Add linux-next specific files for 20110801
[linux-2.6/next.git] / drivers / block / loop.c
blob4720c7ade0aed0dfd4fccce47ec7e1b39402587a
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/kthread.h>
76 #include <linux/splice.h>
77 #include <linux/sysfs.h>
78 #include <linux/miscdevice.h>
79 #include <asm/uaccess.h>
81 static DEFINE_IDR(loop_index_idr);
82 static DEFINE_MUTEX(loop_index_mutex);
84 static int max_part;
85 static int part_shift;
88 * Transfer functions
90 static int transfer_none(struct loop_device *lo, int cmd,
91 struct page *raw_page, unsigned raw_off,
92 struct page *loop_page, unsigned loop_off,
93 int size, sector_t real_block)
95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
98 if (cmd == READ)
99 memcpy(loop_buf, raw_buf, size);
100 else
101 memcpy(raw_buf, loop_buf, size);
103 kunmap_atomic(loop_buf, KM_USER1);
104 kunmap_atomic(raw_buf, KM_USER0);
105 cond_resched();
106 return 0;
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 struct page *raw_page, unsigned raw_off,
111 struct page *loop_page, unsigned loop_off,
112 int size, sector_t real_block)
114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 char *in, *out, *key;
117 int i, keysize;
119 if (cmd == READ) {
120 in = raw_buf;
121 out = loop_buf;
122 } else {
123 in = loop_buf;
124 out = raw_buf;
127 key = lo->lo_encrypt_key;
128 keysize = lo->lo_encrypt_key_size;
129 for (i = 0; i < size; i++)
130 *out++ = *in++ ^ key[(i & 511) % keysize];
132 kunmap_atomic(loop_buf, KM_USER1);
133 kunmap_atomic(raw_buf, KM_USER0);
134 cond_resched();
135 return 0;
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 if (unlikely(info->lo_encrypt_key_size <= 0))
141 return -EINVAL;
142 return 0;
145 static struct loop_func_table none_funcs = {
146 .number = LO_CRYPT_NONE,
147 .transfer = transfer_none,
150 static struct loop_func_table xor_funcs = {
151 .number = LO_CRYPT_XOR,
152 .transfer = transfer_xor,
153 .init = xor_init
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 &none_funcs,
159 &xor_funcs
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 loff_t size, offset, loopsize;
166 /* Compute loopsize in bytes */
167 size = i_size_read(file->f_mapping->host);
168 offset = lo->lo_offset;
169 loopsize = size - offset;
170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 loopsize = lo->lo_sizelimit;
174 * Unfortunately, if we want to do I/O on the device,
175 * the number of 512-byte sectors has to fit into a sector_t.
177 return loopsize >> 9;
180 static int
181 figure_loop_size(struct loop_device *lo)
183 loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 sector_t x = (sector_t)size;
186 if (unlikely((loff_t)x != size))
187 return -EFBIG;
189 set_capacity(lo->lo_disk, x);
190 return 0;
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 struct page *rpage, unsigned roffs,
196 struct page *lpage, unsigned loffs,
197 int size, sector_t rblock)
199 if (unlikely(!lo->transfer))
200 return 0;
202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
206 * do_lo_send_aops - helper for writing data to a loop device
208 * This is the fast version for backing filesystems which implement the address
209 * space operations write_begin and write_end.
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 loff_t pos, struct page *unused)
214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 struct address_space *mapping = file->f_mapping;
216 pgoff_t index;
217 unsigned offset, bv_offs;
218 int len, ret;
220 mutex_lock(&mapping->host->i_mutex);
221 index = pos >> PAGE_CACHE_SHIFT;
222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 bv_offs = bvec->bv_offset;
224 len = bvec->bv_len;
225 while (len > 0) {
226 sector_t IV;
227 unsigned size, copied;
228 int transfer_result;
229 struct page *page;
230 void *fsdata;
232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 size = PAGE_CACHE_SIZE - offset;
234 if (size > len)
235 size = len;
237 ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 &page, &fsdata);
239 if (ret)
240 goto fail;
242 file_update_time(file);
244 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
245 bvec->bv_page, bv_offs, size, IV);
246 copied = size;
247 if (unlikely(transfer_result))
248 copied = 0;
250 ret = pagecache_write_end(file, mapping, pos, size, copied,
251 page, fsdata);
252 if (ret < 0 || ret != copied)
253 goto fail;
255 if (unlikely(transfer_result))
256 goto fail;
258 bv_offs += copied;
259 len -= copied;
260 offset = 0;
261 index++;
262 pos += copied;
264 ret = 0;
265 out:
266 mutex_unlock(&mapping->host->i_mutex);
267 return ret;
268 fail:
269 ret = -1;
270 goto out;
274 * __do_lo_send_write - helper for writing data to a loop device
276 * This helper just factors out common code between do_lo_send_direct_write()
277 * and do_lo_send_write().
279 static int __do_lo_send_write(struct file *file,
280 u8 *buf, const int len, loff_t pos)
282 ssize_t bw;
283 mm_segment_t old_fs = get_fs();
285 set_fs(get_ds());
286 bw = file->f_op->write(file, buf, len, &pos);
287 set_fs(old_fs);
288 if (likely(bw == len))
289 return 0;
290 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
291 (unsigned long long)pos, len);
292 if (bw >= 0)
293 bw = -EIO;
294 return bw;
298 * do_lo_send_direct_write - helper for writing data to a loop device
300 * This is the fast, non-transforming version for backing filesystems which do
301 * not implement the address space operations write_begin and write_end.
302 * It uses the write file operation which should be present on all writeable
303 * filesystems.
305 static int do_lo_send_direct_write(struct loop_device *lo,
306 struct bio_vec *bvec, loff_t pos, struct page *page)
308 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
309 kmap(bvec->bv_page) + bvec->bv_offset,
310 bvec->bv_len, pos);
311 kunmap(bvec->bv_page);
312 cond_resched();
313 return bw;
317 * do_lo_send_write - helper for writing data to a loop device
319 * This is the slow, transforming version for filesystems which do not
320 * implement the address space operations write_begin and write_end. It
321 * uses the write file operation which should be present on all writeable
322 * filesystems.
