_send_direct_write
;
362 if (lo
->transfer
!= transfer_none
) {
363 page
= alloc_page(GFP_NOIO
| __GFP_HIGHMEM
);
367 do_lo_send
= do_lo_send_write
;
370 bio_for_each_segment(bvec
, bio
, i
) {
371 ret
= do_lo_send(lo
, bvec
, bsize
, pos
, page
);
383 printk(KERN_ERR
"loop: Failed to allocate temporary page for write.\n");
388 struct lo_read_data
{
389 struct loop_device
*lo
;
396 lo_read_actor(read_descriptor_t
*desc
, struct page
*page
,
397 unsigned long offset
, unsigned long size
)
399 unsigned long count
= desc
->count
;
400 struct lo_read_data
*p
= desc
->arg
.data
;
401 struct loop_device
*lo
= p
->lo
;
404 IV
= ((sector_t
) page
->index
<< (PAGE_CACHE_SHIFT
- 9))+(offset
>> 9);
409 if (lo_do_transfer(lo
, READ
, page
, offset
, p
->page
, p
->offset
, size
, IV
)) {
411 printk(KERN_ERR
"loop: transfer error block %ld\n",
413 desc
->error
= -EINVAL
;
416 flush_dcache_page(p
->page
);
418 desc
->count
= count
- size
;
419 desc
->written
+= size
;
425 do_lo_receive(struct loop_device
*lo
,
426 struct bio_vec
*bvec
, int bsize
, loff_t pos
)
428 struct lo_read_data cookie
;
433 cookie
.page
= bvec
->bv_page
;
434 cookie
.offset
= bvec
->bv_offset
;
435 cookie
.bsize
= bsize
;
436 file
= lo
->lo_backing_file
;
437 retval
= file
->f_op
->sendfile(file
, &pos
, bvec
->bv_len
,
438 lo_read_actor
, &cookie
);
439 return (retval
< 0)? retval
: 0;
443 lo_receive(struct loop_device
*lo
, struct bio
*bio
, int bsize
, loff_t pos
)
445 struct bio_vec
*bvec
;
448 bio_for_each_segment(bvec
, bio
, i
) {
449 ret
= do_lo_receive(lo
, bvec
, bsize
, pos
);
457 static int do_bio_filebacked(struct loop_device
*lo
, struct bio
*bio
)
462 pos
= ((loff_t
) bio
->bi_sector
<< 9) + lo
->lo_offset
;
463 if (bio_rw(bio
) == WRITE
)
464 ret
= lo_send(lo
, bio
, lo
->lo_blocksize
, pos
);
466 ret
= lo_receive(lo
, bio
, lo
->lo_blocksize
, pos
);
471 * Add bio to back of pending list
473 static void loop_add_bio(struct loop_device
*lo
, struct bio
*bio
)
477 spin_lock_irqsave(&lo
->lo_lock
, flags
);
478 if (lo
->lo_biotail
) {
479 lo
->lo_biotail
->bi_next
= bio
;
480 lo
->lo_biotail
= bio
;
482 lo
->lo_bio
= lo
->lo_biotail
= bio
;
483 spin_unlock_irqrestore(&lo
->lo_lock
, flags
);
485 up(&lo
->lo_bh_mutex
);
489 * Grab first pending buffer
491 static struct bio
*loop_get_bio(struct loop_device
*lo
)
495 spin_lock_irq(&lo
->lo_lock
);
496 if ((bio
= lo
->lo_bio
)) {
497 if (bio
== lo
->lo_biotail
)
498 lo
->lo_biotail
= NULL
;
499 lo
->lo_bio
= bio
->bi_next
;
502 spin_unlock_irq(&lo
->lo_lock
);
507 static int loop_make_request(request_queue_t
*q
, struct bio
*old_bio
)
509 struct loop_device
*lo
= q
->queuedata
;
510 int rw
= bio_rw(old_bio
);
515 spin_lock_irq(&lo
->lo_lock
);
516 if (lo
->lo_state
!= Lo_bound
)
518 atomic_inc(&lo
->lo_pending
);
519 spin_unlock_irq(&lo
->lo_lock
);
522 if (lo
->lo_flags
& LO_FLAGS_READ_ONLY
)
524 } else if (rw
== READA
) {
526 } else if (rw
!= READ
) {
527 printk(KERN_ERR
"loop: unknown command (%x)\n", rw
);
530 loop_add_bio(lo
, old_bio
);
533 if (atomic_dec_and_test(&lo
->lo_pending
))
534 up(&lo
->lo_bh_mutex
);
536 bio_io_error(old_bio
, old_bio
->bi_size
);
539 spin_unlock_irq(&lo
->lo_lock
);
