kvm tools, setup: Create private directory
[linux-2.6/next.git] / fs / ext4 / mballoc.c
blob6ed859d56850494d440dbbacc56967c4538fc659
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This make sure that
79 * that the we have contiguous physical blocks representing the file blocks
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list repreasented as
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) within the prealloc space.
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * stripe value (sbi->s_stripe)
136 * The regular allocator(using the buddy cache) supports few tunables.
138 * /sys/fs/ext4/<partition>/mb_min_to_scan
139 * /sys/fs/ext4/<partition>/mb_max_to_scan
140 * /sys/fs/ext4/<partition>/mb_order2_req
142 * The regular allocator uses buddy scan only if the request len is power of
143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144 * value of s_mb_order2_reqs can be tuned via
145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
146 * stripe size (sbi->s_stripe), we try to search for contiguous block in
147 * stripe size. This should result in better allocation on RAID setups. If
148 * not, we search in the specific group using bitmap for best extents. The
149 * tunable min_to_scan and max_to_scan control the behaviour here.
150 * min_to_scan indicate how long the mballoc __must__ look for a best
151 * extent and max_to_scan indicates how long the mballoc __can__ look for a
152 * best extent in the found extents. Searching for the blocks starts with
153 * the group specified as the goal value in allocation context via
154 * ac_g_ex. Each group is first checked based on the criteria whether it
155 * can used for allocation. ext4_mb_good_group explains how the groups are
156 * checked.
158 * Both the prealloc space are getting populated as above. So for the first
159 * request we will hit the buddy cache which will result in this prealloc
160 * space getting filled. The prealloc space is then later used for the
161 * subsequent request.
165 * mballoc operates on the following data:
166 * - on-disk bitmap
167 * - in-core buddy (actually includes buddy and bitmap)
168 * - preallocation descriptors (PAs)
170 * there are two types of preallocations:
171 * - inode
172 * assiged to specific inode and can be used for this inode only.
173 * it describes part of inode's space preallocated to specific
174 * physical blocks. any block from that preallocated can be used
175 * independent. the descriptor just tracks number of blocks left
176 * unused. so, before taking some block from descriptor, one must
177 * make sure corresponded logical block isn't allocated yet. this
178 * also means that freeing any block within descriptor's range
179 * must discard all preallocated blocks.
180 * - locality group
181 * assigned to specific locality group which does not translate to
182 * permanent set of inodes: inode can join and leave group. space
183 * from this type of preallocation can be used for any inode. thus
184 * it's consumed from the beginning to the end.
186 * relation between them can be expressed as:
187 * in-core buddy = on-disk bitmap + preallocation descriptors
189 * this mean blocks mballoc considers used are:
190 * - allocated blocks (persistent)
191 * - preallocated blocks (non-persistent)
193 * consistency in mballoc world means that at any time a block is either
194 * free or used in ALL structures. notice: "any time" should not be read
195 * literally -- time is discrete and delimited by locks.
197 * to keep it simple, we don't use block numbers, instead we count number of
198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
200 * all operations can be expressed as:
201 * - init buddy: buddy = on-disk + PAs
202 * - new PA: buddy += N; PA = N
203 * - use inode PA: on-disk += N; PA -= N
204 * - discard inode PA buddy -= on-disk - PA; PA = 0
205 * - use locality group PA on-disk += N; PA -= N
206 * - discard locality group PA buddy -= PA; PA = 0
207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208 * is used in real operation because we can't know actual used
209 * bits from PA, only from on-disk bitmap
211 * if we follow this strict logic, then all operations above should be atomic.
212 * given some of them can block, we'd have to use something like semaphores
213 * killing performance on high-end SMP hardware. let's try to relax it using
214 * the following knowledge:
215 * 1) if buddy is referenced, it's already initialized
216 * 2) while block is used in buddy and the buddy is referenced,
217 * nobody can re-allocate that block
218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219 * bit set and PA claims same block, it's OK. IOW, one can set bit in
220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221 * block
223 * so, now we're building a concurrency table:
224 * - init buddy vs.
225 * - new PA
226 * blocks for PA are allocated in the buddy, buddy must be referenced
227 * until PA is linked to allocation group to avoid concurrent buddy init
228 * - use inode PA
229 * we need to make sure that either on-disk bitmap or PA has uptodate data
230 * given (3) we care that PA-=N operation doesn't interfere with init
231 * - discard inode PA
232 * the simplest way would be to have buddy initialized by the discard
233 * - use locality group PA
234 * again PA-=N must be serialized with init
235 * - discard locality group PA
236 * the simplest way would be to have buddy initialized by the discard
237 * - new PA vs.
238 * - use inode PA
239 * i_data_sem serializes them
240 * - discard inode PA
241 * discard process must wait until PA isn't used by another process
242 * - use locality group PA
243 * some mutex should serialize them
244 * - discard locality group PA
245 * discard process must wait until PA isn't used by another process
246 * - use inode PA
247 * - use inode PA
248 * i_data_sem or another mutex should serializes them
249 * - discard inode PA
250 * discard process must wait until PA isn't used by another process
251 * - use locality group PA
252 * nothing wrong here -- they're different PAs covering different blocks
253 * - discard locality group PA
254 * discard process must wait until PA isn't used by another process
256 * now we're ready to make few consequences:
257 * - PA is referenced and while it is no discard is possible
258 * - PA is referenced until block isn't marked in on-disk bitmap
259 * - PA changes only after on-disk bitmap
260 * - discard must not compete with init. either init is done before
261 * any discard or they're serialized somehow
262 * - buddy init as sum of on-disk bitmap and PAs is done atomically
264 * a special case when we've used PA to emptiness. no need to modify buddy
265 * in this case, but we should care about concurrent init
270 * Logic in few words:
272 * - allocation:
273 * load group
274 * find blocks
275 * mark bits in on-disk bitmap
276 * release group
278 * - use preallocation:
279 * find proper PA (per-inode or group)
280 * load group
281 * mark bits in on-disk bitmap
282 * release group
283 * release PA
285 * - free:
286 * load group
287 * mark bits in on-disk bitmap
288 * release group
290 * - discard preallocations in group:
291 * mark PAs deleted
292 * move them onto local list
293 * load on-disk bitmap
294 * load group
295 * remove PA from object (inode or locality group)
296 * mark free blocks in-core
298 * - discard inode's preallocations:
302 * Locking rules
304 * Locks:
305 * - bitlock on a group (group)
306 * - object (inode/locality) (object)
307 * - per-pa lock (pa)
309 * Paths:
310 * - new pa
311 * object
312 * group
314 * - find and use pa:
315 * pa
317 * - release consumed pa:
318 * pa
319 * group
320 * object
322 * - generate in-core bitmap:
323 * group
324 * pa
326 * - discard all for given object (inode, locality group):