324 * Using fops->write is slower than using aops->{prepare,commit}_write in the
325 * transforming case because we need to double buffer the data as we cannot do
326 * the transformations in place as we do not have direct access to the
327 * destination pages of the backing file.
329 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
330 loff_t pos, struct page *page)
332 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
333 bvec->bv_offset, bvec->bv_len, pos >> 9);
334 if (likely(!ret))
335 return __do_lo_send_write(lo->lo_backing_file,
336 page_address(page), bvec->bv_len,
337 pos);
338 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
339 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
340 if (ret > 0)
341 ret = -EIO;
342 return ret;
345 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
347 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
348 struct page *page);
349 struct bio_vec *bvec;
350 struct page *page = NULL;
351 int i, ret = 0;
353 do_lo_send = do_lo_send_aops;
354 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
355 do_lo_send = do_lo_send_direct_write;
356 if (lo->transfer != transfer_none) {
357 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
358 if (unlikely(!page))
359 goto fail;
360 kmap(page);
361 do_lo_send = do_lo_send_write;
364 bio_for_each_segment(bvec, bio, i) {
365 ret = do_lo_send(lo, bvec, pos, page);
366 if (ret < 0)
367 break;
368 pos += bvec->bv_len;
370 if (page) {
371 kunmap(page);
372 __free_page(page);
374 out:
375 return ret;
376 fail:
377 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
378 ret = -ENOMEM;
379 goto out;
382 struct lo_read_data {
383 struct loop_device *lo;
384 struct page *page;
385 unsigned offset;
386 int bsize;
389 static int
390 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
391 struct splice_desc *sd)
393 struct lo_read_data *p = sd->u.data;
394 struct loop_device *lo = p->lo;
395 struct page *page = buf->page;
396 sector_t IV;
397 int size;
399 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
400 (buf->offset >> 9);
401 size = sd->len;
402 if (size > p->bsize)
403 size = p->bsize;
405 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
406 printk(KERN_ERR "loop: transfer error block %ld\n",
407 page->index);
408 size = -EINVAL;
411 flush_dcache_page(p->page);
413 if (size > 0)
414 p->offset += size;
416 return size;
419 static int
420 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
422 return __splice_from_pipe(pipe, sd, lo_splice_actor);
425 static int
426 do_lo_receive(struct loop_device *lo,
427 struct bio_vec *bvec, int bsize, loff_t pos)
429 struct lo_read_data cookie;
430 struct splice_desc sd;
431 struct file *file;
432 long retval;
434 cookie.lo = lo;
435 cookie.page = bvec->bv_page;
436 cookie.offset = bvec->bv_offset;
437 cookie.bsize = bsize;
439 sd.len = 0;
440 sd.total_len = bvec->bv_len;
441 sd.flags = 0;
442 sd.pos = pos;
443 sd.u.data = &cookie;
445 file = lo->lo_backing_file;
446 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
448 if (retval < 0)
449 return retval;
451 return 0;
454 static int
455 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
457 struct bio_vec *bvec;
458 int i, ret = 0;
460 bio_for_each_segment(bvec, bio, i) {
461 ret = do_lo_receive(lo, bvec, bsize, pos);
462 if (ret < 0)
463 break;
464 pos += bvec->bv_len;
466 return ret;
469 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
471 loff_t pos;
472 int ret;
474 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
476 if (bio_rw(bio) == WRITE) {
477 struct file *file = lo->lo_backing_file;
479 if (bio->bi_rw & REQ_FLUSH) {
480 ret = vfs_fsync(file, 0);
481 if (unlikely(ret && ret != -EINVAL)) {
482 ret = -EIO;
483 goto out;
487 ret = lo_send(lo, bio, pos);
489 if ((bio->bi_rw & REQ_FUA) && !ret) {
490 ret = vfs_fsync(file, 0);
491 if (unlikely(ret && ret != -EINVAL))
492 ret = -EIO;
494 } else
495 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
497 out:
498 return ret;
502 * Add bio to back of pending list
504 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
506 bio_list_add(&lo->lo_bio_list, bio);
510 * Grab first pending buffer
512 static struct bio *loop_get_bio(struct loop_device *lo)
514 return bio_list_pop(&lo->lo_bio_list);
517 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
519 struct loop_device *lo = q->queuedata;
520 int rw = bio_rw(old_bio);
522 if (rw == READA)
523 rw = READ;
525 BUG_ON(!lo || (rw != READ && rw != WRITE));
527 spin_lock_irq(&lo->lo_lock);
528 if (lo->lo_state != Lo_bound)
529 goto out;
530 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
531 goto out;
532 loop_add_bio(lo, old_bio);
533 wake_up(&lo->lo_event);
534 spin_unlock_irq(&lo->lo_lock);
535 return 0;
537 out:
538 spin_unlock_irq(&lo->lo_lock);
539 bio_io_error(old_bio);
540 return 0;
543 struct switch_request {
544 struct file *file;
545 struct completion wait;
548 static void do_loop_switch(struct loop_device *, struct switch_request *);
550 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
552 if (unlikely(!bio->bi_bdev)) {
553 do_loop_switch(lo, bio->bi_private);
554 bio_put(bio);
555 } else {
556 int ret = do_bio_filebacked(lo, bio);
557 bio_endio(bio, ret);
562 * worker thread that handles reads/writes to file backed loop devices,
563 * to avoid blocking in our make_request_fn. it also does loop decrypting
564 * on reads for block backed loop, as that is too heavy to do from
565 * b_end_io context where irqs may be disabled.
567 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
568 * calling kthread_stop(). Therefore once kthread_should_stop() is
569 * true, make_request will not place any more requests. Therefore
570 * once kthread_should_stop() is true and lo_bio is NULL, we are
571 * done with the loop.
