include: replace linux/module.h with "struct module" wherever possible
[linux-2.6/next.git] / fs / ext4 / mballoc.c
blob17a5a57c415a2dcdd36104c08473438c238f38ee
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This makes sure that
79 * we have contiguous physical blocks representing the file blocks
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list represented as
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * the smallest multiple of the stripe value (sbi->s_stripe) which is
135 * greater than the default mb_group_prealloc.
137 * The regular allocator (using the buddy cache) supports a few tunables.
139 * /sys/fs/ext4/<partition>/mb_min_to_scan
140 * /sys/fs/ext4/<partition>/mb_max_to_scan
141 * /sys/fs/ext4/<partition>/mb_order2_req
143 * The regular allocator uses buddy scan only if the request len is power of
144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
145 * value of s_mb_order2_reqs can be tuned via
146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
147 * stripe size (sbi->s_stripe), we try to search for contiguous block in
148 * stripe size. This should result in better allocation on RAID setups. If
149 * not, we search in the specific group using bitmap for best extents. The
150 * tunable min_to_scan and max_to_scan control the behaviour here.
151 * min_to_scan indicate how long the mballoc __must__ look for a best
152 * extent and max_to_scan indicates how long the mballoc __can__ look for a
153 * best extent in the found extents. Searching for the blocks starts with
154 * the group specified as the goal value in allocation context via
155 * ac_g_ex. Each group is first checked based on the criteria whether it
156 * can be used for allocation. ext4_mb_good_group explains how the groups are
157 * checked.
159 * Both the prealloc space are getting populated as above. So for the first
160 * request we will hit the buddy cache which will result in this prealloc
161 * space getting filled. The prealloc space is then later used for the
162 * subsequent request.
166 * mballoc operates on the following data:
167 * - on-disk bitmap
168 * - in-core buddy (actually includes buddy and bitmap)
169 * - preallocation descriptors (PAs)
171 * there are two types of preallocations:
172 * - inode
173 * assiged to specific inode and can be used for this inode only.
174 * it describes part of inode's space preallocated to specific
175 * physical blocks. any block from that preallocated can be used
176 * independent. the descriptor just tracks number of blocks left
177 * unused. so, before taking some block from descriptor, one must
178 * make sure corresponded logical block isn't allocated yet. this
179 * also means that freeing any block within descriptor's range
180 * must discard all preallocated blocks.
181 * - locality group
182 * assigned to specific locality group which does not translate to
183 * permanent set of inodes: inode can join and leave group. space
184 * from this type of preallocation can be used for any inode. thus
185 * it's consumed from the beginning to the end.
187 * relation between them can be expressed as:
188 * in-core buddy = on-disk bitmap + preallocation descriptors
190 * this mean blocks mballoc considers used are:
191 * - allocated blocks (persistent)
192 * - preallocated blocks (non-persistent)
194 * consistency in mballoc world means that at any time a block is either
195 * free or used in ALL structures. notice: "any time" should not be read
196 * literally -- time is discrete and delimited by locks.
198 * to keep it simple, we don't use block numbers, instead we count number of
199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
201 * all operations can be expressed as:
202 * - init buddy: buddy = on-disk + PAs
203 * - new PA: buddy += N; PA = N
204 * - use inode PA: on-disk += N; PA -= N
205 * - discard inode PA buddy -= on-disk - PA; PA = 0
206 * - use locality group PA on-disk += N; PA -= N
207 * - discard locality group PA buddy -= PA; PA = 0
208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
209 * is used in real operation because we can't know actual used
210 * bits from PA, only from on-disk bitmap
212 * if we follow this strict logic, then all operations above should be atomic.
213 * given some of them can block, we'd have to use something like semaphores
214 * killing performance on high-end SMP hardware. let's try to relax it using
215 * the following knowledge:
216 * 1) if buddy is referenced, it's already initialized
217 * 2) while block is used in buddy and the buddy is referenced,
218 * nobody can re-allocate that block
219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
220 * bit set and PA claims same block, it's OK. IOW, one can set bit in
221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * block
224 * so, now we're building a concurrency table:
225 * - init buddy vs.
226 * - new PA
227 * blocks for PA are allocated in the buddy, buddy must be referenced
228 * until PA is linked to allocation group to avoid concurrent buddy init
229 * - use inode PA
230 * we need to make sure that either on-disk bitmap or PA has uptodate data
231 * given (3) we care that PA-=N operation doesn't interfere with init
232 * - discard inode PA
233 * the simplest way would be to have buddy initialized by the discard
234 * - use locality group PA
235 * again PA-=N must be serialized with init
236 * - discard locality group PA
237 * the simplest way would be to have buddy initialized by the discard
238 * - new PA vs.
239 * - use inode PA
240 * i_data_sem serializes them
241 * - discard inode PA
242 * discard process must wait until PA isn't used by another process
243 * - use locality group PA
244 * some mutex should serialize them
245 * - discard locality group PA
246 * discard process must wait until PA isn't used by another process
247 * - use inode PA
248 * - use inode PA
249 * i_data_sem or another mutex should serializes them
250 * - discard inode PA
251 * discard process must wait until PA isn't used by another process
252 * - use locality group PA
253 * nothing wrong here -- they're different PAs covering different blocks
254 * - discard locality group PA
255 * discard process must wait until PA isn't used by another process
257 * now we're ready to make few consequences:
258 * - PA is referenced and while it is no discard is possible
259 * - PA is referenced until block isn't marked in on-disk bitmap
260 * - PA changes only after on-disk bitmap
261 * - discard must not compete with init. either init is done before
262 * any discard or they're serialized somehow
263 * - buddy init as sum of on-disk bitmap and PAs is done atomically
265 * a special case when we've used PA to emptiness. no need to modify buddy
266 * in this case, but we should care about concurrent init
271 * Logic in few words:
273 * - allocation:
274 * load group
275 * find blocks
276 * mark bits in on-disk bitmap
277 * release group
279 * - use preallocation:
280 * find proper PA (per-inode or group)
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 * release PA
286 * - free:
287 * load group
288 * mark bits in on-disk bitmap
289 * release group
291 * - discard preallocations in group:
292 * mark PAs deleted
293 * move them onto local list
294 * load on-disk bitmap
295 * load group
296 * remove PA from object (inode or locality group)
297 * mark free blocks in-core
299 * - discard inode's preallocations:
303 * Locking rules
305 * Locks:
306 * - bitlock on a group (group)
307 * - object (inode/locality) (object)
308 * - per-pa lock (pa)
310 * Paths:
311 * - new pa
312 * object
313 * group
315 * - find and use pa:
316 * pa
318 * - release consumed pa:
319 * pa
320 * group
321 * object
323 * - generate in-core bitmap:
324 * group
325 * pa
327 * - discard all for given object (inode, locality group):
328 * object
329 * pa
330 * group
332 * - discard all for given group:
333 * group
334 * pa
335 * group
336 * object
339 static struct kmem_cache *ext4_pspace_cachep;
340 static struct kmem_cache *ext4_ac_cachep;
341 static struct kmem_cache *ext4_free_ext_cachep;
343 /* We create slab caches for groupinfo data structures based on the
344 * superblock block size. There will be one per mounted filesystem for
345 * each unique s_blocksize_bits */
346 #define NR_GRPINFO_CACHES 8
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
349 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
352 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
356 ext4_group_t group);
357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
358 ext4_group_t group);
359 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
361 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
363 #if BITS_PER_LONG == 64
364 *bit += ((unsigned long) addr & 7UL) << 3;
365 addr = (void *) ((unsigned long) addr & ~7UL);
366 #elif BITS_PER_LONG == 32
367 *bit += ((unsigned long) addr & 3UL) << 3;
368 addr = (void *) ((unsigned long) addr & ~3UL);
369 #else
370 #error "how many bits you are?!"
371 #endif
372 return addr;
375 static inline int mb_test_bit(int bit, void *addr)
378 * ext4_test_bit on architecture like powerpc
379 * needs unsigned long aligned address
381 addr = mb_correct_addr_and_bit(&bit, addr);
382 return ext4_test_bit(bit, addr);
385 static inline void mb_set_bit(int bit, void *addr)
387 addr = mb_correct_addr_and_bit(&bit, addr);
388 ext4_set_bit(bit, addr);
391 static inline void mb_clear_bit(int bit, void *addr)
393 addr = mb_correct_addr_and_bit(&bit, addr);
394 ext4_clear_bit(bit, addr);
397 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
399 int fix = 0, ret, tmpmax;
400 addr = mb_correct_addr_and_bit(&fix, addr);
401 tmpmax = max + fix;
402 start += fix;
404 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
405 if (ret > max)
406 return max;
407 return ret;
410 static inline int mb_find_next_bit(void *addr, int max, int start)
412 int fix = 0, ret, tmpmax;
413 addr = mb_correct_addr_and_bit(&fix, addr);
414 tmpmax = max + fix;
415 start += fix;
417 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
418 if (ret > max)
419 return max;
420 return ret;
423 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
425 char *bb;
427 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
428 BUG_ON(max == NULL);
430 if (order > e4b->bd_blkbits + 1) {
431 *max = 0;
432 return NULL;
435 /* at order 0 we see each particular block */
436 if (order == 0) {
437 *max = 1 << (e4b->bd_blkbits + 3);
438 return EXT4_MB_BITMAP(e4b);
441 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
442 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
444 return bb;
447 #ifdef DOUBLE_CHECK
448 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
449 int first, int count)
451 int i;
452 struct super_block *sb = e4b->bd_sb;
454 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
455 return;
456 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
457 for (i = 0; i < count; i++) {
458 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
459 ext4_fsblk_t blocknr;
461 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
462 blocknr += first + i;
463 ext4_grp_locked_error(sb, e4b->bd_group,
464 inode ? inode->i_ino : 0,
465 blocknr,
466 "freeing block already freed "
467 "(bit %u)",
468 first + i);
470 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
474 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
476 int i;
478 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
479 return;
480 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
481 for (i = 0; i < count; i++) {
482 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
483 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
487 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
489 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
490 unsigned char *b1, *b2;
491 int i;
492 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
493 b2 = (unsigned char *) bitmap;
494 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
495 if (b1[i] != b2[i]) {
496 ext4_msg(e4b->bd_sb, KERN_ERR,
497 "corruption in group %u "
498 "at byte %u(%u): %x in copy != %x "
499 "on disk/prealloc",
500 e4b->bd_group, i, i * 8, b1[i], b2[i]);
501 BUG();
507 #else
508 static inline void mb_free_blocks_double(struct inode *inode,
509 struct ext4_buddy *e4b, int first, int count)
511 return;
513 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
514 int first, int count)
516 return;
518 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
520 return;
522 #endif
524 #ifdef AGGRESSIVE_CHECK
526 #define MB_CHECK_ASSERT(assert) \
527 do { \
528 if (!(assert)) { \
529 printk(KERN_EMERG \
530 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
531 function, file, line, # assert); \
532 BUG(); \
534 } while (0)
536 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
537 const char *function, int line)
539 struct super_block *sb = e4b->bd_sb;
540 int order = e4b->bd_blkbits + 1;
541 int max;
542 int max2;
543 int i;
544 int j;
545 int k;
546 int count;
547 struct ext4_group_info *grp;
548 int fragments = 0;
549 int fstart;
550 struct list_head *cur;
551 void *buddy;
552 void *buddy2;
555 static int mb_check_counter;
556 if (mb_check_counter++ % 100 != 0)
557 return 0;
560 while (order > 1) {
561 buddy = mb_find_buddy(e4b, order, &max);
562 MB_CHECK_ASSERT(buddy);
563 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
564 MB_CHECK_ASSERT(buddy2);
565 MB_CHECK_ASSERT(buddy != buddy2);
566 MB_CHECK_ASSERT(max * 2 == max2);
568 count = 0;
569 for (i = 0; i < max; i++) {
571 if (mb_test_bit(i, buddy)) {
572 /* only single bit in buddy2 may be 1 */
573 if (!mb_test_bit(i << 1, buddy2)) {
574 MB_CHECK_ASSERT(
575 mb_test_bit((i<<1)+1, buddy2));
576 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
577 MB_CHECK_ASSERT(
578 mb_test_bit(i << 1, buddy2));
580 continue;
583 /* both bits in buddy2 must be 0 */
584 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
585 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
587 for (j = 0; j < (1 << order); j++) {
588 k = (i * (1 << order)) + j;
589 MB_CHECK_ASSERT(
590 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
592 count++;
594 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
595 order--;
598 fstart = -1;
599 buddy = mb_find_buddy(e4b, 0, &max);
600 for (i = 0; i < max; i++) {
601 if (!mb_test_bit(i, buddy)) {
602 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
603 if (fstart == -1) {
604 fragments++;
605 fstart = i;
607 continue;
609 fstart = -1;
610 /* check used bits only */
611 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
612 buddy2 = mb_find_buddy(e4b, j, &max2);
613 k = i >> j;
614 MB_CHECK_ASSERT(k < max2);
615 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
618 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
619 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
621 grp = ext4_get_group_info(sb, e4b->bd_group);
622 list_for_each(cur, &grp->bb_prealloc_list) {
623 ext4_group_t groupnr;
624 struct ext4_prealloc_space *pa;
625 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
626 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
627 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
628 for (i = 0; i < pa->pa_len; i++)
629 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
631 return 0;
633 #undef MB_CHECK_ASSERT
634 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
635 __FILE__, __func__, __LINE__)
636 #else
637 #define mb_check_buddy(e4b)
638 #endif
641 * Divide blocks started from @first with length @len into
642 * smaller chunks with power of 2 blocks.
643 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
644 * then increase bb_counters[] for corresponded chunk size.
646 static void ext4_mb_mark_free_simple(struct super_block *sb,
647 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
648 struct ext4_group_info *grp)
650 struct ext4_sb_info *sbi = EXT4_SB(sb);
651 ext4_grpblk_t min;
652 ext4_grpblk_t max;
653 ext4_grpblk_t chunk;
654 unsigned short border;
656 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
658 border = 2 << sb->s_blocksize_bits;
660 while (len > 0) {
661 /* find how many blocks can be covered since this position */
662 max = ffs(first | border) - 1;
664 /* find how many blocks of power 2 we need to mark */
665 min = fls(len) - 1;
667 if (max < min)
668 min = max;
669 chunk = 1 << min;
671 /* mark multiblock chunks only */
672 grp->bb_counters[min]++;
673 if (min > 0)
674 mb_clear_bit(first >> min,
675 buddy + sbi->s_mb_offsets[min]);
677 len -= chunk;
678 first += chunk;
683 * Cache the order of the largest free extent we have available in this block
684 * group.
686 static void
687 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
689 int i;
690 int bits;
692 grp->bb_largest_free_order = -1; /* uninit */
694 bits = sb->s_blocksize_bits + 1;
695 for (i = bits; i >= 0; i--) {
696 if (grp->bb_counters[i] > 0) {
697 grp->bb_largest_free_order = i;
698 break;
703 static noinline_for_stack
704 void ext4_mb_generate_buddy(struct super_block *sb,
705 void *buddy, void *bitmap, ext4_group_t group)
707 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
708 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
709 ext4_grpblk_t i = 0;
710 ext4_grpblk_t first;
711 ext4_grpblk_t len;
712 unsigned free = 0;
713 unsigned fragments = 0;
714 unsigned long long period = get_cycles();
716 /* initialize buddy from bitmap which is aggregation
717 * of on-disk bitmap and preallocations */
718 i = mb_find_next_zero_bit(bitmap, max, 0);
719 grp->bb_first_free = i;
720 while (i < max) {
721 fragments++;
722 first = i;
723 i = mb_find_next_bit(bitmap, max, i);
724 len = i - first;
725 free += len;
726 if (len > 1)
727 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
728 else
729 grp->bb_counters[0]++;
730 if (i < max)
731 i = mb_find_next_zero_bit(bitmap, max, i);
733 grp->bb_fragments = fragments;
735 if (free != grp->bb_free) {
736 ext4_grp_locked_error(sb, group, 0, 0,
737 "%u blocks in bitmap, %u in gd",
738 free, grp->bb_free);
740 * If we intent to continue, we consider group descritor
741 * corrupt and update bb_free using bitmap value
743 grp->bb_free = free;
745 mb_set_largest_free_order(sb, grp);
747 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
749 period = get_cycles() - period;
750 spin_lock(&EXT4_SB(sb)->s_bal_lock);
751 EXT4_SB(sb)->s_mb_buddies_generated++;
752 EXT4_SB(sb)->s_mb_generation_time += period;
753 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
756 /* The buddy information is attached the buddy cache inode
757 * for convenience. The information regarding each group
758 * is loaded via ext4_mb_load_buddy. The information involve
759 * block bitmap and buddy information. The information are
760 * stored in the inode as
762 * { page }
763 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
766 * one block each for bitmap and buddy information.
767 * So for each group we take up 2 blocks. A page can
768 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
769 * So it can have information regarding groups_per_page which
770 * is blocks_per_page/2
772 * Locking note: This routine takes the block group lock of all groups
773 * for this page; do not hold this lock when calling this routine!