327 * object
328 * pa
329 * group
331 * - discard all for given group:
332 * group
333 * pa
334 * group
335 * object
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_ext_cachep;
342 /* We create slab caches for groupinfo data structures based on the
343 * superblock block size. There will be one per mounted filesystem for
344 * each unique s_blocksize_bits */
345 #define NR_GRPINFO_CACHES 8
346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
348 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
349 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
350 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
351 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
355 ext4_group_t group);
356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
357 ext4_group_t group);
358 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
362 #if BITS_PER_LONG == 64
363 *bit += ((unsigned long) addr & 7UL) << 3;
364 addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 *bit += ((unsigned long) addr & 3UL) << 3;
367 addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 return addr;
374 static inline int mb_test_bit(int bit, void *addr)
377 * ext4_test_bit on architecture like powerpc
378 * needs unsigned long aligned address
380 addr = mb_correct_addr_and_bit(&bit, addr);
381 return ext4_test_bit(bit, addr);
384 static inline void mb_set_bit(int bit, void *addr)
386 addr = mb_correct_addr_and_bit(&bit, addr);
387 ext4_set_bit(bit, addr);
390 static inline void mb_clear_bit(int bit, void *addr)
392 addr = mb_correct_addr_and_bit(&bit, addr);
393 ext4_clear_bit(bit, addr);
396 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
398 int fix = 0, ret, tmpmax;
399 addr = mb_correct_addr_and_bit(&fix, addr);
400 tmpmax = max + fix;
401 start += fix;
403 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
404 if (ret > max)
405 return max;
406 return ret;
409 static inline int mb_find_next_bit(void *addr, int max, int start)
411 int fix = 0, ret, tmpmax;
412 addr = mb_correct_addr_and_bit(&fix, addr);
413 tmpmax = max + fix;
414 start += fix;
416 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
417 if (ret > max)
418 return max;
419 return ret;
422 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
424 char *bb;
426 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
427 BUG_ON(max == NULL);
429 if (order > e4b->bd_blkbits + 1) {
430 *max = 0;
431 return NULL;
434 /* at order 0 we see each particular block */
435 if (order == 0) {
436 *max = 1 << (e4b->bd_blkbits + 3);
437 return EXT4_MB_BITMAP(e4b);
440 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
441 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
443 return bb;
446 #ifdef DOUBLE_CHECK
447 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
448 int first, int count)
450 int i;
451 struct super_block *sb = e4b->bd_sb;
453 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
454 return;
455 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
456 for (i = 0; i < count; i++) {
457 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
458 ext4_fsblk_t blocknr;
460 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
461 blocknr += first + i;
462 ext4_grp_locked_error(sb, e4b->bd_group,
463 inode ? inode->i_ino : 0,
464 blocknr,
465 "freeing block already freed "
466 "(bit %u)",
467 first + i);
469 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
473 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
475 int i;
477 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
478 return;
479 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
480 for (i = 0; i < count; i++) {
481 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
482 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
486 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
488 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
489 unsigned char *b1, *b2;
490 int i;
491 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
492 b2 = (unsigned char *) bitmap;
493 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
494 if (b1[i] != b2[i]) {
495 printk(KERN_ERR "corruption in group %u "
496 "at byte %u(%u): %x in copy != %x "
497 "on disk/prealloc\n",
498 e4b->bd_group, i, i * 8, b1[i], b2[i]);
499 BUG();
505 #else
506 static inline void mb_free_blocks_double(struct inode *inode,
507 struct ext4_buddy *e4b, int first, int count)
509 return;
511 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
512 int first, int count)
514 return;
516 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
518 return;
520 #endif
522 #ifdef AGGRESSIVE_CHECK
524 #define MB_CHECK_ASSERT(assert) \
525 do { \
526 if (!(assert)) { \
527 printk(KERN_EMERG \
528 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
529 function, file, line, # assert); \
530 BUG(); \
532 } while (0)
534 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
535 const char *function, int line)
537 struct super_block *sb = e4b->bd_sb;
538 int order = e4b->bd_blkbits + 1;
539 int max;
540 int max2;
541 int i;
542 int j;
543 int k;
544 int count;
545 struct ext4_group_info *grp;
546 int fragments = 0;
547 int fstart;
548 struct list_head *cur;
549 void *buddy;
550 void *buddy2;
553 static int mb_check_counter;
554 if (mb_check_counter++ % 100 != 0)
555 return 0;
558 while (order > 1) {
559 buddy = mb_find_buddy(e4b, order, &max);
560 MB_CHECK_ASSERT(buddy);
561 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
562 MB_CHECK_ASSERT(buddy2);
563 MB_CHECK_ASSERT(buddy != buddy2);
564 MB_CHECK_ASSERT(max * 2 == max2);
566 count = 0;
567 for (i = 0; i < max; i++) {
569 if (mb_test_bit(i, buddy)) {
570 /* only single bit in buddy2 may be 1 */
571 if (!mb_test_bit(i << 1, buddy2)) {
572 MB_CHECK_ASSERT(
573 mb_test_bit((i<<1)+1, buddy2));
574 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
575 MB_CHECK_ASSERT(
576 mb_test_bit(i << 1, buddy2));
578 continue;
581 /* both bits in buddy2 must be 0 */
582 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
583 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
585 for (j = 0; j < (1 << order); j++) {
586 k = (i * (1 << order)) + j;
587 MB_CHECK_ASSERT(
588 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
590 count++;
592 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
593 order--;
596 fstart = -1;
597 buddy = mb_find_buddy(e4b, 0, &max);
598 for (i = 0; i < max; i++) {
599 if (!mb_test_bit(i, buddy)) {
600 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
601 if (fstart == -1) {
602 fragments++;
603 fstart = i;
605 continue;
607 fstart = -1;
608 /* check used bits only */
609 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
610 buddy2 = mb_find_buddy(e4b, j, &max2);
611 k = i >> j;
612 MB_CHECK_ASSERT(k < max2);
613 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
616 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
617 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
619 grp = ext4_get_group_info(sb, e4b->bd_group);
620 list_for_each(cur, &grp->bb_prealloc_list) {
621 ext4_group_t groupnr;
622 struct ext4_prealloc_space *pa;
623 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
624 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
625 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
626 for (i = 0; i < pa->pa_len; i++)
627 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
629 return 0;
631 #undef MB_CHECK_ASSERT
632 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
633 __FILE__, __func__, __LINE__)
634 #else
635 #define mb_check_buddy(e4b)
636 #endif
639 * Divide blocks started from @first with length @len into
640 * smaller chunks with power of 2 blocks.
641 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
642 * then increase bb_counters[] for corresponded chunk size.
