4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
43 static long ratelimit_pages
= 32;
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
48 * It should be somewhat larger than dirtied pages to ensure that reasonably
49 * large amounts of I/O are submitted.
51 static inline long sync_writeback_pages(unsigned long dirtied
)
53 if (dirtied
< ratelimit_pages
)
54 dirtied
= ratelimit_pages
;
56 return dirtied
+ dirtied
/ 2;
59 /* The following parameters are exported via /proc/sys/vm */
62 * Start background writeback (via writeback threads) at this percentage
64 int dirty_background_ratio
= 10;
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
70 unsigned long dirty_background_bytes
;
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
76 int vm_highmem_is_dirtyable
;
79 * The generator of dirty data starts writeback at this percentage
81 int vm_dirty_ratio
= 20;
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
87 unsigned long vm_dirty_bytes
;
90 * The interval between `kupdate'-style writebacks
92 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
95 * The longest time for which data is allowed to remain dirty
97 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
100 * Flag that makes the machine dump writes/reads and block dirtyings.
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
110 EXPORT_SYMBOL(laptop_mode
);
112 /* End of sysctl-exported parameters */
116 * Scale the writeback cache size proportional to the relative writeout speeds.
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
131 static struct prop_descriptor vm_completions
;
132 static struct prop_descriptor vm_dirties
;
135 * couple the period to the dirty_ratio:
137 * period/2 ~ roundup_pow_of_two(dirty limit)
139 static int calc_period_shift(void)
141 unsigned long dirty_total
;
144 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
146 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
148 return 2 + ilog2(dirty_total
- 1);
152 * update the period when the dirty threshold changes.
154 static void update_completion_period(void)
156 int shift
= calc_period_shift();
157 prop_change_shift(&vm_completions
, shift
);
158 prop_change_shift(&vm_dirties
, shift
);
161 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
162 void __user
*buffer
, size_t *lenp
,
167 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
168 if (ret
== 0 && write
)
169 dirty_background_bytes
= 0;
173 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
174 void __user
*buffer
, size_t *lenp
,
179 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
180 if (ret
== 0 && write
)
181 dirty_background_ratio
= 0;
185 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
186 void __user
*buffer
, size_t *lenp
,
189 int old_ratio
= vm_dirty_ratio
;
192 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
193 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
194 update_completion_period();
201 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
202 void __user
*buffer
, size_t *lenp
,
205 unsigned long old_bytes
= vm_dirty_bytes
;
208 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
209 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
210 update_completion_period();
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
220 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
222 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
226 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
230 local_irq_save(flags
);
231 __bdi_writeout_inc(bdi
);
232 local_irq_restore(flags
);
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
236 void task_dirty_inc(struct task_struct
*tsk
)
238 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
242 * Obtain an accurate fraction of the BDI's portion.
244 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
245 long *numerator
, long *denominator
)
247 if (bdi_cap_writeback_dirty(bdi
)) {
248 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
249 numerator
, denominator
);
257 * Clip the earned share of dirty pages to that which is actually available.
258 * This avoids exceeding the total dirty_limit when the floating averages
259 * fluctuate too quickly.
