Merge branch 'akpm'
[linux-2.6/next.git] / drivers / char / hpet.c
blobc9aeb7fce8782c96987a743e19f73c45289827b3
1 /*
2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
5 * Venki Pallipadi
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/mm.h>
25 #include <linux/proc_fs.h>
26 #include <linux/spinlock.h>
27 #include <linux/sysctl.h>
28 #include <linux/wait.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
38 #include <asm/current.h>
39 #include <asm/system.h>
40 #include <asm/irq.h>
41 #include <asm/div64.h>
43 #include <linux/acpi.h>
44 #include <acpi/acpi_bus.h>
45 #include <linux/hpet.h>
48 * The High Precision Event Timer driver.
49 * This driver is closely modelled after the rtc.c driver.
50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
52 #define HPET_USER_FREQ (64)
53 #define HPET_DRIFT (500)
55 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
58 /* WARNING -- don't get confused. These macros are never used
59 * to write the (single) counter, and rarely to read it.
60 * They're badly named; to fix, someday.
62 #if BITS_PER_LONG == 64
63 #define write_counter(V, MC) writeq(V, MC)
64 #define read_counter(MC) readq(MC)
65 #else
66 #define write_counter(V, MC) writel(V, MC)
67 #define read_counter(MC) readl(MC)
68 #endif
70 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
71 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
73 /* This clocksource driver currently only works on ia64 */
74 #ifdef CONFIG_IA64
75 static void __iomem *hpet_mctr;
77 static cycle_t read_hpet(struct clocksource *cs)
79 return (cycle_t)read_counter((void __iomem *)hpet_mctr);
82 static struct clocksource clocksource_hpet = {
83 .name = "hpet",
84 .rating = 250,
85 .read = read_hpet,
86 .mask = CLOCKSOURCE_MASK(64),
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
89 static struct clocksource *hpet_clocksource;
90 #endif
92 /* A lock for concurrent access by app and isr hpet activity. */
93 static DEFINE_SPINLOCK(hpet_lock);
95 #define HPET_DEV_NAME (7)
97 struct hpet_dev {
98 struct hpets *hd_hpets;
99 struct hpet __iomem *hd_hpet;
100 struct hpet_timer __iomem *hd_timer;
101 unsigned long hd_ireqfreq;
102 unsigned long hd_irqdata;
103 wait_queue_head_t hd_waitqueue;
104 struct fasync_struct *hd_async_queue;
105 unsigned int hd_flags;
106 unsigned int hd_irq;
107 unsigned int hd_hdwirq;
108 char hd_name[HPET_DEV_NAME];
111 struct hpets {
112 struct hpets *hp_next;
113 struct hpet __iomem *hp_hpet;
114 unsigned long hp_hpet_phys;
115 struct clocksource *hp_clocksource;
116 unsigned long long hp_tick_freq;
117 unsigned long hp_delta;
118 unsigned int hp_ntimer;
119 unsigned int hp_which;
120 struct hpet_dev hp_dev[1];
123 static struct hpets *hpets;
125 #define HPET_OPEN 0x0001
126 #define HPET_IE 0x0002 /* interrupt enabled */
127 #define HPET_PERIODIC 0x0004
128 #define HPET_SHARED_IRQ 0x0008
131 #ifndef readq
132 static inline unsigned long long readq(void __iomem *addr)
134 return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
136 #endif
138 #ifndef writeq
139 static inline void writeq(unsigned long long v, void __iomem *addr)
141 writel(v & 0xffffffff, addr);
142 writel(v >> 32, addr + 4);
144 #endif
146 static irqreturn_t hpet_interrupt(int irq, void *data)
148 struct hpet_dev *devp;
149 unsigned long isr;
151 devp = data;
152 isr = 1 << (devp - devp->hd_hpets->hp_dev);
154 if ((devp->hd_flags & HPET_SHARED_IRQ) &&
155 !(isr & readl(&devp->hd_hpet->hpet_isr)))
156 return IRQ_NONE;
158 spin_lock(&hpet_lock);
159 devp->hd_irqdata++;
162 * For non-periodic timers, increment the accumulator.
163 * This has the effect of treating non-periodic like periodic.