644 static void ext4_mb_mark_free_simple(struct super_block *sb,
645 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
646 struct ext4_group_info *grp)
648 struct ext4_sb_info *sbi = EXT4_SB(sb);
649 ext4_grpblk_t min;
650 ext4_grpblk_t max;
651 ext4_grpblk_t chunk;
652 unsigned short border;
654 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
656 border = 2 << sb->s_blocksize_bits;
658 while (len > 0) {
659 /* find how many blocks can be covered since this position */
660 max = ffs(first | border) - 1;
662 /* find how many blocks of power 2 we need to mark */
663 min = fls(len) - 1;
665 if (max < min)
666 min = max;
667 chunk = 1 << min;
669 /* mark multiblock chunks only */
670 grp->bb_counters[min]++;
671 if (min > 0)
672 mb_clear_bit(first >> min,
673 buddy + sbi->s_mb_offsets[min]);
675 len -= chunk;
676 first += chunk;
681 * Cache the order of the largest free extent we have available in this block
682 * group.
684 static void
685 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
687 int i;
688 int bits;
690 grp->bb_largest_free_order = -1; /* uninit */
692 bits = sb->s_blocksize_bits + 1;
693 for (i = bits; i >= 0; i--) {
694 if (grp->bb_counters[i] > 0) {
695 grp->bb_largest_free_order = i;
696 break;
701 static noinline_for_stack
702 void ext4_mb_generate_buddy(struct super_block *sb,
703 void *buddy, void *bitmap, ext4_group_t group)
705 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
706 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
707 ext4_grpblk_t i = 0;
708 ext4_grpblk_t first;
709 ext4_grpblk_t len;
710 unsigned free = 0;
711 unsigned fragments = 0;
712 unsigned long long period = get_cycles();
714 /* initialize buddy from bitmap which is aggregation
715 * of on-disk bitmap and preallocations */
716 i = mb_find_next_zero_bit(bitmap, max, 0);
717 grp->bb_first_free = i;
718 while (i < max) {
719 fragments++;
720 first = i;
721 i = mb_find_next_bit(bitmap, max, i);
722 len = i - first;
723 free += len;
724 if (len > 1)
725 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
726 else
727 grp->bb_counters[0]++;
728 if (i < max)
729 i = mb_find_next_zero_bit(bitmap, max, i);
731 grp->bb_fragments = fragments;
733 if (free != grp->bb_free) {
734 ext4_grp_locked_error(sb, group, 0, 0,
735 "%u blocks in bitmap, %u in gd",
736 free, grp->bb_free);
738 * If we intent to continue, we consider group descritor
739 * corrupt and update bb_free using bitmap value
741 grp->bb_free = free;
743 mb_set_largest_free_order(sb, grp);
745 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
747 period = get_cycles() - period;
748 spin_lock(&EXT4_SB(sb)->s_bal_lock);
749 EXT4_SB(sb)->s_mb_buddies_generated++;
750 EXT4_SB(sb)->s_mb_generation_time += period;
751 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
754 /* The buddy information is attached the buddy cache inode
755 * for convenience. The information regarding each group
756 * is loaded via ext4_mb_load_buddy. The information involve
757 * block bitmap and buddy information. The information are
758 * stored in the inode as
760 * { page }
761 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
764 * one block each for bitmap and buddy information.
765 * So for each group we take up 2 blocks. A page can
766 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
767 * So it can have information regarding groups_per_page which
768 * is blocks_per_page/2
770 * Locking note: This routine takes the block group lock of all groups
771 * for this page; do not hold this lock when calling this routine!
774 static int ext4_mb_init_cache(struct page *page, char *incore)
776 ext4_group_t ngroups;
777 int blocksize;
778 int blocks_per_page;
779 int groups_per_page;
780 int err = 0;
781 int i;
782 ext4_group_t first_group;
783 int first_block;
784 struct super_block *sb;
785 struct buffer_head *bhs;
786 struct buffer_head **bh;
787 struct inode *inode;
788 char *data;
789 char *bitmap;
790 struct ext4_group_info *grinfo;
792 mb_debug(1, "init page %lu\n", page->index);
794 inode = page->mapping->host;
795 sb = inode->i_sb;
796 ngroups = ext4_get_groups_count(sb);
797 blocksize = 1 << inode->i_blkbits;
798 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
800 groups_per_page = blocks_per_page >> 1;
801 if (groups_per_page == 0)
802 groups_per_page = 1;
804 /* allocate buffer_heads to read bitmaps */
805 if (groups_per_page > 1) {
806 err = -ENOMEM;
807 i = sizeof(struct buffer_head *) * groups_per_page;
808 bh = kzalloc(i, GFP_NOFS);
809 if (bh == NULL)
810 goto out;
811 } else
812 bh = &bhs;
814 first_group = page->index * blocks_per_page / 2;
816 /* read all groups the page covers into the cache */
817 for (i = 0; i < groups_per_page; i++) {
818 struct ext4_group_desc *desc;
820 if (first_group + i >= ngroups)
821 break;
823 grinfo = ext4_get_group_info(sb, first_group + i);
825 * If page is uptodate then we came here after online resize
826 * which added some new uninitialized group info structs, so
827 * we must skip all initialized uptodate buddies on the page,
828 * which may be currently in use by an allocating task.
830 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
831 bh[i] = NULL;
832 continue;
835 err = -EIO;
836 desc = ext4_get_group_desc(sb, first_group + i, NULL);
837 if (desc == NULL)
838 goto out;
840 err = -ENOMEM;
841 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
842 if (bh[i] == NULL)
843 goto out;
845 if (bitmap_uptodate(bh[i]))
846 continue;
848 lock_buffer(bh[i]);
849 if (bitmap_uptodate(bh[i])) {
850 unlock_buffer(bh[i]);
851 continue;
853 ext4_lock_group(sb, first_group + i);
854 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
855 ext4_init_block_bitmap(sb, bh[i],
856 first_group + i, desc);
857 set_bitmap_uptodate(bh[i]);
858 set_buffer_uptodate(bh[i]);
859 ext4_unlock_group(sb, first_group + i);
860 unlock_buffer(bh[i]);
861 continue;
863 ext4_unlock_group(sb, first_group + i);
864 if (buffer_uptodate(bh[i])) {
866 * if not uninit if bh is uptodate,
867 * bitmap is also uptodate
869 set_bitmap_uptodate(bh[i]);
870 unlock_buffer(bh[i]);
871 continue;
873 get_bh(bh[i]);
875 * submit the buffer_head for read. We can
876 * safely mark the bitmap as uptodate now.
877 * We do it here so the bitmap uptodate bit
878 * get set with buffer lock held.