261 static void clip_bdi_dirty_limit(struct backing_dev_info
*bdi
,
262 unsigned long dirty
, unsigned long *pbdi_dirty
)
264 unsigned long avail_dirty
;
266 avail_dirty
= global_page_state(NR_FILE_DIRTY
) +
267 global_page_state(NR_WRITEBACK
) +
268 global_page_state(NR_UNSTABLE_NFS
) +
269 global_page_state(NR_WRITEBACK_TEMP
);
271 if (avail_dirty
< dirty
)
272 avail_dirty
= dirty
- avail_dirty
;
276 avail_dirty
+= bdi_stat(bdi
, BDI_RECLAIMABLE
) +
277 bdi_stat(bdi
, BDI_WRITEBACK
);
279 *pbdi_dirty
= min(*pbdi_dirty
, avail_dirty
);
282 static inline void task_dirties_fraction(struct task_struct
*tsk
,
283 long *numerator
, long *denominator
)
285 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
286 numerator
, denominator
);
290 * scale the dirty limit
292 * task specific dirty limit:
294 * dirty -= (dirty/8) * p_{t}
296 static void task_dirty_limit(struct task_struct
*tsk
, unsigned long *pdirty
)
298 long numerator
, denominator
;
299 unsigned long dirty
= *pdirty
;
300 u64 inv
= dirty
>> 3;
302 task_dirties_fraction(tsk
, &numerator
, &denominator
);
304 do_div(inv
, denominator
);
307 if (dirty
< *pdirty
/2)
316 static unsigned int bdi_min_ratio
;
318 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
322 spin_lock_bh(&bdi_lock
);
323 if (min_ratio
> bdi
->max_ratio
) {
326 min_ratio
-= bdi
->min_ratio
;
327 if (bdi_min_ratio
+ min_ratio
< 100) {
328 bdi_min_ratio
+= min_ratio
;
329 bdi
->min_ratio
+= min_ratio
;
334 spin_unlock_bh(&bdi_lock
);
339 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
346 spin_lock_bh(&bdi_lock
);
347 if (bdi
->min_ratio
> max_ratio
) {
350 bdi
->max_ratio
= max_ratio
;
351 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
353 spin_unlock_bh(&bdi_lock
);
357 EXPORT_SYMBOL(bdi_set_max_ratio
);
360 * Work out the current dirty-memory clamping and background writeout
363 * The main aim here is to lower them aggressively if there is a lot of mapped
364 * memory around. To avoid stressing page reclaim with lots of unreclaimable
365 * pages. It is better to clamp down on writers than to start swapping, and
366 * performing lots of scanning.
368 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
370 * We don't permit the clamping level to fall below 5% - that is getting rather
373 * We make sure that the background writeout level is below the adjusted
377 static unsigned long highmem_dirtyable_memory(unsigned long total
)
379 #ifdef CONFIG_HIGHMEM
383 for_each_node_state(node
, N_HIGH_MEMORY
) {
385 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
387 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
388 zone_reclaimable_pages(z
);
391 * Make sure that the number of highmem pages is never larger
392 * than the number of the total dirtyable memory. This can only
393 * occur in very strange VM situations but we want to make sure
394 * that this does not occur.
396 return min(x
, total
);
403 * determine_dirtyable_memory - amount of memory that may be used
405 * Returns the numebr of pages that can currently be freed and used
406 * by the kernel for direct mappings.
408 unsigned long determine_dirtyable_memory(void)
412 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages();
414 if (!vm_highmem_is_dirtyable
)
415 x
-= highmem_dirtyable_memory(x
);
417 return x
+ 1; /* Ensure that we never return 0 */
421 get_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
,
422 unsigned long *pbdi_dirty
, struct backing_dev_info
*bdi
)
424 unsigned long background
;
426 unsigned long available_memory
= determine_dirtyable_memory();
427 struct task_struct
*tsk
;
430 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
434 dirty_ratio
= vm_dirty_ratio
;
437 dirty
= (dirty_ratio
* available_memory
) / 100;
440 if (dirty_background_bytes
)
441 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
443 background
= (dirty_background_ratio
* available_memory
) / 100;
445 if (background
>= dirty
)
446 background
= dirty
/ 2;
448 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
449 background
+= background
/ 4;
452 *pbackground
= background
;
457 long numerator
, denominator
;
460 * Calculate this BDI's share of the dirty ratio.
462 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
464 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
465 bdi_dirty
*= numerator
;
466 do_div(bdi_dirty
, denominator
);
467 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
468 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
469 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
471 *pbdi_dirty
= bdi_dirty
;
472 clip_bdi_dirty_limit(bdi
, dirty
, pbdi_dirty
);
473 task_dirty_limit(current
, pbdi_dirty
);
478 * balance_dirty_pages() must be called by processes which are generating dirty
479 * data. It looks at the number of dirty pages in the machine and will force
480 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
481 * If we're over `background_thresh' then the writeback threads are woken to
482 * perform some writeout.