544 * kick off io on the underlying address space
546 static void loop_unplug(request_queue_t
*q
)
548 struct loop_device
*lo
= q
->queuedata
;
550 clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
);
551 blk_run_address_space(lo
->lo_backing_file
->f_mapping
);
554 struct switch_request
{
556 struct completion wait
;
559 static void do_loop_switch(struct loop_device
*, struct switch_request
*);
561 static inline void loop_handle_bio(struct loop_device
*lo
, struct bio
*bio
)
565 if (unlikely(!bio
->bi_bdev
)) {
566 do_loop_switch(lo
, bio
->bi_private
);
569 ret
= do_bio_filebacked(lo
, bio
);
570 bio_endio(bio
, bio
->bi_size
, ret
);
575 * worker thread that handles reads/writes to file backed loop devices,
576 * to avoid blocking in our make_request_fn. it also does loop decrypting
577 * on reads for block backed loop, as that is too heavy to do from
578 * b_end_io context where irqs may be disabled.
580 static int loop_thread(void *data
)
582 struct loop_device
*lo
= data
;
585 daemonize("loop%d", lo
->lo_number
);
588 * loop can be used in an encrypted device,
589 * hence, it mustn't be stopped at all
590 * because it could be indirectly used during suspension
592 current
->flags
|= PF_NOFREEZE
;
594 set_user_nice(current
, -20);
596 lo
->lo_state
= Lo_bound
;
597 atomic_inc(&lo
->lo_pending
);
600 * up sem, we are running
605 down_interruptible(&lo
->lo_bh_mutex
);
607 * could be upped because of tear-down, not because of
610 if (!atomic_read(&lo
->lo_pending
))
613 bio
= loop_get_bio(lo
);
615 printk("loop: missing bio\n");
618 loop_handle_bio(lo
, bio
);
621 * upped both for pending work and tear-down, lo_pending
624 if (atomic_dec_and_test(&lo
->lo_pending
))
633 * loop_switch performs the hard work of switching a backing store.
634 * First it needs to flush existing IO, it does this by sending a magic
635 * BIO down the pipe. The completion of this BIO does the actual switch.
637 static int loop_switch(struct loop_device
*lo
, struct file
*file
)
639 struct switch_request w
;
640 struct bio
*bio
= bio_alloc(GFP_KERNEL
, 1);
643 init_completion(&w
.wait
);
645 bio
->bi_private
= &w
;
647 loop_make_request(lo
->lo_queue
, bio
);
648 wait_for_completion(&w
.wait
);
653 * Do the actual switch; called from the BIO completion routine
655 static void do_loop_switch(struct loop_device
*lo
, struct switch_request
*p
)
657 struct file
*file
= p
->file
;
658 struct file
*old_file
= lo
->lo_backing_file
;
659 struct address_space
*mapping
= file
->f_mapping
;
661 mapping_set_gfp_mask(old_file
->f_mapping
, lo
->old_gfp_mask
);
662 lo
->lo_backing_file
= file
;
663 lo
->lo_blocksize
= mapping
->host
->i_blksize
;
664 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
665 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
671 * loop_change_fd switched the backing store of a loopback device to
672 * a new file. This is useful for operating system installers to free up
673 * the original file and in High Availability environments to switch to
674 * an alternative location for the content in case of server meltdown.
675 * This can only work if the loop device is used read-only, and if the
676 * new backing store is the same size and type as the old backing store.
