2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page
*empty_zero_page
;
39 EXPORT_SYMBOL(empty_zero_page
);
42 * The pmd table for the upper-most set of pages.
46 #define CPOLICY_UNCACHED 0
47 #define CPOLICY_BUFFERED 1
48 #define CPOLICY_WRITETHROUGH 2
49 #define CPOLICY_WRITEBACK 3
50 #define CPOLICY_WRITEALLOC 4
52 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
53 static unsigned int ecc_mask __initdata
= 0;
55 pgprot_t pgprot_kernel
;
57 EXPORT_SYMBOL(pgprot_user
);
58 EXPORT_SYMBOL(pgprot_kernel
);
61 const char policy
[16];
67 static struct cachepolicy cache_policies
[] __initdata
= {
71 .pmd
= PMD_SECT_UNCACHED
,
72 .pte
= L_PTE_MT_UNCACHED
,
76 .pmd
= PMD_SECT_BUFFERED
,
77 .pte
= L_PTE_MT_BUFFERABLE
,
79 .policy
= "writethrough",
82 .pte
= L_PTE_MT_WRITETHROUGH
,
84 .policy
= "writeback",
87 .pte
= L_PTE_MT_WRITEBACK
,
89 .policy
= "writealloc",
92 .pte
= L_PTE_MT_WRITEALLOC
,
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
102 static int __init
early_cachepolicy(char *p
)
106 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
107 int len
= strlen(cache_policies
[i
].policy
);
109 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
111 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
112 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
116 if (i
== ARRAY_SIZE(cache_policies
))
117 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
119 * This restriction is partly to do with the way we boot; it is
120 * unpredictable to have memory mapped using two different sets of
121 * memory attributes (shared, type, and cache attribs). We can not
122 * change these attributes once the initial assembly has setup the
125 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
126 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
127 cachepolicy
= CPOLICY_WRITEBACK
;
130 set_cr(cr_alignment
);
133 early_param("cachepolicy", early_cachepolicy
);
135 static int __init
early_nocache(char *__unused
)
137 char *p
= "buffered";
138 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
139 early_cachepolicy(p
);
142 early_param("nocache", early_nocache
);
144 static int __init
early_nowrite(char *__unused
)
146 char *p
= "uncached";
147 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
148 early_cachepolicy(p
);
151 early_param("nowb", early_nowrite
);
153 static int __init
early_ecc(char *p
)
155 if (memcmp(p
, "on", 2) == 0)
156 ecc_mask
= PMD_PROTECTION
;
157 else if (memcmp(p
, "off", 3) == 0)
161 early_param("ecc", early_ecc
);
163 static int __init
noalign_setup(char *__unused
)
165 cr_alignment
&= ~CR_A
;
166 cr_no_alignment
&= ~CR_A
;
167 set_cr(cr_alignment
);
170 __setup("noalign", noalign_setup
);
173 void adjust_cr(unsigned long mask
, unsigned long set
)
181 local_irq_save(flags
);
183 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
184 cr_alignment
= (cr_alignment
& ~mask
) | set
;
186 set_cr((get_cr() & ~mask
) | set
);
188 local_irq_restore(flags
);
192 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
193 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195 static struct mem_type mem_types
[] = {
196 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
197 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
199 .prot_l1
= PMD_TYPE_TABLE
,
200 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
203 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
204 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
205 .prot_l1
= PMD_TYPE_TABLE
,
206 .prot_sect
= PROT_SECT_DEVICE
,
209 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
210 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
211 .prot_l1
= PMD_TYPE_TABLE
,
212 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
215 [MT_DEVICE_WC
] = { /* ioremap_wc */
216 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
217 .prot_l1
= PMD_TYPE_TABLE
,
218 .prot_sect
= PROT_SECT_DEVICE
,
222 .prot_pte
= PROT_PTE_DEVICE
,
223 .prot_l1
= PMD_TYPE_TABLE
,
224 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
228 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
229 .domain
= DOMAIN_KERNEL
,
232 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
233 .domain
= DOMAIN_KERNEL
,
236 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
238 .prot_l1
= PMD_TYPE_TABLE
,
239 .domain
= DOMAIN_USER
,
241 [MT_HIGH_VECTORS
] = {
242 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
243 L_PTE_USER