484 static void balance_dirty_pages(struct address_space
*mapping
,
485 unsigned long write_chunk
)
487 long nr_reclaimable
, bdi_nr_reclaimable
;
488 long nr_writeback
, bdi_nr_writeback
;
489 unsigned long background_thresh
;
490 unsigned long dirty_thresh
;
491 unsigned long bdi_thresh
;
492 unsigned long pages_written
= 0;
493 unsigned long pause
= 1;
495 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
498 struct writeback_control wbc
= {
499 .sync_mode
= WB_SYNC_NONE
,
500 .older_than_this
= NULL
,
501 .nr_to_write
= write_chunk
,
505 get_dirty_limits(&background_thresh
, &dirty_thresh
,
508 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
509 global_page_state(NR_UNSTABLE_NFS
);
510 nr_writeback
= global_page_state(NR_WRITEBACK
);
512 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
513 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
515 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
519 * Throttle it only when the background writeback cannot
520 * catch-up. This avoids (excessively) small writeouts
521 * when the bdi limits are ramping up.
523 if (nr_reclaimable
+ nr_writeback
<
524 (background_thresh
+ dirty_thresh
) / 2)
527 if (!bdi
->dirty_exceeded
)
528 bdi
->dirty_exceeded
= 1;
530 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
531 * Unstable writes are a feature of certain networked
532 * filesystems (i.e. NFS) in which data may have been
533 * written to the server's write cache, but has not yet
534 * been flushed to permanent storage.
535 * Only move pages to writeback if this bdi is over its
536 * threshold otherwise wait until the disk writes catch
539 trace_wbc_balance_dirty_start(&wbc
, bdi
);
540 if (bdi_nr_reclaimable
> bdi_thresh
) {
541 writeback_inodes_wb(&bdi
->wb
, &wbc
);
542 pages_written
+= write_chunk
- wbc
.nr_to_write
;
543 get_dirty_limits(&background_thresh
, &dirty_thresh
,
545 trace_wbc_balance_dirty_written(&wbc
, bdi
);
549 * In order to avoid the stacked BDI deadlock we need
550 * to ensure we accurately count the 'dirty' pages when
551 * the threshold is low.
553 * Otherwise it would be possible to get thresh+n pages
554 * reported dirty, even though there are thresh-m pages
555 * actually dirty; with m+n sitting in the percpu
558 if (bdi_thresh
< 2*bdi_stat_error(bdi
)) {
559 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
560 bdi_nr_writeback
= bdi_stat_sum(bdi
, BDI_WRITEBACK
);
561 } else if (bdi_nr_reclaimable
) {
562 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
563 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
566 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
568 if (pages_written
>= write_chunk
)
569 break; /* We've done our duty */
571 trace_wbc_balance_dirty_wait(&wbc
, bdi
);
572 __set_current_state(TASK_INTERRUPTIBLE
);
573 io_schedule_timeout(pause
);
576 * Increase the delay for each loop, up to our previous
577 * default of taking a 100ms nap.
584 if (bdi_nr_reclaimable
+ bdi_nr_writeback
< bdi_thresh
&&
586 bdi
->dirty_exceeded
= 0;
588 if (writeback_in_progress(bdi
))
592 * In laptop mode, we wait until hitting the higher threshold before
593 * starting background writeout, and then write out all the way down
594 * to the lower threshold. So slow writers cause minimal disk activity.
596 * In normal mode, we start background writeout at the lower
597 * background_thresh, to keep the amount of dirty memory low.