573 static int loop_thread(void *data)
575 struct loop_device *lo = data;
576 struct bio *bio;
578 set_user_nice(current, -20);
580 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
582 wait_event_interruptible(lo->lo_event,
583 !bio_list_empty(&lo->lo_bio_list) ||
584 kthread_should_stop());
586 if (bio_list_empty(&lo->lo_bio_list))
587 continue;
588 spin_lock_irq(&lo->lo_lock);
589 bio = loop_get_bio(lo);
590 spin_unlock_irq(&lo->lo_lock);
592 BUG_ON(!bio);
593 loop_handle_bio(lo, bio);
596 return 0;
600 * loop_switch performs the hard work of switching a backing store.
601 * First it needs to flush existing IO, it does this by sending a magic
602 * BIO down the pipe. The completion of this BIO does the actual switch.
604 static int loop_switch(struct loop_device *lo, struct file *file)
606 struct switch_request w;
607 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
608 if (!bio)
609 return -ENOMEM;
610 init_completion(&w.wait);
611 w.file = file;
612 bio->bi_private = &w;
613 bio->bi_bdev = NULL;
614 loop_make_request(lo->lo_queue, bio);
615 wait_for_completion(&w.wait);
616 return 0;
620 * Helper to flush the IOs in loop, but keeping loop thread running
622 static int loop_flush(struct loop_device *lo)
624 /* loop not yet configured, no running thread, nothing to flush */
625 if (!lo->lo_thread)
626 return 0;
628 return loop_switch(lo, NULL);
632 * Do the actual switch; called from the BIO completion routine
634 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
636 struct file *file = p->file;
637 struct file *old_file = lo->lo_backing_file;
638 struct address_space *mapping;
640 /* if no new file, only flush of queued bios requested */
641 if (!file)
642 goto out;
644 mapping = file->f_mapping;
645 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
646 lo->lo_backing_file = file;
647 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
648 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
649 lo->old_gfp_mask = mapping_gfp_mask(mapping);
650 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
651 out:
652 complete(&p->wait);
657 * loop_change_fd switched the backing store of a loopback device to
658 * a new file. This is useful for operating system installers to free up
659 * the original file and in High Availability environments to switch to
660 * an alternative location for the content in case of server meltdown.
661 * This can only work if the loop device is used read-only, and if the
662 * new backing store is the same size and type as the old backing store.
664 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
665 unsigned int arg)
667 struct file *file, *old_file;
668 struct inode *inode;
669 int error;
671 error = -ENXIO;
672 if (lo->lo_state != Lo_bound)
673 goto out;
675 /* the loop device has to be read-only */
676 error = -EINVAL;
677 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
678 goto out;
680 error = -EBADF;
681 file = fget(arg);
682 if (!file)
683 goto out;
685 inode = file->f_mapping->host;
686 old_file = lo->lo_backing_file;
688 error = -EINVAL;
690 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
691 goto out_putf;
693 /* size of the new backing store needs to be the same */
694 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
695 goto out_putf;
697 /* and ... switch */
698 error = loop_switch(lo, file);
699 if (error)
700 goto out_putf;
702 fput(old_file);
703 if (max_part > 0)
704 ioctl_by_bdev(bdev, BLKRRPART, 0);
705 return 0;
707 out_putf:
708 fput(file);
709 out:
710 return error;
713 static inline int is_loop_device(struct file *file)
715 struct inode *i = file->f_mapping->host;
717 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
720 /* loop sysfs attributes */
722 static ssize_t loop_attr_show(struct device *dev, char *page,
723 ssize_t (*callback)(struct loop_device *, char *))
725 struct gendisk *disk = dev_to_disk(dev);
726 struct loop_device *lo = disk->private_data;
728 return callback(lo, page);
731 #define LOOP_ATTR_RO(_name) \
732 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
733 static ssize_t loop_attr_do_show_##_name(struct device *d, \
734 struct device_attribute *attr, char *b) \
736 return loop_attr_show(d, b, loop_attr_##_name##_show); \
738 static struct device_attribute loop_attr_##_name = \
739 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
741 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
743 ssize_t ret;
744 char *p = NULL;
746 spin_lock_irq(&lo->lo_lock);
747 if (lo->lo_backing_file)
748 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
749 spin_unlock_irq(&lo->lo_lock);
751 if (IS_ERR_OR_NULL(p))
752 ret = PTR_ERR(p);
753 else {
754 ret = strlen(p);
755 memmove(buf, p, ret);
756 buf[ret++] = '\n';
757 buf[ret] = 0;
760 return ret;
763 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
765 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
768 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
770 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
773 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
775 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
777 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
780 LOOP_ATTR_RO(backing_file);
781 LOOP_ATTR_RO(offset);
782 LOOP_ATTR_RO(sizelimit);
783 LOOP_ATTR_RO(autoclear);
785 static struct attribute *loop_attrs[] = {
786 &loop_attr_backing_file.attr,
787 &loop_attr_offset.attr,
788 &loop_attr_sizelimit.attr,
789 &loop_attr_autoclear.attr,
790 NULL,
793 static struct attribute_group loop_attribute_group = {
794 .name = "loop",
795 .attrs= loop_attrs,
798 static int loop_sysfs_init(struct loop_device *lo)
800 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
801 &loop_attribute_group);
804 static void loop_sysfs_exit(struct loop_device *lo)
806 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
807 &loop_attribute_group);
810 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
811 struct block_device *bdev, unsigned int arg)
813 struct file *file, *f;
814 struct inode *inode;
815 struct address_space *mapping;
816 unsigned lo_blocksize;
817 int lo_flags = 0;
818 int error;
819 loff_t size;
821 /* This is safe, since we have a reference from open(). */
822 __module_get(THIS_MODULE);
824 error = -EBADF;
825 file = fget(arg);
826 if (!file)
827 goto out;
829 error = -EBUSY;
830 if (lo->lo_state != Lo_unbound)
831 goto out_putf;
833 /* Avoid recursion */
834 f = file;
835 while (is_loop_device(f)) {
836 struct loop_device *l;
838 if (f->f_mapping->host->i_bdev == bdev)
839 goto out_putf;
841 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
842 if (l->lo_state == Lo_unbound) {
843 error = -EINVAL;
844 goto out_putf;
846 f = l->lo_backing_file;
849 mapping = file->f_mapping;
850 inode = mapping->host;
852 if (!(file->f_mode & FMODE_WRITE))
853 lo_flags |= LO_FLAGS_READ_ONLY;
855 error = -EINVAL;
856 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
857 const struct address_space_operations *aops = mapping->a_ops;
859 if (aops->write_begin)
860 lo_flags |= LO_FLAGS_USE_AOPS;
861 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
862 lo_flags |= LO_FLAGS_READ_ONLY;
864 lo_blocksize = S_ISBLK(inode->i_mode) ?