165 if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
166 unsigned long m, t, mc, base, k;
167 struct hpet __iomem *hpet = devp->hd_hpet;
168 struct hpets *hpetp = devp->hd_hpets;
170 t = devp->hd_ireqfreq;
171 m = read_counter(&devp->hd_timer->hpet_compare);
172 mc = read_counter(&hpet->hpet_mc);
173 /* The time for the next interrupt would logically be t + m,
174 * however, if we are very unlucky and the interrupt is delayed
175 * for longer than t then we will completely miss the next
176 * interrupt if we set t + m and an application will hang.
177 * Therefore we need to make a more complex computation assuming
178 * that there exists a k for which the following is true:
179 * k * t + base < mc + delta
180 * (k + 1) * t + base > mc + delta
181 * where t is the interval in hpet ticks for the given freq,
182 * base is the theoretical start value 0 < base < t,
183 * mc is the main counter value at the time of the interrupt,
184 * delta is the time it takes to write the a value to the
185 * comparator.
186 * k may then be computed as (mc - base + delta) / t .
188 base = mc % t;
189 k = (mc - base + hpetp->hp_delta) / t;
190 write_counter(t * (k + 1) + base,
191 &devp->hd_timer->hpet_compare);
194 if (devp->hd_flags & HPET_SHARED_IRQ)
195 writel(isr, &devp->hd_hpet->hpet_isr);
196 spin_unlock(&hpet_lock);
198 wake_up_interruptible(&devp->hd_waitqueue);
200 kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
202 return IRQ_HANDLED;
205 static void hpet_timer_set_irq(struct hpet_dev *devp)
207 unsigned long v;
208 int irq, gsi;
209 struct hpet_timer __iomem *timer;
211 spin_lock_irq(&hpet_lock);
212 if (devp->hd_hdwirq) {
213 spin_unlock_irq(&hpet_lock);
214 return;
217 timer = devp->hd_timer;
219 /* we prefer level triggered mode */
220 v = readl(&timer->hpet_config);
221 if (!(v & Tn_INT_TYPE_CNF_MASK)) {
222 v |= Tn_INT_TYPE_CNF_MASK;
223 writel(v, &timer->hpet_config);
225 spin_unlock_irq(&hpet_lock);
227 v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
228 Tn_INT_ROUTE_CAP_SHIFT;
231 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
232 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
234 if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
235 v &= ~0xf3df;
236 else
237 v &= ~0xffff;
239 for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
240 if (irq >= nr_irqs) {
241 irq = HPET_MAX_IRQ;
242 break;
245 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
246 ACPI_ACTIVE_LOW);
247 if (gsi > 0)
248 break;
250 /* FIXME: Setup interrupt source table */
253 if (irq < HPET_MAX_IRQ) {
254 spin_lock_irq(&hpet_lock);
255 v = readl(&timer->hpet_config);
256 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
257 writel(v, &timer->hpet_config);
258 devp->hd_hdwirq = gsi;
259 spin_unlock_irq(&hpet_lock);
261 return;
264 static int hpet_open(struct inode *inode, struct file *file)
266 struct hpets *hpetp;
268 if (file->f_mode & FMODE_WRITE)
269 return -EINVAL;
271 hpetp = hpets;
272 /* starting with timer-neutral instance */
273 file->private_data = &hpetp->hp_dev[hpetp->hp_ntimer];
275 return 0;
278 static int hpet_alloc_timer(struct file *file)
280 struct hpet_dev *devp;
281 struct hpets *hpetp;
282 int i;
284 /* once acquired, will remain */
285 devp = file->private_data;
286 if (devp->hd_timer)
287 return 0;
289 mutex_lock(&hpet_mutex);
290 spin_lock_irq(&hpet_lock);
292 /* check for race acquiring */
293 devp = file->private_data;
294 if (devp->hd_timer) {
295 spin_unlock_irq(&hpet_lock);
296 mutex_unlock(&hpet_mutex);
297 return 0;
300 for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
301 for (i = 0; i < hpetp->hp_ntimer; i++)
302 if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
303 continue;
304 else {
305 devp = &hpetp->hp_dev[i];
306 break;
309 if (!devp) {
310 spin_unlock_irq(&hpet_lock);
311 mutex_unlock(&hpet_mutex);
312 return -EBUSY;
315 file->private_data = devp;
316 devp->hd_irqdata = 0;
317 devp->hd_flags |= HPET_OPEN;
318 spin_unlock_irq(&hpet_lock);
319 mutex_unlock(&hpet_mutex);
321 hpet_timer_set_irq(devp);
323 return 0;
326 static ssize_t
