2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
38 #include <asm/current.h>
39 #include <asm/system.h>
41 #include <asm/div64.h>
43 #include <linux/acpi.h>
44 #include <acpi/acpi_bus.h>
45 #include <linux/hpet.h>
48 * The High Precision Event Timer driver.
49 * This driver is closely modelled after the rtc.c driver.
50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
52 #define HPET_USER_FREQ (64)
53 #define HPET_DRIFT (500)
55 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
58 /* WARNING -- don't get confused. These macros are never used
59 * to write the (single) counter, and rarely to read it.
60 * They're badly named; to fix, someday.
62 #if BITS_PER_LONG == 64
63 #define write_counter(V, MC) writeq(V, MC)
64 #define read_counter(MC) readq(MC)
66 #define write_counter(V, MC) writel(V, MC)
67 #define read_counter(MC) readl(MC)
70 static DEFINE_MUTEX(hpet_mutex
); /* replaces BKL */
71 static u32 hpet_nhpet
, hpet_max_freq
= HPET_USER_FREQ
;
73 /* This clocksource driver currently only works on ia64 */
75 static void __iomem
*hpet_mctr
;
77 static cycle_t
read_hpet(struct clocksource
*cs
)
79 return (cycle_t
)read_counter((void __iomem
*)hpet_mctr
);
82 static struct clocksource clocksource_hpet
= {
86 .mask
= CLOCKSOURCE_MASK(64),
87 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
89 static struct clocksource
*hpet_clocksource
;
92 /* A lock for concurrent access by app and isr hpet activity. */
93 static DEFINE_SPINLOCK(hpet_lock
);
95 #define HPET_DEV_NAME (7)
98 struct hpets
*hd_hpets
;
99 struct hpet __iomem
*hd_hpet
;
100 struct hpet_timer __iomem
*hd_timer
;
101 unsigned long hd_ireqfreq
;
102 unsigned long hd_irqdata
;
103 wait_queue_head_t hd_waitqueue
;
104 struct fasync_struct
*hd_async_queue
;
105 unsigned int hd_flags
;
107 unsigned int hd_hdwirq
;
108 char hd_name
[HPET_DEV_NAME
];
112 struct hpets
*hp_next
;
113 struct hpet __iomem
*hp_hpet
;
114 unsigned long hp_hpet_phys
;
115 struct clocksource
*hp_clocksource
;
116 unsigned long long hp_tick_freq
;
117 unsigned long hp_delta
;
118 unsigned int hp_ntimer
;
119 unsigned int hp_which
;
120 struct hpet_dev hp_dev
[1];
123 static struct hpets
*hpets
;
125 #define HPET_OPEN 0x0001
126 #define HPET_IE 0x0002 /* interrupt enabled */
127 #define HPET_PERIODIC 0x0004
128 #define HPET_SHARED_IRQ 0x0008
132 static inline unsigned long long readq(void __iomem
*addr
)
134 return readl(addr
) | (((unsigned long long)readl(addr
+ 4)) << 32LL);
139 static inline void writeq(unsigned long long v
, void __iomem
*addr
)
141 writel(v
& 0xffffffff, addr
);
142 writel(v
>> 32, addr
+ 4);
146 static irqreturn_t
hpet_interrupt(int irq
, void *data
)
148 struct hpet_dev
*devp
;
152 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
154 if ((devp
->hd_flags
& HPET_SHARED_IRQ
) &&
155 !(isr
& readl(&devp
->hd_hpet
->hpet_isr
)))
158 spin_lock(&hpet_lock
);
162 * For non-periodic timers, increment the accumulator.
163 * This has the effect of treating non-periodic like periodic.