599 if ((laptop_mode
&& pages_written
) ||
600 (!laptop_mode
&& ((global_page_state(NR_FILE_DIRTY
)
601 + global_page_state(NR_UNSTABLE_NFS
))
602 > background_thresh
)))
603 bdi_start_background_writeback(bdi
);
606 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
608 if (set_page_dirty(page
) || page_mkwrite
) {
609 struct address_space
*mapping
= page_mapping(page
);
612 balance_dirty_pages_ratelimited(mapping
);
616 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits
) = 0;
619 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
620 * @mapping: address_space which was dirtied
621 * @nr_pages_dirtied: number of pages which the caller has just dirtied
623 * Processes which are dirtying memory should call in here once for each page
624 * which was newly dirtied. The function will periodically check the system's
625 * dirty state and will initiate writeback if needed.
627 * On really big machines, get_writeback_state is expensive, so try to avoid
628 * calling it too often (ratelimiting). But once we're over the dirty memory
629 * limit we decrease the ratelimiting by a lot, to prevent individual processes
630 * from overshooting the limit by (ratelimit_pages) each.
632 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
633 unsigned long nr_pages_dirtied
)
635 unsigned long ratelimit
;
638 ratelimit
= ratelimit_pages
;
639 if (mapping
->backing_dev_info
->dirty_exceeded
)
643 * Check the rate limiting. Also, we do not want to throttle real-time
644 * tasks in balance_dirty_pages(). Period.
647 p
= &__get_cpu_var(bdp_ratelimits
);
648 *p
+= nr_pages_dirtied
;
649 if (unlikely(*p
>= ratelimit
)) {
650 ratelimit
= sync_writeback_pages(*p
);
653 balance_dirty_pages(mapping
, ratelimit
);
658 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
660 void throttle_vm_writeout(gfp_t gfp_mask
)
662 unsigned long background_thresh
;
663 unsigned long dirty_thresh
;
666 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
669 * Boost the allowable dirty threshold a bit for page
670 * allocators so they don't get DoS'ed by heavy writers
672 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
674 if (global_page_state(NR_UNSTABLE_NFS
) +
675 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
677 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
680 * The caller might hold locks which can prevent IO completion
681 * or progress in the filesystem. So we cannot just sit here
682 * waiting for IO to complete.
684 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
690 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
692 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
693 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
695 proc_dointvec(table
, write
, buffer
, length
, ppos
);
696 bdi_arm_supers_timer();
701 void laptop_mode_timer_fn(unsigned long data
)
703 struct request_queue
*q
= (struct request_queue
*)data
;
704 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
705 global_page_state(NR_UNSTABLE_NFS
);
708 * We want to write everything out, not just down to the dirty
711 if (bdi_has_dirty_io(&q
->backing_dev_info
))
712 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
);
716 * We've spun up the disk and we're in laptop mode: schedule writeback
717 * of all dirty data a few seconds from now. If the flush is already scheduled
718 * then push it back - the user is still using the disk.
720 void laptop_io_completion(struct backing_dev_info
*info
)
722 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
726 * We're in laptop mode and we've just synced. The sync's writes will have
727 * caused another writeback to be scheduled by laptop_io_completion.
728 * Nothing needs to be written back anymore, so we unschedule the writeback.
730 void laptop_sync_completion(void)
732 struct backing_dev_info
*bdi
;
736 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
737 del_timer(&bdi
->laptop_mode_wb_timer
);
744 * If ratelimit_pages is too high then we can get into dirty-data overload
745 * if a large number of processes all perform writes at the same time.
746 * If it is too low then SMP machines will call the (expensive)
747 * get_writeback_state too often.
749 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
750 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
751 * thresholds before writeback cuts in.
753 * But the limit should not be set too high. Because it also controls the
754 * amount of memory which the balance_dirty_pages() caller has to write back.
755 * If this is too large then the caller will block on the IO queue all the
756 * time. So limit it to four megabytes - the balance_dirty_pages() caller
757 * will write six megabyte chunks, max.