327 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
329 DECLARE_WAITQUEUE(wait, current);
330 unsigned long data;
331 ssize_t retval;
332 struct hpet_dev *devp;
334 devp = file->private_data;
335 if (!devp->hd_ireqfreq)
336 return -EIO;
338 if (count < sizeof(unsigned long))
339 return -EINVAL;
341 add_wait_queue(&devp->hd_waitqueue, &wait);
343 for ( ; ; ) {
344 set_current_state(TASK_INTERRUPTIBLE);
346 spin_lock_irq(&hpet_lock);
347 data = devp->hd_irqdata;
348 devp->hd_irqdata = 0;
349 spin_unlock_irq(&hpet_lock);
351 if (data)
352 break;
353 else if (file->f_flags & O_NONBLOCK) {
354 retval = -EAGAIN;
355 goto out;
356 } else if (signal_pending(current)) {
357 retval = -ERESTARTSYS;
358 goto out;
360 schedule();
363 retval = put_user(data, (unsigned long __user *)buf);
364 if (!retval)
365 retval = sizeof(unsigned long);
366 out:
367 __set_current_state(TASK_RUNNING);
368 remove_wait_queue(&devp->hd_waitqueue, &wait);
370 return retval;
373 static unsigned int hpet_poll(struct file *file, poll_table * wait)
375 unsigned long v;
376 struct hpet_dev *devp;
378 devp = file->private_data;
380 if (!devp->hd_ireqfreq)
381 return 0;
383 poll_wait(file, &devp->hd_waitqueue, wait);
385 spin_lock_irq(&hpet_lock);
386 v = devp->hd_irqdata;
387 spin_unlock_irq(&hpet_lock);
389 if (v != 0)
390 return POLLIN | POLLRDNORM;
392 return 0;
395 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
397 #ifdef CONFIG_HPET_MMAP
398 struct hpet_dev *devp;
399 unsigned long addr;
401 if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
402 return -EINVAL;
404 devp = file->private_data;
405 addr = devp->hd_hpets->hp_hpet_phys;
407 if (addr & (PAGE_SIZE - 1))
408 return -ENOSYS;
410 vma->vm_flags |= VM_IO;
411 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
413 if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
414 PAGE_SIZE, vma->vm_page_prot)) {
415 printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
416 __func__);
417 return -EAGAIN;
420 return 0;
421 #else
422 return -ENOSYS;
423 #endif
426 static int hpet_fasync(int fd, struct file *file, int on)
428 struct hpet_dev *devp;
429 int r;
431 r = hpet_alloc_timer(file);
432 if (r < 0)
433 return r;
435 devp = file->private_data;
437 if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
438 return 0;
439 else
440 return -EIO;
443 static int hpet_release(struct inode *inode, struct file *file)
445 struct hpet_dev *devp;
446 struct hpet_timer __iomem *timer;
447 int irq = 0;
449 devp = file->private_data;
450 timer = devp->hd_timer;
452 if (!timer)
453 goto out;
455 spin_lock_irq(&hpet_lock);
457 writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
458 &timer->hpet_config);
460 irq = devp->hd_irq;
461 devp->hd_irq = 0;
463 devp->hd_ireqfreq = 0;
465 if (devp->hd_flags & HPET_PERIODIC
466 && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
467 unsigned long v;
469 v = readq(&timer->hpet_config);
470 v ^= Tn_TYPE_CNF_MASK;
471 writeq(v, &timer->hpet_config);
474 devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
475 spin_unlock_irq(&hpet_lock);
477 if (irq)
478 free_irq(irq, devp);
479 out:
480 file->private_data = NULL;
481 return 0;
484 static int hpet_ioctl_ieon(struct hpet_dev *devp)
486 struct hpet_timer __iomem *timer;
487 struct hpet __iomem *hpet;
488 struct hpets *hpetp;
489 int irq;
490 unsigned long g, v, t, m;
491 unsigned long flags, isr;
493 timer = devp->hd_timer;
494 hpet = devp->hd_hpet;
495 hpetp = devp->hd_hpets;
497 if (!devp->hd_ireqfreq)
498 return -EIO;
500 spin_lock_irq(&hpet_lock);
502 if (devp->hd_flags & HPET_IE) {
503 spin_unlock_irq(&hpet_lock);
504 return -EBUSY;
507 devp->hd_flags |= HPET_IE;
509 if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
510 devp->hd_flags |= HPET_SHARED_IRQ;
511 spin_unlock_irq(&hpet_lock);
513 irq = devp->hd_hdwirq;
515 if (irq) {
516 unsigned long irq_flags;
518 if (devp->hd_flags & HPET_SHARED_IRQ) {
520 * To prevent the interrupt handler from seeing an
521 * unwanted interrupt status bit, program the timer
522 * so that it will not fire in the near future ...