880 set_bitmap_uptodate(bh[i]);
881 bh[i]->b_end_io = end_buffer_read_sync;
882 submit_bh(READ, bh[i]);
883 mb_debug(1, "read bitmap for group %u\n", first_group + i);
886 /* wait for I/O completion */
887 for (i = 0; i < groups_per_page; i++)
888 if (bh[i])
889 wait_on_buffer(bh[i]);
891 err = -EIO;
892 for (i = 0; i < groups_per_page; i++)
893 if (bh[i] && !buffer_uptodate(bh[i]))
894 goto out;
896 err = 0;
897 first_block = page->index * blocks_per_page;
898 for (i = 0; i < blocks_per_page; i++) {
899 int group;
901 group = (first_block + i) >> 1;
902 if (group >= ngroups)
903 break;
905 if (!bh[group - first_group])
906 /* skip initialized uptodate buddy */
907 continue;
910 * data carry information regarding this
911 * particular group in the format specified
912 * above
915 data = page_address(page) + (i * blocksize);
916 bitmap = bh[group - first_group]->b_data;
919 * We place the buddy block and bitmap block
920 * close together
922 if ((first_block + i) & 1) {
923 /* this is block of buddy */
924 BUG_ON(incore == NULL);
925 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
926 group, page->index, i * blocksize);
927 trace_ext4_mb_buddy_bitmap_load(sb, group);
928 grinfo = ext4_get_group_info(sb, group);
929 grinfo->bb_fragments = 0;
930 memset(grinfo->bb_counters, 0,
931 sizeof(*grinfo->bb_counters) *
932 (sb->s_blocksize_bits+2));
934 * incore got set to the group block bitmap below
936 ext4_lock_group(sb, group);
937 /* init the buddy */
938 memset(data, 0xff, blocksize);
939 ext4_mb_generate_buddy(sb, data, incore, group);
940 ext4_unlock_group(sb, group);
941 incore = NULL;
942 } else {
943 /* this is block of bitmap */
944 BUG_ON(incore != NULL);
945 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
946 group, page->index, i * blocksize);
947 trace_ext4_mb_bitmap_load(sb, group);
949 /* see comments in ext4_mb_put_pa() */
950 ext4_lock_group(sb, group);
951 memcpy(data, bitmap, blocksize);
953 /* mark all preallocated blks used in in-core bitmap */
954 ext4_mb_generate_from_pa(sb, data, group);
955 ext4_mb_generate_from_freelist(sb, data, group);
956 ext4_unlock_group(sb, group);
958 /* set incore so that the buddy information can be
959 * generated using this
961 incore = data;
964 SetPageUptodate(page);
966 out:
967 if (bh) {
968 for (i = 0; i < groups_per_page; i++)
969 brelse(bh[i]);
970 if (bh != &bhs)
971 kfree(bh);
973 return err;
977 * Lock the buddy and bitmap pages. This make sure other parallel init_group
978 * on the same buddy page doesn't happen whild holding the buddy page lock.
979 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
980 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
982 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
983 ext4_group_t group, struct ext4_buddy *e4b)
985 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
986 int block, pnum, poff;
987 int blocks_per_page;
988 struct page *page;
990 e4b->bd_buddy_page = NULL;
991 e4b->bd_bitmap_page = NULL;
993 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
995 * the buddy cache inode stores the block bitmap
996 * and buddy information in consecutive blocks.
997 * So for each group we need two blocks.
999 block = group * 2;
1000 pnum = block / blocks_per_page;
1001 poff = block % blocks_per_page;
1002 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1003 if (!page)
1004 return -EIO;
1005 BUG_ON(page->mapping != inode->i_mapping);
1006 e4b->bd_bitmap_page = page;
1007 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1009 if (blocks_per_page >= 2) {
1010 /* buddy and bitmap are on the same page */
1011 return 0;
1014 block++;
1015 pnum = block / blocks_per_page;
1016 poff = block % blocks_per_page;
1017 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1018 if (!page)
1019 return -EIO;
1020 BUG_ON(page->mapping != inode->i_mapping);
1021 e4b->bd_buddy_page = page;
1022 return 0;
1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1027 if (e4b->bd_bitmap_page) {
1028 unlock_page(e4b->bd_bitmap_page);
1029 page_cache_release(e4b->bd_bitmap_page);
1031 if (e4b->bd_buddy_page) {
1032 unlock_page(e4b->bd_buddy_page);
1033 page_cache_release(e4b->bd_buddy_page);
1038 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1039 * block group lock of all groups for this page; do not hold the BG lock when
1040 * calling this routine!
1042 static noinline_for_stack
1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1046 struct ext4_group_info *this_grp;
1047 struct ext4_buddy e4b;
1048 struct page *page;
1049 int ret = 0;
1051 mb_debug(1, "init group %u\n", group);
1052 this_grp = ext4_get_group_info(sb, group);
1054 * This ensures that we don't reinit the buddy cache
1055 * page which map to the group from which we are already
1056 * allocating. If we are looking at the buddy cache we would
1057 * have taken a reference using ext4_mb_load_buddy and that
1058 * would have pinned buddy page to page cache.
1060 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1061 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1063 * somebody initialized the group
1064 * return without doing anything
1066 goto err;
1069 page = e4b.bd_bitmap_page;
1070 ret = ext4_mb_init_cache(page, NULL);
1071 if (ret)
1072 goto err;
1073 if (!PageUptodate(page)) {
1074 ret = -EIO;
1075 goto err;
1077 mark_page_accessed(page);
1079 if (e4b.bd_buddy_page == NULL) {
1081 * If both the bitmap and buddy are in
1082 * the same page we don't need to force
1083 * init the buddy
1085 ret = 0;
1086 goto err;
1088 /* init buddy cache */
1089 page = e4b.bd_buddy_page;
1090 ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1091 if (ret)
1092 goto err;
1093 if (!PageUptodate(page)) {
1094 ret = -EIO;
1095 goto err;
1097 mark_page_accessed(page);
1098 err:
1099 ext4_mb_put_buddy_page_lock(&e4b);
1100 return ret;
1104 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1105 * block group lock of all groups for this page; do not hold the BG lock when
1106 * calling this routine!
1108 static noinline_for_stack int
1109 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1110 struct ext4_buddy *e4b)
1112 int blocks_per_page;
1113 int block;
1114 int pnum;
1115 int poff;
1116 struct page *page;
1117 int ret;
1118 struct ext4_group_info *grp;
1119 struct ext4_sb_info *sbi = EXT4_SB(sb);
1120 struct inode *inode = sbi->s_buddy_cache;
1122 mb_debug(1, "load group %u\n", group);
1124 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1125 grp = ext4_get_group_info(sb, group);
1127 e4b->bd_blkbits = sb->s_blocksize_bits;
1128 e4b->bd_info = ext4_get_group_info(sb, group);
1129 e4b->bd_sb = sb;
1130 e4b->bd_group = group;
1131 e4b->bd_buddy_page = NULL;
1132 e4b->bd_bitmap_page = NULL;
1134 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1136 * we need full data about the group
1137 * to make a good selection
1139 ret = ext4_mb_init_group(sb, group);
1140 if (ret)
1141 return ret;
1145 * the buddy cache inode stores the block bitmap
1146 * and buddy information in consecutive blocks.
1147 * So for each group we need two blocks.
1149 block = group * 2;
1150 pnum = block / blocks_per_page;
1151 poff = block % blocks_per_page;
1153 /* we could use find_or_create_page(), but it locks page
1154 * what we'd like to avoid in fast path ... */
1155 page = find_get_page(inode->i_mapping, pnum);
1156 if (page == NULL || !PageUptodate(page)) {
1157 if (page)
1159 * drop the page reference and try
1160 * to get the page with lock. If we
1161 * are not uptodate that implies
1162 * somebody just created the page but
1163 * is yet to initialize the same. So
1164 * wait for it to initialize.