678 static int loop_change_fd(struct loop_device
*lo
, struct file
*lo_file
,
679 struct block_device
*bdev
, unsigned int arg
)
681 struct file
*file
, *old_file
;
686 if (lo
->lo_state
!= Lo_bound
)
689 /* the loop device has to be read-only */
691 if (!(lo
->lo_flags
& LO_FLAGS_READ_ONLY
))
699 inode
= file
->f_mapping
->host
;
700 old_file
= lo
->lo_backing_file
;
704 if (!S_ISREG(inode
->i_mode
) && !S_ISBLK(inode
->i_mode
))
707 /* new backing store needs to support loop (eg sendfile) */
708 if (!inode
->i_fop
->sendfile
)
711 /* size of the new backing store needs to be the same */
712 if (get_loop_size(lo
, file
) != get_loop_size(lo
, old_file
))
716 error
= loop_switch(lo
, file
);
729 static inline int is_loop_device(struct file
*file
)
731 struct inode
*i
= file
->f_mapping
->host
;
733 return i
&& S_ISBLK(i
->i_mode
) && MAJOR(i
->i_rdev
) == LOOP_MAJOR
;
736 static int loop_set_fd(struct loop_device
*lo
, struct file
*lo_file
,
737 struct block_device
*bdev
, unsigned int arg
)
739 struct file
*file
, *f
;
741 struct address_space
*mapping
;
742 unsigned lo_blocksize
;
747 /* This is safe, since we have a reference from open(). */
748 __module_get(THIS_MODULE
);
756 if (lo
->lo_state
!= Lo_unbound
)
759 /* Avoid recursion */
761 while (is_loop_device(f
)) {
762 struct loop_device
*l
;
764 if (f
->f_mapping
->host
->i_rdev
== lo_file
->f_mapping
->host
->i_rdev
)
767 l
= f
->f_mapping
->host
->i_bdev
->bd_disk
->private_data
;
768 if (l
->lo_state
== Lo_unbound
) {
772 f
= l
->lo_backing_file
;
775 mapping
= file
->f_mapping
;
776 inode
= mapping
->host
;
778 if (!(file
->f_mode
& FMODE_WRITE
))
779 lo_flags
|= LO_FLAGS_READ_ONLY
;
782 if (S_ISREG(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
783 struct address_space_operations
*aops
= mapping
->a_ops
;
785 * If we can't read - sorry. If we only can't write - well,
786 * it's going to be read-only.
788 if (!file
->f_op
->sendfile
)
790 if (aops
->prepare_write
&& aops
->commit_write
)
791 lo_flags
|= LO_FLAGS_USE_AOPS
;
792 if (!(lo_flags
& LO_FLAGS_USE_AOPS
) && !file
->f_op
->write
)
793 lo_flags
|= LO_FLAGS_READ_ONLY
;
795 lo_blocksize
= inode
->i_blksize
;
801 size
= get_loop_size(lo
, file
);
803 if ((loff_t
)(sector_t
)size
!= size
) {
808 if (!(lo_file
->f_mode
& FMODE_WRITE
))
809 lo_flags
|= LO_FLAGS_READ_ONLY
;
811 set_device_ro(bdev
, (lo_flags
& LO_FLAGS_READ_ONLY
) != 0);
813 lo
->lo_blocksize
= lo_blocksize
;
814 lo
->lo_device
= bdev
;
815 lo
->lo_flags
= lo_flags
;
816 lo
->lo_backing_file
= file
;
819 lo
->lo_sizelimit
= 0;
820 lo
->old_gfp_mask
= mapping_gfp_mask(mapping
);
821 mapping_set_gfp_mask(mapping
, lo
->old_gfp_mask
& ~(__GFP_IO
|__GFP_FS
));
823 lo
->lo_bio
= lo
->lo_biotail
= NULL
;
826 * set queue make_request_fn, and add limits based on lower level
829 blk_queue_make_request(lo
->lo_queue
, loop_make_request
);
830 lo
->lo_queue
->queuedata
= lo
;
831 lo
->lo_queue