| L_PTE_RDONLY
,
244 .prot_l1
= PMD_TYPE_TABLE
,
245 .domain
= DOMAIN_USER
,
248 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
249 .prot_l1
= PMD_TYPE_TABLE
,
250 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
251 .domain
= DOMAIN_KERNEL
,
254 .prot_sect
= PMD_TYPE_SECT
,
255 .domain
= DOMAIN_KERNEL
,
257 [MT_MEMORY_NONCACHED
] = {
258 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
260 .prot_l1
= PMD_TYPE_TABLE
,
261 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
262 .domain
= DOMAIN_KERNEL
,
265 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
267 .prot_l1
= PMD_TYPE_TABLE
,
268 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
269 .domain
= DOMAIN_KERNEL
,
272 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
273 .prot_l1
= PMD_TYPE_TABLE
,
274 .domain
= DOMAIN_KERNEL
,
278 const struct mem_type
*get_mem_type(unsigned int type
)
280 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
282 EXPORT_SYMBOL(get_mem_type
);
285 * Adjust the PMD section entries according to the CPU in use.
287 static void __init
build_mem_type_table(void)
289 struct cachepolicy
*cp
;
290 unsigned int cr
= get_cr();
291 unsigned int user_pgprot
, kern_pgprot
, vecs_pgprot
;
292 int cpu_arch
= cpu_architecture();
295 if (cpu_arch
< CPU_ARCH_ARMv6
) {
296 #if defined(CONFIG_CPU_DCACHE_DISABLE)
297 if (cachepolicy
> CPOLICY_BUFFERED
)
298 cachepolicy
= CPOLICY_BUFFERED
;
299 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
300 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
301 cachepolicy
= CPOLICY_WRITETHROUGH
;
304 if (cpu_arch
< CPU_ARCH_ARMv5
) {
305 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
306 cachepolicy
= CPOLICY_WRITEBACK
;
310 cachepolicy
= CPOLICY_WRITEALLOC
;
313 * Strip out features not present on earlier architectures.
314 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
315 * without extended page tables don't have the 'Shared' bit.
317 if (cpu_arch
< CPU_ARCH_ARMv5
)
318 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
319 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
320 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
321 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
322 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
325 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
326 * "update-able on write" bit on ARM610). However, Xscale and
327 * Xscale3 require this bit to be cleared.
329 if (cpu_is_xscale() || cpu_is_xsc3()) {
330 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
331 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
332 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
334 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
335 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
336 if (mem_types
[i
].prot_l1
)
337 mem_types
[i
].prot_l1
|= PMD_BIT4
;
338 if (mem_types
[i
].prot_sect
)
339 mem_types
[i
].prot_sect
|= PMD_BIT4
;
344 * Mark the device areas according to the CPU/architecture.
346 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
347 if (!cpu_is_xsc3()) {
349 * Mark device regions on ARMv6+ as execute-never
350 * to prevent speculative instruction fetches.
352 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
353 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
354 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
355 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
357 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
359 * For ARMv7 with TEX remapping,
360 * - shared device is SXCB=1100
361 * - nonshared device is SXCB=0100
362 * - write combine device mem is SXCB=0001
363 * (Uncached Normal memory)
365 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
366 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
367 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
368 } else if (cpu_is_xsc3()) {
371 * - shared device is TEXCB=00101
372 * - nonshared device is TEXCB=01000
373 * - write combine device mem is TEXCB=00100
374 * (Inner/Outer Uncacheable in xsc3 parlance)
376 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
377 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
378 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
381 * For ARMv6 and ARMv7 without TEX remapping,
382 * - shared device is TEXCB=00001
383 * - nonshared device is TEXCB=01000
384 * - write combine device mem is TEXCB=00100
385 * (Uncached Normal in ARMv6 parlance).