1166 page_cache_release(page);
1167 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1168 if (page) {
1169 BUG_ON(page->mapping != inode->i_mapping);
1170 if (!PageUptodate(page)) {
1171 ret = ext4_mb_init_cache(page, NULL);
1172 if (ret) {
1173 unlock_page(page);
1174 goto err;
1176 mb_cmp_bitmaps(e4b, page_address(page) +
1177 (poff * sb->s_blocksize));
1179 unlock_page(page);
1182 if (page == NULL || !PageUptodate(page)) {
1183 ret = -EIO;
1184 goto err;
1186 e4b->bd_bitmap_page = page;
1187 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1188 mark_page_accessed(page);
1190 block++;
1191 pnum = block / blocks_per_page;
1192 poff = block % blocks_per_page;
1194 page = find_get_page(inode->i_mapping, pnum);
1195 if (page == NULL || !PageUptodate(page)) {
1196 if (page)
1197 page_cache_release(page);
1198 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1199 if (page) {
1200 BUG_ON(page->mapping != inode->i_mapping);
1201 if (!PageUptodate(page)) {
1202 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1203 if (ret) {
1204 unlock_page(page);
1205 goto err;
1208 unlock_page(page);
1211 if (page == NULL || !PageUptodate(page)) {
1212 ret = -EIO;
1213 goto err;
1215 e4b->bd_buddy_page = page;
1216 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1217 mark_page_accessed(page);
1219 BUG_ON(e4b->bd_bitmap_page == NULL);
1220 BUG_ON(e4b->bd_buddy_page == NULL);
1222 return 0;
1224 err:
1225 if (page)
1226 page_cache_release(page);
1227 if (e4b->bd_bitmap_page)
1228 page_cache_release(e4b->bd_bitmap_page);
1229 if (e4b->bd_buddy_page)
1230 page_cache_release(e4b->bd_buddy_page);
1231 e4b->bd_buddy = NULL;
1232 e4b->bd_bitmap = NULL;
1233 return ret;
1236 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1238 if (e4b->bd_bitmap_page)
1239 page_cache_release(e4b->bd_bitmap_page);
1240 if (e4b->bd_buddy_page)
1241 page_cache_release(e4b->bd_buddy_page);
1245 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1247 int order = 1;
1248 void *bb;
1250 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1251 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1253 bb = EXT4_MB_BUDDY(e4b);
1254 while (order <= e4b->bd_blkbits + 1) {
1255 block = block >> 1;
1256 if (!mb_test_bit(block, bb)) {
1257 /* this block is part of buddy of order 'order' */
1258 return order;
1260 bb += 1 << (e4b->bd_blkbits - order);
1261 order++;
1263 return 0;
1266 static void mb_clear_bits(void *bm, int cur, int len)
1268 __u32 *addr;
1270 len = cur + len;
1271 while (cur < len) {
1272 if ((cur & 31) == 0 && (len - cur) >= 32) {
1273 /* fast path: clear whole word at once */
1274 addr = bm + (cur >> 3);
1275 *addr = 0;
1276 cur += 32;
1277 continue;
1279 mb_clear_bit(cur, bm);
1280 cur++;
1284 static void mb_set_bits(void *bm, int cur, int len)
1286 __u32 *addr;
1288 len = cur + len;
1289 while (cur < len) {
1290 if ((cur & 31) == 0 && (len - cur) >= 32) {
1291 /* fast path: set whole word at once */
1292 addr = bm + (cur >> 3);
1293 *addr = 0xffffffff;
1294 cur += 32;
1295 continue;
1297 mb_set_bit(cur, bm);
1298 cur++;
1302 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1303 int first, int count)
1305 int block = 0;
1306 int max = 0;
1307 int order;
1308 void *buddy;
1309 void *buddy2;
1310 struct super_block *sb = e4b->bd_sb;
1312 BUG_ON(first + count > (sb->s_blocksize << 3));
1313 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1314 mb_check_buddy(e4b);
1315 mb_free_blocks_double(inode, e4b, first, count);
1317 e4b->bd_info->bb_free += count;
1318 if (first < e4b->bd_info->bb_first_free)
1319 e4b->bd_info->bb_first_free = first;
1321 /* let's maintain fragments counter */
1322 if (first != 0)
1323 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1324 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1325 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1326 if (block && max)
1327 e4b->bd_info->bb_fragments--;
1328 else if (!block && !max)
1329 e4b->bd_info->bb_fragments++;
1331 /* let's maintain buddy itself */
1332 while (count-- > 0) {
1333 block = first++;
1334 order = 0;
1336 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1337 ext4_fsblk_t blocknr;
1339 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1340 blocknr += block;
1341 ext4_grp_locked_error(sb, e4b->bd_group,
1342 inode ? inode->i_ino : 0,
1343 blocknr,
1344 "freeing already freed block "
1345 "(bit %u)", block);
1347 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1348 e4b->bd_info->bb_counters[order]++;
1350 /* start of the buddy */
1351 buddy = mb_find_buddy(e4b, order, &max);
1353 do {
1354 block &= ~1UL;
1355 if (mb_test_bit(block, buddy) ||
1356 mb_test_bit(block + 1, buddy))
1357 break;
1359 /* both the buddies are free, try to coalesce them */
1360 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1362 if (!buddy2)
1363 break;
1365 if (order > 0) {
1366 /* for special purposes, we don't set
1367 * free bits in bitmap */
1368 mb_set_bit(block, buddy);
1369 mb_set_bit(block + 1, buddy);
1371 e4b->bd_info->bb_counters[order]--;
1372 e4b->bd_info->bb_counters[order]--;
1374 block = block >> 1;
1375 order++;
1376 e4b->bd_info->bb_counters[order]++;
1378 mb_clear_bit(block, buddy2);
1379 buddy = buddy2;
1380 } while (1);
1382 mb_set_largest_free_order(sb, e4b->bd_info);
1383 mb_check_buddy(e4b);
1386 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1387 int needed, struct ext4_free_extent *ex)
1389 int next = block;
1390 int max;
1391 int ord;
1392 void *buddy;
1394 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1395 BUG_ON(ex == NULL);
1397 buddy = mb_find_buddy(e4b, order, &max);
1398 BUG_ON(buddy == NULL);
1399 BUG_ON(block >= max);
1400 if (mb_test_bit(block, buddy)) {
1401 ex->fe_len = 0;
1402 ex->fe_start = 0;
1403 ex->fe_group = 0;
1404 return 0;
1407 /* FIXME dorp order completely ? */
1408 if (likely(order == 0)) {
1409 /* find actual order */