865 inode->i_bdev->bd_block_size : PAGE_SIZE;
867 error = 0;
868 } else {
869 goto out_putf;
872 size = get_loop_size(lo, file);
874 if ((loff_t)(sector_t)size != size) {
875 error = -EFBIG;
876 goto out_putf;
879 if (!(mode & FMODE_WRITE))
880 lo_flags |= LO_FLAGS_READ_ONLY;
882 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
884 lo->lo_blocksize = lo_blocksize;
885 lo->lo_device = bdev;
886 lo->lo_flags = lo_flags;
887 lo->lo_backing_file = file;
888 lo->transfer = transfer_none;
889 lo->ioctl = NULL;
890 lo->lo_sizelimit = 0;
891 lo->old_gfp_mask = mapping_gfp_mask(mapping);
892 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
894 bio_list_init(&lo->lo_bio_list);
897 * set queue make_request_fn, and add limits based on lower level
898 * device
900 blk_queue_make_request(lo->lo_queue, loop_make_request);
901 lo->lo_queue->queuedata = lo;
903 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
904 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
906 set_capacity(lo->lo_disk, size);
907 bd_set_size(bdev, size << 9);
908 loop_sysfs_init(lo);
909 /* let user-space know about the new size */
910 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
912 set_blocksize(bdev, lo_blocksize);
914 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
915 lo->lo_number);
916 if (IS_ERR(lo->lo_thread)) {
917 error = PTR_ERR(lo->lo_thread);
918 goto out_clr;
920 lo->lo_state = Lo_bound;
921 wake_up_process(lo->lo_thread);
922 if (max_part > 0)
923 ioctl_by_bdev(bdev, BLKRRPART, 0);
924 return 0;
926 out_clr:
927 loop_sysfs_exit(lo);
928 lo->lo_thread = NULL;
929 lo->lo_device = NULL;
930 lo->lo_backing_file = NULL;
931 lo->lo_flags = 0;
932 set_capacity(lo->lo_disk, 0);
933 invalidate_bdev(bdev);
934 bd_set_size(bdev, 0);
935 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
936 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
937 lo->lo_state = Lo_unbound;
938 out_putf:
939 fput(file);
940 out:
941 /* This is safe: open() is still holding a reference. */
942 module_put(THIS_MODULE);
943 return error;
946 static int
947 loop_release_xfer(struct loop_device *lo)
949 int err = 0;
950 struct loop_func_table *xfer = lo->lo_encryption;
952 if (xfer) {
953 if (xfer->release)
954 err = xfer->release(lo);
955 lo->transfer = NULL;
956 lo->lo_encryption = NULL;
957 module_put(xfer->owner);
959 return err;
962 static int
963 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
964 const struct loop_info64 *i)
966 int err = 0;
968 if (xfer) {
969 struct module *owner = xfer->owner;
971 if (!try_module_get(owner))
972 return -EINVAL;
973 if (xfer->init)
974 err = xfer->init(lo, i);
975 if (err)
976 module_put(owner);
977 else
978 lo->lo_encryption = xfer;
980 return err;
983 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
985 struct file *filp = lo->lo_backing_file;
986 gfp_t gfp = lo->old_gfp_mask;
988 if (lo->lo_state != Lo_bound)
989 return -ENXIO;
991 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
992 return -EBUSY;
994 if (filp == NULL)
995 return -EINVAL;
997 spin_lock_irq(&lo->lo_lock);
998 lo->lo_state = Lo_rundown;
999 spin_unlock_irq(&lo->lo_lock);
1001 kthread_stop(lo->lo_thread);
1003 spin_lock_irq(&lo->lo_lock);
1004 lo->lo_backing_file = NULL;
1005 spin_unlock_irq(&lo->lo_lock);
1007 loop_release_xfer(lo);
1008 lo->transfer = NULL;
1009 lo->ioctl = NULL;
1010 lo->lo_device = NULL;
1011 lo->lo_encryption = NULL;
1012 lo->lo_offset = 0;
1013 lo->lo_sizelimit = 0;
1014 lo->lo_encrypt_key_size = 0;
1015 lo->lo_flags = 0;
1016 lo->lo_thread = NULL;
1017 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1018 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1019 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1020 if (bdev)
1021 invalidate_bdev(bdev);
1022 set_capacity(lo->lo_disk, 0);
1023 loop_sysfs_exit(lo);
1024 if (bdev) {
1025 bd_set_size(bdev, 0);
1026 /* let user-space know about this change */
1027 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1029 mapping_set_gfp_mask(filp->f_mapping, gfp);
1030 lo->lo_state = Lo_unbound;
1031 /* This is safe: open() is still holding a reference. */
1032 module_put(THIS_MODULE);
1033 if (max_part > 0 && bdev)
1034 ioctl_by_bdev(bdev, BLKRRPART, 0);
1035 mutex_unlock(&lo->lo_ctl_mutex);
1037 * Need not hold lo_ctl_mutex to fput backing file.
