Merge branch 'akpm'
[linux-2.6/next.git] / arch / ia64 / mm / contig.c
blobf114a3b14c6ad73c7fa6afbe950375f46d98b876
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
15 * memory.
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap;
31 #endif
33 /**
34 * show_mem - give short summary of memory stats
36 * Shows a simple page count of reserved and used pages in the system.
37 * For discontig machines, it does this on a per-pgdat basis.
39 void show_mem(unsigned int filter)
41 int i, total_reserved = 0;
42 int total_shared = 0, total_cached = 0;
43 unsigned long total_present = 0;
44 pg_data_t *pgdat;
46 printk(KERN_INFO "Mem-info:\n");
47 show_free_areas(filter);
48 printk(KERN_INFO "Node memory in pages:\n");
49 for_each_online_pgdat(pgdat) {
50 unsigned long present;
51 unsigned long flags;
52 int shared = 0, cached = 0, reserved = 0;
53 int nid = pgdat->node_id;
55 if (skip_free_areas_node(filter, nid))
56 continue;
57 pgdat_resize_lock(pgdat, &flags);
58 present = pgdat->node_present_pages;
59 for(i = 0; i < pgdat->node_spanned_pages; i++) {
60 struct page *page;
61 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
62 touch_nmi_watchdog();
63 if (pfn_valid(pgdat->node_start_pfn + i))
64 page = pfn_to_page(pgdat->node_start_pfn + i);
65 else {
66 #ifdef CONFIG_VIRTUAL_MEM_MAP
67 if (max_gap < LARGE_GAP)
68 continue;
69 #endif
70 i = vmemmap_find_next_valid_pfn(nid, i) - 1;
71 continue;
73 if (PageReserved(page))
74 reserved++;
75 else if (PageSwapCache(page))
76 cached++;
77 else if (page_count(page))
78 shared += page_count(page)-1;
80 pgdat_resize_unlock(pgdat, &flags);
81 total_present += present;
82 total_reserved += reserved;
83 total_cached += cached;
84 total_shared += shared;
85 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
86 "shrd: %10d, swpd: %10d\n", nid,
87 present, reserved, shared, cached);
89 printk(KERN_INFO "%ld pages of RAM\n", total_present);
90 printk(KERN_INFO "%d reserved pages\n", total_reserved);
91 printk(KERN_INFO "%d pages shared\n", total_shared);
92 printk(KERN_INFO "%d pages swap cached\n", total_cached);
93 printk(KERN_INFO "Total of %ld pages in page table cache\n",
94 quicklist_total_size());
95 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
99 /* physical address where the bootmem map is located */
100 unsigned long bootmap_start;
103 * find_bootmap_location - callback to find a memory area for the bootmap
104 * @start: start of region
105 * @end: end of region
106 * @arg: unused callback data
108 * Find a place to put the bootmap and return its starting address in
109 * bootmap_start. This address must be page-aligned.
111 static int __init
112 find_bootmap_location (u64 start, u64 end, void *arg)
114 u64 needed = *(unsigned long *)arg;
115 u64 range_start, range_end, free_start;
116 int i;
118 #if IGNORE_PFN0
119 if (start == PAGE_OFFSET) {
120 start += PAGE_SIZE;
121 if (start >= end)
122 return 0;
124 #endif
126 free_start = PAGE_OFFSET;
128 for (i = 0; i < num_rsvd_regions; i++) {
129 range_start = max(start, free_start);
130 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
132 free_start = PAGE_ALIGN(rsvd_region[i].end);
134 if (range_end <= range_start)
135 continue; /* skip over empty range */
137 if (range_end - range_start >= needed) {
138 bootmap_start = __pa(range_start);
139 return -1; /* done */
142 /* nothing more available in this segment */
143 if (range_end == end)
144 return 0;
146 return 0;
149 #ifdef CONFIG_SMP
150 static void *cpu_data;
152 * per_cpu_init - setup per-cpu variables
154 * Allocate and setup per-cpu data areas.
156 void * __cpuinit
157 per_cpu_init (void)
159 static bool first_time = true;
160 void *cpu0_data = __cpu0_per_cpu;
161 unsigned int cpu;
163 if (!first_time)
164 goto skip;
165 first_time = false;
168 * get_free_pages() cannot be used before cpu_init() done.
169 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
170 * to avoid that AP calls get_zeroed_page().
172 for_each_possible_cpu(cpu) {
173 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
175 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
176 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
177 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
180 * percpu area for cpu0 is moved from the __init area
181 * which is setup by head.S and used till this point.
182 * Update ar.k3. This move is ensures that percpu
183 * area for cpu0 is on the correct node and its
184 * virtual address isn't insanely far from other
185 * percpu areas which is important for congruent
186 * percpu allocator.