776 static int ext4_mb_init_cache(struct page *page, char *incore)
778 ext4_group_t ngroups;
779 int blocksize;
780 int blocks_per_page;
781 int groups_per_page;
782 int err = 0;
783 int i;
784 ext4_group_t first_group;
785 int first_block;
786 struct super_block *sb;
787 struct buffer_head *bhs;
788 struct buffer_head **bh;
789 struct inode *inode;
790 char *data;
791 char *bitmap;
792 struct ext4_group_info *grinfo;
794 mb_debug(1, "init page %lu\n", page->index);
796 inode = page->mapping->host;
797 sb = inode->i_sb;
798 ngroups = ext4_get_groups_count(sb);
799 blocksize = 1 << inode->i_blkbits;
800 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
802 groups_per_page = blocks_per_page >> 1;
803 if (groups_per_page == 0)
804 groups_per_page = 1;
806 /* allocate buffer_heads to read bitmaps */
807 if (groups_per_page > 1) {
808 err = -ENOMEM;
809 i = sizeof(struct buffer_head *) * groups_per_page;
810 bh = kzalloc(i, GFP_NOFS);
811 if (bh == NULL)
812 goto out;
813 } else
814 bh = &bhs;
816 first_group = page->index * blocks_per_page / 2;
818 /* read all groups the page covers into the cache */
819 for (i = 0; i < groups_per_page; i++) {
820 struct ext4_group_desc *desc;
822 if (first_group + i >= ngroups)
823 break;
825 grinfo = ext4_get_group_info(sb, first_group + i);
827 * If page is uptodate then we came here after online resize
828 * which added some new uninitialized group info structs, so
829 * we must skip all initialized uptodate buddies on the page,
830 * which may be currently in use by an allocating task.
832 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
833 bh[i] = NULL;
834 continue;
837 err = -EIO;
838 desc = ext4_get_group_desc(sb, first_group + i, NULL);
839 if (desc == NULL)
840 goto out;
842 err = -ENOMEM;
843 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
844 if (bh[i] == NULL)
845 goto out;
847 if (bitmap_uptodate(bh[i]))
848 continue;
850 lock_buffer(bh[i]);
851 if (bitmap_uptodate(bh[i])) {
852 unlock_buffer(bh[i]);
853 continue;
855 ext4_lock_group(sb, first_group + i);
856 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
857 ext4_init_block_bitmap(sb, bh[i],
858 first_group + i, desc);
859 set_bitmap_uptodate(bh[i]);
860 set_buffer_uptodate(bh[i]);
861 ext4_unlock_group(sb, first_group + i);
862 unlock_buffer(bh[i]);
863 continue;
865 ext4_unlock_group(sb, first_group + i);
866 if (buffer_uptodate(bh[i])) {
868 * if not uninit if bh is uptodate,
869 * bitmap is also uptodate
871 set_bitmap_uptodate(bh[i]);
872 unlock_buffer(bh[i]);
873 continue;
875 get_bh(bh[i]);
877 * submit the buffer_head for read. We can
878 * safely mark the bitmap as uptodate now.
879 * We do it here so the bitmap uptodate bit
880 * get set with buffer lock held.
882 set_bitmap_uptodate(bh[i]);
883 bh[i]->b_end_io = end_buffer_read_sync;
884 submit_bh(READ, bh[i]);
885 mb_debug(1, "read bitmap for group %u\n", first_group + i);
888 /* wait for I/O completion */
889 for (i = 0; i < groups_per_page; i++)
890 if (bh[i])
891 wait_on_buffer(bh[i]);
893 err = -EIO;
894 for (i = 0; i < groups_per_page; i++)
895 if (bh[i] && !buffer_uptodate(bh[i]))
896 goto out;
898 err = 0;
899 first_block = page->index * blocks_per_page;
900 for (i = 0; i < blocks_per_page; i++) {
901 int group;
903 group = (first_block + i) >> 1;
904 if (group >= ngroups)
905 break;
907 if (!bh[group - first_group])
908 /* skip initialized uptodate buddy */
909 continue;
912 * data carry information regarding this
913 * particular group in the format specified
914 * above
917 data = page_address(page) + (i * blocksize);
918 bitmap = bh[group - first_group]->b_data;
921 * We place the buddy block and bitmap block
922 * close together
924 if ((first_block + i) & 1) {
925 /* this is block of buddy */
926 BUG_ON(incore == NULL);
927 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
928 group, page->index, i * blocksize);
929 trace_ext4_mb_buddy_bitmap_load(sb, group);
930 grinfo = ext4_get_group_info(sb, group);
931 grinfo->bb_fragments = 0;
932 memset(grinfo->bb_counters, 0,
933 sizeof(*grinfo->bb_counters) *
934 (sb->s_blocksize_bits+2));
936 * incore got set to the group block bitmap below
938 ext4_lock_group(sb, group);
939 /* init the buddy */
940 memset(data, 0xff, blocksize);
941 ext4_mb_generate_buddy(sb, data, incore, group);
942 ext4_unlock_group(sb, group);
943 incore = NULL;
944 } else {
945 /* this is block of bitmap */
946 BUG_ON(incore != NULL);
947 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
948 group, page->index, i * blocksize);
949 trace_ext4_mb_bitmap_load(sb, group);
951 /* see comments in ext4_mb_put_pa() */
952 ext4_lock_group(sb, group);
953 memcpy(data, bitmap, blocksize);
955 /* mark all preallocated blks used in in-core bitmap */
956 ext4_mb_generate_from_pa(sb, data, group);
957 ext4_mb_generate_from_freelist(sb, data, group);
958 ext4_unlock_group(sb, group);
960 /* set incore so that the buddy information can be
961 * generated using this
963 incore = data;
966 SetPageUptodate(page);
968 out:
969 if (bh) {
970 for (i = 0; i < groups_per_page; i++)
971 brelse(bh[i]);
972 if (bh != &bhs)
973 kfree(bh);
975 return err;
979 * Lock the buddy and bitmap pages. This make sure other parallel init_group
980 * on the same buddy page doesn't happen whild holding the buddy page lock.
981 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
982 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
985 ext4_group_t group, struct ext4_buddy *e4b)
987 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
988 int block, pnum, poff;
989 int blocks_per_page;
990 struct page *page;
992 e4b->bd_buddy_page = NULL;
993 e4b->bd_bitmap_page = NULL;
995 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
997 * the buddy cache inode stores the block bitmap
998 * and buddy information in consecutive blocks.
999 * So for each group we need two blocks.
1001 block = group * 2;
1002 pnum = block / blocks_per_page;
1003 poff = block % blocks_per_page;
1004 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 if (!page)
1006 return -EIO;
1007 BUG_ON(page->mapping != inode->i_mapping);
1008 e4b->bd_bitmap_page = page;
1009 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011 if (blocks_per_page >= 2) {
1012 /* buddy and bitmap are on the same page */
1013 return 0;
1016 block++;
1017 pnum = block / blocks_per_page;
1018 poff = block % blocks_per_page;
1019 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1020 if (!page)
1021 return -EIO;
1022 BUG_ON(page->mapping != inode->i_mapping);
1023 e4b->bd_buddy_page = page;
1024 return 0;
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1029 if (e4b->bd_bitmap_page) {
1030 unlock_page(e4b->bd_bitmap_page);
1031 page_cache_release(e4b->bd_bitmap_page);
1033 if (e4b->bd_buddy_page) {
1034 unlock_page(e4b->bd_buddy_page);
1035 page_cache_release(e4b->bd_buddy_page);
1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1041 * block group lock of all groups for this page; do not hold the BG lock when
1042 * calling this routine!
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1048 struct ext4_group_info *this_grp;
1049 struct ext4_buddy e4b;
1050 struct page *page;
1051 int ret = 0;
1053 mb_debug(1, "init group %u\n", group);
1054 this_grp = ext4_get_group_info(sb, group);
1056 * This ensures that we don't reinit the buddy cache
1057 * page which map to the group from which we are already
1058 * allocating. If we are looking at the buddy cache we would
1059 * have taken a reference using ext4_mb_load_buddy and that
1060 * would have pinned buddy page to page cache.
1062 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1063 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1065 * somebody initialized the group
1066 * return without doing anything
1068 goto err;
1071 page = e4b.bd_bitmap_page;
1072 ret = ext4_mb_init_cache(page, NULL);
1073 if (ret)
1074 goto err;
1075 if (!PageUptodate(page)) {
1076 ret = -EIO;
1077 goto err;
1079 mark_page_accessed(page);
1081 if (e4b.bd_buddy_page == NULL) {
1083 * If both the bitmap and buddy are in
1084 * the same page we don't need to force
1085 * init the buddy
1087 ret = 0;
1088 goto err;
1090 /* init buddy cache */
1091 page = e4b.bd_buddy_page;
1092 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1093 if (ret)
1094 goto err;
1095 if (!PageUptodate(page)) {
1096 ret = -EIO;
1097 goto err;
1099 mark_page_accessed(page);
1100 err:
1101 ext4_mb_put_buddy_page_lock(&e4b);
1102 return ret;
1106 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1107 * block group lock of all groups for this page; do not hold the BG lock when
1108 * calling this routine!
1110 static noinline_for_stack int
1111 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1112 struct ext4_buddy *e4b)
1114 int blocks_per_page;
1115 int block;
1116 int pnum;
1117 int poff;
1118 struct page *page;
1119 int ret;
1120 struct ext4_group_info *grp;
1121 struct ext4_sb_info *sbi = EXT4_SB(sb);
1122 struct inode *inode = sbi->s_buddy_cache;
1124 mb_debug(1, "load group %u\n", group);
1126 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1127 grp = ext4_get_group_info(sb, group);
1129 e4b->bd_blkbits = sb->s_blocksize_bits;
1130 e4b->bd_info = grp;
1131 e4b->bd_sb = sb;
1132 e4b->bd_group = group;
1133 e4b->bd_buddy_page = NULL;
1134 e4b->bd_bitmap_page = NULL;
1136 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1138 * we need full data about the group
1139 * to make a good selection
1141 ret = ext4_mb_init_group(sb, group);
1142 if (ret)
1143 return ret;
1147 * the buddy cache inode stores the block bitmap
1148 * and buddy information in consecutive blocks.
1149 * So for each group we need two blocks.
1151 block = group * 2;
1152 pnum = block / blocks_per_page;
1153 poff = block % blocks_per_page;
1155 /* we could use find_or_create_page(), but it locks page
1156 * what we'd like to avoid in fast path ... */
1157 page = find_get_page(inode->i_mapping, pnum);
1158 if (page == NULL || !PageUptodate(page)) {
1159 if (page)
1161 * drop the page reference and try
1162 * to get the page with lock. If we
1163 * are not uptodate that implies
1164 * somebody just created the page but
1165 * is yet to initialize the same. So
1166 * wait for it to initialize.
1168 page_cache_release(page);
1169 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1170 if (page) {
1171 BUG_ON(page->mapping != inode->i_mapping);
1172 if (!PageUptodate(page)) {
1173 ret = ext4_mb_init_cache(page, NULL);
1174 if (ret) {
1175 unlock_page(page);
1176 goto err;
1178 mb_cmp_bitmaps(e4b, page_address(page) +
1179 (poff * sb->s_blocksize));
1181 unlock_page(page);
1184 if (page == NULL || !PageUptodate(page)) {
1185 ret = -EIO;
1186 goto err;
1188 e4b->bd_bitmap_page = page;
1189 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1190 mark_page_accessed(page);
1192 block++;
1193 pnum = block / blocks_per_page;
1194 poff = block % blocks_per_page;
1196 page = find_get_page(inode->i_mapping, pnum);
1197 if (page == NULL || !PageUptodate(page)) {
1198 if (page)
1199 page_cache_release(page);
1200 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1201 if (page) {
1202 BUG_ON(page->mapping != inode->i_mapping);
1203 if (!PageUptodate(page)) {
1204 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1205 if (ret) {
1206 unlock_page(page);
1207 goto err;
1210 unlock_page(page);
1213 if (page == NULL || !PageUptodate(page)) {
1214 ret = -EIO;
1215 goto err;
1217 e4b->bd_buddy_page = page;
1218 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1219 mark_page_accessed(page);
1221 BUG_ON(e4b->bd_bitmap_page == NULL);
1222 BUG_ON(e4b->bd_buddy_page == NULL);
1224 return 0;
1226 err:
1227 if (page)
1228 page_cache_release(page);
1229 if (e4b->bd_bitmap_page)
1230 page_cache_release(e4b->bd_bitmap_page);
1231 if (e4b->bd_buddy_page)
1232 page_cache_release(e4b->bd_buddy_page);
1233 e4b->bd_buddy = NULL;
1234 e4b->bd_bitmap = NULL;
1235 return ret;
1238 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 if (e4b->bd_bitmap_page)
1241 page_cache_release(e4b->bd_bitmap_page);
1242 if (e4b->bd_buddy_page)
1243 page_cache_release(e4b->bd_buddy_page);
1247 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 int order = 1;
1250 void *bb;
1252 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1253 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1255 bb = EXT4_MB_BUDDY(e4b);
1256 while (order <= e4b->bd_blkbits + 1) {
1257 block = block >> 1;
1258 if (!mb_test_bit(block, bb)) {
1259 /* this block is part of buddy of order 'order' */
1260 return order;
1262 bb += 1 << (e4b->bd_blkbits - order);
1263 order++;
1265 return 0;
1268 static void mb_clear_bits(void *bm, int cur, int len)
1270 __u32 *addr;
1272 len = cur + len;
1273 while (cur < len) {
1274 if ((cur & 31) == 0 && (len - cur) >= 32) {
1275 /* fast path: clear whole word at once */
1276 addr = bm + (cur >> 3);
1277 *addr = 0;
1278 cur += 32;
1279 continue;
1281 mb_clear_bit(cur, bm);
1282 cur++;
1286 void ext4_set_bits(void *bm, int cur, int len)
1288 __u32 *addr;
1290 len = cur + len;
1291 while (cur < len) {
1292 if ((cur & 31) == 0 && (len - cur) >= 32) {
1293 /* fast path: set whole word at once */
1294 addr = bm + (cur >> 3);
1295 *addr = 0xffffffff;
1296 cur += 32;
1297 continue;
1299 mb_set_bit(cur, bm);
1300 cur++;
1304 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1305 int first, int count)
1307 int block = 0;
1308 int max = 0;
1309 int order;
1310 void *buddy;
1311 void *buddy2;
1312 struct super_block *sb = e4b->bd_sb;
1314 BUG_ON(first + count > (sb->s_blocksize << 3));
1315 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1316 mb_check_buddy(e4b);
1317 mb_free_blocks_double(inode, e4b, first, count);
1319 e4b->bd_info->bb_free += count;
1320 if (first < e4b->bd_info->bb_first_free)
1321 e4b->bd_info->bb_first_free = first;
1323 /* let's maintain fragments counter */
1324 if (first != 0)
1325 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1326 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1327 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1328 if (block && max)
1329 e4b->bd_info->bb_fragments--;
1330 else if (!block && !max)
1331 e4b->bd_info->bb_fragments++;
1333 /* let's maintain buddy itself */
1334 while (count-- > 0) {
1335 block = first++;
1336 order = 0;
1338 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1339 ext4_fsblk_t blocknr;
1341 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1342 blocknr += block;
1343 ext4_grp_locked_error(sb, e4b->bd_group,
1344 inode ? inode->i_ino : 0,
1345 blocknr,
1346 "freeing already freed block "
1347 "(bit %u)", block);
1349 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1350 e4b->bd_info->bb_counters[order]++;
1352 /* start of the buddy */
1353 buddy = mb_find_buddy(e4b, order, &max);
1355 do {
1356 block &= ~1UL;
1357 if (mb_test_bit(block, buddy) ||
1358 mb_test_bit(block + 1, buddy))
1359 break;
1361 /* both the buddies are free, try to coalesce them */
1362 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1364 if (!buddy2)
1365 break;
1367 if (order > 0) {
1368 /* for special purposes, we don't set
1369 * free bits in bitmap */
1370 mb_set_bit(block, buddy);
1371 mb_set_bit(block + 1, buddy);
1373 e4b->bd_info->bb_counters[order]--;
1374 e4b->bd_info->bb_counters[order]--;
1376 block = block >> 1;
1377 order++;
1378 e4b->bd_info->bb_counters[order]++;
1380 mb_clear_bit(block, buddy2);
1381 buddy = buddy2;
1382 } while (1);
1384 mb_set_largest_free_order(sb, e4b->bd_info);
1385 mb_check_buddy(e4b);
1388 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1389 int needed, struct ext4_free_extent *ex)
1391 int next = block;
1392 int max;
1393 int ord;
1394 void *buddy;
1396 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1397 BUG_ON(ex == NULL);
1399 buddy = mb_find_buddy(e4b, order, &max);
1400 BUG_ON(buddy == NULL);
1401 BUG_ON(block >= max);
1402 if (mb_test_bit(block, buddy)) {
1403 ex->fe_len = 0;
1404 ex->fe_start = 0;
1405 ex->fe_group = 0;
1406 return 0;
1409 /* FIXME dorp order completely ? */
1410 if (likely(order == 0)) {
1411 /* find actual order */
1412 order = mb_find_order_for_block(e4b, block);
1413 block = block >> order;
1416 ex->fe_len = 1 << order;
1417 ex->fe_start = block << order;
1418 ex->fe_group = e4b->bd_group;
1420 /* calc difference from given start */
1421 next = next - ex->fe_start;
1422 ex->fe_len -= next;
1423 ex->fe_start += next;
1425 while (needed > ex->fe_len &&
1426 (buddy = mb_find_buddy(e4b, order, &max))) {
1428 if (block + 1 >= max)
1429 break;
1431 next = (block + 1) * (1 << order);
1432 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1433 break;
1435 ord = mb_find_order_for_block(e4b, next);
1437 order = ord;
1438 block = next >> order;
1439 ex->fe_len += 1 << order;
1442 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1443 return ex->fe_len;
1446 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1448 int ord;
1449 int mlen = 0;
1450 int max = 0;
1451 int cur;
1452 int start = ex->fe_start;
1453 int len = ex->fe_len;
1454 unsigned ret = 0;
1455 int len0 = len;
1456 void *buddy;
1458 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1459 BUG_ON(e4b->bd_group != ex->fe_group);
1460 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1461 mb_check_buddy(e4b);
1462 mb_mark_used_double(e4b, start, len);
1464 e4b->bd_info->bb_free -= len;
1465 if (e4b->bd_info->bb_first_free == start)
1466 e4b->bd_info->bb_first_free += len;
1468 /* let's maintain fragments counter */
1469 if (start != 0)
1470 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1471 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1472 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1473 if (mlen && max)
1474 e4b->bd_info->bb_fragments++;
1475 else if (!mlen && !max)
1476 e4b->bd_info->bb_fragments--;
1478 /* let's maintain buddy itself */
1479 while (len) {
1480 ord = mb_find_order_for_block(e4b, start);
1482 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1483 /* the whole chunk may be allocated at once! */
1484 mlen = 1 << ord;
1485 buddy = mb_find_buddy(e4b, ord, &max);
1486 BUG_ON((start >> ord) >= max);
1487 mb_set_bit(start >> ord, buddy);
1488 e4b->bd_info->bb_counters[ord]--;
1489 start += mlen;
1490 len -= mlen;
1491 BUG_ON(len < 0);
1492 continue;
1495 /* store for history */
1496 if (ret == 0)
1497 ret = len | (ord << 16);
1499 /* we have to split large buddy */
1500 BUG_ON(ord <= 0);
1501 buddy = mb_find_buddy(e4b, ord, &max);
1502 mb_set_bit(start >> ord, buddy);
1503 e4b->bd_info->bb_counters[ord]--;
1505 ord--;
1506 cur = (start >> ord) & ~1U;
1507 buddy = mb_find_buddy(e4b, ord, &max);
1508 mb_clear_bit(cur, buddy);
1509 mb_clear_bit(cur + 1, buddy);
1510 e4b->bd_info->bb_counters[ord]++;
1511 e4b->bd_info->bb_counters[ord]++;
1513 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1515 ext4_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1516 mb_check_buddy(e4b);
1518 return ret;
1522 * Must be called under group lock!