->unplug_fn
= loop_unplug
;
833 set_capacity(disks
[lo
->lo_number
], size
);
834 bd_set_size(bdev
, size
<< 9);
836 set_blocksize(bdev
, lo_blocksize
);
838 kernel_thread(loop_thread
, lo
, CLONE_KERNEL
);
845 /* This is safe: open() is still holding a reference. */
846 module_put(THIS_MODULE
);
851 loop_release_xfer(struct loop_device
*lo
)
854 struct loop_func_table
*xfer
= lo
->lo_encryption
;
858 err
= xfer
->release(lo
);
860 lo
->lo_encryption
= NULL
;
861 module_put(xfer
->owner
);
867 loop_init_xfer(struct loop_device
*lo
, struct loop_func_table
*xfer
,
868 const struct loop_info64
*i
)
873 struct module
*owner
= xfer
->owner
;
875 if (!try_module_get(owner
))
878 err
= xfer
->init(lo
, i
);
882 lo
->lo_encryption
= xfer
;
887 static int loop_clr_fd(struct loop_device
*lo
, struct block_device
*bdev
)
889 struct file
*filp
= lo
->lo_backing_file
;
890 int gfp
= lo
->old_gfp_mask
;
892 if (lo
->lo_state
!= Lo_bound
)
895 if (lo
->lo_refcnt
> 1) /* we needed one fd for the ioctl */
901 spin_lock_irq(&lo
->lo_lock
);
902 lo
->lo_state
= Lo_rundown
;
903 if (atomic_dec_and_test(&lo
->lo_pending
))
904 up(&lo
->lo_bh_mutex
);
905 spin_unlock_irq(&lo
->lo_lock
);
909 lo
->lo_backing_file
= NULL
;
911 loop_release_xfer(lo
);
914 lo
->lo_device
= NULL
;
915 lo
->lo_encryption
= NULL
;
917 lo
->lo_sizelimit
= 0;
918 lo
->lo_encrypt_key_size
= 0;
920 memset(lo
->lo_encrypt_key
, 0, LO_KEY_SIZE
);
921 memset(lo
->lo_crypt_name
, 0, LO_NAME_SIZE
);
922 memset(lo
->lo_file_name
, 0, LO_NAME_SIZE
);
923 invalidate_bdev(bdev
, 0);
924 set_capacity(disks
[lo
->lo_number
], 0);
925 bd_set_size(bdev
, 0);
926 mapping_set_gfp_mask(filp
->f_mapping
, gfp
);
927 lo
->lo_state
= Lo_unbound
;
929 /* This is safe: open() is still holding a reference. */
930 module_put(THIS_MODULE
);
935 loop_set_status(struct loop_device
*lo
, const struct loop_info64
*info
)
938 struct loop_func_table
*xfer
;
940 if (lo
->lo_encrypt_key_size
&& lo
->lo_key_owner
!= current
->uid
&&
941 !capable(CAP_SYS_ADMIN
))
943 if (lo
->lo_state
!= Lo_bound
)
945 if ((unsigned int) info
->lo_encrypt_key_size
> LO_KEY_SIZE
)
948 err
= loop_release_xfer(lo
);
952 if (info
->lo_encrypt_type
) {
953 unsigned int type
= info
->lo_encrypt_type
;
955 if (type
>= MAX_LO_CRYPT
)
957 xfer
= xfer_funcs
[type
];
963 err
= loop_init_xfer(lo
, xfer
, info
);
967 if (lo
->lo_offset
!= info
->lo_offset
||
968 lo
->lo_sizelimit
!= info
->lo_sizelimit
) {
969 lo
->lo_offset
= info
->lo_offset
;
970 lo
->lo_sizelimit
= info
->lo_sizelimit
;
971 if (figure_loop_size(lo
))
975 memcpy(lo
->lo_file_name
, info
->lo_file_name
, LO_NAME_SIZE
);
976 memcpy(lo
->lo_crypt_name
, info
->lo_crypt_name
, LO_NAME_SIZE
);
977 lo
->lo_file_name
[LO_NAME_SIZE
-1] = 0;
978 lo
->lo_crypt_name
[LO_NAME_SIZE
-1] = 0;
982 lo
->transfer
= xfer
->transfer
;
983 lo
->ioctl
= xfer
->ioctl
;
985 lo
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
986 lo
