Linux 2.6.13-rc4
[linux-2.6/next.git] / arch / ia64 / mm / contig.c
blob91a055f5731f4df3043c2fa9b4a1daeb6f398821
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
15 * memory.
17 #include <linux/config.h>
18 #include <linux/bootmem.h>
19 #include <linux/efi.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long num_dma_physpages;
31 #endif
33 /**
34 * show_mem - display a memory statistics summary
36 * Just walks the pages in the system and describes where they're allocated.
38 void
39 show_mem (void)
41 int i, total = 0, reserved = 0;
42 int shared = 0, cached = 0;
44 printk("Mem-info:\n");
45 show_free_areas();
47 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
48 i = max_mapnr;
49 while (i-- > 0) {
50 if (!pfn_valid(i))
51 continue;
52 total++;
53 if (PageReserved(mem_map+i))
54 reserved++;
55 else if (PageSwapCache(mem_map+i))
56 cached++;
57 else if (page_count(mem_map + i))
58 shared += page_count(mem_map + i) - 1;
60 printk("%d pages of RAM\n", total);
61 printk("%d reserved pages\n", reserved);
62 printk("%d pages shared\n", shared);
63 printk("%d pages swap cached\n", cached);
64 printk("%ld pages in page table cache\n",
65 pgtable_quicklist_total_size());
68 /* physical address where the bootmem map is located */
69 unsigned long bootmap_start;
71 /**
72 * find_max_pfn - adjust the maximum page number callback
73 * @start: start of range
74 * @end: end of range
75 * @arg: address of pointer to global max_pfn variable
77 * Passed as a callback function to efi_memmap_walk() to determine the highest
78 * available page frame number in the system.
80 int
81 find_max_pfn (unsigned long start, unsigned long end, void *arg)
83 unsigned long *max_pfnp = arg, pfn;
85 pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT;
86 if (pfn > *max_pfnp)
87 *max_pfnp = pfn;
88 return 0;
91 /**
92 * find_bootmap_location - callback to find a memory area for the bootmap
93 * @start: start of region
94 * @end: end of region
95 * @arg: unused callback data
97 * Find a place to put the bootmap and return its starting address in
98 * bootmap_start. This address must be page-aligned.
101 find_bootmap_location (unsigned long start, unsigned long end, void *arg)
103 unsigned long needed = *(unsigned long *)arg;
104 unsigned long range_start, range_end, free_start;
105 int i;
107 #if IGNORE_PFN0
108 if (start == PAGE_OFFSET) {
109 start += PAGE_SIZE;
110 if (start >= end)
111 return 0;
113 #endif
115 free_start = PAGE_OFFSET;
117 for (i = 0; i < num_rsvd_regions; i++) {
118 range_start = max(start, free_start);
119 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
121 free_start = PAGE_ALIGN(rsvd_region[i].end);
123 if (range_end <= range_start)
124 continue; /* skip over empty range */
126 if (range_end - range_start >= needed) {
127 bootmap_start = __pa(range_start);
128 return -1; /* done */
131 /* nothing more available in this segment */
132 if (range_end == end)
133 return 0;
135 return 0;
139 * find_memory - setup memory map
141 * Walk the EFI memory map and find usable memory for the system, taking
142 * into account reserved areas.
144 void
145 find_memory (void)
147 unsigned long bootmap_size;
149 reserve_memory();
151 /* first find highest page frame number */
152 max_pfn = 0;
153 efi_memmap_walk(find_max_pfn, &max_pfn);
155 /* how many bytes to cover all the pages */
156 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
158 /* look for a location to hold the bootmap */
159 bootmap_start = ~0UL;
160 efi_memmap_walk(find_bootmap_location, &bootmap_size);
161 if (bootmap_start == ~0UL)
162 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
164 bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn);
166 /* Free all available memory, then mark bootmem-map as being in use. */
167 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
168 reserve_bootmem(bootmap_start, bootmap_size);
170 find_initrd();
173 #ifdef CONFIG_SMP
175 * per_cpu_init - setup per-cpu variables
177 * Allocate and setup per-cpu data areas.
179 void *
180 per_cpu_init (void)
182 void *cpu_data;
183 int cpu;
186 * get_free_pages() cannot be used before cpu_init() done. BSP
187 * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls
188 * get_zeroed_page().
190 if (smp_processor_id() == 0) {
191 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS,
192 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
193 for (cpu = 0; cpu < NR_CPUS; cpu++) {
194 memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start);
195 __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start;
196 cpu_data += PERCPU_PAGE_SIZE;
197 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
200 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
202 #endif /* CONFIG_SMP */
204 static int
205 count_pages (u64 start, u64 end, void *arg)
207 unsigned long *count = arg;
209 *count += (end - start) >> PAGE_SHIFT;
210 return 0;
213 #ifdef CONFIG_VIRTUAL_MEM_MAP
214 static int
215 count_dma_pages (u64 start, u64 end, void *arg)
217 unsigned long *count = arg;
219 if (start < MAX_DMA_ADDRESS)
220 *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT;
221 return 0;
223 #endif
226 * Set up the page tables.
229 void
230 paging_init (void)
232 unsigned long max_dma;
233 unsigned long zones_size[MAX_NR_ZONES];
234 #ifdef CONFIG_VIRTUAL_MEM_MAP
235 unsigned long zholes_size[MAX_NR_ZONES];
236 unsigned long max_gap;
237 #endif
239 /* initialize mem_map[] */
241 memset(zones_size, 0, sizeof(zones_size));
243 num_physpages = 0;
244 efi_memmap_walk(count_pages, &num_physpages);
246 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
248 #ifdef CONFIG_VIRTUAL_MEM_MAP
249 memset(zholes_size, 0, sizeof(zholes_size));
251 num_dma_physpages = 0;
252 efi_memmap_walk(count_dma_pages, &num_dma_physpages);
254 if (max_low_pfn < max_dma) {
255 zones_size[ZONE_DMA] = max_low_pfn;
256 zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages;
257 } else {
258 zones_size[ZONE_DMA] = max_dma;
259 zholes_size[ZONE_DMA] = max_dma - num_dma_physpages;
260 if (num_physpages > num_dma_physpages) {
261 zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
262 zholes_size[ZONE_NORMAL] =
263 ((max_low_pfn - max_dma) -
264 (num_physpages - num_dma_physpages));
268 max_gap = 0;
269 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
270 if (max_gap < LARGE_GAP) {
271 vmem_map = (struct page *) 0;
272 free_area_init_node(0, &contig_page_data, zones_size, 0,
273 zholes_size);
274 } else {
275 unsigned long map_size;
277 /* allocate virtual_mem_map */
279 map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page));
280 vmalloc_end -= map_size;
281 vmem_map = (struct page *) vmalloc_end;
282 efi_memmap_walk(create_mem_map_page_table, NULL);
284 NODE_DATA(0)->node_mem_map = vmem_map;
285 free_area_init_node(0, &contig_page_data, zones_size,
286 0, zholes_size);
288 printk("Virtual mem_map starts at 0x%p\n", mem_map);
290 #else /* !CONFIG_VIRTUAL_MEM_MAP */
291 if (max_low_pfn < max_dma)
292 zones_size[ZONE_DMA] = max_low_pfn;
293 else {
294 zones_size[ZONE_DMA] = max_dma;
295 zones_size[ZONE_NORMAL] = max_low_pfn - max_dma;
297 free_area_init(zones_size);
298 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
299 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));