1524 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1525 struct ext4_buddy *e4b)
1527 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1528 int ret;
1530 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1531 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1533 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1534 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1535 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1537 /* preallocation can change ac_b_ex, thus we store actually
1538 * allocated blocks for history */
1539 ac->ac_f_ex = ac->ac_b_ex;
1541 ac->ac_status = AC_STATUS_FOUND;
1542 ac->ac_tail = ret & 0xffff;
1543 ac->ac_buddy = ret >> 16;
1546 * take the page reference. We want the page to be pinned
1547 * so that we don't get a ext4_mb_init_cache_call for this
1548 * group until we update the bitmap. That would mean we
1549 * double allocate blocks. The reference is dropped
1550 * in ext4_mb_release_context
1552 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1553 get_page(ac->ac_bitmap_page);
1554 ac->ac_buddy_page = e4b->bd_buddy_page;
1555 get_page(ac->ac_buddy_page);
1556 /* store last allocated for subsequent stream allocation */
1557 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1558 spin_lock(&sbi->s_md_lock);
1559 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1560 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1561 spin_unlock(&sbi->s_md_lock);
1566 * regular allocator, for general purposes allocation
1569 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1570 struct ext4_buddy *e4b,
1571 int finish_group)
1573 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1574 struct ext4_free_extent *bex = &ac->ac_b_ex;
1575 struct ext4_free_extent *gex = &ac->ac_g_ex;
1576 struct ext4_free_extent ex;
1577 int max;
1579 if (ac->ac_status == AC_STATUS_FOUND)
1580 return;
1582 * We don't want to scan for a whole year
1584 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1585 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1586 ac->ac_status = AC_STATUS_BREAK;
1587 return;
1591 * Haven't found good chunk so far, let's continue
1593 if (bex->fe_len < gex->fe_len)
1594 return;
1596 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1597 && bex->fe_group == e4b->bd_group) {
1598 /* recheck chunk's availability - we don't know
1599 * when it was found (within this lock-unlock
1600 * period or not) */
1601 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1602 if (max >= gex->fe_len) {
1603 ext4_mb_use_best_found(ac, e4b);
1604 return;
1610 * The routine checks whether found extent is good enough. If it is,
1611 * then the extent gets marked used and flag is set to the context
1612 * to stop scanning. Otherwise, the extent is compared with the
1613 * previous found extent and if new one is better, then it's stored
1614 * in the context. Later, the best found extent will be used, if
1615 * mballoc can't find good enough extent.
1617 * FIXME: real allocation policy is to be designed yet!
1619 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1620 struct ext4_free_extent *ex,
1621 struct ext4_buddy *e4b)
1623 struct ext4_free_extent *bex = &ac->ac_b_ex;
1624 struct ext4_free_extent *gex = &ac->ac_g_ex;
1626 BUG_ON(ex->fe_len <= 0);
1627 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1628 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1629 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1631 ac->ac_found++;
1634 * The special case - take what you catch first
1636 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1637 *bex = *ex;
1638 ext4_mb_use_best_found(ac, e4b);
1639 return;
1643 * Let's check whether the chuck is good enough
1645 if (ex->fe_len == gex->fe_len) {
1646 *bex = *ex;
1647 ext4_mb_use_best_found(ac, e4b);
1648 return;
1652 * If this is first found extent, just store it in the context
1654 if (bex->fe_len == 0) {
1655 *bex = *ex;
1656 return;
1660 * If new found extent is better, store it in the context
1662 if (bex->fe_len < gex->fe_len) {
1663 /* if the request isn't satisfied, any found extent
1664 * larger than previous best one is better */
1665 if (ex->fe_len > bex->fe_len)
1666 *bex = *ex;
1667 } else if (ex->fe_len > gex->fe_len) {
1668 /* if the request is satisfied, then we try to find
1669 * an extent that still satisfy the request, but is
1670 * smaller than previous one */
1671 if (ex->fe_len < bex->fe_len)
1672 *bex = *ex;
1675 ext4_mb_check_limits(ac, e4b, 0);
1678 static noinline_for_stack
1679 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1680 struct ext4_buddy *e4b)
1682 struct ext4_free_extent ex = ac->ac_b_ex;
1683 ext4_group_t group = ex.fe_group;
1684 int max;
1685 int err;
1687 BUG_ON(ex.fe_len <= 0);
1688 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1689 if (err)
1690 return err;
1692 ext4_lock_group(ac->ac_sb, group);
1693 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1695 if (max > 0) {
1696 ac->ac_b_ex = ex;
1697 ext4_mb_use_best_found(ac, e4b);
1700 ext4_unlock_group(ac->ac_sb, group);
1701 ext4_mb_unload_buddy(e4b);
1703 return 0;
1706 static noinline_for_stack
1707 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1708 struct ext4_buddy *e4b)
1710 ext4_group_t group = ac->ac_g_ex.fe_group;
1711 int max;
1712 int err;
1713 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1714 struct ext4_free_extent ex;
1716 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1717 return 0;
1719 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1720 if (err)
1721 return err;
1723 ext4_lock_group(ac->ac_sb, group);
1724 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1725 ac->ac_g_ex.fe_len, &ex);
1727 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1728 ext4_fsblk_t start;
1730 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1731 ex.fe_start;
1732 /* use do_div to get remainder (would be 64-bit modulo) */
1733 if (do_div(start, sbi->s_stripe) == 0) {
1734 ac->ac_found++;
1735 ac->ac_b_ex = ex;
1736 ext4_mb_use_best_found(ac, e4b);
1738 } else if (max >= ac->ac_g_ex.fe_len) {
1739 BUG_ON(ex.fe_len <= 0);
1740 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1741 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1742 ac->ac_found++;
1743 ac->ac_b_ex = ex;
1744 ext4_mb_use_best_found(ac, e4b);
1745 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1746 /* Sometimes, caller may want to merge even small
1747 * number of blocks to an existing extent */
1748 BUG_ON(ex.fe_len <= 0);
1749 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1750 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1751 ac->ac_found++;
1752 ac->ac_b_ex = ex;
1753 ext4_mb_use_best_found(ac, e4b);
1755 ext4_unlock_group(ac->ac_sb, group);
1756 ext4_mb_unload_buddy(e4b);
1758 return 0;
1762 * The routine scans buddy structures (not bitmap!) from given order
1763 * to max order and tries to find big enough chunk to satisfy the req
1765 static noinline_for_stack
1766 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1767 struct ext4_buddy *e4b)
1769 struct super_block *sb = ac->ac_sb;
1770 struct ext4_group_info *grp = e4b->bd_info;
1771 void *buddy;
1772 int i;
1773 int k;
1774 int max;
1776 BUG_ON(ac->ac_2order <= 0);
1777 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1778 if (grp->bb_counters[i] == 0)
1779 continue;
1781 buddy = mb_find_buddy(e4b, i, &max);
1782 BUG_ON(buddy == NULL);
1784 k = mb_find_next_zero_bit(buddy, max, 0);
1785 BUG_ON(k >= max);
1787 ac->ac_found++;
1789 ac->ac_b_ex.fe_len = 1 << i;
1790 ac->ac_b_ex.fe_start = k << i;
1791 ac->ac_b_ex.fe_group = e4b->bd_group;
1793 ext4_mb_use_best_found(ac, e4b);
1795 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1797 if (EXT4_SB(sb)->s_mb_stats)
1798 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1800 break;
1805 * The routine scans the group and measures all found extents.
1806 * In order to optimize scanning, caller must pass number of
1807 * free blocks in the group, so the routine can know upper limit.
1809 static noinline_for_stack
1810 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1811 struct ext4_buddy *e4b)
1813 struct super_block *sb = ac->ac_sb;
1814 void *bitmap = EXT4_MB_BITMAP(e4b);
1815 struct ext4_free_extent ex;
1816 int i;
1817 int free;
1819 free = e4b->bd_info->bb_free;
1820 BUG_ON(free <= 0);
1822 i = e4b->bd_info->bb_first_free;
1824 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1825 i = mb_find_next_zero_bit(bitmap,
1826 EXT4_BLOCKS_PER_GROUP(sb), i);
1827 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1829 * IF we have corrupt bitmap, we won't find any
1830 * free blocks even though group info says we
1831 * we have free blocks
1833 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1834 "%d free blocks as per "
1835 "group info. But bitmap says 0",
1836 free);
1837 break;
1840 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1841 BUG_ON(ex.fe_len <= 0);
1842 if (free < ex.fe_len) {
1843 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1844 "%d free blocks as per "
1845 "group info. But got %d blocks",
1846 free, ex.fe_len);
1848 * The number of free blocks differs. This mostly
1849 * indicate that the bitmap is corrupt. So exit
1850 * without claiming the space.
1852 break;
1855 ext4_mb_measure_extent(ac, &ex, e4b);
1857 i += ex.fe_len;
1858 free -= ex.fe_len;
1861 ext4_mb_check_limits(ac, e4b, 1);
1865 * This is a special case for storages like raid5
1866 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1868 static noinline_for_stack
1869 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1870 struct ext4_buddy *e4b)
1872 struct super_block *sb = ac->ac_sb;
1873 struct ext4_sb_info *sbi = EXT4_SB(sb);
1874 void *bitmap = EXT4_MB_BITMAP(e4b);
1875 struct ext4_free_extent ex;
1876 ext4_fsblk_t first_group_block;
1877 ext4_fsblk_t a;
1878 ext4_grpblk_t i;
1879 int max;
1881 BUG_ON(sbi->s_stripe == 0);
1883 /* find first stripe-aligned block in group */
1884 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1886 a = first_group_block + sbi->s_stripe - 1;
1887 do_div(a, sbi->s_stripe);
1888 i = (a * sbi->s_stripe) - first_group_block;
1890 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1891 if (!mb_test_bit(i, bitmap)) {
1892 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1893 if (max >= sbi->s_stripe) {
1894 ac->ac_found++;
1895 ac->ac_b_ex = ex;
1896 ext4_mb_use_best_found(ac, e4b);
1897 break;
1900 i += sbi->s_stripe;
1904 /* This is now called BEFORE we load the buddy bitmap. */
1905 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1906 ext4_group_t group, int cr)
1908 unsigned free, fragments;
1909 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1910 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1912 BUG_ON(cr < 0 || cr >= 4);
1914 /* We only do this if the grp has never been initialized */
1915 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1916 int ret = ext4_mb_init_group(ac->ac_sb, group);
1917 if (ret)
1918 return 0;
1921 free = grp->bb_free;
1922 fragments = grp->bb_fragments;
1923 if (free == 0)
1924 return 0;
1925 if (fragments == 0)
1926 return 0;
1928 switch (cr) {
1929 case 0:
1930 BUG_ON(ac->ac_2order == 0);
1932 if (grp->bb_largest_free_order < ac->ac_2order)
1933 return 0;
1935 /* Avoid using the first bg of a flexgroup for data files */
1936 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1937 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1938 ((group % flex_size) == 0))
1939 return 0;
1941 return 1;
1942 case 1:
1943 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1944 return 1;
1945 break;
1946 case 2:
1947 if (free >= ac->ac_g_ex.fe_len)
1948 return 1;
1949 break;
1950 case 3:
1951 return 1;
1952 default:
1953 BUG();
1956 return 0;
1959 static noinline_for_stack int
1960 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1962 ext4_group_t ngroups, group, i;
1963 int cr;
1964 int err = 0;
1965 struct ext4_sb_info *sbi;
1966 struct super_block *sb;
1967 struct ext4_buddy e4b;
1969 sb = ac->ac_sb;
1970 sbi = EXT4_SB(sb);
1971 ngroups = ext4_get_groups_count(sb);
1972 /* non-extent files are limited to low blocks/groups */
1973 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1974 ngroups = sbi->s_blockfile_groups;
1976 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1978 /* first, try the goal */
1979 err = ext4_mb_find_by_goal(ac, &e4b);
1980 if (err || ac->ac_status == AC_STATUS_FOUND)
1981 goto out;
1983 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1984 goto out;
1987 * ac->ac2_order is set only if the fe_len is a power of 2
1988 * if ac2_order is set we also set criteria to 0 so that we
1989 * try exact allocation using buddy.
1991 i = fls(ac->ac_g_ex.fe_len);
1992 ac->ac_2order = 0;
1994 * We search using buddy data only if the order of the request
1995 * is greater than equal to the sbi_s_mb_order2_reqs
1996 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1998 if (i >= sbi->s_mb_order2_reqs) {
2000 * This should tell if fe_len is exactly power of 2
2002 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2003 ac->ac_2order = i - 1;
2006 /* if stream allocation is enabled, use global goal */
2007 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2008 /* TBD: may be hot point */
2009 spin_lock(&sbi->s_md_lock);
2010 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2011 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2012 spin_unlock(&sbi->s_md_lock);
2015 /* Let's just scan groups to find more-less suitable blocks */
2016 cr = ac->ac_2order ? 0 : 1;
2018 * cr == 0 try to get exact allocation,
2019 * cr == 3 try to get anything
2021 repeat:
2022 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2023 ac->ac_criteria = cr;
2025 * searching for the right group start
2026 * from the goal value specified
2028 group = ac->ac_g_ex.fe_group;
2030 for (i = 0; i < ngroups; group++, i++) {
2031 if (group == ngroups)
2032 group = 0;
2034 /* This now checks without needing the buddy page */
2035 if (!ext4_mb_good_group(ac, group, cr))
2036 continue;
2038 err = ext4_mb_load_buddy(sb, group, &e4b);
2039 if (err)
2040 goto out;
2042 ext4_lock_group(sb, group);
2045 * We need to check again after locking the
2046 * block group
2048 if (!ext4_mb_good_group(ac, group, cr)) {
2049 ext4_unlock_group(sb, group);
2050 ext4_mb_unload_buddy(&e4b);
2051 continue;
2054 ac->ac_groups_scanned++;
2055 if (cr == 0)
2056 ext4_mb_simple_scan_group(ac, &e4b);
2057 else if (cr == 1 && sbi->s_stripe &&
2058 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2059 ext4_mb_scan_aligned(ac, &e4b);
2060 else
2061 ext4_mb_complex_scan_group(ac, &e4b);
2063 ext4_unlock_group(sb, group);
2064 ext4_mb_unload_buddy(&e4b);
2066 if (ac->ac_status != AC_STATUS_CONTINUE)
2067 break;
2071 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2072 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2074 * We've been searching too long. Let's try to allocate
2075 * the best chunk we've found so far
2078 ext4_mb_try_best_found(ac, &e4b);
2079 if (ac->ac_status != AC_STATUS_FOUND) {
2081 * Someone more lucky has already allocated it.