387 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
388 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
389 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
393 * On others, write combining is "Uncached/Buffered"
395 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
399 * Now deal with the memory-type mappings
401 cp
= &cache_policies
[cachepolicy
];
402 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
405 * Only use write-through for non-SMP systems
407 if (!is_smp() && cpu_arch
>= CPU_ARCH_ARMv5
&& cachepolicy
> CPOLICY_WRITETHROUGH
)
408 vecs_pgprot
= cache_policies
[CPOLICY_WRITETHROUGH
].pte
;
411 * Enable CPU-specific coherency if supported.
412 * (Only available on XSC3 at the moment.)
414 if (arch_is_coherent() && cpu_is_xsc3()) {
415 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
416 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
417 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
418 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
421 * ARMv6 and above have extended page tables.
423 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
425 * Mark cache clean areas and XIP ROM read only
426 * from SVC mode and no access from userspace.
428 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
429 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
430 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
434 * Mark memory with the "shared" attribute
437 user_pgprot
|= L_PTE_SHARED
;
438 kern_pgprot
|= L_PTE_SHARED
;
439 vecs_pgprot
|= L_PTE_SHARED
;
440 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
441 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
442 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
443 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
444 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
445 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
446 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
447 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
452 * Non-cacheable Normal - intended for memory areas that must
453 * not cause dirty cache line writebacks when used
455 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
456 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
457 /* Non-cacheable Normal is XCB = 001 */
458 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
461 /* For both ARMv6 and non-TEX-remapping ARMv7 */
462 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
466 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
469 for (i
= 0; i
< 16; i
++) {
470 unsigned long v
= pgprot_val(protection_map
[i
]);
471 protection_map
[i
] = __pgprot(v
| user_pgprot
);
474 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
475 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
477 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
478 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
479 L_PTE_DIRTY
| kern_pgprot
);
481 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
482 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
483 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
484 mem_types
[MT_MEMORY
].prot_pte
|= kern_pgprot
;
485 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= ecc_mask
;
486 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
490 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
494 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
497 printk("Memory policy: ECC %sabled, Data cache %s\n",
498 ecc_mask
? "en" : "dis", cp
->policy
);
500 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
501 struct mem_type
*t
= &mem_types
[i
];
503 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
505 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
509 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
510 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
511 unsigned long size
, pgprot_t vma_prot
)
514 return pgprot_noncached(vma_prot
);
515 else if (file
->f_flags
& O_SYNC
)
516 return pgprot_writecombine(vma_prot
);
519 EXPORT_SYMBOL(phys_mem_access_prot
);
522 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
524 static void __init
*early_alloc(unsigned long sz
)
526 void *ptr
= __va(memblock_alloc(sz
, sz
));
531 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
533 if (pmd_none(*pmd
)) {
534 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
535 __pmd_populate(pmd
, __pa(pte
), prot
);
537 BUG_ON(pmd_bad(*pmd
));
538 return pte_offset_kernel(pmd
, addr
);
541 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
542 unsigned long end
, unsigned long pfn
,
543 const struct mem_type
*type
)
545 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
547 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
549 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
552 static void __init
alloc_init_section(pud_t
*pud
, unsigned long addr
,
553 unsigned long end
, phys_addr_t phys
,
554 const struct mem_type
*type
)
556 pmd_t
*pmd
= pmd_offset(pud
, addr
);
559 * Try a section mapping - end, addr and phys must all be aligned
560 * to a section boundary. Note that PMDs refer to the individual
561 * L1 entries, whereas PGDs refer to a group of L1 entries making
562 * up one logical pointer to an L2 table.