1410 order = mb_find_order_for_block(e4b, block);
1411 block = block >> order;
1414 ex->fe_len = 1 << order;
1415 ex->fe_start = block << order;
1416 ex->fe_group = e4b->bd_group;
1418 /* calc difference from given start */
1419 next = next - ex->fe_start;
1420 ex->fe_len -= next;
1421 ex->fe_start += next;
1423 while (needed > ex->fe_len &&
1424 (buddy = mb_find_buddy(e4b, order, &max))) {
1426 if (block + 1 >= max)
1427 break;
1429 next = (block + 1) * (1 << order);
1430 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1431 break;
1433 ord = mb_find_order_for_block(e4b, next);
1435 order = ord;
1436 block = next >> order;
1437 ex->fe_len += 1 << order;
1440 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1441 return ex->fe_len;
1444 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1446 int ord;
1447 int mlen = 0;
1448 int max = 0;
1449 int cur;
1450 int start = ex->fe_start;
1451 int len = ex->fe_len;
1452 unsigned ret = 0;
1453 int len0 = len;
1454 void *buddy;
1456 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1457 BUG_ON(e4b->bd_group != ex->fe_group);
1458 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1459 mb_check_buddy(e4b);
1460 mb_mark_used_double(e4b, start, len);
1462 e4b->bd_info->bb_free -= len;
1463 if (e4b->bd_info->bb_first_free == start)
1464 e4b->bd_info->bb_first_free += len;
1466 /* let's maintain fragments counter */
1467 if (start != 0)
1468 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1469 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1470 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1471 if (mlen && max)
1472 e4b->bd_info->bb_fragments++;
1473 else if (!mlen && !max)
1474 e4b->bd_info->bb_fragments--;
1476 /* let's maintain buddy itself */
1477 while (len) {
1478 ord = mb_find_order_for_block(e4b, start);
1480 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1481 /* the whole chunk may be allocated at once! */
1482 mlen = 1 << ord;
1483 buddy = mb_find_buddy(e4b, ord, &max);
1484 BUG_ON((start >> ord) >= max);
1485 mb_set_bit(start >> ord, buddy);
1486 e4b->bd_info->bb_counters[ord]--;
1487 start += mlen;
1488 len -= mlen;
1489 BUG_ON(len < 0);
1490 continue;
1493 /* store for history */
1494 if (ret == 0)
1495 ret = len | (ord << 16);
1497 /* we have to split large buddy */
1498 BUG_ON(ord <= 0);
1499 buddy = mb_find_buddy(e4b, ord, &max);
1500 mb_set_bit(start >> ord, buddy);
1501 e4b->bd_info->bb_counters[ord]--;
1503 ord--;
1504 cur = (start >> ord) & ~1U;
1505 buddy = mb_find_buddy(e4b, ord, &max);
1506 mb_clear_bit(cur, buddy);
1507 mb_clear_bit(cur + 1, buddy);
1508 e4b->bd_info->bb_counters[ord]++;
1509 e4b->bd_info->bb_counters[ord]++;
1511 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1513 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1514 mb_check_buddy(e4b);
1516 return ret;
1520 * Must be called under group lock!
1522 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1523 struct ext4_buddy *e4b)
1525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1526 int ret;
1528 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1529 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1531 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1532 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1533 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1535 /* preallocation can change ac_b_ex, thus we store actually
1536 * allocated blocks for history */
1537 ac->ac_f_ex = ac->ac_b_ex;
1539 ac->ac_status = AC_STATUS_FOUND;
1540 ac->ac_tail = ret & 0xffff;
1541 ac->ac_buddy = ret >> 16;
1544 * take the page reference. We want the page to be pinned
1545 * so that we don't get a ext4_mb_init_cache_call for this
1546 * group until we update the bitmap. That would mean we
1547 * double allocate blocks. The reference is dropped
1548 * in ext4_mb_release_context
1550 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1551 get_page(ac->ac_bitmap_page);
1552 ac->ac_buddy_page = e4b->bd_buddy_page;
1553 get_page(ac->ac_buddy_page);
1554 /* store last allocated for subsequent stream allocation */
1555 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1556 spin_lock(&sbi->s_md_lock);
1557 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1558 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1559 spin_unlock(&sbi->s_md_lock);
1564 * regular allocator, for general purposes allocation
1567 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1568 struct ext4_buddy *e4b,
1569 int finish_group)
1571 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1572 struct ext4_free_extent *bex = &ac->ac_b_ex;
1573 struct ext4_free_extent *gex = &ac->ac_g_ex;
1574 struct ext4_free_extent ex;
1575 int max;
1577 if (ac->ac_status == AC_STATUS_FOUND)
1578 return;
1580 * We don't want to scan for a whole year
1582 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1583 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1584 ac->ac_status = AC_STATUS_BREAK;
1585 return;
1589 * Haven't found good chunk so far, let's continue
1591 if (bex->fe_len < gex->fe_len)
1592 return;
1594 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1595 && bex->fe_group == e4b->bd_group) {
1596 /* recheck chunk's availability - we don't know
1597 * when it was found (within this lock-unlock
1598 * period or not) */
1599 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1600 if (max >= gex->fe_len) {
1601 ext4_mb_use_best_found(ac, e4b);
1602 return;
1608 * The routine checks whether found extent is good enough. If it is,
1609 * then the extent gets marked used and flag is set to the context
1610 * to stop scanning. Otherwise, the extent is compared with the
1611 * previous found extent and if new one is better, then it's stored
1612 * in the context. Later, the best found extent will be used, if
1613 * mballoc can't find good enough extent.
1615 * FIXME: real allocation policy is to be designed yet!