165 if ((devp
->hd_flags
& (HPET_IE
| HPET_PERIODIC
)) == HPET_IE
) {
168 t
= devp
->hd_ireqfreq
;
169 m
= read_counter(&devp
->hd_timer
->hpet_compare
);
170 write_counter(t
+ m
, &devp
->hd_timer
->hpet_compare
);
173 if (devp
->hd_flags
& HPET_SHARED_IRQ
)
174 writel(isr
, &devp
->hd_hpet
->hpet_isr
);
175 spin_unlock(&hpet_lock
);
177 wake_up_interruptible(&devp
->hd_waitqueue
);
179 kill_fasync(&devp
->hd_async_queue
, SIGIO
, POLL_IN
);
184 static void hpet_timer_set_irq(struct hpet_dev
*devp
)
188 struct hpet_timer __iomem
*timer
;
190 spin_lock_irq(&hpet_lock
);
191 if (devp
->hd_hdwirq
) {
192 spin_unlock_irq(&hpet_lock
);
196 timer
= devp
->hd_timer
;
198 /* we prefer level triggered mode */
199 v
= readl(&timer
->hpet_config
);
200 if (!(v
& Tn_INT_TYPE_CNF_MASK
)) {
201 v
|= Tn_INT_TYPE_CNF_MASK
;
202 writel(v
, &timer
->hpet_config
);
204 spin_unlock_irq(&hpet_lock
);
206 v
= (readq(&timer
->hpet_config
) & Tn_INT_ROUTE_CAP_MASK
) >>
207 Tn_INT_ROUTE_CAP_SHIFT
;
210 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
211 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
213 if (acpi_irq_model
== ACPI_IRQ_MODEL_PIC
)
218 for_each_set_bit(irq
, &v
, HPET_MAX_IRQ
) {
219 if (irq
>= nr_irqs
) {
224 gsi
= acpi_register_gsi(NULL
, irq
, ACPI_LEVEL_SENSITIVE
,
229 /* FIXME: Setup interrupt source table */
232 if (irq
< HPET_MAX_IRQ
) {
233 spin_lock_irq(&hpet_lock
);
234 v
= readl(&timer
->hpet_config
);
235 v
|= irq
<< Tn_INT_ROUTE_CNF_SHIFT
;
236 writel(v
, &timer
->hpet_config
);
237 devp
->hd_hdwirq
= gsi
;
238 spin_unlock_irq(&hpet_lock
);
243 static int hpet_open(struct inode
*inode
, struct file
*file
)
245 struct hpet_dev
*devp
;
249 if (file
->f_mode
& FMODE_WRITE
)
252 mutex_lock(&hpet_mutex
);
253 spin_lock_irq(&hpet_lock
);
255 for (devp
= NULL
, hpetp
= hpets
; hpetp
&& !devp
; hpetp
= hpetp
->hp_next
)
256 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
257 if (hpetp
->hp_dev
[i
].hd_flags
& HPET_OPEN
)
260 devp
= &hpetp
->hp_dev
[i
];
265 spin_unlock_irq(&hpet_lock
);
266 mutex_unlock(&hpet_mutex
);
270 file
->private_data
= devp
;
271 devp
->hd_irqdata
= 0;
272 devp
->hd_flags
|= HPET_OPEN
;
273 spin_unlock_irq(&hpet_lock
);
274 mutex_unlock(&hpet_mutex
);
276 hpet_timer_set_irq(devp
);
282 hpet_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
* ppos
)
284 DECLARE_WAITQUEUE(wait
, current
);
287 struct hpet_dev
*devp
;
289 devp
= file
->private_data
;
290 if (!devp
->hd_ireqfreq
)
293 if (count
< sizeof(unsigned long))
296 add_wait_queue(&devp
->hd_waitqueue
, &wait
);
299 set_current_state(TASK_INTERRUPTIBLE
);
301 spin_lock_irq(&hpet_lock
);
302 data
= devp
->hd_irqdata
;
303 devp
->hd_irqdata
= 0;
304 spin_unlock_irq(&hpet_lock
);
308 else if (file
->f_flags
& O_NONBLOCK
) {
311 } else if (signal_pending(current
)) {
312 retval
= -ERESTARTSYS
;