564 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
567 if (addr
& SECTION_SIZE
)
571 *pmd
= __pmd(phys
| type
->prot_sect
);
572 phys
+= SECTION_SIZE
;
573 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
578 * No need to loop; pte's aren't interested in the
579 * individual L1 entries.
581 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
585 static void alloc_init_pud(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
586 unsigned long phys
, const struct mem_type
*type
)
588 pud_t
*pud
= pud_offset(pgd
, addr
);
592 next
= pud_addr_end(addr
, end
);
593 alloc_init_section(pud
, addr
, next
, phys
, type
);
595 } while (pud
++, addr
= next
, addr
!= end
);
598 static void __init
create_36bit_mapping(struct map_desc
*md
,
599 const struct mem_type
*type
)
601 unsigned long addr
, length
, end
;
606 phys
= __pfn_to_phys(md
->pfn
);
607 length
= PAGE_ALIGN(md
->length
);
609 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
610 printk(KERN_ERR
"MM: CPU does not support supersection "
611 "mapping for 0x%08llx at 0x%08lx\n",
612 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
616 /* N.B. ARMv6 supersections are only defined to work with domain 0.
617 * Since domain assignments can in fact be arbitrary, the
618 * 'domain == 0' check below is required to insure that ARMv6
619 * supersections are only allocated for domain 0 regardless
620 * of the actual domain assignments in use.
623 printk(KERN_ERR
"MM: invalid domain in supersection "
624 "mapping for 0x%08llx at 0x%08lx\n",
625 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
629 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
630 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
631 " at 0x%08lx invalid alignment\n",
632 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
637 * Shift bits [35:32] of address into bits [23:20] of PMD
640 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
642 pgd
= pgd_offset_k(addr
);
645 pud_t
*pud
= pud_offset(pgd
, addr
);
646 pmd_t
*pmd
= pmd_offset(pud
, addr
);
649 for (i
= 0; i
< 16; i
++)
650 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
652 addr
+= SUPERSECTION_SIZE
;
653 phys
+= SUPERSECTION_SIZE
;
654 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
655 } while (addr
!= end
);
659 * Create the page directory entries and any necessary
660 * page tables for the mapping specified by `md'. We
661 * are able to cope here with varying sizes and address
662 * offsets, and we take full advantage of sections and
665 static void __init
create_mapping(struct map_desc
*md
)
667 unsigned long addr
, length
, end
;
669 const struct mem_type
*type
;
672 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
673 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
674 " at 0x%08lx in user region\n",
675 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
679 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
680 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
681 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
682 " at 0x%08lx overlaps vmalloc space\n",
683 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
686 type
= &mem_types
[md
->type
];
689 * Catch 36-bit addresses
691 if (md
->pfn
>= 0x100000) {
692 create_36bit_mapping(md
, type
);
696 addr
= md
->virtual & PAGE_MASK
;
697 phys
= __pfn_to_phys(md
->pfn
);
698 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
700 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
701 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
702 "be mapped using pages, ignoring.\n",
703 (long long)__pfn_to_phys(md
->pfn
), addr
);
707 pgd
= pgd_offset_k(addr
);
710 unsigned long next
= pgd_addr_end(addr
, end
);
712 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
716 } while (pgd
++, addr
!= end
);
720 * Create the architecture specific mappings
722 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
726 for (i
= 0; i
< nr
; i
++)
727 create_mapping(io_desc
+ i
);
730 static void * __initdata vmalloc_min
= (void *)(VMALLOC_END
- SZ_128M
);
733 * vmalloc=size forces the vmalloc area to be exactly 'size'
734 * bytes. This can be used to increase (or decrease) the vmalloc
735 * area - the default is 128m.