1617 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1618 struct ext4_free_extent *ex,
1619 struct ext4_buddy *e4b)
1621 struct ext4_free_extent *bex = &ac->ac_b_ex;
1622 struct ext4_free_extent *gex = &ac->ac_g_ex;
1624 BUG_ON(ex->fe_len <= 0);
1625 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1626 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1627 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1629 ac->ac_found++;
1632 * The special case - take what you catch first
1634 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1635 *bex = *ex;
1636 ext4_mb_use_best_found(ac, e4b);
1637 return;
1641 * Let's check whether the chuck is good enough
1643 if (ex->fe_len == gex->fe_len) {
1644 *bex = *ex;
1645 ext4_mb_use_best_found(ac, e4b);
1646 return;
1650 * If this is first found extent, just store it in the context
1652 if (bex->fe_len == 0) {
1653 *bex = *ex;
1654 return;
1658 * If new found extent is better, store it in the context
1660 if (bex->fe_len < gex->fe_len) {
1661 /* if the request isn't satisfied, any found extent
1662 * larger than previous best one is better */
1663 if (ex->fe_len > bex->fe_len)
1664 *bex = *ex;
1665 } else if (ex->fe_len > gex->fe_len) {
1666 /* if the request is satisfied, then we try to find
1667 * an extent that still satisfy the request, but is
1668 * smaller than previous one */
1669 if (ex->fe_len < bex->fe_len)
1670 *bex = *ex;
1673 ext4_mb_check_limits(ac, e4b, 0);
1676 static noinline_for_stack
1677 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1678 struct ext4_buddy *e4b)
1680 struct ext4_free_extent ex = ac->ac_b_ex;
1681 ext4_group_t group = ex.fe_group;
1682 int max;
1683 int err;
1685 BUG_ON(ex.fe_len <= 0);
1686 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1687 if (err)
1688 return err;
1690 ext4_lock_group(ac->ac_sb, group);
1691 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1693 if (max > 0) {
1694 ac->ac_b_ex = ex;
1695 ext4_mb_use_best_found(ac, e4b);
1698 ext4_unlock_group(ac->ac_sb, group);
1699 ext4_mb_unload_buddy(e4b);
1701 return 0;
1704 static noinline_for_stack
1705 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1706 struct ext4_buddy *e4b)
1708 ext4_group_t group = ac->ac_g_ex.fe_group;
1709 int max;
1710 int err;
1711 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1712 struct ext4_free_extent ex;
1714 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1715 return 0;
1717 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1718 if (err)
1719 return err;
1721 ext4_lock_group(ac->ac_sb, group);
1722 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1723 ac->ac_g_ex.fe_len, &ex);
1725 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1726 ext4_fsblk_t start;
1728 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1729 ex.fe_start;
1730 /* use do_div to get remainder (would be 64-bit modulo) */
1731 if (do_div(start, sbi->s_stripe) == 0) {
1732 ac->ac_found++;
1733 ac->ac_b_ex = ex;
1734 ext4_mb_use_best_found(ac, e4b);
1736 } else if (max >= ac->ac_g_ex.fe_len) {
1737 BUG_ON(ex.fe_len <= 0);
1738 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1739 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1740 ac->ac_found++;
1741 ac->ac_b_ex = ex;
1742 ext4_mb_use_best_found(ac, e4b);
1743 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1744 /* Sometimes, caller may want to merge even small
1745 * number of blocks to an existing extent */
1746 BUG_ON(ex.fe_len <= 0);
1747 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1748 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1749 ac->ac_found++;
1750 ac->ac_b_ex = ex;
1751 ext4_mb_use_best_found(ac, e4b);
1753 ext4_unlock_group(ac->ac_sb, group);
1754 ext4_mb_unload_buddy(e4b);
1756 return 0;
1760 * The routine scans buddy structures (not bitmap!) from given order
1761 * to max order and tries to find big enough chunk to satisfy the req
1763 static noinline_for_stack
1764 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1765 struct ext4_buddy *e4b)
1767 struct super_block *sb = ac->ac_sb;
1768 struct ext4_group_info *grp = e4b->bd_info;
1769 void *buddy;
1770 int i;
1771 int k;
1772 int max;
1774 BUG_ON(ac->ac_2order <= 0);
1775 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1776 if (grp->bb_counters[i] == 0)
1777 continue;
1779 buddy = mb_find_buddy(e4b, i, &max);
1780 BUG_ON(buddy == NULL);
1782 k = mb_find_next_zero_bit(buddy, max, 0);
1783 BUG_ON(k >= max);
1785 ac->ac_found++;
1787 ac->ac_b_ex.fe_len = 1 << i;
1788 ac->ac_b_ex.fe_start = k << i;
1789 ac->ac_b_ex.fe_group = e4b->bd_group;
1791 ext4_mb_use_best_found(ac, e4b);
1793 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1795 if (EXT4_SB(sb)->s_mb_stats)
1796 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1798 break;
1803 * The routine scans the group and measures all found extents.
1804 * In order to optimize scanning, caller must pass number of
1805 * free blocks in the group, so the routine can know upper limit.
1807 static noinline_for_stack
1808 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1809 struct ext4_buddy *e4b)
1811 struct super_block *sb = ac->ac_sb;
1812 void *bitmap = EXT4_MB_BITMAP(e4b);
1813 struct ext4_free_extent ex;
1814 int i;
1815 int free;
1817 free = e4b->bd_info->bb_free;
1818 BUG_ON(free <= 0);
1820 i = e4b->bd_info->bb_first_free;
1822 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1823 i = mb_find_next_zero_bit(bitmap,
1824 EXT4_BLOCKS_PER_GROUP(sb), i);
1825 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1827 * IF we have corrupt bitmap, we won't find any
1828 * free blocks even though group info says we
1829 * we have free blocks
1831 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1832 "%d free blocks as per "
1833 "group info. But bitmap says 0",
1834 free);
1835 break;
1838 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1839 BUG_ON(ex.fe_len <= 0);
1840 if (free < ex.fe_len) {
1841 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1842 "%d free blocks as per "
1843 "group info. But got %d blocks",
1844 free, ex.fe_len);
1846 * The number of free blocks differs. This mostly
1847 * indicate that the bitmap is corrupt. So exit
1848 * without claiming the space.
1850 break;
1853 ext4_mb_measure_extent(ac, &ex, e4b);
1855 i += ex.fe_len;
1856 free -= ex.fe_len;
1859 ext4_mb_check_limits(ac, e4b, 1);
1863 * This is a special case for storages like raid5
1864 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1866 static noinline_for_stack
1867 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1868 struct ext4_buddy *e4b)
1870 struct super_block *sb = ac->ac_sb;
1871 struct ext4_sb_info *sbi = EXT4_SB(sb);
1872 void *bitmap = EXT4_MB_BITMAP(e4b);
1873 struct ext4_free_extent ex;
1874 ext4_fsblk_t first_group_block;
1875 ext4_fsblk_t a;
1876 ext4_grpblk_t i;
1877 int max;
1879 BUG_ON(sbi->s_stripe == 0);
1881 /* find first stripe-aligned block in group */
1882 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1884 a = first_group_block + sbi->s_stripe - 1;
1885 do_div(a, sbi->s_stripe);
1886 i = (a * sbi->s_stripe) - first_group_block;
1888 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1889 if (!mb_test_bit(i, bitmap)) {
1890 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1891 if (max >= sbi->s_stripe) {
1892 ac->ac_found++;
1893 ac->ac_b_ex = ex;
1894 ext4_mb_use_best_found(ac, e4b);
1895 break;
1898 i += sbi->s_stripe;
1902 /* This is now called BEFORE we load the buddy bitmap. */
1903 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1904 ext4_group_t group, int cr)
1906 unsigned free, fragments;
1907 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1908 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1910 BUG_ON(cr < 0 || cr >= 4);
1912 /* We only do this if the grp has never been initialized */
1913 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1914 int ret = ext4_mb_init_group(ac->ac_sb, group);
1915 if (ret)
1916 return 0;
1919 free = grp->bb_free;
1920 fragments = grp->bb_fragments;
1921 if (free == 0)
1922 return 0;
1923 if (fragments == 0)
1924 return 0;
1926 switch (cr) {
1927 case 0:
1928 BUG_ON(ac->ac_2order == 0);
1930 if (grp->bb_largest_free_order < ac->ac_2order)
1931 return 0;
1933 /* Avoid using the first bg of a flexgroup for data files */
1934 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1935 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1936 ((group % flex_size) == 0))
1937 return 0;
1939 return 1;
1940 case 1:
1941 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1942 return 1;
1943 break;
1944 case 2:
1945 if (free >= ac->ac_g_ex.fe_len)
1946 return 1;
1947 break;
1948 case 3:
1949 return 1;
1950 default:
1951 BUG();
1954 return 0;
1957 static noinline_for_stack int
1958 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1960 ext4_group_t ngroups, group, i;
1961 int cr;
1962 int err = 0;
1963 struct ext4_sb_info *sbi;
1964 struct super_block *sb;
1965 struct ext4_buddy e4b;
1967 sb = ac->ac_sb;
1968 sbi = EXT4_SB(sb);
1969 ngroups = ext4_get_groups_count(sb);
1970 /* non-extent files are limited to low blocks/groups */
1971 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1972 ngroups = sbi->s_blockfile_groups;
1974 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1976 /* first, try the goal */
1977 err = ext4_mb_find_by_goal(ac, &e4b);
1978 if (err || ac->ac_status == AC_STATUS_FOUND)
1979 goto out;
1981 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1982 goto out;
1985 * ac->ac2_order is set only if the fe_len is a power of 2
1986 * if ac2_order is set we also set criteria to 0 so that we
1987 * try exact allocation using buddy.