->lo_init
[0] = info
->lo_init
[0];
987 lo
->lo_init
[1] = info
->lo_init
[1];
988 if (info
->lo_encrypt_key_size
) {
989 memcpy(lo
->lo_encrypt_key
, info
->lo_encrypt_key
,
990 info
->lo_encrypt_key_size
);
991 lo
->lo_key_owner
= current
->uid
;
998 loop_get_status(struct loop_device
*lo
, struct loop_info64
*info
)
1000 struct file
*file
= lo
->lo_backing_file
;
1004 if (lo
->lo_state
!= Lo_bound
)
1006 error
= vfs_getattr(file
->f_vfsmnt
, file
->f_dentry
, &stat
);
1009 memset(info
, 0, sizeof(*info
));
1010 info
->lo_number
= lo
->lo_number
;
1011 info
->lo_device
= huge_encode_dev(stat
.dev
);
1012 info
->lo_inode
= stat
.ino
;
1013 info
->lo_rdevice
= huge_encode_dev(lo
->lo_device
? stat
.rdev
: stat
.dev
);
1014 info
->lo_offset
= lo
->lo_offset
;
1015 info
->lo_sizelimit
= lo
->lo_sizelimit
;
1016 info
->lo_flags
= lo
->lo_flags
;
1017 memcpy(info
->lo_file_name
, lo
->lo_file_name
, LO_NAME_SIZE
);
1018 memcpy(info
->lo_crypt_name
, lo
->lo_crypt_name
, LO_NAME_SIZE
);
1019 info
->lo_encrypt_type
=
1020 lo
->lo_encryption
? lo
->lo_encryption
->number
: 0;
1021 if (lo
->lo_encrypt_key_size
&& capable(CAP_SYS_ADMIN
)) {
1022 info
->lo_encrypt_key_size
= lo
->lo_encrypt_key_size
;
1023 memcpy(info
->lo_encrypt_key
, lo
->lo_encrypt_key
,
1024 lo
->lo_encrypt_key_size
);
1030 loop_info64_from_old(const struct loop_info
*info
, struct loop_info64
*info64
)
1032 memset(info64
, 0, sizeof(*info64
));
1033 info64
->lo_number
= info
->lo_number
;
1034 info64
->lo_device
= info
->lo_device
;
1035 info64
->lo_inode
= info
->lo_inode
;
1036 info64
->lo_rdevice
= info
->lo_rdevice
;
1037 info64
->lo_offset
= info
->lo_offset
;
1038 info64
->lo_sizelimit
= 0;
1039 info64
->lo_encrypt_type
= info
->lo_encrypt_type
;
1040 info64
->lo_encrypt_key_size
= info
->lo_encrypt_key_size
;
1041 info64
->lo_flags
= info
->lo_flags
;
1042 info64
->lo_init
[0] = info
->lo_init
[0];
1043 info64
->lo_init
[1] = info
->lo_init
[1];
1044 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1045 memcpy(info64
->lo_crypt_name
, info
->lo_name
, LO_NAME_SIZE
);
1047 memcpy(info64
->lo_file_name
, info
->lo_name
, LO_NAME_SIZE
);
1048 memcpy(info64
->lo_encrypt_key
, info
->lo_encrypt_key
, LO_KEY_SIZE
);
1052 loop_info64_to_old(const struct loop_info64
*info64
, struct loop_info
*info
)
1054 memset(info
, 0, sizeof(*info
));
1055 info
->lo_number
= info64
->lo_number
;
1056 info
->lo_device
= info64
->lo_device
;
1057 info
->lo_inode
= info64
->lo_inode
;
1058 info
->lo_rdevice
= info64
->lo_rdevice
;
1059 info
->lo_offset
= info64
->lo_offset
;
1060 info
->lo_encrypt_type
= info64
->lo_encrypt_type
;
1061 info
->lo_encrypt_key_size
= info64
->lo_encrypt_key_size
;
1062 info
->lo_flags
= info64
->lo_flags
;
1063 info
->lo_init
[0] = info64
->lo_init
[0];
1064 info
->lo_init
[1] = info64
->lo_init
[1];
1065 if (info
->lo_encrypt_type
== LO_CRYPT_CRYPTOAPI
)
1066 memcpy(info
->lo_name
, info64