760 void writeback_set_ratelimit(void)
762 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
763 if (ratelimit_pages
< 16)
764 ratelimit_pages
= 16;
765 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
766 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
770 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
772 writeback_set_ratelimit();
776 static struct notifier_block __cpuinitdata ratelimit_nb
= {
777 .notifier_call
= ratelimit_handler
,
782 * Called early on to tune the page writeback dirty limits.
784 * We used to scale dirty pages according to how total memory
785 * related to pages that could be allocated for buffers (by
786 * comparing nr_free_buffer_pages() to vm_total_pages.
788 * However, that was when we used "dirty_ratio" to scale with
789 * all memory, and we don't do that any more. "dirty_ratio"
790 * is now applied to total non-HIGHPAGE memory (by subtracting
791 * totalhigh_pages from vm_total_pages), and as such we can't
792 * get into the old insane situation any more where we had
793 * large amounts of dirty pages compared to a small amount of
794 * non-HIGHMEM memory.
796 * But we might still want to scale the dirty_ratio by how
797 * much memory the box has..
799 void __init
page_writeback_init(void)
803 writeback_set_ratelimit();
804 register_cpu_notifier(&ratelimit_nb
);
806 shift
= calc_period_shift();
807 prop_descriptor_init(&vm_completions
, shift
);
808 prop_descriptor_init(&vm_dirties
, shift
);
812 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
813 * @mapping: address space structure to write
814 * @start: starting page index
815 * @end: ending page index (inclusive)
817 * This function scans the page range from @start to @end (inclusive) and tags
818 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
819 * that write_cache_pages (or whoever calls this function) will then use
820 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
821 * used to avoid livelocking of writeback by a process steadily creating new
822 * dirty pages in the file (thus it is important for this function to be quick
823 * so that it can tag pages faster than a dirtying process can create them).
826 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
828 #define WRITEBACK_TAG_BATCH 4096
829 void tag_pages_for_writeback(struct address_space
*mapping
,
830 pgoff_t start
, pgoff_t end
)
832 unsigned long tagged
;
835 spin_lock_irq(&mapping
->tree_lock
);
836 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
837 &start
, end
, WRITEBACK_TAG_BATCH
,
838 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
839 spin_unlock_irq(&mapping
->tree_lock
);
840 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
842 } while (tagged
>= WRITEBACK_TAG_BATCH
);
844 EXPORT_SYMBOL(tag_pages_for_writeback
);
847 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
848 * @mapping: address space structure to write
849 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
850 * @writepage: function called for each page
851 * @data: data passed to writepage function
853 * If a page is already under I/O, write_cache_pages() skips it, even
854 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
855 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
856 * and msync() need to guarantee that all the data which was dirty at the time
857 * the call was made get new I/O started against them. If wbc->sync_mode is
858 * WB_SYNC_ALL then we were called for data integrity and we must wait for
859 * existing IO to complete.
861 * To avoid livelocks (when other process dirties new pages), we first tag
862 * pages which should be written back with TOWRITE tag and only then start
863 * writing them. For data-integrity sync we have to be careful so that we do
864 * not miss some pages (e.g., because some other process has cleared TOWRITE
865 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
866 * by the process clearing the DIRTY tag (and submitting the page for IO).
868 int write_cache_pages(struct address_space
*mapping
,
869 struct writeback_control
*wbc
, writepage_t writepage
,
876 pgoff_t
uninitialized_var(writeback_index
);
878 pgoff_t end
; /* Inclusive */
884 pagevec_init(&pvec
, 0);
885 if (wbc
->range_cyclic
) {
886 writeback_index
= mapping
->writeback_index
; /* prev offset */
887 index
= writeback_index
;
894 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
895 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
896 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
898 cycled
= 1; /* ignore range_cyclic tests */
900 if (wbc
->sync_mode
== WB_SYNC_ALL
)
901 tag
= PAGECACHE_TAG_TOWRITE
;
903 tag
= PAGECACHE_TAG_DIRTY
;
905 if (wbc
->sync_mode
== WB_SYNC_ALL
)
906 tag_pages_for_writeback(mapping
, index
, end
);
908 while (!done
&& (index
<= end
)) {
911 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
912 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
916 for (i
= 0; i
< nr_pages
; i
++) {
917 struct page
*page
= pvec
.pages
[i
];
920 * At this point, the page may be truncated or
921 * invalidated (changing page->mapping to NULL), or
922 * even swizzled back from swapper_space to tmpfs file
923 * mapping. However, page->index will not change
924 * because we have a reference on the page.