524 writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
525 &timer->hpet_config);
526 write_counter(read_counter(&hpet->hpet_mc),
527 &timer->hpet_compare);
528 /* ... and clear any left-over status. */
529 isr = 1 << (devp - devp->hd_hpets->hp_dev);
530 writel(isr, &hpet->hpet_isr);
533 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
534 irq_flags = devp->hd_flags & HPET_SHARED_IRQ
535 ? IRQF_SHARED : IRQF_DISABLED;
536 if (request_irq(irq, hpet_interrupt, irq_flags,
537 devp->hd_name, (void *)devp)) {
538 printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
539 irq = 0;
543 if (irq == 0) {
544 spin_lock_irq(&hpet_lock);
545 devp->hd_flags ^= HPET_IE;
546 spin_unlock_irq(&hpet_lock);
547 return -EIO;
550 devp->hd_irq = irq;
551 t = devp->hd_ireqfreq;
552 v = readq(&timer->hpet_config);
554 /* 64-bit comparators are not yet supported through the ioctls,
555 * so force this into 32-bit mode if it supports both modes
557 g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
559 if (devp->hd_flags & HPET_PERIODIC) {
560 g |= Tn_TYPE_CNF_MASK;
561 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
562 writeq(v, &timer->hpet_config);
563 local_irq_save(flags);
566 * NOTE: First we modify the hidden accumulator
567 * register supported by periodic-capable comparators.
568 * We never want to modify the (single) counter; that
569 * would affect all the comparators. The value written
570 * is the counter value when the first interrupt is due.
572 m = read_counter(&hpet->hpet_mc);
573 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
575 * Then we modify the comparator, indicating the period
576 * for subsequent interrupt.
578 write_counter(t, &timer->hpet_compare);
579 } else {
580 local_irq_save(flags);
581 m = read_counter(&hpet->hpet_mc);
582 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
585 if (devp->hd_flags & HPET_SHARED_IRQ) {
586 isr = 1 << (devp - devp->hd_hpets->hp_dev);
587 writel(isr, &hpet->hpet_isr);
589 writeq(g, &timer->hpet_config);
590 local_irq_restore(flags);
592 return 0;
595 /* converts Hz to number of timer ticks */
596 static inline unsigned long hpet_time_div(struct hpets *hpets,
597 unsigned long dis)
599 unsigned long long m;
601 m = hpets->hp_tick_freq + (dis >> 1);
602 do_div(m, dis);
603 return (unsigned long)m;
606 static int
607 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg,
608 struct hpet_info *info)
610 struct hpet_timer __iomem *timer;
611 struct hpet __iomem *hpet;
612 struct hpets *hpetp;
613 int err;
614 unsigned long v;
616 switch (cmd) {
617 case HPET_IE_OFF:
618 case HPET_INFO:
619 case HPET_EPI:
620 case HPET_DPI:
621 case HPET_IRQFREQ:
622 timer = devp->hd_timer;
623 hpet = devp->hd_hpet;
624 hpetp = devp->hd_hpets;
625 break;
626 case HPET_IE_ON:
627 return hpet_ioctl_ieon(devp);
628 case HPET_ALLOC_TIMER:
629 /* nothing to do */
630 return 0;
631 default:
632 return -EINVAL;
635 err = 0;
637 switch (cmd) {
638 case HPET_IE_OFF:
639 if ((devp->hd_flags & HPET_IE) == 0)
640 break;
641 v = readq(&timer->hpet_config);
642 v &= ~Tn_INT_ENB_CNF_MASK;
643 writeq(v, &timer->hpet_config);
644 if (devp->hd_irq) {
645 free_irq(devp->hd_irq, devp);
646 devp->hd_irq = 0;
648 devp->hd_flags ^= HPET_IE;
649 break;
650 case HPET_INFO:
652 memset(info, 0, sizeof(*info));
653 if (devp->hd_ireqfreq)
654 info->hi_ireqfreq =