2082 * The only thing we can do is just take first
2083 * found block(s)
2084 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2086 ac->ac_b_ex.fe_group = 0;
2087 ac->ac_b_ex.fe_start = 0;
2088 ac->ac_b_ex.fe_len = 0;
2089 ac->ac_status = AC_STATUS_CONTINUE;
2090 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2091 cr = 3;
2092 atomic_inc(&sbi->s_mb_lost_chunks);
2093 goto repeat;
2096 out:
2097 return err;
2100 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2102 struct super_block *sb = seq->private;
2103 ext4_group_t group;
2105 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2106 return NULL;
2107 group = *pos + 1;
2108 return (void *) ((unsigned long) group);
2111 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2113 struct super_block *sb = seq->private;
2114 ext4_group_t group;
2116 ++*pos;
2117 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2118 return NULL;
2119 group = *pos + 1;
2120 return (void *) ((unsigned long) group);
2123 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2125 struct super_block *sb = seq->private;
2126 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2127 int i;
2128 int err;
2129 struct ext4_buddy e4b;
2130 struct sg {
2131 struct ext4_group_info info;
2132 ext4_grpblk_t counters[16];
2133 } sg;
2135 group--;
2136 if (group == 0)
2137 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2138 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2139 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2140 "group", "free", "frags", "first",
2141 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2142 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2144 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2145 sizeof(struct ext4_group_info);
2146 err = ext4_mb_load_buddy(sb, group, &e4b);
2147 if (err) {
2148 seq_printf(seq, "#%-5u: I/O error\n", group);
2149 return 0;
2151 ext4_lock_group(sb, group);
2152 memcpy(&sg, ext4_get_group_info(sb, group), i);
2153 ext4_unlock_group(sb, group);
2154 ext4_mb_unload_buddy(&e4b);
2156 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2157 sg.info.bb_fragments, sg.info.bb_first_free);
2158 for (i = 0; i <= 13; i++)
2159 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2160 sg.info.bb_counters[i] : 0);
2161 seq_printf(seq, " ]\n");
2163 return 0;
2166 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2170 static const struct seq_operations ext4_mb_seq_groups_ops = {
2171 .start = ext4_mb_seq_groups_start,
2172 .next = ext4_mb_seq_groups_next,
2173 .stop = ext4_mb_seq_groups_stop,
2174 .show = ext4_mb_seq_groups_show,
2177 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2179 struct super_block *sb = PDE(inode)->data;
2180 int rc;
2182 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2183 if (rc == 0) {
2184 struct seq_file *m = file->private_data;
2185 m->private = sb;
2187 return rc;
2191 static const struct file_operations ext4_mb_seq_groups_fops = {
2192 .owner = THIS_MODULE,
2193 .open = ext4_mb_seq_groups_open,
2194 .read = seq_read,
2195 .llseek = seq_lseek,
2196 .release = seq_release,
2199 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2201 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2202 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2204 BUG_ON(!cachep);
2205 return cachep;
2208 /* Create and initialize ext4_group_info data for the given group. */
2209 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2210 struct ext4_group_desc *desc)
2212 int i;
2213 int metalen = 0;
2214 struct ext4_sb_info *sbi = EXT4_SB(sb);
2215 struct ext4_group_info **meta_group_info;
2216 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2219 * First check if this group is the first of a reserved block.
2220 * If it's true, we have to allocate a new table of pointers
2221 * to ext4_group_info structures
2223 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2224 metalen = sizeof(*meta_group_info) <<
2225 EXT4_DESC_PER_BLOCK_BITS(sb);
2226 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2227 if (meta_group_info == NULL) {
2228 ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate mem "
2229 "for a buddy group");
2230 goto exit_meta_group_info;
2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2233 meta_group_info;
2236 meta_group_info =
2237 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2238 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2240 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2241 if (meta_group_info[i] == NULL) {
2242 ext4_msg(sb, KERN_ERR, "EXT4-fs: can't allocate buddy mem");
2243 goto exit_group_info;
2245 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2246 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2247 &(meta_group_info[i]->bb_state));
2250 * initialize bb_free to be able to skip
2251 * empty groups without initialization
2253 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2254 meta_group_info[i]->bb_free =
2255 ext4_free_blocks_after_init(sb, group, desc);
2256 } else {
2257 meta_group_info[i]->bb_free =
2258 ext4_free_blks_count(sb, desc);
2261 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2262 init_rwsem(&meta_group_info[i]->alloc_sem);
2263 meta_group_info[i]->bb_free_root = RB_ROOT;
2264 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2266 #ifdef DOUBLE_CHECK
2268 struct buffer_head *bh;
2269 meta_group_info[i]->bb_bitmap =
2270 kmalloc(sb->s_blocksize, GFP_KERNEL);
2271 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2272 bh = ext4_read_block_bitmap(sb, group);
2273 BUG_ON(bh == NULL);
2274 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2275 sb->s_blocksize);
2276 put_bh(bh);
2278 #endif
2280 return 0;
2282 exit_group_info:
2283 /* If a meta_group_info table has been allocated, release it now */
2284 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2285 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2286 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2288 exit_meta_group_info:
2289 return -ENOMEM;
2290 } /* ext4_mb_add_groupinfo */
2292 static int ext4_mb_init_backend(struct super_block *sb)
2294 ext4_group_t ngroups = ext4_get_groups_count(sb);
2295 ext4_group_t i;
2296 struct ext4_sb_info *sbi = EXT4_SB(sb);
2297 struct ext4_super_block *es = sbi->s_es;
2298 int num_meta_group_infos;
2299 int num_meta_group_infos_max;
2300 int array_size;
2301 struct ext4_group_desc *desc;
2302 struct kmem_cache *cachep;
2304 /* This is the number of blocks used by GDT */
2305 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2306 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2309 * This is the total number of blocks used by GDT including
2310 * the number of reserved blocks for GDT.
2311 * The s_group_info array is allocated with this value
2312 * to allow a clean online resize without a complex
2313 * manipulation of pointer.
2314 * The drawback is the unused memory when no resize
2315 * occurs but it's very low in terms of pages
2316 * (see comments below)
2317 * Need to handle this properly when META_BG resizing is allowed
2319 num_meta_group_infos_max = num_meta_group_infos +
2320 le16_to_cpu(es->s_reserved_gdt_blocks);
2323 * array_size is the size of s_group_info array. We round it
2324 * to the next power of two because this approximation is done
2325 * internally by kmalloc so we can have some more memory
2326 * for free here (e.g. may be used for META_BG resize).
2328 array_size = 1;
2329 while (array_size < sizeof(*sbi->s_group_info) *
2330 num_meta_group_infos_max)
2331 array_size = array_size << 1;
2332 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2333 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2334 * So a two level scheme suffices for now. */
2335 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2336 if (sbi->s_group_info == NULL) {
2337 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2338 return -ENOMEM;
2340 sbi->s_buddy_cache = new_inode(sb);
2341 if (sbi->s_buddy_cache == NULL) {
2342 ext4_msg(sb, KERN_ERR, "can't get new inode");
2343 goto err_freesgi;
2345 /* To avoid potentially colliding with an valid on-disk inode number,
2346 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2347 * not in the inode hash, so it should never be found by iget(), but
2348 * this will avoid confusion if it ever shows up during debugging. */
2349 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2350 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2351 for (i = 0; i < ngroups; i++) {
2352 desc = ext4_get_group_desc(sb, i, NULL);
2353 if (desc == NULL) {
2354 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2355 goto err_freebuddy;
2357 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2358 goto err_freebuddy;
2361 return 0;
2363 err_freebuddy:
2364 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2365 while (i-- > 0)
2366 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2367 i = num_meta_group_infos;
2368 while (i-- > 0)
2369 kfree(sbi->s_group_info[i]);
2370 iput(sbi->s_buddy_cache);
2371 err_freesgi:
2372 ext4_kvfree(sbi->s_group_info);
2373 return -ENOMEM;
2376 static void ext4_groupinfo_destroy_slabs(void)
2378 int i;
2380 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2381 if (ext4_groupinfo_caches[i])
2382 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2383 ext4_groupinfo_caches[i] = NULL;
2387 static int ext4_groupinfo_create_slab(size_t size)
2389 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2390 int slab_size;
2391 int blocksize_bits = order_base_2(size);
2392 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2393 struct kmem_cache *cachep;
2395 if (cache_index >= NR_GRPINFO_CACHES)
2396 return -EINVAL;
2398 if (unlikely(cache_index < 0))
2399 cache_index = 0;
2401 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2402 if (ext4_groupinfo_caches[cache_index]) {
2403 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2404 return 0; /* Already created */
2407 slab_size = offsetof(struct ext4_group_info,
2408 bb_counters[blocksize_bits + 2]);
2410 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2411 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2412 NULL);
2414 ext4_groupinfo_caches[cache_index] = cachep;
2416 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2417 if (!cachep) {
2418 printk(KERN_EMERG
2419 "EXT4-fs: no memory for groupinfo slab cache\n");
2420 return -ENOMEM;
2423 return 0;
2426 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2428 struct ext4_sb_info *sbi = EXT4_SB(sb);
2429 unsigned i, j;
2430 unsigned offset;
2431 unsigned max;
2432 int ret;
2434 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2436 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2437 if (sbi->s_mb_offsets == NULL) {
2438 ret = -ENOMEM;
2439 goto out;
2442 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2443 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2444 if (sbi->s_mb_maxs == NULL) {
2445 ret = -ENOMEM;
2446 goto out;
2449 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2450 if (ret < 0)
2451 goto out;
2453 /* order 0 is regular bitmap */
2454 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2455 sbi->s_mb_offsets[0] = 0;
2457 i = 1;
2458 offset = 0;
2459 max = sb->s_blocksize << 2;
2460 do {
2461 sbi->s_mb_offsets[i] = offset;
2462 sbi->s_mb_maxs[i] = max;
2463 offset += 1 << (sb->s_blocksize_bits - i);
2464 max = max >> 1;
2465 i++;
2466 } while (i <= sb->s_blocksize_bits + 1);
2468 spin_lock_init(&sbi->s_md_lock);
2469 spin_lock_init(&sbi->s_bal_lock);
2471 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2472 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2473 sbi->s_mb_stats = MB_DEFAULT_STATS;
2474 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2475 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2476 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2478 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2479 * to the lowest multiple of s_stripe which is bigger than
2480 * the s_mb_group_prealloc as determined above. We want
2481 * the preallocation size to be an exact multiple of the
2482 * RAID stripe size so that preallocations don't fragment
2483 * the stripes.
2485 if (sbi->s_stripe > 1) {
2486 sbi->s_mb_group_prealloc = roundup(
2487 sbi->s_mb_group_prealloc, sbi->s_stripe);
2490 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2491 if (sbi->s_locality_groups == NULL) {
2492 ret = -ENOMEM;
2493 goto out;
2495 for_each_possible_cpu(i) {
2496 struct ext4_locality_group *lg;
2497 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2498 mutex_init(&lg->lg_mutex);
2499 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2500 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2501 spin_lock_init(&lg->lg_prealloc_lock);
2504 /* init file for buddy data */
2505 ret = ext4_mb_init_backend(sb);
2506 if (ret != 0) {
2507 goto out;
2510 if (sbi->s_proc)
2511 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2512 &ext4_mb_seq_groups_fops, sb);
2514 if (sbi->s_journal)
2515 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2516 out:
2517 if (ret) {
2518 kfree(sbi->s_mb_offsets);
2519 kfree(sbi->s_mb_maxs);
2521 return ret;
2524 /* need to called with the ext4 group lock held */
2525 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2527 struct ext4_prealloc_space *pa;
2528 struct list_head *cur, *tmp;
2529 int count = 0;
2531 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2532 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2533 list_del(&pa->pa_group_list);
2534 count++;
2535 kmem_cache_free(ext4_pspace_cachep, pa);
2537 if (count)
2538 mb_debug(1, "mballoc: %u PAs left\n", count);
2542 int ext4_mb_release(struct super_block *sb)
2544 ext4_group_t ngroups = ext4_get_groups_count(sb);
2545 ext4_group_t i;
2546 int num_meta_group_infos;
2547 struct ext4_group_info *grinfo;
2548 struct ext4_sb_info *sbi = EXT4_SB(sb);
2549 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2551 if (sbi->s_group_info) {
2552 for (i = 0; i < ngroups; i++) {
2553 grinfo = ext4_get_group_info(sb, i);
2554 #ifdef DOUBLE_CHECK
2555 kfree(grinfo->bb_bitmap);
2556 #endif
2557 ext4_lock_group(sb, i);
2558 ext4_mb_cleanup_pa(grinfo);
2559 ext4_unlock_group(sb, i);
2560 kmem_cache_free(cachep, grinfo);
2562 num_meta_group_infos = (ngroups +
2563 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2564 EXT4_DESC_PER_BLOCK_BITS(sb);
2565 for (i = 0; i < num_meta_group_infos; i++)
2566 kfree(sbi->s_group_info[i]);
2567 ext4_kvfree(sbi->s_group_info);
2569 kfree(sbi->s_mb_offsets);
2570 kfree(sbi->s_mb_maxs);
2571 if (sbi->s_buddy_cache)
2572 iput(sbi->s_buddy_cache);
2573 if (sbi->s_mb_stats) {
2574 ext4_msg(sb, KERN_INFO,
2575 "mballoc: %u blocks %u reqs (%u success)",
2576 atomic_read(&sbi->s_bal_allocated),
2577 atomic_read(&sbi->s_bal_reqs),
2578 atomic_read(&sbi->s_bal_success));
2579 ext4_msg(sb, KERN_INFO,
2580 "mballoc: %u extents scanned, %u goal hits, "
2581 "%u 2^N hits, %u breaks, %u lost",
2582 atomic_read(&sbi->s_bal_ex_scanned),
2583 atomic_read(&sbi->s_bal_goals),
2584 atomic_read(&sbi->s_bal_2orders),
2585 atomic_read(&sbi->s_bal_breaks),
2586 atomic_read(&sbi->s_mb_lost_chunks));
2587 ext4_msg(sb, KERN_INFO,
2588 "mballoc: %lu generated and it took %Lu",
2589 sbi->s_mb_buddies_generated,
2590 sbi->s_mb_generation_time);
2591 ext4_msg(sb, KERN_INFO,
2592 "mballoc: %u preallocated, %u discarded",
2593 atomic_read(&sbi->s_mb_preallocated),
2594 atomic_read(&sbi->s_mb_discarded));
2597 free_percpu(sbi->s_locality_groups);
2598 if (sbi->s_proc)
2599 remove_proc_entry("mb_groups", sbi->s_proc);
2601 return 0;
2604 static inline int ext4_issue_discard(struct super_block *sb,
2605 ext4_group_t block_group, ext4_grpblk_t block, int count)
2607 ext4_fsblk_t discard_block;
2609 discard_block = block + ext4_group_first_block_no(sb, block_group);
2610 trace_ext4_discard_blocks(sb,
2611 (unsigned long long) discard_block, count);
2612 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2616 * This function is called by the jbd2 layer once the commit has finished,
2617 * so we know we can free the blocks that were released with that commit.
2619 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2621 struct super_block *sb = journal->j_private;
2622 struct ext4_buddy e4b;
2623 struct ext4_group_info *db;
2624 int err, count = 0, count2 = 0;
2625 struct ext4_free_data *entry;
2626 struct list_head *l, *ltmp;
2628 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2629 entry = list_entry(l, struct ext4_free_data, list);
2631 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2632 entry->count, entry->group, entry);
2634 if (test_opt(sb, DISCARD))
2635 ext4_issue_discard(sb, entry->group,
2636 entry->start_blk, entry->count);
2638 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2639 /* we expect to find existing buddy because it's pinned */
2640 BUG_ON(err != 0);
2642 db = e4b.bd_info;
2643 /* there are blocks to put in buddy to make them really free */
2644 count += entry->count;
2645 count2++;
2646 ext4_lock_group(sb, entry->group);
2647 /* Take it out of per group rb tree */
2648 rb_erase(&entry->node, &(db->bb_free_root));
2649 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2652 * Clear the trimmed flag for the group so that the next
2653 * ext4_trim_fs can trim it.