1038 * Calling fput holding lo_ctl_mutex triggers a circular
1039 * lock dependency possibility warning as fput can take
1040 * bd_mutex which is usually taken before lo_ctl_mutex.
1042 fput(filp);
1043 return 0;
1046 static int
1047 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1049 int err;
1050 struct loop_func_table *xfer;
1051 uid_t uid = current_uid();
1053 if (lo->lo_encrypt_key_size &&
1054 lo->lo_key_owner != uid &&
1055 !capable(CAP_SYS_ADMIN))
1056 return -EPERM;
1057 if (lo->lo_state != Lo_bound)
1058 return -ENXIO;
1059 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1060 return -EINVAL;
1062 err = loop_release_xfer(lo);
1063 if (err)
1064 return err;
1066 if (info->lo_encrypt_type) {
1067 unsigned int type = info->lo_encrypt_type;
1069 if (type >= MAX_LO_CRYPT)
1070 return -EINVAL;
1071 xfer = xfer_funcs[type];
1072 if (xfer == NULL)
1073 return -EINVAL;
1074 } else
1075 xfer = NULL;
1077 err = loop_init_xfer(lo, xfer, info);
1078 if (err)
1079 return err;
1081 if (lo->lo_offset != info->lo_offset ||
1082 lo->lo_sizelimit != info->lo_sizelimit) {
1083 lo->lo_offset = info->lo_offset;
1084 lo->lo_sizelimit = info->lo_sizelimit;
1085 if (figure_loop_size(lo))
1086 return -EFBIG;
1089 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1090 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1091 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1092 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1094 if (!xfer)
1095 xfer = &none_funcs;
1096 lo->transfer = xfer->transfer;
1097 lo->ioctl = xfer->ioctl;
1099 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1100 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1101 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1103 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1104 lo->lo_init[0] = info->lo_init[0];
1105 lo->lo_init[1] = info->lo_init[1];
1106 if (info->lo_encrypt_key_size) {
1107 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1108 info->lo_encrypt_key_size);
1109 lo->lo_key_owner = uid;
1112 return 0;
1115 static int
1116 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1118 struct file *file = lo->lo_backing_file;
1119 struct kstat stat;
1120 int error;
1122 if (lo->lo_state != Lo_bound)
1123 return -ENXIO;
1124 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1125 if (error)
1126 return error;
1127 memset(info, 0, sizeof(*info));
1128 info->lo_number = lo->lo_number;
1129 info->lo_device = huge_encode_dev(stat.dev);
1130 info->lo_inode = stat.ino;
1131 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1132 info->lo_offset = lo->lo_offset;
1133 info->lo_sizelimit = lo->lo_sizelimit;
1134 info->lo_flags = lo->lo_flags;
1135 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1136 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1137 info->lo_encrypt_type =
1138 lo->lo_encryption ? lo->lo_encryption->number : 0;
1139 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1140 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1141 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1142 lo->lo_encrypt_key_size);
1144 return 0;
1147 static void
1148 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1150 memset(info64, 0, sizeof(*info64));
1151 info64->lo_number = info->lo_number;
1152 info64->lo_device = info->lo_device;
1153 info64->lo_inode = info->lo_inode;
1154 info64->lo_rdevice = info->lo_rdevice;
1155 info64->lo_offset = info->lo_offset;
1156 info64->lo_sizelimit = 0;
1157 info64->lo_encrypt_type = info->lo_encrypt_type;
1158 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1159 info64->lo_flags = info->lo_flags;
1160 info64->lo_init[0] = info->lo_init[0];
1161 info64->lo_init[1] = info->lo_init[1];
1162 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1163 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1164 else
1165 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1166 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1169 static int
1170 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1172 memset(info, 0, sizeof(*info));
1173 info->lo_number = info64->lo_number;
1174 info->lo_device = info64->lo_device;
1175 info->lo_inode = info64->lo_inode;
1176 info->lo_rdevice = info64->lo_rdevice;
1177 info->lo_offset = info64->lo_offset;
1178 info->lo_encrypt_type = info64->lo_encrypt_type;
1179 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1180 info->lo_flags = info64->lo_flags;
1181 info->lo_init[0] = info64->lo_init[0];
1182 info->lo_init[1] = info64->lo_init[1];
1183 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1184 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1185 else
1186 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1187 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1189 /* error in case values were truncated */
1190 if (info->lo_device != info64->lo_device ||
1191 info->lo_rdevice != info64->lo_rdevice ||
1192 info->lo_inode != info64->lo_inode ||
1193 info->lo_offset != info64->lo_offset)
1194 return -EOVERFLOW;
1196 return 0;
1199 static int
1200 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1202 struct loop_info info;
1203 struct loop_info64 info64;
1205 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1206 return -EFAULT;
1207 loop_info64_from_old(&info, &info64);
1208 return loop_set_status(lo, &info64);
1211 static int
1212 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1214 struct loop_info64 info64;
1216 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1217 return -EFAULT;
1218 return loop_set_status(lo, &info64);