655 hpet_time_div(hpetp, devp->hd_ireqfreq);
656 info->hi_flags =
657 readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
658 info->hi_hpet = hpetp->hp_which;
659 info->hi_timer = devp - hpetp->hp_dev;
660 break;
662 case HPET_EPI:
663 v = readq(&timer->hpet_config);
664 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
665 err = -ENXIO;
666 break;
668 devp->hd_flags |= HPET_PERIODIC;
669 break;
670 case HPET_DPI:
671 v = readq(&timer->hpet_config);
672 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
673 err = -ENXIO;
674 break;
676 if (devp->hd_flags & HPET_PERIODIC &&
677 readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
678 v = readq(&timer->hpet_config);
679 v ^= Tn_TYPE_CNF_MASK;
680 writeq(v, &timer->hpet_config);
682 devp->hd_flags &= ~HPET_PERIODIC;
683 break;
684 case HPET_IRQFREQ:
685 if ((arg > hpet_max_freq) &&
686 !capable(CAP_SYS_RESOURCE)) {
687 err = -EACCES;
688 break;
691 if (!arg) {
692 err = -EINVAL;
693 break;
696 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
699 return err;
702 static long
703 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
705 struct hpet_info info;
706 int err;
708 mutex_lock(&hpet_mutex);
709 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
710 mutex_unlock(&hpet_mutex);
712 if ((cmd == HPET_INFO) && !err &&
713 (copy_to_user((void __user *)arg, &info, sizeof(info))))
714 err = -EFAULT;
716 return err;
719 #ifdef CONFIG_COMPAT
720 struct compat_hpet_info {
721 compat_ulong_t hi_ireqfreq; /* Hz */
722 compat_ulong_t hi_flags; /* information */
723 unsigned short hi_hpet;
724 unsigned short hi_timer;
727 static long
728 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
730 struct hpet_info info;
731 int err;
733 mutex_lock(&hpet_mutex);
734 err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
735 mutex_unlock(&hpet_mutex);
737 if ((cmd == HPET_INFO) && !err) {
738 struct compat_hpet_info __user *u = compat_ptr(arg);
739 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
740 put_user(info.hi_flags, &u->hi_flags) ||
741 put_user(info.hi_hpet, &u->hi_hpet) ||
742 put_user(info.hi_timer, &u->hi_timer))
743 err = -EFAULT;
746 return err;
748 #endif
750 static const struct file_operations hpet_fops = {
751 .owner = THIS_MODULE,
752 .llseek = no_llseek,
753 .read = hpet_read,
754 .poll = hpet_poll,
755 .unlocked_ioctl = hpet_ioctl,
756 #ifdef CONFIG_COMPAT
757 .compat_ioctl = hpet_compat_ioctl,
758 #endif
759 .open = hpet_open,
760 .release = hpet_release,
761 .fasync = hpet_fasync,
762 .mmap = hpet_mmap,
765 static int hpet_is_known(struct hpet_data *hdp)
767 struct hpets *hpetp;
769 for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
770 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
771 return 1;
773 return 0;
776 static ctl_table hpet_table[] = {
778 .procname = "max-user-freq",
779 .data = &hpet_max_freq,
780 .maxlen = sizeof(int),
781 .mode = 0644,
782 .proc_handler = proc_dointvec,
787 static ctl_table hpet_root[] = {
789 .procname = "hpet",
790 .maxlen = 0,
791 .mode = 0555,
792 .child = hpet_table,
797 static ctl_table dev_root[] = {
799 .procname = "dev",
800 .maxlen = 0,
801 .mode = 0555,
802 .child = hpet_root,
807 static struct ctl_table_header *sysctl_header;
810 * Adjustment for when arming the timer with
811 * initial conditions. That is, main counter
812 * ticks expired before interrupts are enabled.