926 if (page
->index
> end
) {
928 * can't be range_cyclic (1st pass) because
929 * end == -1 in that case.
935 done_index
= page
->index
+ 1;
940 * Page truncated or invalidated. We can freely skip it
941 * then, even for data integrity operations: the page
942 * has disappeared concurrently, so there could be no
943 * real expectation of this data interity operation
944 * even if there is now a new, dirty page at the same
947 if (unlikely(page
->mapping
!= mapping
)) {
953 if (!PageDirty(page
)) {
954 /* someone wrote it for us */
955 goto continue_unlock
;
958 if (PageWriteback(page
)) {
959 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
960 wait_on_page_writeback(page
);
962 goto continue_unlock
;
965 BUG_ON(PageWriteback(page
));
966 if (!clear_page_dirty_for_io(page
))
967 goto continue_unlock
;
969 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
970 ret
= (*writepage
)(page
, wbc
, data
);
972 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
977 * done_index is set past this page,
978 * so media errors will not choke
979 * background writeout for the entire
980 * file. This has consequences for
981 * range_cyclic semantics (ie. it may
982 * not be suitable for data integrity
990 if (wbc
->nr_to_write
> 0) {
991 if (--wbc
->nr_to_write
== 0 &&
992 wbc
->sync_mode
== WB_SYNC_NONE
) {
994 * We stop writing back only if we are
995 * not doing integrity sync. In case of
996 * integrity sync we have to keep going
997 * because someone may be concurrently
998 * dirtying pages, and we might have
999 * synced a lot of newly appeared dirty
1000 * pages, but have not synced all of the
1008 pagevec_release(&pvec
);
1011 if (!cycled
&& !done
) {
1014 * We hit the last page and there is more work to be done: wrap
1015 * back to the start of the file
1019 end
= writeback_index
- 1;
1022 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1023 mapping
->writeback_index
= done_index
;
1027 EXPORT_SYMBOL(write_cache_pages
);
1030 * Function used by generic_writepages to call the real writepage
1031 * function and set the mapping flags on error
1033 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1036 struct address_space
*mapping
= data
;
1037 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1038 mapping_set_error(mapping
, ret
);
1043 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1044 * @mapping: address space structure to write
1045 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1047 * This is a library function, which implements the writepages()
1048 * address_space_operation.
1050 int generic_writepages(struct address_space
*mapping
,
1051 struct writeback_control
*wbc
)
1053 /* deal with chardevs and other special file */
1054 if (!mapping
->a_ops
->writepage
)
1057 return write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1060 EXPORT_SYMBOL(generic_writepages
);
1062 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1066 if (wbc
->nr_to_write
<= 0)
1068 if (mapping
->a_ops
->writepages
)
1069 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1071 ret
= generic_writepages(mapping
, wbc
);
1076 * write_one_page - write out a single page and optionally wait on I/O
1077 * @page: the page to write
1078 * @wait: if true, wait on writeout
1080 * The page must be locked by the caller and will be unlocked upon return.
1082 * write_one_page() returns a negative error code if I/O failed.