2654 * If the volume is mounted with -o discard, online discard
2655 * is supported and the free blocks will be trimmed online.
2657 if (!test_opt(sb, DISCARD))
2658 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2660 if (!db->bb_free_root.rb_node) {
2661 /* No more items in the per group rb tree
2662 * balance refcounts from ext4_mb_free_metadata()
2664 page_cache_release(e4b.bd_buddy_page);
2665 page_cache_release(e4b.bd_bitmap_page);
2667 ext4_unlock_group(sb, entry->group);
2668 kmem_cache_free(ext4_free_ext_cachep, entry);
2669 ext4_mb_unload_buddy(&e4b);
2672 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2675 #ifdef CONFIG_EXT4_DEBUG
2676 u8 mb_enable_debug __read_mostly;
2678 static struct dentry *debugfs_dir;
2679 static struct dentry *debugfs_debug;
2681 static void __init ext4_create_debugfs_entry(void)
2683 debugfs_dir = debugfs_create_dir("ext4", NULL);
2684 if (debugfs_dir)
2685 debugfs_debug = debugfs_create_u8("mballoc-debug",
2686 S_IRUGO | S_IWUSR,
2687 debugfs_dir,
2688 &mb_enable_debug);
2691 static void ext4_remove_debugfs_entry(void)
2693 debugfs_remove(debugfs_debug);
2694 debugfs_remove(debugfs_dir);
2697 #else
2699 static void __init ext4_create_debugfs_entry(void)
2703 static void ext4_remove_debugfs_entry(void)
2707 #endif
2709 int __init ext4_init_mballoc(void)
2711 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2712 SLAB_RECLAIM_ACCOUNT);
2713 if (ext4_pspace_cachep == NULL)
2714 return -ENOMEM;
2716 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2717 SLAB_RECLAIM_ACCOUNT);
2718 if (ext4_ac_cachep == NULL) {
2719 kmem_cache_destroy(ext4_pspace_cachep);
2720 return -ENOMEM;
2723 ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
2724 SLAB_RECLAIM_ACCOUNT);
2725 if (ext4_free_ext_cachep == NULL) {
2726 kmem_cache_destroy(ext4_pspace_cachep);
2727 kmem_cache_destroy(ext4_ac_cachep);
2728 return -ENOMEM;
2730 ext4_create_debugfs_entry();
2731 return 0;
2734 void ext4_exit_mballoc(void)
2737 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2738 * before destroying the slab cache.
2740 rcu_barrier();
2741 kmem_cache_destroy(ext4_pspace_cachep);
2742 kmem_cache_destroy(ext4_ac_cachep);
2743 kmem_cache_destroy(ext4_free_ext_cachep);
2744 ext4_groupinfo_destroy_slabs();
2745 ext4_remove_debugfs_entry();
2750 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2751 * Returns 0 if success or error code
2753 static noinline_for_stack int
2754 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2755 handle_t *handle, unsigned int reserv_blks)
2757 struct buffer_head *bitmap_bh = NULL;
2758 struct ext4_group_desc *gdp;
2759 struct buffer_head *gdp_bh;
2760 struct ext4_sb_info *sbi;
2761 struct super_block *sb;
2762 ext4_fsblk_t block;
2763 int err, len;
2765 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2766 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2768 sb = ac->ac_sb;
2769 sbi = EXT4_SB(sb);
2771 err = -EIO;
2772 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2773 if (!bitmap_bh)
2774 goto out_err;
2776 err = ext4_journal_get_write_access(handle, bitmap_bh);
2777 if (err)
2778 goto out_err;
2780 err = -EIO;
2781 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2782 if (!gdp)
2783 goto out_err;
2785 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2786 ext4_free_blks_count(sb, gdp));
2788 err = ext4_journal_get_write_access(handle, gdp_bh);
2789 if (err)
2790 goto out_err;
2792 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2794 len = ac->ac_b_ex.fe_len;
2795 if (!ext4_data_block_valid(sbi, block, len)) {
2796 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2797 "fs metadata\n", block, block+len);
2798 /* File system mounted not to panic on error
2799 * Fix the bitmap and repeat the block allocation
2800 * We leak some of the blocks here.
2802 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2803 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2804 ac->ac_b_ex.fe_len);
2805 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2806 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2807 if (!err)
2808 err = -EAGAIN;
2809 goto out_err;
2812 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2813 #ifdef AGGRESSIVE_CHECK
2815 int i;
2816 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2817 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2818 bitmap_bh->b_data));
2821 #endif
2822 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2823 ac->ac_b_ex.fe_len);
2824 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2825 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2826 ext4_free_blks_set(sb, gdp,
2827 ext4_free_blocks_after_init(sb,
2828 ac->ac_b_ex.fe_group, gdp));
2830 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2831 ext4_free_blks_set(sb, gdp, len);
2832 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2834 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2835 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2837 * Now reduce the dirty block count also. Should not go negative
2839 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2840 /* release all the reserved blocks if non delalloc */
2841 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2843 if (sbi->s_log_groups_per_flex) {
2844 ext4_group_t flex_group = ext4_flex_group(sbi,
2845 ac->ac_b_ex.fe_group);
2846 atomic_sub(ac->ac_b_ex.fe_len,
2847 &sbi->s_flex_groups[flex_group].free_blocks);
2850 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2851 if (err)
2852 goto out_err;
2853 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2855 out_err:
2856 ext4_mark_super_dirty(sb);
2857 brelse(bitmap_bh);
2858 return err;
2862 * here we normalize request for locality group
2863 * Group request are normalized to s_mb_group_prealloc, which goes to
2864 * s_strip if we set the same via mount option.
2865 * s_mb_group_prealloc can be configured via
2866 * /sys/fs/ext4/<partition>/mb_group_prealloc
2868 * XXX: should we try to preallocate more than the group has now?
2870 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2872 struct super_block *sb = ac->ac_sb;
2873 struct ext4_locality_group *lg = ac->ac_lg;
2875 BUG_ON(lg == NULL);
2876 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2877 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2878 current->pid, ac->ac_g_ex.fe_len);
2882 * Normalization means making request better in terms of
2883 * size and alignment
2885 static noinline_for_stack void
2886 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2887 struct ext4_allocation_request *ar)
2889 int bsbits, max;
2890 ext4_lblk_t end;
2891 loff_t size, orig_size, start_off;
2892 ext4_lblk_t start;
2893 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2894 struct ext4_prealloc_space *pa;
2896 /* do normalize only data requests, metadata requests
2897 do not need preallocation */
2898 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2899 return;
2901 /* sometime caller may want exact blocks */
2902 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2903 return;
2905 /* caller may indicate that preallocation isn't
2906 * required (it's a tail, for example) */
2907 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2908 return;
2910 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2911 ext4_mb_normalize_group_request(ac);
2912 return ;
2915 bsbits = ac->ac_sb->s_blocksize_bits;
2917 /* first, let's learn actual file size
2918 * given current request is allocated */
2919 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2920 size = size << bsbits;
2921 if (size < i_size_read(ac->ac_inode))
2922 size = i_size_read(ac->ac_inode);
2923 orig_size = size;
2925 /* max size of free chunks */
2926 max = 2 << bsbits;
2928 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2929 (req <= (size) || max <= (chunk_size))
2931 /* first, try to predict filesize */
2932 /* XXX: should this table be tunable? */
2933 start_off = 0;
2934 if (size <= 16 * 1024) {
2935 size = 16 * 1024;
2936 } else if (size <= 32 * 1024) {
2937 size = 32 * 1024;
2938 } else if (size <= 64 * 1024) {
2939 size = 64 * 1024;
2940 } else if (size <= 128 * 1024) {
2941 size = 128 * 1024;
2942 } else if (size <= 256 * 1024) {
2943 size = 256 * 1024;
2944 } else if (size <= 512 * 1024) {
2945 size = 512 * 1024;
2946 } else if (size <= 1024 * 1024) {
2947 size = 1024 * 1024;
2948 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2949 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2950 (21 - bsbits)) << 21;
2951 size = 2 * 1024 * 1024;
2952 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2953 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2954 (22 - bsbits)) << 22;
2955 size = 4 * 1024 * 1024;
2956 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2957 (8<<20)>>bsbits, max, 8 * 1024)) {
2958 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2959 (23 - bsbits)) << 23;
2960 size = 8 * 1024 * 1024;
2961 } else {
2962 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2963 size = ac->ac_o_ex.fe_len << bsbits;
2965 size = size >> bsbits;
2966 start = start_off >> bsbits;
2968 /* don't cover already allocated blocks in selected range */
2969 if (ar->pleft && start <= ar->lleft) {
2970 size -= ar->lleft + 1 - start;
2971 start = ar->lleft + 1;
2973 if (ar->pright && start + size - 1 >= ar->lright)
2974 size -= start + size - ar->lright;
2976 end = start + size;
2978 /* check we don't cross already preallocated blocks */
2979 rcu_read_lock();
2980 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2981 ext4_lblk_t pa_end;
2983 if (pa->pa_deleted)
2984 continue;
2985 spin_lock(&pa->pa_lock);
2986 if (pa->pa_deleted) {
2987 spin_unlock(&pa->pa_lock);
2988 continue;
2991 pa_end = pa->pa_lstart + pa->pa_len;
2993 /* PA must not overlap original request */
2994 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2995 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2997 /* skip PAs this normalized request doesn't overlap with */
2998 if (pa->pa_lstart >= end || pa_end <= start) {
2999 spin_unlock(&pa->pa_lock);
3000 continue;
3002 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3004 /* adjust start or end to be adjacent to this pa */
3005 if (pa_end <= ac->ac_o_ex.fe_logical) {
3006 BUG_ON(pa_end < start);
3007 start = pa_end;
3008 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3009 BUG_ON(pa->pa_lstart > end);
3010 end = pa->pa_lstart;
3012 spin_unlock(&pa->pa_lock);
3014 rcu_read_unlock();
3015 size = end - start;
3017 /* XXX: extra loop to check we really don't overlap preallocations */
3018 rcu_read_lock();
3019 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3020 ext4_lblk_t pa_end;
3021 spin_lock(&pa->pa_lock);
3022 if (pa->pa_deleted == 0) {
3023 pa_end = pa->pa_lstart + pa->pa_len;
3024 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3026 spin_unlock(&pa->pa_lock);
3028 rcu_read_unlock();
3030 if (start + size <= ac->ac_o_ex.fe_logical &&
3031 start > ac->ac_o_ex.fe_logical) {
3032 ext4_msg(ac->ac_sb, KERN_ERR,
3033 "start %lu, size %lu, fe_logical %lu",
3034 (unsigned long) start, (unsigned long) size,
3035 (unsigned long) ac->ac_o_ex.fe_logical);
3037 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3038 start > ac->ac_o_ex.fe_logical);
3039 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3041 /* now prepare goal request */
3043 /* XXX: is it better to align blocks WRT to logical
3044 * placement or satisfy big request as is */
3045 ac->ac_g_ex.fe_logical = start;
3046 ac->ac_g_ex.fe_len = size;
3048 /* define goal start in order to merge */
3049 if (ar->pright && (ar->lright == (start + size))) {
3050 /* merge to the right */
3051 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3052 &ac->ac_f_ex.fe_group,
3053 &ac->ac_f_ex.fe_start);
3054 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3056 if (ar->pleft && (ar->lleft + 1 == start)) {
3057 /* merge to the left */
3058 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3059 &ac->ac_f_ex.fe_group,
3060 &ac->ac_f_ex.fe_start);
3061 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3064 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3065 (unsigned) orig_size, (unsigned) start);
3068 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3070 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3072 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3073 atomic_inc(&sbi->s_bal_reqs);
3074 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3075 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3076 atomic_inc(&sbi->s_bal_success);
3077 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3078 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3079 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3080 atomic_inc(&sbi->s_bal_goals);
3081 if (ac->ac_found > sbi->s_mb_max_to_scan)
3082 atomic_inc(&sbi->s_bal_breaks);
3085 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3086 trace_ext4_mballoc_alloc(ac);
3087 else
3088 trace_ext4_mballoc_prealloc(ac);
3092 * Called on failure; free up any blocks from the inode PA for this
3093 * context. We don't need this for MB_GROUP_PA because we only change
3094 * pa_free in ext4_mb_release_context(), but on failure, we've already
3095 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3097 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3099 struct ext4_prealloc_space *pa = ac->ac_pa;
3100 int len;
3102 if (pa && pa->pa_type == MB_INODE_PA) {
3103 len = ac->ac_b_ex.fe_len;
3104 pa->pa_free += len;
3110 * use blocks preallocated to inode
3112 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3113 struct ext4_prealloc_space *pa)
3115 ext4_fsblk_t start;
3116 ext4_fsblk_t end;
3117 int len;
3119 /* found preallocated blocks, use them */
3120 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3121 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3122 len = end - start;
3123 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3124 &ac->ac_b_ex.fe_start);
3125 ac->ac_b_ex.fe_len = len;
3126 ac->ac_status = AC_STATUS_FOUND;
3127 ac->ac_pa = pa;
3129 BUG_ON(start < pa->pa_pstart);
3130 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3131 BUG_ON(pa->pa_free < len);
3132 pa->pa_free -= len;
3134 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3138 * use blocks preallocated to locality group
3140 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3141 struct ext4_prealloc_space *pa)
3143 unsigned int len = ac->ac_o_ex.fe_len;
3145 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3146 &ac->ac_b_ex.fe_group,
3147 &ac->ac_b_ex.fe_start);
3148 ac->ac_b_ex.fe_len = len;
3149 ac->ac_status = AC_STATUS_FOUND;
3150 ac->ac_pa = pa;
3152 /* we don't correct pa_pstart or pa_plen here to avoid
3153 * possible race when the group is being loaded concurrently
3154 * instead we correct pa later, after blocks are marked
3155 * in on-disk bitmap -- see ext4_mb_release_context()
3156 * Other CPUs are prevented from allocating from this pa by lg_mutex
3158 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3162 * Return the prealloc space that have minimal distance
3163 * from the goal block. @cpa is the prealloc
3164 * space that is having currently known minimal distance
3165 * from the goal block.
3167 static struct ext4_prealloc_space *
3168 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3169 struct ext4_prealloc_space *pa,
3170 struct ext4_prealloc_space *cpa)
3172 ext4_fsblk_t cur_distance, new_distance;
3174 if (cpa == NULL) {
3175 atomic_inc(&pa->pa_count);
3176 return pa;
3178 cur_distance = abs(goal_block - cpa->pa_pstart);
3179 new_distance = abs(goal_block - pa->pa_pstart);
3181 if (cur_distance <= new_distance)
3182 return cpa;
3184 /* drop the previous reference */
3185 atomic_dec(&cpa->pa_count);
3186 atomic_inc(&pa->pa_count);
3187 return pa;
3191 * search goal blocks in preallocated space
3193 static noinline_for_stack int
3194 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3196 int order, i;
3197 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3198 struct ext4_locality_group *lg;
3199 struct ext4_prealloc_space *pa, *cpa = NULL;
3200 ext4_fsblk_t goal_block;
3202 /* only data can be preallocated */
3203 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3204 return 0;
3206 /* first, try per-file preallocation */
3207 rcu_read_lock();
3208 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3210 /* all fields in this condition don't change,
3211 * so we can skip locking for them */
3212 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3213 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3214 continue;
3216 /* non-extent files can't have physical blocks past 2^32 */
3217 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3218 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3219 continue;
3221 /* found preallocated blocks, use them */
3222 spin_lock(&pa->pa_lock);
3223 if (pa->pa_deleted == 0 && pa->pa_free) {
3224 atomic_inc(&pa->pa_count);
3225 ext4_mb_use_inode_pa(ac, pa);
3226 spin_unlock(&pa->pa_lock);
3227 ac->ac_criteria = 10;
3228 rcu_read_unlock();
3229 return 1;
3231 spin_unlock(&pa->pa_lock);
3233 rcu_read_unlock();
3235 /* can we use group allocation? */
3236 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3237 return 0;
3239 /* inode may have no locality group for some reason */
3240 lg = ac->ac_lg;
3241 if (lg == NULL)
3242 return 0;
3243 order = fls(ac->ac_o_ex.fe_len) - 1;
3244 if (order > PREALLOC_TB_SIZE - 1)
3245 /* The max size of hash table is PREALLOC_TB_SIZE */
3246 order = PREALLOC_TB_SIZE - 1;
3248 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3250 * search for the prealloc space that is having
3251 * minimal distance from the goal block.