814 #define TICK_CALIBRATE (1000UL)
816 static unsigned long __hpet_calibrate(struct hpets *hpetp)
818 struct hpet_timer __iomem *timer = NULL;
819 unsigned long t, m, count, i, flags, start;
820 struct hpet_dev *devp;
821 int j;
822 struct hpet __iomem *hpet;
824 for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
825 if ((devp->hd_flags & HPET_OPEN) == 0) {
826 timer = devp->hd_timer;
827 break;
830 if (!timer)
831 return 0;
833 hpet = hpetp->hp_hpet;
834 t = read_counter(&timer->hpet_compare);
836 i = 0;
837 count = hpet_time_div(hpetp, TICK_CALIBRATE);
839 local_irq_save(flags);
841 start = read_counter(&hpet->hpet_mc);
843 do {
844 m = read_counter(&hpet->hpet_mc);
845 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
846 } while (i++, (m - start) < count);
848 local_irq_restore(flags);
850 return (m - start) / i;
853 static unsigned long hpet_calibrate(struct hpets *hpetp)
855 unsigned long ret = -1;
856 unsigned long tmp;
859 * Try to calibrate until return value becomes stable small value.
860 * If SMI interruption occurs in calibration loop, the return value
861 * will be big. This avoids its impact.
863 for ( ; ; ) {
864 tmp = __hpet_calibrate(hpetp);
865 if (ret <= tmp)
866 break;
867 ret = tmp;
870 return ret;
873 int hpet_alloc(struct hpet_data *hdp)
875 u64 cap, mcfg;
876 struct hpet_dev *devp;
877 u32 i, ntimer;
878 struct hpets *hpetp;
879 size_t siz;
880 struct hpet __iomem *hpet;
881 static struct hpets *last;
882 unsigned long period;
883 unsigned long long temp;
884 u32 remainder;
887 * hpet_alloc can be called by platform dependent code.
888 * If platform dependent code has allocated the hpet that
889 * ACPI has also reported, then we catch it here.
891 if (hpet_is_known(hdp)) {
892 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
893 __func__);
894 return 0;
898 * last hpet_dev will have null timer pointer, gives timer-neutral
899 * representation of block
901 siz = sizeof(struct hpets) + ((hdp->hd_nirqs) *
902 sizeof(struct hpet_dev));
904 hpetp = kzalloc(siz, GFP_KERNEL);
906 if (!hpetp)
907 return -ENOMEM;
909 hpetp->hp_which = hpet_nhpet++;
910 hpetp->hp_hpet = hdp->hd_address;
911 hpetp->hp_hpet_phys = hdp->hd_phys_address;
913 hpetp->hp_ntimer = hdp->hd_nirqs;
915 for (i = 0; i < hdp->hd_nirqs; i++)
916 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
918 hpet = hpetp->hp_hpet;
920 cap = readq(&hpet->hpet_cap);
922 ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
924 if (hpetp->hp_ntimer != ntimer) {
925 printk(KERN_WARNING "hpet: number irqs doesn't agree"
926 " with number of timers\n");
927 kfree(hpetp);
928 return -ENODEV;
931 if (last)
932 last->hp_next = hpetp;
933 else
934 hpets = hpetp;
936 last = hpetp;
938 period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
939 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
940 temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
941 temp += period >> 1; /* round */
942 do_div(temp, period);
943 hpetp->hp_tick_freq = temp; /* ticks per second */
945 printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
946 hpetp->hp_which, hdp->hd_phys_address,
947 hpetp->hp_ntimer > 1 ? "s" : "");
948 for (i = 0; i < hpetp->hp_ntimer; i++)
949 printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
950 printk("\n");
952 temp = hpetp->hp_tick_freq;
953 remainder = do_div(temp, 1000000);
954 printk(KERN_INFO
955 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
956 hpetp->hp_which, hpetp->hp_ntimer,
957 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
958 (unsigned) temp, remainder);
960 mcfg = readq(&hpet->hpet_config);
961 if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
962 write_counter(0L, &hpet->hpet_mc);
963 mcfg |= HPET_ENABLE_CNF_MASK;
964 writeq(mcfg, &hpet->hpet_config);
967 for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer + 1;
968 i++, devp++) {
969 struct hpet_timer __iomem *timer;
971 devp->hd_hpets = hpetp;
972 devp->hd_hpet = hpet;
973 if (i == hpetp->hp_ntimer)
974 continue;
976 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
977 devp->hd_timer = timer;
980 * If the timer was reserved by platform code,
981 * then make timer unavailable for opens.