318 retval
= put_user(data
, (unsigned long __user
*)buf
);
320 retval
= sizeof(unsigned long);
322 __set_current_state(TASK_RUNNING
);
323 remove_wait_queue(&devp
->hd_waitqueue
, &wait
);
328 static unsigned int hpet_poll(struct file
*file
, poll_table
* wait
)
331 struct hpet_dev
*devp
;
333 devp
= file
->private_data
;
335 if (!devp
->hd_ireqfreq
)
338 poll_wait(file
, &devp
->hd_waitqueue
, wait
);
340 spin_lock_irq(&hpet_lock
);
341 v
= devp
->hd_irqdata
;
342 spin_unlock_irq(&hpet_lock
);
345 return POLLIN
| POLLRDNORM
;
350 static int hpet_mmap(struct file
*file
, struct vm_area_struct
*vma
)
352 #ifdef CONFIG_HPET_MMAP
353 struct hpet_dev
*devp
;
356 if (((vma
->vm_end
- vma
->vm_start
) != PAGE_SIZE
) || vma
->vm_pgoff
)
359 devp
= file
->private_data
;
360 addr
= devp
->hd_hpets
->hp_hpet_phys
;
362 if (addr
& (PAGE_SIZE
- 1))
365 vma
->vm_flags
|= VM_IO
;
366 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
368 if (io_remap_pfn_range(vma
, vma
->vm_start
, addr
>> PAGE_SHIFT
,
369 PAGE_SIZE
, vma
->vm_page_prot
)) {
370 printk(KERN_ERR
"%s: io_remap_pfn_range failed\n",
381 static int hpet_fasync(int fd
, struct file
*file
, int on
)
383 struct hpet_dev
*devp
;
385 devp
= file
->private_data
;
387 if (fasync_helper(fd
, file
, on
, &devp
->hd_async_queue
) >= 0)
393 static int hpet_release(struct inode
*inode
, struct file
*file
)
395 struct hpet_dev
*devp
;
396 struct hpet_timer __iomem
*timer
;
399 devp
= file
->private_data
;
400 timer
= devp
->hd_timer
;
402 spin_lock_irq(&hpet_lock
);
404 writeq((readq(&timer
->hpet_config
) & ~Tn_INT_ENB_CNF_MASK
),
405 &timer
->hpet_config
);
410 devp
->hd_ireqfreq
= 0;
412 if (devp
->hd_flags
& HPET_PERIODIC
413 && readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
416 v
= readq(&timer
->hpet_config
);
417 v
^= Tn_TYPE_CNF_MASK
;
418 writeq(v
, &timer
->hpet_config
);
421 devp
->hd_flags
&= ~(HPET_OPEN
| HPET_IE
| HPET_PERIODIC
);
422 spin_unlock_irq(&hpet_lock
);
427 file
->private_data
= NULL
;
431 static int hpet_ioctl_ieon(struct hpet_dev
*devp
)
433 struct hpet_timer __iomem
*timer
;
434 struct hpet __iomem
*hpet
;
437 unsigned long g
, v
, t
, m
;
438 unsigned long flags
, isr
;
440 timer
= devp
->hd_timer
;
441 hpet
= devp
->hd_hpet
;
442 hpetp
= devp
->hd_hpets
;
444 if (!devp
->hd_ireqfreq
)
447 spin_lock_irq(&hpet_lock
);
449 if (devp
->hd_flags
& HPET_IE
) {
450 spin_unlock_irq(&hpet_lock
);
454 devp
->hd_flags
|= HPET_IE
;
456 if (readl(&timer
->hpet_config
) & Tn_INT_TYPE_CNF_MASK
)
457 devp
->hd_flags
|= HPET_SHARED_IRQ
;
458 spin_unlock_irq(&hpet_lock
);
460 irq
= devp
->hd_hdwirq
;
463 unsigned long irq_flags
;
465 if (devp
->hd_flags
& HPET_SHARED_IRQ
) {
467 * To prevent the interrupt handler from seeing an
468 * unwanted interrupt status bit, program the timer
469 * so that it will not fire in the near future ...