3253 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3254 rcu_read_lock();
3255 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3256 pa_inode_list) {
3257 spin_lock(&pa->pa_lock);
3258 if (pa->pa_deleted == 0 &&
3259 pa->pa_free >= ac->ac_o_ex.fe_len) {
3261 cpa = ext4_mb_check_group_pa(goal_block,
3262 pa, cpa);
3264 spin_unlock(&pa->pa_lock);
3266 rcu_read_unlock();
3268 if (cpa) {
3269 ext4_mb_use_group_pa(ac, cpa);
3270 ac->ac_criteria = 20;
3271 return 1;
3273 return 0;
3277 * the function goes through all block freed in the group
3278 * but not yet committed and marks them used in in-core bitmap.
3279 * buddy must be generated from this bitmap
3280 * Need to be called with the ext4 group lock held
3282 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3283 ext4_group_t group)
3285 struct rb_node *n;
3286 struct ext4_group_info *grp;
3287 struct ext4_free_data *entry;
3289 grp = ext4_get_group_info(sb, group);
3290 n = rb_first(&(grp->bb_free_root));
3292 while (n) {
3293 entry = rb_entry(n, struct ext4_free_data, node);
3294 ext4_set_bits(bitmap, entry->start_blk, entry->count);
3295 n = rb_next(n);
3297 return;
3301 * the function goes through all preallocation in this group and marks them
3302 * used in in-core bitmap. buddy must be generated from this bitmap
3303 * Need to be called with ext4 group lock held
3305 static noinline_for_stack
3306 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3307 ext4_group_t group)
3309 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3310 struct ext4_prealloc_space *pa;
3311 struct list_head *cur;
3312 ext4_group_t groupnr;
3313 ext4_grpblk_t start;
3314 int preallocated = 0;
3315 int count = 0;
3316 int len;
3318 /* all form of preallocation discards first load group,
3319 * so the only competing code is preallocation use.
3320 * we don't need any locking here
3321 * notice we do NOT ignore preallocations with pa_deleted
3322 * otherwise we could leave used blocks available for
3323 * allocation in buddy when concurrent ext4_mb_put_pa()
3324 * is dropping preallocation
3326 list_for_each(cur, &grp->bb_prealloc_list) {
3327 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3328 spin_lock(&pa->pa_lock);
3329 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3330 &groupnr, &start);
3331 len = pa->pa_len;
3332 spin_unlock(&pa->pa_lock);
3333 if (unlikely(len == 0))
3334 continue;
3335 BUG_ON(groupnr != group);
3336 ext4_set_bits(bitmap, start, len);
3337 preallocated += len;
3338 count++;
3340 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3343 static void ext4_mb_pa_callback(struct rcu_head *head)
3345 struct ext4_prealloc_space *pa;
3346 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3347 kmem_cache_free(ext4_pspace_cachep, pa);
3351 * drops a reference to preallocated space descriptor
3352 * if this was the last reference and the space is consumed
3354 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3355 struct super_block *sb, struct ext4_prealloc_space *pa)
3357 ext4_group_t grp;
3358 ext4_fsblk_t grp_blk;
3360 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3361 return;
3363 /* in this short window concurrent discard can set pa_deleted */
3364 spin_lock(&pa->pa_lock);
3365 if (pa->pa_deleted == 1) {
3366 spin_unlock(&pa->pa_lock);
3367 return;
3370 pa->pa_deleted = 1;
3371 spin_unlock(&pa->pa_lock);
3373 grp_blk = pa->pa_pstart;
3375 * If doing group-based preallocation, pa_pstart may be in the
3376 * next group when pa is used up
3378 if (pa->pa_type == MB_GROUP_PA)
3379 grp_blk--;
3381 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3384 * possible race:
3386 * P1 (buddy init) P2 (regular allocation)
3387 * find block B in PA
3388 * copy on-disk bitmap to buddy
3389 * mark B in on-disk bitmap
3390 * drop PA from group
3391 * mark all PAs in buddy
3393 * thus, P1 initializes buddy with B available. to prevent this
3394 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3395 * against that pair
3397 ext4_lock_group(sb, grp);
3398 list_del(&pa->pa_group_list);
3399 ext4_unlock_group(sb, grp);
3401 spin_lock(pa->pa_obj_lock);
3402 list_del_rcu(&pa->pa_inode_list);
3403 spin_unlock(pa->pa_obj_lock);
3405 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3409 * creates new preallocated space for given inode
3411 static noinline_for_stack int
3412 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3414 struct super_block *sb = ac->ac_sb;
3415 struct ext4_prealloc_space *pa;
3416 struct ext4_group_info *grp;
3417 struct ext4_inode_info *ei;
3419 /* preallocate only when found space is larger then requested */
3420 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3421 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3422 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3424 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3425 if (pa == NULL)
3426 return -ENOMEM;
3428 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3429 int winl;
3430 int wins;
3431 int win;
3432 int offs;
3434 /* we can't allocate as much as normalizer wants.
3435 * so, found space must get proper lstart
3436 * to cover original request */
3437 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3438 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3440 /* we're limited by original request in that
3441 * logical block must be covered any way
3442 * winl is window we can move our chunk within */
3443 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3445 /* also, we should cover whole original request */
3446 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3448 /* the smallest one defines real window */
3449 win = min(winl, wins);
3451 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3452 if (offs && offs < win)
3453 win = offs;
3455 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3456 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3457 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3460 /* preallocation can change ac_b_ex, thus we store actually
3461 * allocated blocks for history */
3462 ac->ac_f_ex = ac->ac_b_ex;
3464 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3465 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3466 pa->pa_len = ac->ac_b_ex.fe_len;
3467 pa->pa_free = pa->pa_len;
3468 atomic_set(&pa->pa_count, 1);
3469 spin_lock_init(&pa->pa_lock);
3470 INIT_LIST_HEAD(&pa->pa_inode_list);
3471 INIT_LIST_HEAD(&pa->pa_group_list);
3472 pa->pa_deleted = 0;
3473 pa->pa_type = MB_INODE_PA;
3475 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3476 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3477 trace_ext4_mb_new_inode_pa(ac, pa);
3479 ext4_mb_use_inode_pa(ac, pa);
3480 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3482 ei = EXT4_I(ac->ac_inode);
3483 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3485 pa->pa_obj_lock = &ei->i_prealloc_lock;
3486 pa->pa_inode = ac->ac_inode;
3488 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3489 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3490 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3492 spin_lock(pa->pa_obj_lock);
3493 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3494 spin_unlock(pa->pa_obj_lock);
3496 return 0;
3500 * creates new preallocated space for locality group inodes belongs to
3502 static noinline_for_stack int
3503 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3505 struct super_block *sb = ac->ac_sb;
3506 struct ext4_locality_group *lg;
3507 struct ext4_prealloc_space *pa;
3508 struct ext4_group_info *grp;
3510 /* preallocate only when found space is larger then requested */
3511 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3512 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3513 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3515 BUG_ON(ext4_pspace_cachep == NULL);
3516 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3517 if (pa == NULL)
3518 return -ENOMEM;
3520 /* preallocation can change ac_b_ex, thus we store actually
3521 * allocated blocks for history */
3522 ac->ac_f_ex = ac->ac_b_ex;
3524 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3525 pa->pa_lstart = pa->pa_pstart;
3526 pa->pa_len = ac->ac_b_ex.fe_len;
3527 pa->pa_free = pa->pa_len;
3528 atomic_set(&pa->pa_count, 1);
3529 spin_lock_init(&pa->pa_lock);
3530 INIT_LIST_HEAD(&pa->pa_inode_list);
3531 INIT_LIST_HEAD(&pa->pa_group_list);
3532 pa->pa_deleted = 0;
3533 pa->pa_type = MB_GROUP_PA;
3535 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3536 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3537 trace_ext4_mb_new_group_pa(ac, pa);
3539 ext4_mb_use_group_pa(ac, pa);
3540 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3542 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3543 lg = ac->ac_lg;
3544 BUG_ON(lg == NULL);
3546 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3547 pa->pa_inode = NULL;
3549 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3550 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3551 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3554 * We will later add the new pa to the right bucket
3555 * after updating the pa_free in ext4_mb_release_context
3557 return 0;
3560 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3562 int err;
3564 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3565 err = ext4_mb_new_group_pa(ac);
3566 else
3567 err = ext4_mb_new_inode_pa(ac);
3568 return err;
3572 * finds all unused blocks in on-disk bitmap, frees them in
3573 * in-core bitmap and buddy.
3574 * @pa must be unlinked from inode and group lists, so that
3575 * nobody else can find/use it.
3576 * the caller MUST hold group/inode locks.
3577 * TODO: optimize the case when there are no in-core structures yet
3579 static noinline_for_stack int
3580 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3581 struct ext4_prealloc_space *pa)
3583 struct super_block *sb = e4b->bd_sb;
3584 struct ext4_sb_info *sbi = EXT4_SB(sb);
3585 unsigned int end;
3586 unsigned int next;
3587 ext4_group_t group;
3588 ext4_grpblk_t bit;
3589 unsigned long long grp_blk_start;
3590 int err = 0;
3591 int free = 0;
3593 BUG_ON(pa->pa_deleted == 0);
3594 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3595 grp_blk_start = pa->pa_pstart - bit;
3596 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3597 end = bit + pa->pa_len;
3599 while (bit < end) {
3600 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3601 if (bit >= end)
3602 break;
3603 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3604 mb_debug(1, " free preallocated %u/%u in group %u\n",
3605 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3606 (unsigned) next - bit, (unsigned) group);
3607 free += next - bit;
3609 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3610 trace_ext4_mb_release_inode_pa(pa, grp_blk_start + bit,
3611 next - bit);
3612 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3613 bit = next + 1;
3615 if (free != pa->pa_free) {
3616 ext4_msg(e4b->bd_sb, KERN_CRIT,
3617 "pa %p: logic %lu, phys. %lu, len %lu",
3618 pa, (unsigned long) pa->pa_lstart,
3619 (unsigned long) pa->pa_pstart,
3620 (unsigned long) pa->pa_len);
3621 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3622 free, pa->pa_free);
3624 * pa is already deleted so we use the value obtained
3625 * from the bitmap and continue.
3628 atomic_add(free, &sbi->s_mb_discarded);
3630 return err;
3633 static noinline_for_stack int
3634 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3635 struct ext4_prealloc_space *pa)
3637 struct super_block *sb = e4b->bd_sb;
3638 ext4_group_t group;
3639 ext4_grpblk_t bit;
3641 trace_ext4_mb_release_group_pa(pa);
3642 BUG_ON(pa->pa_deleted == 0);
3643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3644 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3645 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3646 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3647 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3649 return 0;
3653 * releases all preallocations in given group
3655 * first, we need to decide discard policy:
3656 * - when do we discard
3657 * 1) ENOSPC
3658 * - how many do we discard
3659 * 1) how many requested
3661 static noinline_for_stack int
3662 ext4_mb_discard_group_preallocations(struct super_block *sb,
3663 ext4_group_t group, int needed)
3665 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3666 struct buffer_head *bitmap_bh = NULL;
3667 struct ext4_prealloc_space *pa, *tmp;
3668 struct list_head list;
3669 struct ext4_buddy e4b;
3670 int err;
3671 int busy = 0;
3672 int free = 0;
3674 mb_debug(1, "discard preallocation for group %u\n", group);
3676 if (list_empty(&grp->bb_prealloc_list))
3677 return 0;
3679 bitmap_bh = ext4_read_block_bitmap(sb, group);
3680 if (bitmap_bh == NULL) {
3681 ext4_error(sb, "Error reading block bitmap for %u", group);
3682 return 0;
3685 err = ext4_mb_load_buddy(sb, group, &e4b);
3686 if (err) {
3687 ext4_error(sb, "Error loading buddy information for %u", group);
3688 put_bh(bitmap_bh);
3689 return 0;
3692 if (needed == 0)
3693 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3695 INIT_LIST_HEAD(&list);
3696 repeat:
3697 ext4_lock_group(sb, group);
3698 list_for_each_entry_safe(pa, tmp,
3699 &grp->bb_prealloc_list, pa_group_list) {
3700 spin_lock(&pa->pa_lock);
3701 if (atomic_read(&pa->pa_count)) {
3702 spin_unlock(&pa->pa_lock);
3703 busy = 1;
3704 continue;
3706 if (pa->pa_deleted) {
3707 spin_unlock(&pa->pa_lock);
3708 continue;
3711 /* seems this one can be freed ... */
3712 pa->pa_deleted = 1;
3714 /* we can trust pa_free ... */
3715 free += pa->pa_free;
3717 spin_unlock(&pa->pa_lock);
3719 list_del(&pa->pa_group_list);
3720 list_add(&pa->u.pa_tmp_list, &list);
3723 /* if we still need more blocks and some PAs were used, try again */
3724 if (free < needed && busy) {
3725 busy = 0;
3726 ext4_unlock_group(sb, group);
3728 * Yield the CPU here so that we don't get soft lockup
3729 * in non preempt case.
3731 yield();
3732 goto repeat;
3735 /* found anything to free? */
3736 if (list_empty(&list)) {
3737 BUG_ON(free != 0);
3738 goto out;
3741 /* now free all selected PAs */
3742 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3744 /* remove from object (inode or locality group) */
3745 spin_lock(pa->pa_obj_lock);
3746 list_del_rcu(&pa->pa_inode_list);
3747 spin_unlock(pa->pa_obj_lock);
3749 if (pa->pa_type == MB_GROUP_PA)
3750 ext4_mb_release_group_pa(&e4b, pa);
3751 else
3752 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3754 list_del(&pa->u.pa_tmp_list);
3755 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3758 out:
3759 ext4_unlock_group(sb, group);
3760 ext4_mb_unload_buddy(&e4b);
3761 put_bh(bitmap_bh);
3762 return free;
3766 * releases all non-used preallocated blocks for given inode
3768 * It's important to discard preallocations under i_data_sem
3769 * We don't want another block to be served from the prealloc
3770 * space when we are discarding the inode prealloc space.