983 if (hdp->hd_state & (1 << i)) {
984 devp->hd_flags = HPET_OPEN;
985 continue;
988 init_waitqueue_head(&devp->hd_waitqueue);
991 hpetp->hp_delta = hpet_calibrate(hpetp);
993 /* This clocksource driver currently only works on ia64 */
994 #ifdef CONFIG_IA64
995 if (!hpet_clocksource) {
996 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
997 clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
998 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
999 hpetp->hp_clocksource = &clocksource_hpet;
1000 hpet_clocksource = &clocksource_hpet;
1002 #endif
1004 return 0;
1007 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
1009 struct hpet_data *hdp;
1010 acpi_status status;
1011 struct acpi_resource_address64 addr;
1013 hdp = data;
1015 status = acpi_resource_to_address64(res, &addr);
1017 if (ACPI_SUCCESS(status)) {
1018 hdp->hd_phys_address = addr.minimum;
1019 hdp->hd_address = ioremap(addr.minimum, addr.address_length);
1021 if (hpet_is_known(hdp)) {
1022 iounmap(hdp->hd_address);
1023 return AE_ALREADY_EXISTS;
1025 } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
1026 struct acpi_resource_fixed_memory32 *fixmem32;
1028 fixmem32 = &res->data.fixed_memory32;
1029 if (!fixmem32)
1030 return AE_NO_MEMORY;
1032 hdp->hd_phys_address = fixmem32->address;
1033 hdp->hd_address = ioremap(fixmem32->address,
1034 HPET_RANGE_SIZE);
1036 if (hpet_is_known(hdp)) {
1037 iounmap(hdp->hd_address);
1038 return AE_ALREADY_EXISTS;
1040 } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
1041 struct acpi_resource_extended_irq *irqp;
1042 int i, irq;
1044 irqp = &res->data.extended_irq;
1046 for (i = 0; i < irqp->interrupt_count; i++) {
1047 irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1048 irqp->triggering, irqp->polarity);
1049 if (irq < 0)
1050 return AE_ERROR;
1052 hdp->hd_irq[hdp->hd_nirqs] = irq;
1053 hdp->hd_nirqs++;
1057 return AE_OK;
1060 static int hpet_acpi_add(struct acpi_device *device)
1062 acpi_status result;
1063 struct hpet_data data;
1065 memset(&data, 0, sizeof(data));
1067 result =
1068 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1069 hpet_resources, &data);
1071 if (ACPI_FAILURE(result))
1072 return -ENODEV;
1074 if (!data.hd_address || !data.hd_nirqs) {
1075 if (data.hd_address)
1076 iounmap(data.hd_address);
1077 printk("%s: no address or irqs in _CRS\n", __func__);
1078 return -ENODEV;
1081 return hpet_alloc(&data);
1084 static int hpet_acpi_remove(struct acpi_device *device, int type)
1086 /* XXX need to unregister clocksource, dealloc mem, etc */
1087 return -EINVAL;
1090 static const struct acpi_device_id hpet_device_ids[] = {
1091 {"PNP0103", 0},
1092 {"", 0},
1094 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1096 static struct acpi_driver hpet_acpi_driver = {
1097 .name = "hpet",
1098 .ids = hpet_device_ids,
1099 .ops = {
1100 .add = hpet_acpi_add,
1101 .remove = hpet_acpi_remove,
1105 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1107 static int __init hpet_init(void)
1109 int result;
1111 result = misc_register(&hpet_misc);
1112 if (result < 0)
1113 return -ENODEV;
1115 sysctl_header = register_sysctl_table(dev_root);
1117 result = acpi_bus_register_driver(&hpet_acpi_driver);
1118 if (result < 0) {
1119 if (sysctl_header)
1120 unregister_sysctl_table(sysctl_header);
1121 misc_deregister(&hpet_misc);
1122 return result;
1125 return 0;
1128 static void __exit hpet_exit(void)
1130 acpi_bus_unregister_driver(&hpet_acpi_driver);
1132 if (sysctl_header)
1133 unregister_sysctl_table(sysctl_header);
1134 misc_deregister(&hpet_misc);
1136 return;
1139 module_init(hpet_init);
1140 module_exit(hpet_exit);
1141 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1142 MODULE_LICENSE("GPL");