471 writel(readl(&timer
->hpet_config
) & ~Tn_TYPE_CNF_MASK
,
472 &timer
->hpet_config
);
473 write_counter(read_counter(&hpet
->hpet_mc
),
474 &timer
->hpet_compare
);
475 /* ... and clear any left-over status. */
476 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
477 writel(isr
, &hpet
->hpet_isr
);
480 sprintf(devp
->hd_name
, "hpet%d", (int)(devp
- hpetp
->hp_dev
));
481 irq_flags
= devp
->hd_flags
& HPET_SHARED_IRQ
482 ? IRQF_SHARED
: IRQF_DISABLED
;
483 if (request_irq(irq
, hpet_interrupt
, irq_flags
,
484 devp
->hd_name
, (void *)devp
)) {
485 printk(KERN_ERR
"hpet: IRQ %d is not free\n", irq
);
491 spin_lock_irq(&hpet_lock
);
492 devp
->hd_flags
^= HPET_IE
;
493 spin_unlock_irq(&hpet_lock
);
498 t
= devp
->hd_ireqfreq
;
499 v
= readq(&timer
->hpet_config
);
501 /* 64-bit comparators are not yet supported through the ioctls,
502 * so force this into 32-bit mode if it supports both modes
504 g
= v
| Tn_32MODE_CNF_MASK
| Tn_INT_ENB_CNF_MASK
;
506 if (devp
->hd_flags
& HPET_PERIODIC
) {
507 g
|= Tn_TYPE_CNF_MASK
;
508 v
|= Tn_TYPE_CNF_MASK
| Tn_VAL_SET_CNF_MASK
;
509 writeq(v
, &timer
->hpet_config
);
510 local_irq_save(flags
);
513 * NOTE: First we modify the hidden accumulator
514 * register supported by periodic-capable comparators.
515 * We never want to modify the (single) counter; that
516 * would affect all the comparators. The value written
517 * is the counter value when the first interrupt is due.
519 m
= read_counter(&hpet
->hpet_mc
);
520 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
522 * Then we modify the comparator, indicating the period
523 * for subsequent interrupt.
525 write_counter(t
, &timer
->hpet_compare
);
527 local_irq_save(flags
);
528 m
= read_counter(&hpet
->hpet_mc
);
529 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
532 if (devp
->hd_flags
& HPET_SHARED_IRQ
) {
533 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
534 writel(isr
, &hpet
->hpet_isr
);
536 writeq(g
, &timer
->hpet_config
);
537 local_irq_restore(flags
);
542 /* converts Hz to number of timer ticks */
543 static inline unsigned long hpet_time_div(struct hpets
*hpets
,
546 unsigned long long m
;
548 m
= hpets
->hp_tick_freq
+ (dis
>> 1);
550 return (unsigned long)m
;
554 hpet_ioctl_common(struct hpet_dev
*devp
, int cmd
, unsigned long arg
,
555 struct hpet_info
*info
)
557 struct hpet_timer __iomem
*timer
;
558 struct hpet __iomem
*hpet
;
569 timer
= devp
->hd_timer
;
570 hpet
= devp
->hd_hpet
;
571 hpetp
= devp
->hd_hpets
;
574 return hpet_ioctl_ieon(devp
);
583 if ((devp
->hd_flags
& HPET_IE
) == 0)
585 v
= readq(&timer
->hpet_config
);
586 v
&= ~Tn_INT_ENB_CNF_MASK
;
587 writeq(v
, &timer
->hpet_config
);
589 free_irq(devp
->hd_irq
, devp
);
592 devp
->hd_flags
^= HPET_IE
;
596 memset(info
, 0, sizeof(*info
));
597 if (devp
->hd_ireqfreq
)
599 hpet_time_div(hpetp
, devp
->hd_ireqfreq
);
601 readq(&timer
->hpet_config
) & Tn_PER_INT_CAP_MASK
;
602 info
->hi_hpet
= hpetp
->hp_which
;
603 info
->hi_timer
= devp
- hpetp
->hp_dev
;
607 v
= readq(&timer
->hpet_config
);
608 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
612 devp
->hd_flags
|= HPET_PERIODIC
;
615 v
= readq(&timer
->hpet_config
);
616 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
620 if (devp
->hd_flags
& HPET_PERIODIC