->lo_crypt_name
, LO_NAME_SIZE
);
1068 memcpy(info
->lo_name
, info64
->lo_file_name
, LO_NAME_SIZE
);
1069 memcpy(info
->lo_encrypt_key
, info64
->lo_encrypt_key
, LO_KEY_SIZE
);
1071 /* error in case values were truncated */
1072 if (info
->lo_device
!= info64
->lo_device
||
1073 info
->lo_rdevice
!= info64
->lo_rdevice
||
1074 info
->lo_inode
!= info64
->lo_inode
||
1075 info
->lo_offset
!= info64
->lo_offset
)
1082 loop_set_status_old(struct loop_device
*lo
, const struct loop_info __user
*arg
)
1084 struct loop_info info
;
1085 struct loop_info64 info64
;
1087 if (copy_from_user(&info
, arg
, sizeof (struct loop_info
)))
1089 loop_info64_from_old(&info
, &info64
);
1090 return loop_set_status(lo
, &info64
);
1094 loop_set_status64(struct loop_device
*lo
, const struct loop_info64 __user
*arg
)
1096 struct loop_info64 info64
;
1098 if (copy_from_user(&info64
, arg
, sizeof (struct loop_info64
)))
1100 return loop_set_status(lo
, &info64
);
1104 loop_get_status_old(struct loop_device
*lo
, struct loop_info __user
*arg
) {
1105 struct loop_info info
;
1106 struct loop_info64 info64
;
1112 err
= loop_get_status(lo
, &info64
);
1114 err
= loop_info64_to_old(&info64
, &info
);
1115 if (!err
&& copy_to_user(arg
, &info
, sizeof(info
)))
1122 loop_get_status64(struct loop_device
*lo
, struct loop_info64 __user
*arg
) {
1123 struct loop_info64 info64
;
1129 err
= loop_get_status(lo
, &info64
);
1130 if (!err
&& copy_to_user(arg
, &info64
, sizeof(info64
)))
1136 static int lo_ioctl(struct inode
* inode
, struct file
* file
,
1137 unsigned int cmd
, unsigned long arg
)
1139 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1142 down(&lo
->lo_ctl_mutex
);
1145 err
= loop_set_fd(lo
, file
, inode
->i_bdev
, arg
);
1147 case LOOP_CHANGE_FD
:
1148 err
= loop_change_fd(lo
, file
, inode
->i_bdev
, arg
);
1151 err
= loop_clr_fd(lo
, inode
->i_bdev
);
1153 case LOOP_SET_STATUS
:
1154 err
= loop_set_status_old(lo
, (struct loop_info __user
*) arg
);
1156 case LOOP_GET_STATUS
:
1157 err
= loop_get_status_old(lo
, (struct loop_info __user
*) arg
);
1159 case LOOP_SET_STATUS64
:
1160 err
= loop_set_status64(lo
, (struct loop_info64 __user
*) arg
);
1162 case LOOP_GET_STATUS64
:
1163 err
= loop_get_status64(lo
, (struct loop_info64 __user
*) arg
);
1166 err
= lo
->ioctl
? lo
->ioctl(lo
, cmd
, arg
) : -EINVAL
;
1168 up(&lo
->lo_ctl_mutex
);
1172 static int lo_open(struct inode
*inode
, struct file
*file
)
1174 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1176 down(&lo
->lo_ctl_mutex
);
1178 up(&lo
->lo_ctl_mutex
);
1183 static int lo_release(struct inode
*inode
, struct file
*file
)
1185 struct loop_device
*lo
= inode
->i_bdev
->bd_disk
->private_data
;
1187 down(&lo
->lo_ctl_mutex
);
1189 up(&lo
->lo_ctl_mutex
);
1194 static struct block_device_operations lo_fops
= {
1195 .owner
= THIS_MODULE
,
1197 .release
= lo_release
,
1202 * And now the modules code and kernel interface.