188 if (cpu == 0)
189 ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
190 (unsigned long)__per_cpu_start);
192 cpu_data += PERCPU_PAGE_SIZE;
194 skip:
195 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
198 static inline void
199 alloc_per_cpu_data(void)
201 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
202 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
206 * setup_per_cpu_areas - setup percpu areas
208 * Arch code has already allocated and initialized percpu areas. All
209 * this function has to do is to teach the determined layout to the
210 * dynamic percpu allocator, which happens to be more complex than
211 * creating whole new ones using helpers.
213 void __init
214 setup_per_cpu_areas(void)
216 struct pcpu_alloc_info *ai;
217 struct pcpu_group_info *gi;
218 unsigned int cpu;
219 ssize_t static_size, reserved_size, dyn_size;
220 int rc;
222 ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
223 if (!ai)
224 panic("failed to allocate pcpu_alloc_info");
225 gi = &ai->groups[0];
227 /* units are assigned consecutively to possible cpus */
228 for_each_possible_cpu(cpu)
229 gi->cpu_map[gi->nr_units++] = cpu;
231 /* set parameters */
232 static_size = __per_cpu_end - __per_cpu_start;
233 reserved_size = PERCPU_MODULE_RESERVE;
234 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
235 if (dyn_size < 0)
236 panic("percpu area overflow static=%zd reserved=%zd\n",
237 static_size, reserved_size);
239 ai->static_size = static_size;
240 ai->reserved_size = reserved_size;
241 ai->dyn_size = dyn_size;
242 ai->unit_size = PERCPU_PAGE_SIZE;
243 ai->atom_size = PAGE_SIZE;
244 ai->alloc_size = PERCPU_PAGE_SIZE;
246 rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
247 if (rc)
248 panic("failed to setup percpu area (err=%d)", rc);
250 pcpu_free_alloc_info(ai);
252 #else
253 #define alloc_per_cpu_data() do { } while (0)
254 #endif /* CONFIG_SMP */
257 * find_memory - setup memory map
259 * Walk the EFI memory map and find usable memory for the system, taking
260 * into account reserved areas.
262 void __init
263 find_memory (void)
265 unsigned long bootmap_size;
267 reserve_memory();
269 /* first find highest page frame number */
270 min_low_pfn = ~0UL;
271 max_low_pfn = 0;
272 efi_memmap_walk(find_max_min_low_pfn, NULL);
273 max_pfn = max_low_pfn;
274 /* how many bytes to cover all the pages */
275 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
277 /* look for a location to hold the bootmap */
278 bootmap_start = ~0UL;
279 efi_memmap_walk(find_bootmap_location, &bootmap_size);
280 if (bootmap_start == ~0UL)
281 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
283 bootmap_size = init_bootmem_node(NODE_DATA(0),
284 (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
286 /* Free all available memory, then mark bootmem-map as being in use. */
287 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
288 reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
290 find_initrd();
292 alloc_per_cpu_data();
295 static int count_pages(u64 start, u64 end, void *arg)
297 unsigned long *count = arg;
299 *count += (end - start) >> PAGE_SHIFT;
300 return 0;
304 * Set up the page tables.
307 void __init
308 paging_init (void)
310 unsigned long max_dma;
311 unsigned long max_zone_pfns[MAX_NR_ZONES];
313 num_physpages = 0;
314 efi_memmap_walk(count_pages, &num_physpages);
316 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
317 #ifdef CONFIG_ZONE_DMA
318 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
319 max_zone_pfns[ZONE_DMA] = max_dma;
320 #endif
321 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
323 #ifdef CONFIG_VIRTUAL_MEM_MAP
324 efi_memmap_walk(filter_memory, register_active_ranges);
325 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
326 if (max_gap < LARGE_GAP) {
327 vmem_map = (struct page *) 0;
328 free_area_init_nodes(max_zone_pfns);
329 } else {
330 unsigned long map_size;
332 /* allocate virtual_mem_map */
334 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
335 sizeof(struct page));
336 VMALLOC_END -= map_size;
337 vmem_map = (struct page *) VMALLOC_END;
338 efi_memmap_walk(create_mem_map_page_table, NULL);
341 * alloc_node_mem_map makes an adjustment for mem_map
342 * which isn't compatible with vmem_map.
344 NODE_DATA(0)->node_mem_map = vmem_map +
345 find_min_pfn_with_active_regions();
346 free_area_init_nodes(max_zone_pfns);
348 printk("Virtual mem_map starts at 0x%p\n", mem_map);
350 #else /* !CONFIG_VIRTUAL_MEM_MAP */
351 add_active_range(0, 0, max_low_pfn);
352 free_area_init_nodes(max_zone_pfns);
353 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
354 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));