1221 static int
1222 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1223 struct loop_info info;
1224 struct loop_info64 info64;
1225 int err = 0;
1227 if (!arg)
1228 err = -EINVAL;
1229 if (!err)
1230 err = loop_get_status(lo, &info64);
1231 if (!err)
1232 err = loop_info64_to_old(&info64, &info);
1233 if (!err && copy_to_user(arg, &info, sizeof(info)))
1234 err = -EFAULT;
1236 return err;
1239 static int
1240 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1241 struct loop_info64 info64;
1242 int err = 0;
1244 if (!arg)
1245 err = -EINVAL;
1246 if (!err)
1247 err = loop_get_status(lo, &info64);
1248 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1249 err = -EFAULT;
1251 return err;
1254 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1256 int err;
1257 sector_t sec;
1258 loff_t sz;
1260 err = -ENXIO;
1261 if (unlikely(lo->lo_state != Lo_bound))
1262 goto out;
1263 err = figure_loop_size(lo);
1264 if (unlikely(err))
1265 goto out;
1266 sec = get_capacity(lo->lo_disk);
1267 /* the width of sector_t may be narrow for bit-shift */
1268 sz = sec;
1269 sz <<= 9;
1270 mutex_lock(&bdev->bd_mutex);
1271 bd_set_size(bdev, sz);
1272 /* let user-space know about the new size */
1273 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1274 mutex_unlock(&bdev->bd_mutex);
1276 out:
1277 return err;
1280 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1281 unsigned int cmd, unsigned long arg)
1283 struct loop_device *lo = bdev->bd_disk->private_data;
1284 int err;
1286 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1287 switch (cmd) {
1288 case LOOP_SET_FD:
1289 err = loop_set_fd(lo, mode, bdev, arg);
1290 break;
1291 case LOOP_CHANGE_FD:
1292 err = loop_change_fd(lo, bdev, arg);
1293 break;
1294 case LOOP_CLR_FD:
1295 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1296 err = loop_clr_fd(lo, bdev);
1297 if (!err)
1298 goto out_unlocked;
1299 break;
1300 case LOOP_SET_STATUS:
1301 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1302 break;
1303 case LOOP_GET_STATUS:
1304 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1305 break;
1306 case LOOP_SET_STATUS64:
1307 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1308 break;
1309 case LOOP_GET_STATUS64:
1310 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1311 break;
1312 case LOOP_SET_CAPACITY:
1313 err = -EPERM;
1314 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1315 err = loop_set_capacity(lo, bdev);
1316 break;
1317 default:
1318 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1320 mutex_unlock(&lo->lo_ctl_mutex);
1322 out_unlocked:
1323 return err;
1326 #ifdef CONFIG_COMPAT
1327 struct compat_loop_info {
1328 compat_int_t lo_number; /* ioctl r/o */
1329 compat_dev_t lo_device; /* ioctl r/o */
1330 compat_ulong_t lo_inode; /* ioctl r/o */
1331 compat_dev_t lo_rdevice; /* ioctl r/o */
1332 compat_int_t lo_offset;
1333 compat_int_t lo_encrypt_type;
1334 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1335 compat_int_t lo_flags; /* ioctl r/o */
1336 char lo_name[LO_NAME_SIZE];
1337 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1338 compat_ulong_t lo_init[2];
1339 char reserved[4];
1343 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1344 * - noinlined to reduce stack space usage in main part of driver
1346 static noinline int
1347 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1348 struct loop_info64 *info64)
1350 struct compat_loop_info info;
1352 if (copy_from_user(&info, arg, sizeof(info)))
1353 return -EFAULT;
1355 memset(info64, 0, sizeof(*info64));
1356 info64->lo_number = info.lo_number;
1357 info64->lo_device = info.lo_device;
1358 info64->lo_inode = info.lo_inode;
1359 info64->lo_rdevice = info.lo_rdevice;
1360 info64->lo_offset = info.lo_offset;
1361 info64->lo_sizelimit = 0;
1362 info64->lo_encrypt_type = info.lo_encrypt_type;
1363 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1364 info64->lo_flags = info.lo_flags;
1365 info64->lo_init[0] = info.lo_init[0];
1366 info64->lo_init[1] = info.lo_init[1];
1367 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1368 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1369 else
1370 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1371 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1372 return 0;
1376 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1377 * - noinlined to reduce stack space usage in main part of driver
1379 static noinline int
1380 loop_info64_to_compat(const struct loop_info64 *info64,
1381 struct compat_loop_info __user *arg)
1383 struct compat_loop_info info;
1385 memset(&info, 0, sizeof(info));
1386 info.lo_number = info64->lo_number;
1387 info.lo_device = info64->lo_device;
1388 info.lo_inode = info64->lo_inode;
1389 info.lo_rdevice = info64->lo_rdevice;
1390 info.lo_offset = info64->lo_offset;
1391 info.lo_encrypt_type = info64->lo_encrypt_type;
1392 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1393 info.lo_flags = info64->lo_flags;
1394 info.lo_init[0] = info64->lo_init[0];
1395 info.lo_init[1] = info64->lo_init[1];
1396 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1397 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1398 else
1399 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1400 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1402 /* error in case values were truncated */
1403 if (info.lo_device != info64->lo_device ||
1404 info.lo_rdevice != info64->lo_rdevice ||
1405 info.lo_inode != info64->lo_inode ||
1406 info.lo_offset != info64->lo_offset ||