1084 int write_one_page(struct page
*page
, int wait
)
1086 struct address_space
*mapping
= page
->mapping
;
1088 struct writeback_control wbc
= {
1089 .sync_mode
= WB_SYNC_ALL
,
1093 BUG_ON(!PageLocked(page
));
1096 wait_on_page_writeback(page
);
1098 if (clear_page_dirty_for_io(page
)) {
1099 page_cache_get(page
);
1100 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1101 if (ret
== 0 && wait
) {
1102 wait_on_page_writeback(page
);
1103 if (PageError(page
))
1106 page_cache_release(page
);
1112 EXPORT_SYMBOL(write_one_page
);
1115 * For address_spaces which do not use buffers nor write back.
1117 int __set_page_dirty_no_writeback(struct page
*page
)
1119 if (!PageDirty(page
))
1125 * Helper function for set_page_dirty family.
1126 * NOTE: This relies on being atomic wrt interrupts.
1128 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1130 if (mapping_cap_account_dirty(mapping
)) {
1131 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1132 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1133 task_dirty_inc(current
);
1134 task_io_account_write(PAGE_CACHE_SIZE
);
1139 * For address_spaces which do not use buffers. Just tag the page as dirty in
1142 * This is also used when a single buffer is being dirtied: we want to set the
1143 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1144 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1146 * Most callers have locked the page, which pins the address_space in memory.
1147 * But zap_pte_range() does not lock the page, however in that case the
1148 * mapping is pinned by the vma's ->vm_file reference.
1150 * We take care to handle the case where the page was truncated from the
1151 * mapping by re-checking page_mapping() inside tree_lock.
1153 int __set_page_dirty_nobuffers(struct page
*page
)
1155 if (!TestSetPageDirty(page
)) {
1156 struct address_space
*mapping
= page_mapping(page
);
1157 struct address_space
*mapping2
;
1162 spin_lock_irq(&mapping
->tree_lock
);
1163 mapping2
= page_mapping(page
);
1164 if (mapping2
) { /* Race with truncate? */
1165 BUG_ON(mapping2
!= mapping
);
1166 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1167 account_page_dirtied(page
, mapping
);
1168 radix_tree_tag_set(&mapping
->page_tree
,
1169 page_index(page
), PAGECACHE_TAG_DIRTY
);
1171 spin_unlock_irq(&mapping
->tree_lock
);
1172 if (mapping
->host
) {
1173 /* !PageAnon && !swapper_space */
1174 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1180 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1183 * When a writepage implementation decides that it doesn't want to write this
1184 * page for some reason, it should redirty the locked page via
1185 * redirty_page_for_writepage() and it should then unlock the page and return 0
1187 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1189 wbc
->pages_skipped
++;
1190 return __set_page_dirty_nobuffers(page
);
1192 EXPORT_SYMBOL(redirty_page_for_writepage
);
1197 * For pages with a mapping this should be done under the page lock
1198 * for the benefit of asynchronous memory errors who prefer a consistent
1199 * dirty state. This rule can be broken in some special cases,
1200 * but should be better not to.
1202 * If the mapping doesn't provide a set_page_dirty a_op, then
1203 * just fall through and assume that it wants buffer_heads.
1205 int set_page_dirty(struct page
*page
)
1207 struct address_space
*mapping
= page_mapping(page
);
1209 if (likely(mapping
)) {
1210 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1213 spd
= __set_page_dirty_buffers
;
1215 return (*spd
)(page
);
1217 if (!PageDirty(page
)) {
1218 if (!TestSetPageDirty(page
))
1223 EXPORT_SYMBOL(set_page_dirty
);
1226 * set_page_dirty() is racy if the caller has no reference against
1227 * page->mapping->host, and if the page is unlocked. This is because another
1228 * CPU could truncate the page off the mapping and then free the mapping.
1230 * Usually, the page _is_ locked, or the caller is a user-space process which
1231 * holds a reference on the inode by having an open file.
1233 * In other cases, the page should be locked before running set_page_dirty().
1235 int set_page_dirty_lock(struct page
*page
)
1239 lock_page_nosync(page
);
1240 ret
= set_page_dirty(page
);
1244 EXPORT_SYMBOL(set_page_dirty_lock
);
1247 * Clear a page's dirty flag, while caring for dirty memory accounting.