737 static int __init
early_vmalloc(char *arg
)
739 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
741 if (vmalloc_reserve
< SZ_16M
) {
742 vmalloc_reserve
= SZ_16M
;
744 "vmalloc area too small, limiting to %luMB\n",
745 vmalloc_reserve
>> 20);
748 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
749 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
751 "vmalloc area is too big, limiting to %luMB\n",
752 vmalloc_reserve
>> 20);
755 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
758 early_param("vmalloc", early_vmalloc
);
760 static phys_addr_t lowmem_limit __initdata
= 0;
762 static void __init
sanity_check_meminfo(void)
764 int i
, j
, highmem
= 0;
766 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
767 struct membank
*bank
= &meminfo
.bank
[j
];
768 *bank
= meminfo
.bank
[i
];
770 #ifdef CONFIG_HIGHMEM
771 if (__va(bank
->start
) >= vmalloc_min
||
772 __va(bank
->start
) < (void *)PAGE_OFFSET
)
775 bank
->highmem
= highmem
;
778 * Split those memory banks which are partially overlapping
779 * the vmalloc area greatly simplifying things later.
781 if (__va(bank
->start
) < vmalloc_min
&&
782 bank
->size
> vmalloc_min
- __va(bank
->start
)) {
783 if (meminfo
.nr_banks
>= NR_BANKS
) {
784 printk(KERN_CRIT
"NR_BANKS too low, "
785 "ignoring high memory\n");
787 memmove(bank
+ 1, bank
,
788 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
791 bank
[1].size
-= vmalloc_min
- __va(bank
->start
);
792 bank
[1].start
= __pa(vmalloc_min
- 1) + 1;
793 bank
[1].highmem
= highmem
= 1;
796 bank
->size
= vmalloc_min
- __va(bank
->start
);
799 bank
->highmem
= highmem
;
802 * Check whether this memory bank would entirely overlap
805 if (__va(bank
->start
) >= vmalloc_min
||
806 __va(bank
->start
) < (void *)PAGE_OFFSET
) {
807 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
808 "(vmalloc region overlap).\n",
809 (unsigned long long)bank
->start
,
810 (unsigned long long)bank
->start
+ bank
->size
- 1);
815 * Check whether this memory bank would partially overlap
818 if (__va(bank
->start
+ bank
->size
) > vmalloc_min
||
819 __va(bank
->start
+ bank
->size
) < __va(bank
->start
)) {
820 unsigned long newsize
= vmalloc_min
- __va(bank
->start
);
821 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
822 "to -%.8llx (vmalloc region overlap).\n",
823 (unsigned long long)bank
->start
,
824 (unsigned long long)bank
->start
+ bank
->size
- 1,
825 (unsigned long long)bank
->start
+ newsize
- 1);
826 bank
->size
= newsize
;
829 if (!bank
->highmem
&& bank
->start
+ bank
->size
> lowmem_limit
)
830 lowmem_limit
= bank
->start
+ bank
->size
;
834 #ifdef CONFIG_HIGHMEM
836 const char *reason
= NULL
;
838 if (cache_is_vipt_aliasing()) {
840 * Interactions between kmap and other mappings
841 * make highmem support with aliasing VIPT caches
844 reason
= "with VIPT aliasing cache";
847 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
849 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
854 meminfo
.nr_banks
= j
;
855 memblock_set_current_limit(lowmem_limit
);
858 static inline void prepare_page_table(void)
864 * Clear out all the mappings below the kernel image.
866 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PGDIR_SIZE
)
867 pmd_clear(pmd_off_k(addr
));
869 #ifdef CONFIG_XIP_KERNEL
870 /* The XIP kernel is mapped in the module area -- skip over it */
871 addr
= ((unsigned long)_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
873 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
874 pmd_clear(pmd_off_k(addr
));
877 * Find the end of the first block of lowmem.
879 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
880 if (end
>= lowmem_limit
)
884 * Clear out all the kernel space mappings, except for the first
885 * memory bank, up to the end of the vmalloc region.