1204 module_param(max_loop
, int, 0);
1205 MODULE_PARM_DESC(max_loop
, "Maximum number of loop devices (1-256)");
1206 MODULE_LICENSE("GPL");
1207 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR
);
1209 int loop_register_transfer(struct loop_func_table
*funcs
)
1211 unsigned int n
= funcs
->number
;
1213 if (n
>= MAX_LO_CRYPT
|| xfer_funcs
[n
])
1215 xfer_funcs
[n
] = funcs
;
1219 int loop_unregister_transfer(int number
)
1221 unsigned int n
= number
;
1222 struct loop_device
*lo
;
1223 struct loop_func_table
*xfer
;
1225 if (n
== 0 || n
>= MAX_LO_CRYPT
|| (xfer
= xfer_funcs
[n
]) == NULL
)
1228 xfer_funcs
[n
] = NULL
;
1230 for (lo
= &loop_dev
[0]; lo
< &loop_dev
[max_loop
]; lo
++) {
1231 down(&lo
->lo_ctl_mutex
);
1233 if (lo
->lo_encryption
== xfer
)
1234 loop_release_xfer(lo
);
1236 up(&lo
->lo_ctl_mutex
);
1242 EXPORT_SYMBOL(loop_register_transfer
);
1243 EXPORT_SYMBOL(loop_unregister_transfer
);
1245 static int __init
loop_init(void)
1249 if (max_loop
< 1 || max_loop
> 256) {
1250 printk(KERN_WARNING
"loop: invalid max_loop (must be between"
1251 " 1 and 256), using default (8)\n");
1255 if (register_blkdev(LOOP_MAJOR
, "loop"))
1258 loop_dev
= kmalloc(max_loop
* sizeof(struct loop_device
), GFP_KERNEL
);
1261 memset(loop_dev
, 0, max_loop
* sizeof(struct loop_device
));
1263 disks
= kmalloc(max_loop
* sizeof(struct gendisk
*), GFP_KERNEL
);
1267 for (i
= 0; i
< max_loop
; i
++) {
1268 disks
[i
] = alloc_disk(1);
1273 devfs_mk_dir("loop");
1275 for (i
= 0; i
< max_loop
; i
++) {
1276 struct loop_device
*lo
= &loop_dev
[i
];
1277 struct gendisk
*disk
= disks
[i
];
1279 memset(lo
, 0, sizeof(*lo
));
1280 lo
->lo_queue
= blk_alloc_queue(GFP_KERNEL
);
1283 init_MUTEX(&lo
->lo_ctl_mutex
);
1284 init_MUTEX_LOCKED(&lo
->lo_sem
);
1285 init_MUTEX_LOCKED(&lo
->lo_bh_mutex
);
1287 spin_lock_init(&lo
->lo_lock
);
1288 disk
->major
= LOOP_MAJOR
;
1289 disk
->first_minor
= i
;
1290 disk
->fops
= &lo_fops
;
1291 sprintf(disk
->disk_name
, "loop%d", i
);
1292 sprintf(disk
->devfs_name
, "loop/%d", i
);
1293 disk
->private_data
= lo
;
1294 disk
->queue
= lo
->lo_queue
;
1297 /* We cannot fail after we call this, so another loop!*/
1298 for (i
= 0; i
< max_loop
; i
++)
1300 printk(KERN_INFO
"loop: loaded (max %d devices)\n", max_loop
);
1305 blk_put_queue(loop_dev
[i
].lo_queue
);
1306 devfs_remove("loop");
1315 unregister_blkdev(LOOP_MAJOR
, "loop");
1316 printk(KERN_ERR
"loop: ran out of memory\n");
1320 static void loop_exit(void)
1324 for (i
= 0; i
< max_loop
; i
++) {
1325 del_gendisk(disks
[i
]);
1326 blk_put_queue(loop_dev
[i
].lo_queue
);
1329 devfs_remove("loop");
1330 if (unregister_blkdev(LOOP_MAJOR
, "loop"))
1331 printk(KERN_WARNING
"loop: cannot unregister blkdev\n");
1337 module_init(loop_init
);
1338 module_exit(loop_exit
);
1341 static int __init
max_loop_setup(char *str
)
1343 max_loop
= simple_strtol(str
, NULL
, 0);
1347 __setup("max_loop=", max_loop_setup
);