3772 * FIXME!! Make sure it is valid at all the call sites
3774 void ext4_discard_preallocations(struct inode *inode)
3776 struct ext4_inode_info *ei = EXT4_I(inode);
3777 struct super_block *sb = inode->i_sb;
3778 struct buffer_head *bitmap_bh = NULL;
3779 struct ext4_prealloc_space *pa, *tmp;
3780 ext4_group_t group = 0;
3781 struct list_head list;
3782 struct ext4_buddy e4b;
3783 int err;
3785 if (!S_ISREG(inode->i_mode)) {
3786 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3787 return;
3790 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3791 trace_ext4_discard_preallocations(inode);
3793 INIT_LIST_HEAD(&list);
3795 repeat:
3796 /* first, collect all pa's in the inode */
3797 spin_lock(&ei->i_prealloc_lock);
3798 while (!list_empty(&ei->i_prealloc_list)) {
3799 pa = list_entry(ei->i_prealloc_list.next,
3800 struct ext4_prealloc_space, pa_inode_list);
3801 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3802 spin_lock(&pa->pa_lock);
3803 if (atomic_read(&pa->pa_count)) {
3804 /* this shouldn't happen often - nobody should
3805 * use preallocation while we're discarding it */
3806 spin_unlock(&pa->pa_lock);
3807 spin_unlock(&ei->i_prealloc_lock);
3808 ext4_msg(sb, KERN_ERR,
3809 "uh-oh! used pa while discarding");
3810 WARN_ON(1);
3811 schedule_timeout_uninterruptible(HZ);
3812 goto repeat;
3815 if (pa->pa_deleted == 0) {
3816 pa->pa_deleted = 1;
3817 spin_unlock(&pa->pa_lock);
3818 list_del_rcu(&pa->pa_inode_list);
3819 list_add(&pa->u.pa_tmp_list, &list);
3820 continue;
3823 /* someone is deleting pa right now */
3824 spin_unlock(&pa->pa_lock);
3825 spin_unlock(&ei->i_prealloc_lock);
3827 /* we have to wait here because pa_deleted
3828 * doesn't mean pa is already unlinked from
3829 * the list. as we might be called from
3830 * ->clear_inode() the inode will get freed
3831 * and concurrent thread which is unlinking
3832 * pa from inode's list may access already
3833 * freed memory, bad-bad-bad */
3835 /* XXX: if this happens too often, we can
3836 * add a flag to force wait only in case
3837 * of ->clear_inode(), but not in case of
3838 * regular truncate */
3839 schedule_timeout_uninterruptible(HZ);
3840 goto repeat;
3842 spin_unlock(&ei->i_prealloc_lock);
3844 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3845 BUG_ON(pa->pa_type != MB_INODE_PA);
3846 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3848 err = ext4_mb_load_buddy(sb, group, &e4b);
3849 if (err) {
3850 ext4_error(sb, "Error loading buddy information for %u",
3851 group);
3852 continue;
3855 bitmap_bh = ext4_read_block_bitmap(sb, group);
3856 if (bitmap_bh == NULL) {
3857 ext4_error(sb, "Error reading block bitmap for %u",
3858 group);
3859 ext4_mb_unload_buddy(&e4b);
3860 continue;
3863 ext4_lock_group(sb, group);
3864 list_del(&pa->pa_group_list);
3865 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3866 ext4_unlock_group(sb, group);
3868 ext4_mb_unload_buddy(&e4b);
3869 put_bh(bitmap_bh);
3871 list_del(&pa->u.pa_tmp_list);
3872 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3876 #ifdef CONFIG_EXT4_DEBUG
3877 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3879 struct super_block *sb = ac->ac_sb;
3880 ext4_group_t ngroups, i;
3882 if (!mb_enable_debug ||
3883 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3884 return;
3886 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: Can't allocate:"
3887 " Allocation context details:");
3888 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: status %d flags %d",
3889 ac->ac_status, ac->ac_flags);
3890 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: orig %lu/%lu/%lu@%lu, "
3891 "goal %lu/%lu/%lu@%lu, "
3892 "best %lu/%lu/%lu@%lu cr %d",
3893 (unsigned long)ac->ac_o_ex.fe_group,
3894 (unsigned long)ac->ac_o_ex.fe_start,
3895 (unsigned long)ac->ac_o_ex.fe_len,
3896 (unsigned long)ac->ac_o_ex.fe_logical,
3897 (unsigned long)ac->ac_g_ex.fe_group,
3898 (unsigned long)ac->ac_g_ex.fe_start,
3899 (unsigned long)ac->ac_g_ex.fe_len,
3900 (unsigned long)ac->ac_g_ex.fe_logical,
3901 (unsigned long)ac->ac_b_ex.fe_group,
3902 (unsigned long)ac->ac_b_ex.fe_start,
3903 (unsigned long)ac->ac_b_ex.fe_len,
3904 (unsigned long)ac->ac_b_ex.fe_logical,
3905 (int)ac->ac_criteria);
3906 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: %lu scanned, %d found",
3907 ac->ac_ex_scanned, ac->ac_found);
3908 ext4_msg(ac->ac_sb, KERN_ERR, "EXT4-fs: groups: ");
3909 ngroups = ext4_get_groups_count(sb);
3910 for (i = 0; i < ngroups; i++) {
3911 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3912 struct ext4_prealloc_space *pa;
3913 ext4_grpblk_t start;
3914 struct list_head *cur;
3915 ext4_lock_group(sb, i);
3916 list_for_each(cur, &grp->bb_prealloc_list) {
3917 pa = list_entry(cur, struct ext4_prealloc_space,
3918 pa_group_list);
3919 spin_lock(&pa->pa_lock);
3920 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3921 NULL, &start);
3922 spin_unlock(&pa->pa_lock);
3923 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3924 start, pa->pa_len);
3926 ext4_unlock_group(sb, i);
3928 if (grp->bb_free == 0)
3929 continue;
3930 printk(KERN_ERR "%u: %d/%d \n",
3931 i, grp->bb_free, grp->bb_fragments);
3933 printk(KERN_ERR "\n");
3935 #else
3936 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3938 return;
3940 #endif
3943 * We use locality group preallocation for small size file. The size of the
3944 * file is determined by the current size or the resulting size after
3945 * allocation which ever is larger
3947 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3949 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3952 int bsbits = ac->ac_sb->s_blocksize_bits;
3953 loff_t size, isize;
3955 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3956 return;
3958 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3959 return;
3961 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3962 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3963 >> bsbits;
3965 if ((size == isize) &&
3966 !ext4_fs_is_busy(sbi) &&
3967 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3968 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3969 return;
3972 /* don't use group allocation for large files */
3973 size = max(size, isize);
3974 if (size > sbi->s_mb_stream_request) {
3975 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3976 return;
3979 BUG_ON(ac->ac_lg != NULL);
3981 * locality group prealloc space are per cpu. The reason for having
3982 * per cpu locality group is to reduce the contention between block
3983 * request from multiple CPUs.
3985 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3987 /* we're going to use group allocation */
3988 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3990 /* serialize all allocations in the group */
3991 mutex_lock(&ac->ac_lg->lg_mutex);
3994 static noinline_for_stack int
3995 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3996 struct ext4_allocation_request *ar)
3998 struct super_block *sb = ar->inode->i_sb;
3999 struct ext4_sb_info *sbi = EXT4_SB(sb);
4000 struct ext4_super_block *es = sbi->s_es;
4001 ext4_group_t group;
4002 unsigned int len;
4003 ext4_fsblk_t goal;
4004 ext4_grpblk_t block;
4006 /* we can't allocate > group size */
4007 len = ar->len;
4009 /* just a dirty hack to filter too big requests */
4010 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4011 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4013 /* start searching from the goal */
4014 goal = ar->goal;
4015 if (goal < le32_to_cpu(es->s_first_data_block) ||
4016 goal >= ext4_blocks_count(es))
4017 goal = le32_to_cpu(es->s_first_data_block);
4018 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4020 /* set up allocation goals */
4021 memset(ac, 0, sizeof(struct ext4_allocation_context));
4022 ac->ac_b_ex.fe_logical = ar->logical;
4023 ac->ac_status = AC_STATUS_CONTINUE;
4024 ac->ac_sb = sb;
4025 ac->ac_inode = ar->inode;
4026 ac->ac_o_ex.fe_logical = ar->logical;
4027 ac->ac_o_ex.fe_group = group;
4028 ac->ac_o_ex.fe_start = block;
4029 ac->ac_o_ex.fe_len = len;
4030 ac->ac_g_ex.fe_logical = ar->logical;
4031 ac->ac_g_ex.fe_group = group;
4032 ac->ac_g_ex.fe_start = block;
4033 ac->ac_g_ex.fe_len = len;
4034 ac->ac_flags = ar->flags;
4036 /* we have to define context: we'll we work with a file or
4037 * locality group. this is a policy, actually */
4038 ext4_mb_group_or_file(ac);
4040 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4041 "left: %u/%u, right %u/%u to %swritable\n",
4042 (unsigned) ar->len, (unsigned) ar->logical,
4043 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4044 (unsigned) ar->lleft, (unsigned) ar->pleft,
4045 (unsigned) ar->lright, (unsigned) ar->pright,
4046 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4047 return 0;
4051 static noinline_for_stack void
4052 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4053 struct ext4_locality_group *lg,
4054 int order, int total_entries)
4056 ext4_group_t group = 0;
4057 struct ext4_buddy e4b;
4058 struct list_head discard_list;
4059 struct ext4_prealloc_space *pa, *tmp;
4061 mb_debug(1, "discard locality group preallocation\n");
4063 INIT_LIST_HEAD(&discard_list);
4065 spin_lock(&lg->lg_prealloc_lock);
4066 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4067 pa_inode_list) {
4068 spin_lock(&pa->pa_lock);
4069 if (atomic_read(&pa->pa_count)) {
4071 * This is the pa that we just used
4072 * for block allocation. So don't
4073 * free that
4075 spin_unlock(&pa->pa_lock);
4076 continue;
4078 if (pa->pa_deleted) {
4079 spin_unlock(&pa->pa_lock);
4080 continue;
4082 /* only lg prealloc space */
4083 BUG_ON(pa->pa_type != MB_GROUP_PA);
4085 /* seems this one can be freed ... */
4086 pa->pa_deleted = 1;
4087 spin_unlock(&pa->pa_lock);
4089 list_del_rcu(&pa->pa_inode_list);
4090 list_add(&pa->u.pa_tmp_list, &discard_list);
4092 total_entries--;
4093 if (total_entries <= 5) {
4095 * we want to keep only 5 entries
4096 * allowing it to grow to 8. This
4097 * mak sure we don't call discard
4098 * soon for this list.
4100 break;
4103 spin_unlock(&lg->lg_prealloc_lock);
4105 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4107 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4108 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4109 ext4_error(sb, "Error loading buddy information for %u",
4110 group);
4111 continue;
4113 ext4_lock_group(sb, group);
4114 list_del(&pa->pa_group_list);
4115 ext4_mb_release_group_pa(&e4b, pa);
4116 ext4_unlock_group(sb, group);
4118 ext4_mb_unload_buddy(&e4b);
4119 list_del(&pa->u.pa_tmp_list);
4120 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4125 * We have incremented pa_count. So it cannot be freed at this
4126 * point. Also we hold lg_mutex. So no parallel allocation is
4127 * possible from this lg. That means pa_free cannot be updated.
4129 * A parallel ext4_mb_discard_group_preallocations is possible.
4130 * which can cause the lg_prealloc_list to be updated.
4133 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4135 int order, added = 0, lg_prealloc_count = 1;
4136 struct super_block *sb = ac->ac_sb;
4137 struct ext4_locality_group *lg = ac->ac_lg;
4138 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4140 order = fls(pa->pa_free) - 1;
4141 if (order > PREALLOC_TB_SIZE - 1)
4142 /* The max size of hash table is PREALLOC_TB_SIZE */
4143 order = PREALLOC_TB_SIZE - 1;
4144 /* Add the prealloc space to lg */
4145 rcu_read_lock();
4146 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4147 pa_inode_list) {
4148 spin_lock(&tmp_pa->pa_lock);
4149 if (tmp_pa->pa_deleted) {
4150 spin_unlock(&tmp_pa->pa_lock);
4151 continue;
4153 if (!added && pa->pa_free < tmp_pa->pa_free) {
4154 /* Add to the tail of the previous entry */
4155 list_add_tail_rcu(&pa->pa_inode_list,
4156 &tmp_pa->pa_inode_list);
4157 added = 1;
4159 * we want to count the total
4160 * number of entries in the list
4163 spin_unlock(&tmp_pa->pa_lock);
4164 lg_prealloc_count++;
4166 if (!added)
4167 list_add_tail_rcu(&pa->pa_inode_list,
4168 &lg->lg_prealloc_list[order]);
4169 rcu_read_unlock();
4171 /* Now trim the list to be not more than 8 elements */
4172 if (lg_prealloc_count > 8) {
4173 ext4_mb_discard_lg_preallocations(sb, lg,
4174 order, lg_prealloc_count);
4175 return;
4177 return ;
4181 * release all resource we used in allocation
4183 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4185 struct ext4_prealloc_space *pa = ac->ac_pa;
4186 if (pa) {
4187 if (pa->pa_type == MB_GROUP_PA) {
4188 /* see comment in ext4_mb_use_group_pa() */
4189 spin_lock(&pa->pa_lock);
4190 pa->pa_pstart += ac->ac_b_ex.fe_len;
4191 pa->pa_lstart += ac->ac_b_ex.fe_len;
4192 pa->pa_free -= ac->ac_b_ex.fe_len;
4193 pa->pa_len -= ac->ac_b_ex.fe_len;
4194 spin_unlock(&pa->pa_lock);
4197 if (pa) {
4199 * We want to add the pa to the right bucket.
4200 * Remove it from the list and while adding
4201 * make sure the list to which we are adding
4202 * doesn't grow big.
4204 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4205 spin_lock(pa->pa_obj_lock);
4206 list_del_rcu(&pa->pa_inode_list);
4207 spin_unlock(pa->pa_obj_lock);
4208 ext4_mb_add_n_trim(ac);
4210 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4212 if (ac->ac_bitmap_page)
4213 page_cache_release(ac->ac_bitmap_page);
4214 if (ac->ac_buddy_page)
4215 page_cache_release(ac->ac_buddy_page);
4216 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4217 mutex_unlock(&ac->ac_lg->lg_mutex);
4218 ext4_mb_collect_stats(ac);
4219 return 0;
4222 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4224 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4225 int ret;
4226 int freed = 0;
4228 trace_ext4_mb_discard_preallocations(sb, needed);
4229 for (i = 0; i < ngroups && needed > 0; i++) {
4230 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4231 freed += ret;
4232 needed -= ret;
4235 return freed;
4239 * Main entry point into mballoc to allocate blocks
4240 * it tries to use preallocation first, then falls back
4241 * to usual allocation
4243 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4244 struct ext4_allocation_request *ar, int *errp)
4246 int freed;
4247 struct ext4_allocation_context *ac = NULL;
4248 struct ext4_sb_info *sbi;
4249 struct super_block *sb;
4250 ext4_fsblk_t block = 0;
4251 unsigned int inquota = 0;
4252 unsigned int reserv_blks = 0;
4254 sb = ar->inode->i_sb;
4255 sbi = EXT4_SB(sb);
4257 trace_ext4_request_blocks(ar);
4260 * For delayed allocation, we could skip the ENOSPC and
4261 * EDQUOT check, as blocks and quotas have been already
4262 * reserved when data being copied into pagecache.
4264 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4265 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4266 else {
4267 /* Without delayed allocation we need to verify
4268 * there is enough free blocks to do block allocation
4269 * and verify allocation doesn't exceed the quota limits.
4271 while (ar->len &&
4272 ext4_claim_free_blocks(sbi, ar->len, ar->flags)) {
4274 /* let others to free the space */
4275 yield();
4276 ar->len = ar->len >> 1;
4278 if (!ar->len) {
4279 *errp = -ENOSPC;
4280 return 0;
4282 reserv_blks = ar->len;
4283 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4284 dquot_alloc_block_nofail(ar->inode, ar->len);
4285 } else {
4286 while (ar->len &&
4287 dquot_alloc_block(ar->inode, ar->len)) {
4289 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4290 ar->len--;
4293 inquota = ar->len;
4294 if (ar->len == 0) {
4295 *errp = -EDQUOT;
4296 goto out;
4300 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4301 if (!ac) {
4302 ar->len = 0;
4303 *errp = -ENOMEM;
4304 goto out;
4307 *errp = ext4_mb_initialize_context(ac, ar);
4308 if (*errp) {
4309 ar->len = 0;
4310 goto out;
4313 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4314 if (!ext4_mb_use_preallocated(ac)) {
4315 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4316 ext4_mb_normalize_request(ac, ar);
4317 repeat:
4318 /* allocate space in core */
4319 *errp = ext4_mb_regular_allocator(ac);
4320 if (*errp)
4321 goto errout;
4323 /* as we've just preallocated more space than
4324 * user requested orinally, we store allocated
4325 * space in a special descriptor */
4326 if (ac->ac_status == AC_STATUS_FOUND &&
4327 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4328 ext4_mb_new_preallocation(ac);
4330 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4331 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4332 if (*errp == -EAGAIN) {
4334 * drop the reference that we took
4335 * in ext4_mb_use_best_found
4337 ext4_mb_release_context(ac);
4338 ac->ac_b_ex.fe_group = 0;
4339 ac->ac_b_ex.fe_start = 0;
4340 ac->ac_b_ex.fe_len = 0;
4341 ac->ac_status = AC_STATUS_CONTINUE;
4342 goto repeat;
4343 } else if (*errp)
4344 errout:
4345 ext4_discard_allocated_blocks(ac);
4346 else {
4347 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4348 ar->len = ac->ac_b_ex.fe_len;
4350 } else {
4351 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4352 if (freed)
4353 goto repeat;
4354 *errp = -ENOSPC;
4357 if (*errp) {
4358 ac->ac_b_ex.fe_len = 0;
4359 ar->len = 0;
4360 ext4_mb_show_ac(ac);
4362 ext4_mb_release_context(ac);
4363 out:
4364 if (ac)
4365 kmem_cache_free(ext4_ac_cachep, ac);
4366 if (inquota && ar->len < inquota)
4367 dquot_free_block(ar->inode, inquota - ar->len);
4368 if (!ar->len) {
4369 if (!ext4_test_inode_state(ar->inode,
4370 EXT4_STATE_DELALLOC_RESERVED))
4371 /* release all the reserved blocks if non delalloc */
4372 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4373 reserv_blks);
4376 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4378 return block;
4382 * We can merge two free data extents only if the physical blocks
4383 * are contiguous, AND the extents were freed by the same transaction,
4384 * AND the blocks are associated with the same group.