887 for (addr
= __phys_to_virt(end
);
888 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
889 pmd_clear(pmd_off_k(addr
));
893 * Reserve the special regions of memory
895 void __init
arm_mm_memblock_reserve(void)
898 * Reserve the page tables. These are already in use,
899 * and can only be in node 0.
901 memblock_reserve(__pa(swapper_pg_dir
), PTRS_PER_PGD
* sizeof(pgd_t
));
905 * Because of the SA1111 DMA bug, we want to preserve our
906 * precious DMA-able memory...
908 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
913 * Set up device the mappings. Since we clear out the page tables for all
914 * mappings above VMALLOC_END, we will remove any debug device mappings.
915 * This means you have to be careful how you debug this function, or any
916 * called function. This means you can't use any function or debugging
917 * method which may touch any device, otherwise the kernel _will_ crash.
919 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
925 * Allocate the vector page early.
927 vectors_page
= early_alloc(PAGE_SIZE
);
929 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
930 pmd_clear(pmd_off_k(addr
));
933 * Map the kernel if it is XIP.
934 * It is always first in the modulearea.
936 #ifdef CONFIG_XIP_KERNEL
937 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
938 map
.virtual = MODULES_VADDR
;
939 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
941 create_mapping(&map
);
945 * Map the cache flushing regions.
948 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
949 map
.virtual = FLUSH_BASE
;
951 map
.type
= MT_CACHECLEAN
;
952 create_mapping(&map
);
954 #ifdef FLUSH_BASE_MINICACHE
955 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
956 map
.virtual = FLUSH_BASE_MINICACHE
;
958 map
.type
= MT_MINICLEAN
;
959 create_mapping(&map
);
963 * Create a mapping for the machine vectors at the high-vectors
964 * location (0xffff0000). If we aren't using high-vectors, also
965 * create a mapping at the low-vectors virtual address.
967 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors_page
));
968 map
.virtual = 0xffff0000;
969 map
.length
= PAGE_SIZE
;
970 map
.type
= MT_HIGH_VECTORS
;
971 create_mapping(&map
);
973 if (!vectors_high()) {
975 map
.type
= MT_LOW_VECTORS
;
976 create_mapping(&map
);
980 * Ask the machine support to map in the statically mapped devices.
986 * Finally flush the caches and tlb to ensure that we're in a
987 * consistent state wrt the writebuffer. This also ensures that
988 * any write-allocated cache lines in the vector page are written
989 * back. After this point, we can start to touch devices again.
991 local_flush_tlb_all();
995 static void __init
kmap_init(void)
997 #ifdef CONFIG_HIGHMEM
998 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
999 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1003 static void __init
map_lowmem(void)
1005 struct memblock_region
*reg
;
1007 /* Map all the lowmem memory banks. */
1008 for_each_memblock(memory
, reg
) {
1009 phys_addr_t start
= reg
->base
;
1010 phys_addr_t end
= start
+ reg
->size
;
1011 struct map_desc map
;
1013 if (end
> lowmem_limit
)
1018 map
.pfn
= __phys_to_pfn(start
);
1019 map
.virtual = __phys_to_virt(start
);
1020 map
.length
= end
- start
;
1021 map
.type
= MT_MEMORY
;
1023 create_mapping(&map
);
1028 * paging_init() sets up the page tables, initialises the zone memory
1029 * maps, and sets up the zero page, bad page and bad page tables.
1031 void __init
paging_init(struct machine_desc
*mdesc
)
1035 build_mem_type_table();
1036 sanity_check_meminfo();
1037 prepare_page_table();
1039 devicemaps_init(mdesc
);
1042 top_pmd
= pmd_off_k(0xffff0000);
1044 /* allocate the zero page. */
1045 zero_page
= early_alloc(PAGE_SIZE
);
1049 empty_zero_page
= virt_to_page(zero_page
);
1050 __flush_dcache_page(NULL
, empty_zero_page
);