1407 info.lo_init[0] != info64->lo_init[0] ||
1408 info.lo_init[1] != info64->lo_init[1])
1409 return -EOVERFLOW;
1411 if (copy_to_user(arg, &info, sizeof(info)))
1412 return -EFAULT;
1413 return 0;
1416 static int
1417 loop_set_status_compat(struct loop_device *lo,
1418 const struct compat_loop_info __user *arg)
1420 struct loop_info64 info64;
1421 int ret;
1423 ret = loop_info64_from_compat(arg, &info64);
1424 if (ret < 0)
1425 return ret;
1426 return loop_set_status(lo, &info64);
1429 static int
1430 loop_get_status_compat(struct loop_device *lo,
1431 struct compat_loop_info __user *arg)
1433 struct loop_info64 info64;
1434 int err = 0;
1436 if (!arg)
1437 err = -EINVAL;
1438 if (!err)
1439 err = loop_get_status(lo, &info64);
1440 if (!err)
1441 err = loop_info64_to_compat(&info64, arg);
1442 return err;
1445 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1446 unsigned int cmd, unsigned long arg)
1448 struct loop_device *lo = bdev->bd_disk->private_data;
1449 int err;
1451 switch(cmd) {
1452 case LOOP_SET_STATUS:
1453 mutex_lock(&lo->lo_ctl_mutex);
1454 err = loop_set_status_compat(
1455 lo, (const struct compat_loop_info __user *) arg);
1456 mutex_unlock(&lo->lo_ctl_mutex);
1457 break;
1458 case LOOP_GET_STATUS:
1459 mutex_lock(&lo->lo_ctl_mutex);
1460 err = loop_get_status_compat(
1461 lo, (struct compat_loop_info __user *) arg);
1462 mutex_unlock(&lo->lo_ctl_mutex);
1463 break;
1464 case LOOP_SET_CAPACITY:
1465 case LOOP_CLR_FD:
1466 case LOOP_GET_STATUS64:
1467 case LOOP_SET_STATUS64:
1468 arg = (unsigned long) compat_ptr(arg);
1469 case LOOP_SET_FD:
1470 case LOOP_CHANGE_FD:
1471 err = lo_ioctl(bdev, mode, cmd, arg);
1472 break;
1473 default:
1474 err = -ENOIOCTLCMD;
1475 break;
1477 return err;
1479 #endif
1481 static int lo_open(struct block_device *bdev, fmode_t mode)
1483 struct loop_device *lo;
1484 int err = 0;
1486 mutex_lock(&loop_index_mutex);
1487 lo = bdev->bd_disk->private_data;
1488 if (!lo) {
1489 err = -ENXIO;
1490 goto out;
1493 mutex_lock(&lo->lo_ctl_mutex);
1494 lo->lo_refcnt++;
1495 mutex_unlock(&lo->lo_ctl_mutex);
1496 out:
1497 mutex_unlock(&loop_index_mutex);
1498 return err;
1501 static int lo_release(struct gendisk *disk, fmode_t mode)
1503 struct loop_device *lo = disk->private_data;
1504 int err;
1506 mutex_lock(&lo->lo_ctl_mutex);
1508 if (--lo->lo_refcnt)
1509 goto out;
1511 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1513 * In autoclear mode, stop the loop thread
1514 * and remove configuration after last close.
1516 err = loop_clr_fd(lo, NULL);
1517 if (!err)
1518 goto out_unlocked;
1519 } else {
1521 * Otherwise keep thread (if running) and config,
1522 * but flush possible ongoing bios in thread.
1524 loop_flush(lo);
1527 out:
1528 mutex_unlock(&lo->lo_ctl_mutex);
1529 out_unlocked:
1530 return 0;
1533 static const struct block_device_operations lo_fops = {
1534 .owner = THIS_MODULE,
1535 .open = lo_open,
1536 .release = lo_release,
1537 .ioctl = lo_ioctl,
1538 #ifdef CONFIG_COMPAT
1539 .compat_ioctl = lo_compat_ioctl,
1540 #endif
1544 * And now the modules code and kernel interface.
1546 static int max_loop;
1547 module_param(max_loop, int, S_IRUGO);
1548 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1549 module_param(max_part, int, S_IRUGO);
1550 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1551 MODULE_LICENSE("GPL");
1552 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1554 int loop_register_transfer(struct loop_func_table *funcs)
1556 unsigned int n = funcs->number;
1558 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1559 return -EINVAL;
1560 xfer_funcs[n] = funcs;
1561 return 0;
1564 static int unregister_transfer_cb(int id, void *ptr, void *data)
1566 struct loop_device *lo = ptr;
1567 struct loop_func_table *xfer = data;
1569 mutex_lock(&lo->lo_ctl_mutex);
1570 if (lo->lo_encryption == xfer)
1571 loop_release_xfer(lo);
1572 mutex_unlock(&lo->lo_ctl_mutex);
1573 return 0;
1576 int loop_unregister_transfer(int number)
1578 unsigned int n = number;
1579 struct loop_func_table *xfer;
1581 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1582 return -EINVAL;
1584 xfer_funcs[n] = NULL;
1585 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1586 return 0;
1589 EXPORT_SYMBOL(loop_register_transfer);
1590 EXPORT_SYMBOL(loop_unregister_transfer);
1592 static int loop_add(struct loop_device **l, int i)
1594 struct loop_device *lo;
1595 struct gendisk *disk;
1596 int err;
1598 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1599 if (!lo) {
1600 err = -ENOMEM;
1601 goto out;
1604 err = idr_pre_get(&loop_index_idr, GFP_KERNEL);
1605 if (err < 0)
1606 goto out_free_dev;
1608 if (i >= 0) {
1609 int m;
1611 /* create specific i in the index */
1612 err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1613 if (err >= 0 && i != m) {
1614 idr_remove(&loop_index_idr, m);
1615 err = -EEXIST;
1617 } else if (i == -1) {
1618 int m;
1620 /* get next free nr */
1621 err = idr_get_new(&loop_index_idr, lo, &m);
1622 if (err >= 0)
1623 i = m;
1624 } else {
1625 err = -EINVAL;
1627 if (err < 0)
1628 goto out_free_dev;
1630 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1631 if (!lo->lo_queue)
1632 goto out_free_dev;
1634 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1635 if (!disk)
1636 goto out_free_queue;
1638 mutex_init(&lo->lo_ctl_mutex);
1639 lo->lo_number = i;
1640 lo->lo_thread = NULL;
1641 init_waitqueue_head(&lo->lo_event);
1642 spin_lock_init(&lo->lo_lock);
1643 disk->major = LOOP_MAJOR;
1644 disk->first_minor = i << part_shift;