&&
621 readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
622 v
= readq(&timer
->hpet_config
);
623 v
^= Tn_TYPE_CNF_MASK
;
624 writeq(v
, &timer
->hpet_config
);
626 devp
->hd_flags
&= ~HPET_PERIODIC
;
629 if ((arg
> hpet_max_freq
) &&
630 !capable(CAP_SYS_RESOURCE
)) {
640 devp
->hd_ireqfreq
= hpet_time_div(hpetp
, arg
);
647 hpet_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
649 struct hpet_info info
;
652 mutex_lock(&hpet_mutex
);
653 err
= hpet_ioctl_common(file
->private_data
, cmd
, arg
, &info
);
654 mutex_unlock(&hpet_mutex
);
656 if ((cmd
== HPET_INFO
) && !err
&&
657 (copy_to_user((void __user
*)arg
, &info
, sizeof(info
))))
664 struct compat_hpet_info
{
665 compat_ulong_t hi_ireqfreq
; /* Hz */
666 compat_ulong_t hi_flags
; /* information */
667 unsigned short hi_hpet
;
668 unsigned short hi_timer
;
672 hpet_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
674 struct hpet_info info
;
677 mutex_lock(&hpet_mutex
);
678 err
= hpet_ioctl_common(file
->private_data
, cmd
, arg
, &info
);
679 mutex_unlock(&hpet_mutex
);
681 if ((cmd
== HPET_INFO
) && !err
) {
682 struct compat_hpet_info __user
*u
= compat_ptr(arg
);
683 if (put_user(info
.hi_ireqfreq
, &u
->hi_ireqfreq
) ||
684 put_user(info
.hi_flags
, &u
->hi_flags
) ||
685 put_user(info
.hi_hpet
, &u
->hi_hpet
) ||
686 put_user(info
.hi_timer
, &u
->hi_timer
))
694 static const struct file_operations hpet_fops
= {
695 .owner
= THIS_MODULE
,
699 .unlocked_ioctl
= hpet_ioctl
,
701 .compat_ioctl
= hpet_compat_ioctl
,
704 .release
= hpet_release
,
705 .fasync
= hpet_fasync
,
709 static int hpet_is_known(struct hpet_data
*hdp
)
713 for (hpetp
= hpets
; hpetp
; hpetp
= hpetp
->hp_next
)
714 if (hpetp
->hp_hpet_phys
== hdp
->hd_phys_address
)
720 static ctl_table hpet_table
[] = {
722 .procname
= "max-user-freq",
723 .data
= &hpet_max_freq
,
724 .maxlen
= sizeof(int),
726 .proc_handler
= proc_dointvec
,
731 static ctl_table hpet_root
[] = {
741 static ctl_table dev_root
[] = {
751 static struct ctl_table_header
*sysctl_header
;
754 * Adjustment for when arming the timer with
755 * initial conditions. That is, main counter
756 * ticks expired before interrupts are enabled.
758 #define TICK_CALIBRATE (1000UL)
760 static unsigned long __hpet_calibrate(struct hpets
*hpetp
)
762 struct hpet_timer __iomem
*timer
= NULL
;
763 unsigned long t
, m
, count
, i
, flags
, start
;
764 struct hpet_dev
*devp
;
766 struct hpet __iomem
*hpet
;
768 for (j
= 0, devp
= hpetp
->hp_dev
; j
< hpetp
->hp_ntimer
; j
++, devp
++)
769 if ((devp
->hd_flags
& HPET_OPEN
) == 0) {
770 timer
= devp
->hd_timer
;
777 hpet
= hpetp
->hp_hpet
;
778 t
= read_counter(&timer
->hpet_compare
);
781 count
= hpet_time_div(hpetp
, TICK_CALIBRATE
);
783 local_irq_save(flags
);
785 start
= read_counter(&hpet
->hpet_mc
);
788 m
= read_counter(&hpet
->hpet_mc
);
789 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
790 } while (i
++, (m
- start
) < count
);
792 local_irq_restore(flags
);
794 return (m
- start
) / i
;
797 static unsigned long hpet_calibrate(struct hpets
*hpetp
)
799 unsigned long ret
= -1;
803 * Try to calibrate until return value becomes stable small value.
804 * If SMI interruption occurs in calibration loop, the return value
805 * will be big. This avoids its impact.