1248 * Returns true if the page was previously dirty.
1250 * This is for preparing to put the page under writeout. We leave the page
1251 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1252 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1253 * implementation will run either set_page_writeback() or set_page_dirty(),
1254 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1257 * This incoherency between the page's dirty flag and radix-tree tag is
1258 * unfortunate, but it only exists while the page is locked.
1260 int clear_page_dirty_for_io(struct page
*page
)
1262 struct address_space
*mapping
= page_mapping(page
);
1264 BUG_ON(!PageLocked(page
));
1266 ClearPageReclaim(page
);
1267 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1269 * Yes, Virginia, this is indeed insane.
1271 * We use this sequence to make sure that
1272 * (a) we account for dirty stats properly
1273 * (b) we tell the low-level filesystem to
1274 * mark the whole page dirty if it was
1275 * dirty in a pagetable. Only to then
1276 * (c) clean the page again and return 1 to
1277 * cause the writeback.
1279 * This way we avoid all nasty races with the
1280 * dirty bit in multiple places and clearing
1281 * them concurrently from different threads.
1283 * Note! Normally the "set_page_dirty(page)"
1284 * has no effect on the actual dirty bit - since
1285 * that will already usually be set. But we
1286 * need the side effects, and it can help us
1289 * We basically use the page "master dirty bit"
1290 * as a serialization point for all the different
1291 * threads doing their things.
1293 if (page_mkclean(page
))
1294 set_page_dirty(page
);
1296 * We carefully synchronise fault handlers against
1297 * installing a dirty pte and marking the page dirty
1298 * at this point. We do this by having them hold the
1299 * page lock at some point after installing their
1300 * pte, but before marking the page dirty.
1301 * Pages are always locked coming in here, so we get
1302 * the desired exclusion. See mm/memory.c:do_wp_page()
1303 * for more comments.
1305 if (TestClearPageDirty(page
)) {
1306 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1307 dec_bdi_stat(mapping
->backing_dev_info
,
1313 return TestClearPageDirty(page
);
1315 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1317 int test_clear_page_writeback(struct page
*page
)
1319 struct address_space
*mapping
= page_mapping(page
);
1323 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1324 unsigned long flags
;
1326 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1327 ret
= TestClearPageWriteback(page
);
1329 radix_tree_tag_clear(&mapping
->page_tree
,
1331 PAGECACHE_TAG_WRITEBACK
);
1332 if (bdi_cap_account_writeback(bdi
)) {
1333 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1334 __bdi_writeout_inc(bdi
);
1337 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1339 ret
= TestClearPageWriteback(page
);
1342 dec_zone_page_state(page
, NR_WRITEBACK
);
1346 int test_set_page_writeback(struct page
*page
)
1348 struct address_space
*mapping
= page_mapping(page
);
1352 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1353 unsigned long flags
;
1355 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1356 ret
= TestSetPageWriteback(page
);
1358 radix_tree_tag_set(&mapping
->page_tree
,
1360 PAGECACHE_TAG_WRITEBACK
);
1361 if (bdi_cap_account_writeback(bdi
))
1362 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1364 if (!PageDirty(page
))
1365 radix_tree_tag_clear(&mapping
->page_tree
,
1367 PAGECACHE_TAG_DIRTY
);
1368 radix_tree_tag_clear(&mapping
->page_tree
,
1370 PAGECACHE_TAG_TOWRITE
);
1371 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1373 ret
= TestSetPageWriteback(page
);
1376 inc_zone_page_state(page
, NR_WRITEBACK
);
1380 EXPORT_SYMBOL(test_set_page_writeback
);
1383 * Return true if any of the pages in the mapping are marked with the
1386 int mapping_tagged(struct address_space
*mapping
, int tag
)
1390 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1394 EXPORT_SYMBOL(mapping_tagged
);