1645 disk->fops = &lo_fops;
1646 disk->private_data = lo;
1647 disk->queue = lo->lo_queue;
1648 sprintf(disk->disk_name, "loop%d", i);
1649 add_disk(disk);
1650 *l = lo;
1651 return lo->lo_number;
1653 out_free_queue:
1654 blk_cleanup_queue(lo->lo_queue);
1655 out_free_dev:
1656 kfree(lo);
1657 out:
1658 return err;
1661 static void loop_remove(struct loop_device *lo)
1663 del_gendisk(lo->lo_disk);
1664 blk_cleanup_queue(lo->lo_queue);
1665 put_disk(lo->lo_disk);
1666 kfree(lo);
1669 static int find_free_cb(int id, void *ptr, void *data)
1671 struct loop_device *lo = ptr;
1672 struct loop_device **l = data;
1674 if (lo->lo_state == Lo_unbound) {
1675 *l = lo;
1676 return 1;
1678 return 0;
1681 static int loop_lookup(struct loop_device **l, int i)
1683 struct loop_device *lo;
1684 int ret = -ENODEV;
1686 if (i < 0) {
1687 int err;
1689 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1690 if (err == 1) {
1691 *l = lo;
1692 ret = lo->lo_number;
1694 goto out;
1697 /* lookup and return a specific i */
1698 lo = idr_find(&loop_index_idr, i);
1699 if (lo) {
1700 *l = lo;
1701 ret = lo->lo_number;
1703 out:
1704 return ret;
1707 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1709 struct loop_device *lo;
1710 struct kobject *kobj;
1711 int err;
1713 mutex_lock(&loop_index_mutex);
1714 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1715 if (err < 0)
1716 err = loop_add(&lo, MINOR(dev) >> part_shift);
1717 if (err < 0)
1718 kobj = ERR_PTR(err);
1719 else
1720 kobj = get_disk(lo->lo_disk);
1721 mutex_unlock(&loop_index_mutex);
1723 *part = 0;
1724 return kobj;
1727 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1728 unsigned long parm)
1730 struct loop_device *lo;
1731 int ret = -ENOSYS;
1733 mutex_lock(&loop_index_mutex);
1734 switch (cmd) {
1735 case LOOP_CTL_ADD:
1736 ret = loop_lookup(&lo, parm);
1737 if (ret >= 0) {
1738 ret = -EEXIST;
1739 break;
1741 ret = loop_add(&lo, parm);
1742 break;
1743 case LOOP_CTL_REMOVE:
1744 ret = loop_lookup(&lo, parm);
1745 if (ret < 0)
1746 break;
1747 mutex_lock(&lo->lo_ctl_mutex);
1748 if (lo->lo_state != Lo_unbound) {
1749 ret = -EBUSY;
1750 mutex_unlock(&lo->lo_ctl_mutex);
1751 break;
1753 if (lo->lo_refcnt > 0) {
1754 ret = -EBUSY;
1755 mutex_unlock(&lo->lo_ctl_mutex);
1756 break;
1758 lo->lo_disk->private_data = NULL;
1759 mutex_unlock(&lo->lo_ctl_mutex);
1760 idr_remove(&loop_index_idr, lo->lo_number);
1761 loop_remove(lo);
1762 break;
1763 case LOOP_CTL_GET_FREE:
1764 ret = loop_lookup(&lo, -1);
1765 if (ret >= 0)
1766 break;
1767 ret = loop_add(&lo, -1);
1769 mutex_unlock(&loop_index_mutex);
1771 return ret;
1774 static const struct file_operations loop_ctl_fops = {
1775 .open = nonseekable_open,
1776 .unlocked_ioctl = loop_control_ioctl,
1777 .compat_ioctl = loop_control_ioctl,
1778 .owner = THIS_MODULE,
1779 .llseek = noop_llseek,
1782 static struct miscdevice loop_misc = {
1783 .minor = LOOP_CTRL_MINOR,
1784 .name = "loop-control",
1785 .fops = &loop_ctl_fops,
1788 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1789 MODULE_ALIAS("devname:loop-control");
1791 static int __init loop_init(void)
1793 int i, nr;
1794 unsigned long range;
1795 struct loop_device *lo;
1796 int err;
1798 err = misc_register(&loop_misc);
1799 if (err < 0)
1800 return err;
1802 part_shift = 0;
1803 if (max_part > 0) {
1804 part_shift = fls(max_part);
1807 * Adjust max_part according to part_shift as it is exported
1808 * to user space so that user can decide correct minor number
1809 * if [s]he want to create more devices.
1811 * Note that -1 is required because partition 0 is reserved
1812 * for the whole disk.
1814 max_part = (1UL << part_shift) - 1;
1817 if ((1UL << part_shift) > DISK_MAX_PARTS)
1818 return -EINVAL;
1820 if (max_loop > 1UL << (MINORBITS - part_shift))
1821 return -EINVAL;
1824 * If max_loop is specified, create that many devices upfront.
1825 * This also becomes a hard limit. If max_loop is not specified,
1826 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1827 * init time. Loop devices can be requested on-demand with the
1828 * /dev/loop-control interface, or be instantiated by accessing
1829 * a 'dead' device node.
1831 if (max_loop) {
1832 nr = max_loop;
1833 range = max_loop << part_shift;
1834 } else {
1835 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1836 range = 1UL << MINORBITS;
1839 if (register_blkdev(LOOP_MAJOR, "loop"))
1840 return -EIO;
1842 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1843 THIS_MODULE, loop_probe, NULL, NULL);
1845 /* pre-create number of devices given by config or max_loop */
1846 mutex_lock(&loop_index_mutex);
1847 for (i = 0; i < nr; i++)
1848 loop_add(&lo, i);
1849 mutex_unlock(&loop_index_mutex);
1851 printk(KERN_INFO "loop: module loaded\n");
1852 return 0;
1855 static int loop_exit_cb(int id, void *ptr, void *data)
1857 struct loop_device *lo = ptr;
1859 loop_remove(lo);
1860 return 0;
1863 static void __exit loop_exit(void)
1865 unsigned long range;
1867 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1869 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1870 idr_remove_all(&loop_index_idr);
1871 idr_destroy(&loop_index_idr);
1873 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1874 unregister_blkdev(LOOP_MAJOR, "loop");
1876 misc_deregister(&loop_misc);
1879 module_init(loop_init);
1880 module_exit(loop_exit);
1882 #ifndef MODULE
1883 static int __init max_loop_setup(char *str)
1885 max_loop = simple_strtol(str, NULL, 0);
1886 return 1;
1889 __setup("max_loop=", max_loop_setup);
1890 #endif