808 tmp
= __hpet_calibrate(hpetp
);
817 int hpet_alloc(struct hpet_data
*hdp
)
820 struct hpet_dev
*devp
;
824 struct hpet __iomem
*hpet
;
825 static struct hpets
*last
;
826 unsigned long period
;
827 unsigned long long temp
;
831 * hpet_alloc can be called by platform dependent code.
832 * If platform dependent code has allocated the hpet that
833 * ACPI has also reported, then we catch it here.
835 if (hpet_is_known(hdp
)) {
836 printk(KERN_DEBUG
"%s: duplicate HPET ignored\n",
841 siz
= sizeof(struct hpets
) + ((hdp
->hd_nirqs
- 1) *
842 sizeof(struct hpet_dev
));
844 hpetp
= kzalloc(siz
, GFP_KERNEL
);
849 hpetp
->hp_which
= hpet_nhpet
++;
850 hpetp
->hp_hpet
= hdp
->hd_address
;
851 hpetp
->hp_hpet_phys
= hdp
->hd_phys_address
;
853 hpetp
->hp_ntimer
= hdp
->hd_nirqs
;
855 for (i
= 0; i
< hdp
->hd_nirqs
; i
++)
856 hpetp
->hp_dev
[i
].hd_hdwirq
= hdp
->hd_irq
[i
];
858 hpet
= hpetp
->hp_hpet
;
860 cap
= readq(&hpet
->hpet_cap
);
862 ntimer
= ((cap
& HPET_NUM_TIM_CAP_MASK
) >> HPET_NUM_TIM_CAP_SHIFT
) + 1;
864 if (hpetp
->hp_ntimer
!= ntimer
) {
865 printk(KERN_WARNING
"hpet: number irqs doesn't agree"
866 " with number of timers\n");
872 last
->hp_next
= hpetp
;
878 period
= (cap
& HPET_COUNTER_CLK_PERIOD_MASK
) >>
879 HPET_COUNTER_CLK_PERIOD_SHIFT
; /* fs, 10^-15 */
880 temp
= 1000000000000000uLL; /* 10^15 femtoseconds per second */
881 temp
+= period
>> 1; /* round */
882 do_div(temp
, period
);
883 hpetp
->hp_tick_freq
= temp
; /* ticks per second */
885 printk(KERN_INFO
"hpet%d: at MMIO 0x%lx, IRQ%s",
886 hpetp
->hp_which
, hdp
->hd_phys_address
,
887 hpetp
->hp_ntimer
> 1 ? "s" : "");
888 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
889 printk("%s %d", i
> 0 ? "," : "", hdp
->hd_irq
[i
]);
892 temp
= hpetp
->hp_tick_freq
;
893 remainder
= do_div(temp
, 1000000);
895 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
896 hpetp
->hp_which
, hpetp
->hp_ntimer
,
897 cap
& HPET_COUNTER_SIZE_MASK
? 64 : 32,
898 (unsigned) temp
, remainder
);
900 mcfg
= readq(&hpet
->hpet_config
);
901 if ((mcfg
& HPET_ENABLE_CNF_MASK
) == 0) {
902 write_counter(0L, &hpet
->hpet_mc
);
903 mcfg
|= HPET_ENABLE_CNF_MASK
;
904 writeq(mcfg
, &hpet
->hpet_config
);
907 for (i
= 0, devp
= hpetp
->hp_dev
; i
< hpetp
->hp_ntimer
; i
++, devp
++) {
908 struct hpet_timer __iomem
*timer
;
910 timer
= &hpet
->hpet_timers
[devp
- hpetp
->hp_dev
];
912 devp
->hd_hpets
= hpetp
;
913 devp
->hd_hpet
= hpet
;
914 devp
->hd_timer
= timer
;
917 * If the timer was reserved by platform code,
918 * then make timer unavailable for opens.