4386 static int can_merge(struct ext4_free_data *entry1,
4387 struct ext4_free_data *entry2)
4389 if ((entry1->t_tid == entry2->t_tid) &&
4390 (entry1->group == entry2->group) &&
4391 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4392 return 1;
4393 return 0;
4396 static noinline_for_stack int
4397 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4398 struct ext4_free_data *new_entry)
4400 ext4_group_t group = e4b->bd_group;
4401 ext4_grpblk_t block;
4402 struct ext4_free_data *entry;
4403 struct ext4_group_info *db = e4b->bd_info;
4404 struct super_block *sb = e4b->bd_sb;
4405 struct ext4_sb_info *sbi = EXT4_SB(sb);
4406 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4407 struct rb_node *parent = NULL, *new_node;
4409 BUG_ON(!ext4_handle_valid(handle));
4410 BUG_ON(e4b->bd_bitmap_page == NULL);
4411 BUG_ON(e4b->bd_buddy_page == NULL);
4413 new_node = &new_entry->node;
4414 block = new_entry->start_blk;
4416 if (!*n) {
4417 /* first free block exent. We need to
4418 protect buddy cache from being freed,
4419 * otherwise we'll refresh it from
4420 * on-disk bitmap and lose not-yet-available
4421 * blocks */
4422 page_cache_get(e4b->bd_buddy_page);
4423 page_cache_get(e4b->bd_bitmap_page);
4425 while (*n) {
4426 parent = *n;
4427 entry = rb_entry(parent, struct ext4_free_data, node);
4428 if (block < entry->start_blk)
4429 n = &(*n)->rb_left;
4430 else if (block >= (entry->start_blk + entry->count))
4431 n = &(*n)->rb_right;
4432 else {
4433 ext4_grp_locked_error(sb, group, 0,
4434 ext4_group_first_block_no(sb, group) + block,
4435 "Block already on to-be-freed list");
4436 return 0;
4440 rb_link_node(new_node, parent, n);
4441 rb_insert_color(new_node, &db->bb_free_root);
4443 /* Now try to see the extent can be merged to left and right */
4444 node = rb_prev(new_node);
4445 if (node) {
4446 entry = rb_entry(node, struct ext4_free_data, node);
4447 if (can_merge(entry, new_entry)) {
4448 new_entry->start_blk = entry->start_blk;
4449 new_entry->count += entry->count;
4450 rb_erase(node, &(db->bb_free_root));
4451 spin_lock(&sbi->s_md_lock);
4452 list_del(&entry->list);
4453 spin_unlock(&sbi->s_md_lock);
4454 kmem_cache_free(ext4_free_ext_cachep, entry);
4458 node = rb_next(new_node);
4459 if (node) {
4460 entry = rb_entry(node, struct ext4_free_data, node);
4461 if (can_merge(new_entry, entry)) {
4462 new_entry->count += entry->count;
4463 rb_erase(node, &(db->bb_free_root));
4464 spin_lock(&sbi->s_md_lock);
4465 list_del(&entry->list);
4466 spin_unlock(&sbi->s_md_lock);
4467 kmem_cache_free(ext4_free_ext_cachep, entry);
4470 /* Add the extent to transaction's private list */
4471 spin_lock(&sbi->s_md_lock);
4472 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4473 spin_unlock(&sbi->s_md_lock);
4474 return 0;
4478 * ext4_free_blocks() -- Free given blocks and update quota
4479 * @handle: handle for this transaction
4480 * @inode: inode
4481 * @block: start physical block to free
4482 * @count: number of blocks to count
4483 * @flags: flags used by ext4_free_blocks
4485 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4486 struct buffer_head *bh, ext4_fsblk_t block,
4487 unsigned long count, int flags)
4489 struct buffer_head *bitmap_bh = NULL;
4490 struct super_block *sb = inode->i_sb;
4491 struct ext4_group_desc *gdp;
4492 unsigned long freed = 0;
4493 unsigned int overflow;
4494 ext4_grpblk_t bit;
4495 struct buffer_head *gd_bh;
4496 ext4_group_t block_group;
4497 struct ext4_sb_info *sbi;
4498 struct ext4_buddy e4b;
4499 int err = 0;
4500 int ret;
4502 if (bh) {
4503 if (block)
4504 BUG_ON(block != bh->b_blocknr);
4505 else
4506 block = bh->b_blocknr;
4509 sbi = EXT4_SB(sb);
4510 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4511 !ext4_data_block_valid(sbi, block, count)) {
4512 ext4_error(sb, "Freeing blocks not in datazone - "
4513 "block = %llu, count = %lu", block, count);
4514 goto error_return;
4517 ext4_debug("freeing block %llu\n", block);
4518 trace_ext4_free_blocks(inode, block, count, flags);
4520 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4521 struct buffer_head *tbh = bh;
4522 int i;
4524 BUG_ON(bh && (count > 1));
4526 for (i = 0; i < count; i++) {
4527 if (!bh)
4528 tbh = sb_find_get_block(inode->i_sb,
4529 block + i);
4530 if (unlikely(!tbh))
4531 continue;
4532 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4533 inode, tbh, block + i);
4538 * We need to make sure we don't reuse the freed block until
4539 * after the transaction is committed, which we can do by
4540 * treating the block as metadata, below. We make an
4541 * exception if the inode is to be written in writeback mode
4542 * since writeback mode has weak data consistency guarantees.
4544 if (!ext4_should_writeback_data(inode))
4545 flags |= EXT4_FREE_BLOCKS_METADATA;
4547 do_more:
4548 overflow = 0;
4549 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4552 * Check to see if we are freeing blocks across a group
4553 * boundary.
4555 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4556 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4557 count -= overflow;
4559 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4560 if (!bitmap_bh) {
4561 err = -EIO;
4562 goto error_return;
4564 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4565 if (!gdp) {
4566 err = -EIO;
4567 goto error_return;
4570 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4571 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4572 in_range(block, ext4_inode_table(sb, gdp),
4573 EXT4_SB(sb)->s_itb_per_group) ||
4574 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4575 EXT4_SB(sb)->s_itb_per_group)) {
4577 ext4_error(sb, "Freeing blocks in system zone - "
4578 "Block = %llu, count = %lu", block, count);
4579 /* err = 0. ext4_std_error should be a no op */
4580 goto error_return;
4583 BUFFER_TRACE(bitmap_bh, "getting write access");
4584 err = ext4_journal_get_write_access(handle, bitmap_bh);
4585 if (err)
4586 goto error_return;
4589 * We are about to modify some metadata. Call the journal APIs
4590 * to unshare ->b_data if a currently-committing transaction is
4591 * using it
4593 BUFFER_TRACE(gd_bh, "get_write_access");
4594 err = ext4_journal_get_write_access(handle, gd_bh);
4595 if (err)
4596 goto error_return;
4597 #ifdef AGGRESSIVE_CHECK
4599 int i;
4600 for (i = 0; i < count; i++)
4601 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4603 #endif
4604 trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4606 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4607 if (err)
4608 goto error_return;
4610 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4611 struct ext4_free_data *new_entry;
4613 * blocks being freed are metadata. these blocks shouldn't
4614 * be used until this transaction is committed
4616 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4617 if (!new_entry) {
4618 err = -ENOMEM;
4619 goto error_return;
4621 new_entry->start_blk = bit;
4622 new_entry->group = block_group;
4623 new_entry->count = count;
4624 new_entry->t_tid = handle->h_transaction->t_tid;
4626 ext4_lock_group(sb, block_group);
4627 mb_clear_bits(bitmap_bh->b_data, bit, count);
4628 ext4_mb_free_metadata(handle, &e4b, new_entry);
4629 } else {
4630 /* need to update group_info->bb_free and bitmap
4631 * with group lock held. generate_buddy look at
4632 * them with group lock_held
4634 ext4_lock_group(sb, block_group);
4635 mb_clear_bits(bitmap_bh->b_data, bit, count);
4636 mb_free_blocks(inode, &e4b, bit, count);
4639 ret = ext4_free_blks_count(sb, gdp) + count;
4640 ext4_free_blks_set(sb, gdp, ret);
4641 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4642 ext4_unlock_group(sb, block_group);
4643 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4645 if (sbi->s_log_groups_per_flex) {
4646 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4647 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4650 ext4_mb_unload_buddy(&e4b);
4652 freed += count;
4654 /* We dirtied the bitmap block */
4655 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4656 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4658 /* And the group descriptor block */
4659 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4660 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4661 if (!err)
4662 err = ret;
4664 if (overflow && !err) {
4665 block += count;
4666 count = overflow;
4667 put_bh(bitmap_bh);
4668 goto do_more;
4670 ext4_mark_super_dirty(sb);
4671 error_return:
4672 if (freed && !(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4673 dquot_free_block(inode, freed);
4674 brelse(bitmap_bh);
4675 ext4_std_error(sb, err);
4676 return;
4680 * ext4_group_add_blocks() -- Add given blocks to an existing group
4681 * @handle: handle to this transaction
4682 * @sb: super block
4683 * @block: start physcial block to add to the block group
4684 * @count: number of blocks to free
4686 * This marks the blocks as free in the bitmap and buddy.
4688 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4689 ext4_fsblk_t block, unsigned long count)
4691 struct buffer_head *bitmap_bh = NULL;
4692 struct buffer_head *gd_bh;
4693 ext4_group_t block_group;
4694 ext4_grpblk_t bit;
4695 unsigned int i;
4696 struct ext4_group_desc *desc;
4697 struct ext4_sb_info *sbi = EXT4_SB(sb);
4698 struct ext4_buddy e4b;
4699 int err = 0, ret, blk_free_count;
4700 ext4_grpblk_t blocks_freed;
4702 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4704 if (count == 0)
4705 return 0;
4707 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4709 * Check to see if we are freeing blocks across a group
4710 * boundary.
4712 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4713 ext4_warning(sb, "too much blocks added to group %u\n",
4714 block_group);
4715 err = -EINVAL;
4716 goto error_return;
4719 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4720 if (!bitmap_bh) {
4721 err = -EIO;
4722 goto error_return;
4725 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4726 if (!desc) {
4727 err = -EIO;
4728 goto error_return;
4731 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4732 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4733 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4734 in_range(block + count - 1, ext4_inode_table(sb, desc),
4735 sbi->s_itb_per_group)) {
4736 ext4_error(sb, "Adding blocks in system zones - "
4737 "Block = %llu, count = %lu",
4738 block, count);
4739 err = -EINVAL;
4740 goto error_return;
4743 BUFFER_TRACE(bitmap_bh, "getting write access");
4744 err = ext4_journal_get_write_access(handle, bitmap_bh);
4745 if (err)
4746 goto error_return;
4749 * We are about to modify some metadata. Call the journal APIs
4750 * to unshare ->b_data if a currently-committing transaction is
4751 * using it
4753 BUFFER_TRACE(gd_bh, "get_write_access");
4754 err = ext4_journal_get_write_access(handle, gd_bh);
4755 if (err)
4756 goto error_return;
4758 for (i = 0, blocks_freed = 0; i < count; i++) {
4759 BUFFER_TRACE(bitmap_bh, "clear bit");
4760 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4761 ext4_error(sb, "bit already cleared for block %llu",
4762 (ext4_fsblk_t)(block + i));
4763 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4764 } else {
4765 blocks_freed++;
4769 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4770 if (err)
4771 goto error_return;
4774 * need to update group_info->bb_free and bitmap
4775 * with group lock held. generate_buddy look at
4776 * them with group lock_held
4778 ext4_lock_group(sb, block_group);
4779 mb_clear_bits(bitmap_bh->b_data, bit, count);
4780 mb_free_blocks(NULL, &e4b, bit, count);
4781 blk_free_count = blocks_freed + ext4_free_blks_count(sb, desc);
4782 ext4_free_blks_set(sb, desc, blk_free_count);
4783 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4784 ext4_unlock_group(sb, block_group);
4785 percpu_counter_add(&sbi->s_freeblocks_counter, blocks_freed);
4787 if (sbi->s_log_groups_per_flex) {
4788 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4789 atomic_add(blocks_freed,
4790 &sbi->s_flex_groups[flex_group].free_blocks);
4793 ext4_mb_unload_buddy(&e4b);
4795 /* We dirtied the bitmap block */
4796 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4797 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4799 /* And the group descriptor block */
4800 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4801 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4802 if (!err)
4803 err = ret;
4805 error_return:
4806 brelse(bitmap_bh);
4807 ext4_std_error(sb, err);
4808 return err;
4812 * ext4_trim_extent -- function to TRIM one single free extent in the group
4813 * @sb: super block for the file system
4814 * @start: starting block of the free extent in the alloc. group
4815 * @count: number of blocks to TRIM
4816 * @group: alloc. group we are working with
4817 * @e4b: ext4 buddy for the group
4819 * Trim "count" blocks starting at "start" in the "group". To assure that no
4820 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4821 * be called with under the group lock.
4823 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4824 ext4_group_t group, struct ext4_buddy *e4b)
4826 struct ext4_free_extent ex;
4828 trace_ext4_trim_extent(sb, group, start, count);
4830 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4832 ex.fe_start = start;
4833 ex.fe_group = group;
4834 ex.fe_len = count;
4837 * Mark blocks used, so no one can reuse them while
4838 * being trimmed.
4840 mb_mark_used(e4b, &ex);
4841 ext4_unlock_group(sb, group);
4842 ext4_issue_discard(sb, group, start, count);
4843 ext4_lock_group(sb, group);
4844 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4848 * ext4_trim_all_free -- function to trim all free space in alloc. group
4849 * @sb: super block for file system
4850 * @group: group to be trimmed
4851 * @start: first group block to examine
4852 * @max: last group block to examine
4853 * @minblocks: minimum extent block count
4855 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4856 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4857 * the extent.
4860 * ext4_trim_all_free walks through group's block bitmap searching for free
4861 * extents. When the free extent is found, mark it as used in group buddy
4862 * bitmap. Then issue a TRIM command on this extent and free the extent in
4863 * the group buddy bitmap. This is done until whole group is scanned.
4865 static ext4_grpblk_t
4866 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4867 ext4_grpblk_t start, ext4_grpblk_t max,
4868 ext4_grpblk_t minblocks)
4870 void *bitmap;
4871 ext4_grpblk_t next, count = 0, free_count = 0;
4872 struct ext4_buddy e4b;
4873 int ret;
4875 trace_ext4_trim_all_free(sb, group, start, max);
4877 ret = ext4_mb_load_buddy(sb, group, &e4b);
4878 if (ret) {
4879 ext4_error(sb, "Error in loading buddy "
4880 "information for %u", group);
4881 return ret;
4883 bitmap = e4b.bd_bitmap;
4885 ext4_lock_group(sb, group);
4886 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4887 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4888 goto out;
4890 start = (e4b.bd_info->bb_first_free > start) ?
4891 e4b.bd_info->bb_first_free : start;
4893 while (start < max) {
4894 start = mb_find_next_zero_bit(bitmap, max, start);
4895 if (start >= max)
4896 break;
4897 next = mb_find_next_bit(bitmap, max, start);
4899 if ((next - start) >= minblocks) {
4900 ext4_trim_extent(sb, start,
4901 next - start, group, &e4b);
4902 count += next - start;
4904 free_count += next - start;
4905 start = next + 1;
4907 if (fatal_signal_pending(current)) {
4908 count = -ERESTARTSYS;
4909 break;
4912 if (need_resched()) {
4913 ext4_unlock_group(sb, group);
4914 cond_resched();
4915 ext4_lock_group(sb, group);
4918 if ((e4b.bd_info->bb_free - free_count) < minblocks)
4919 break;
4922 if (!ret)
4923 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4924 out:
4925 ext4_unlock_group(sb, group);
4926 ext4_mb_unload_buddy(&e4b);
4928 ext4_debug("trimmed %d blocks in the group %d\n",
4929 count, group);
4931 return count;
4935 * ext4_trim_fs() -- trim ioctl handle function
4936 * @sb: superblock for filesystem
4937 * @range: fstrim_range structure
4939 * start: First Byte to trim
4940 * len: number of Bytes to trim from start
4941 * minlen: minimum extent length in Bytes
4942 * ext4_trim_fs goes through all allocation groups containing Bytes from
4943 * start to start+len. For each such a group ext4_trim_all_free function
4944 * is invoked to trim all free space.
4946 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4948 struct ext4_group_info *grp;
4949 ext4_group_t first_group, last_group;
4950 ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4951 ext4_grpblk_t cnt = 0, first_block, last_block;
4952 uint64_t start, len, minlen, trimmed = 0;
4953 ext4_fsblk_t first_data_blk =
4954 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4955 int ret = 0;
4957 start = range->start >> sb->s_blocksize_bits;
4958 len = range->len >> sb->s_blocksize_bits;
4959 minlen = range->minlen >> sb->s_blocksize_bits;
4961 if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
4962 return -EINVAL;
4963 if (start + len <= first_data_blk)
4964 goto out;
4965 if (start < first_data_blk) {
4966 len -= first_data_blk - start;
4967 start = first_data_blk;
4970 /* Determine first and last group to examine based on start and len */
4971 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4972 &first_group, &first_block);
4973 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
4974 &last_group, &last_block);
4975 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
4976 last_block = EXT4_BLOCKS_PER_GROUP(sb);
4978 if (first_group > last_group)
4979 return -EINVAL;
4981 for (group = first_group; group <= last_group; group++) {
4982 grp = ext4_get_group_info(sb, group);
4983 /* We only do this if the grp has never been initialized */
4984 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
4985 ret = ext4_mb_init_group(sb, group);
4986 if (ret)
4987 break;
4991 * For all the groups except the last one, last block will
4992 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
4993 * change it for the last group in which case start +
4994 * len < EXT4_BLOCKS_PER_GROUP(sb).
4996 if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb))
4997 last_block = first_block + len;
4998 len -= last_block - first_block;
5000 if (grp->bb_free >= minlen) {
5001 cnt = ext4_trim_all_free(sb, group, first_block,
5002 last_block, minlen);
5003 if (cnt < 0) {
5004 ret = cnt;
5005 break;
5008 trimmed += cnt;
5009 first_block = 0;
5011 range->len = trimmed * sb->s_blocksize;
5013 if (!ret)
5014 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5016 out:
5017 return ret;