920 if (hdp
->hd_state
& (1 << i
)) {
921 devp
->hd_flags
= HPET_OPEN
;
925 init_waitqueue_head(&devp
->hd_waitqueue
);
928 hpetp
->hp_delta
= hpet_calibrate(hpetp
);
930 /* This clocksource driver currently only works on ia64 */
932 if (!hpet_clocksource
) {
933 hpet_mctr
= (void __iomem
*)&hpetp
->hp_hpet
->hpet_mc
;
934 CLKSRC_FSYS_MMIO_SET(clocksource_hpet
.fsys_mmio
, hpet_mctr
);
935 clocksource_register_hz(&clocksource_hpet
, hpetp
->hp_tick_freq
);
936 hpetp
->hp_clocksource
= &clocksource_hpet
;
937 hpet_clocksource
= &clocksource_hpet
;
944 static acpi_status
hpet_resources(struct acpi_resource
*res
, void *data
)
946 struct hpet_data
*hdp
;
948 struct acpi_resource_address64 addr
;
952 status
= acpi_resource_to_address64(res
, &addr
);
954 if (ACPI_SUCCESS(status
)) {
955 hdp
->hd_phys_address
= addr
.minimum
;
956 hdp
->hd_address
= ioremap(addr
.minimum
, addr
.address_length
);
958 if (hpet_is_known(hdp
)) {
959 iounmap(hdp
->hd_address
);
960 return AE_ALREADY_EXISTS
;
962 } else if (res
->type
== ACPI_RESOURCE_TYPE_FIXED_MEMORY32
) {
963 struct acpi_resource_fixed_memory32
*fixmem32
;
965 fixmem32
= &res
->data
.fixed_memory32
;
969 hdp
->hd_phys_address
= fixmem32
->address
;
970 hdp
->hd_address
= ioremap(fixmem32
->address
,
973 if (hpet_is_known(hdp
)) {
974 iounmap(hdp
->hd_address
);
975 return AE_ALREADY_EXISTS
;
977 } else if (res
->type
== ACPI_RESOURCE_TYPE_EXTENDED_IRQ
) {
978 struct acpi_resource_extended_irq
*irqp
;
981 irqp
= &res
->data
.extended_irq
;
983 for (i
= 0; i
< irqp
->interrupt_count
; i
++) {
984 irq
= acpi_register_gsi(NULL
, irqp
->interrupts
[i
],
985 irqp
->triggering
, irqp
->polarity
);
989 hdp
->hd_irq
[hdp
->hd_nirqs
] = irq
;
997 static int hpet_acpi_add(struct acpi_device
*device
)
1000 struct hpet_data data
;
1002 memset(&data
, 0, sizeof(data
));
1005 acpi_walk_resources(device
->handle
, METHOD_NAME__CRS
,
1006 hpet_resources
, &data
);
1008 if (ACPI_FAILURE(result
))
1011 if (!data
.hd_address
|| !data
.hd_nirqs
) {
1012 if (data
.hd_address
)
1013 iounmap(data
.hd_address
);
1014 printk("%s: no address or irqs in _CRS\n", __func__
);
1018 return hpet_alloc(&data
);
1021 static int hpet_acpi_remove(struct acpi_device
*device
, int type
)
1023 /* XXX need to unregister clocksource, dealloc mem, etc */
1027 static const struct acpi_device_id hpet_device_ids
[] = {
1031 MODULE_DEVICE_TABLE(acpi
, hpet_device_ids
);
1033 static struct acpi_driver hpet_acpi_driver
= {
1035 .ids
= hpet_device_ids
,
1037 .add
= hpet_acpi_add
,
1038 .remove
= hpet_acpi_remove
,
1042 static struct miscdevice hpet_misc
= { HPET_MINOR
, "hpet", &hpet_fops
};
1044 static int __init
hpet_init(void)
1048 result
= misc_register(&hpet_misc
);
1052 sysctl_header
= register_sysctl_table(dev_root
);
1054 result
= acpi_bus_register_driver(&hpet_acpi_driver
);
1057 unregister_sysctl_table(sysctl_header
);
1058 misc_deregister(&hpet_misc
);
1065 static void __exit
hpet_exit(void)
1067 acpi_bus_unregister_driver(&hpet_acpi_driver
);
1070 unregister_sysctl_table(sysctl_header
);
1071 misc_deregister(&hpet_misc
);
1076 module_init(hpet_init
);
1077 module_exit(hpet_exit
);
1078 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1079 MODULE_LICENSE("GPL");