1989 i = fls(ac->ac_g_ex.fe_len);
1990 ac->ac_2order = 0;
1992 * We search using buddy data only if the order of the request
1993 * is greater than equal to the sbi_s_mb_order2_reqs
1994 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1996 if (i >= sbi->s_mb_order2_reqs) {
1998 * This should tell if fe_len is exactly power of 2
2000 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2001 ac->ac_2order = i - 1;
2004 /* if stream allocation is enabled, use global goal */
2005 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2006 /* TBD: may be hot point */
2007 spin_lock(&sbi->s_md_lock);
2008 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2009 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2010 spin_unlock(&sbi->s_md_lock);
2013 /* Let's just scan groups to find more-less suitable blocks */
2014 cr = ac->ac_2order ? 0 : 1;
2016 * cr == 0 try to get exact allocation,
2017 * cr == 3 try to get anything
2019 repeat:
2020 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2021 ac->ac_criteria = cr;
2023 * searching for the right group start
2024 * from the goal value specified
2026 group = ac->ac_g_ex.fe_group;
2028 for (i = 0; i < ngroups; group++, i++) {
2029 if (group == ngroups)
2030 group = 0;
2032 /* This now checks without needing the buddy page */
2033 if (!ext4_mb_good_group(ac, group, cr))
2034 continue;
2036 err = ext4_mb_load_buddy(sb, group, &e4b);
2037 if (err)
2038 goto out;
2040 ext4_lock_group(sb, group);
2043 * We need to check again after locking the
2044 * block group
2046 if (!ext4_mb_good_group(ac, group, cr)) {
2047 ext4_unlock_group(sb, group);
2048 ext4_mb_unload_buddy(&e4b);
2049 continue;
2052 ac->ac_groups_scanned++;
2053 if (cr == 0)
2054 ext4_mb_simple_scan_group(ac, &e4b);
2055 else if (cr == 1 && sbi->s_stripe &&
2056 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2057 ext4_mb_scan_aligned(ac, &e4b);
2058 else
2059 ext4_mb_complex_scan_group(ac, &e4b);
2061 ext4_unlock_group(sb, group);
2062 ext4_mb_unload_buddy(&e4b);
2064 if (ac->ac_status != AC_STATUS_CONTINUE)
2065 break;
2069 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2070 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2072 * We've been searching too long. Let's try to allocate
2073 * the best chunk we've found so far
2076 ext4_mb_try_best_found(ac, &e4b);
2077 if (ac->ac_status != AC_STATUS_FOUND) {
2079 * Someone more lucky has already allocated it.
2080 * The only thing we can do is just take first
2081 * found block(s)
2082 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2084 ac->ac_b_ex.fe_group = 0;
2085 ac->ac_b_ex.fe_start = 0;
2086 ac->ac_b_ex.fe_len = 0;
2087 ac->ac_status = AC_STATUS_CONTINUE;
2088 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2089 cr = 3;
2090 atomic_inc(&sbi->s_mb_lost_chunks);
2091 goto repeat;
2094 out:
2095 return err;
2098 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2100 struct super_block *sb = seq->private;
2101 ext4_group_t group;
2103 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2104 return NULL;
2105 group = *pos + 1;
2106 return (void *) ((unsigned long) group);
2109 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2111 struct super_block *sb = seq->private;
2112 ext4_group_t group;
2114 ++*pos;
2115 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2116 return NULL;
2117 group = *pos + 1;
2118 return (void *) ((unsigned long) group);
2121 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2123 struct super_block *sb = seq->private;
2124 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2125 int i;
2126 int err;
2127 struct ext4_buddy e4b;
2128 struct sg {
2129 struct ext4_group_info info;
2130 ext4_grpblk_t counters[16];
2131 } sg;
2133 group--;
2134 if (group == 0)
2135 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2136 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2137 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2138 "group", "free", "frags", "first",
2139 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2140 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2142 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2143 sizeof(struct ext4_group_info);
2144 err = ext4_mb_load_buddy(sb, group, &e4b);
2145 if (err) {
2146 seq_printf(seq, "#%-5u: I/O error\n", group);
2147 return 0;
2149 ext4_lock_group(sb, group);
2150 memcpy(&sg, ext4_get_group_info(sb, group), i);
2151 ext4_unlock_group(sb, group);
2152 ext4_mb_unload_buddy(&e4b);
2154 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2155 sg.info.bb_fragments, sg.info.bb_first_free);
2156 for (i = 0; i <= 13; i++)
2157 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2158 sg.info.bb_counters[i] : 0);
2159 seq_printf(seq, " ]\n");
2161 return 0;
2164 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2168 static const struct seq_operations ext4_mb_seq_groups_ops = {
2169 .start = ext4_mb_seq_groups_start,
2170 .next = ext4_mb_seq_groups_next,
2171 .stop = ext4_mb_seq_groups_stop,
2172 .show = ext4_mb_seq_groups_show,
2175 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2177 struct super_block *sb = PDE(inode)->data;
2178 int rc;
2180 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2181 if (rc == 0) {
2182 struct seq_file *m = file->private_data;
2183 m->private = sb;
2185 return rc;
2189 static const struct file_operations ext4_mb_seq_groups_fops = {
2190 .owner = THIS_MODULE,
2191 .open = ext4_mb_seq_groups_open,
2192 .read = seq_read,
2193 .llseek = seq_lseek,
2194 .release = seq_release,
2197 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2199 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2200 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2202 BUG_ON(!cachep);
2203 return cachep;
2206 /* Create and initialize ext4_group_info data for the given group. */
2207 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2208 struct ext4_group_desc *desc)
2210 int i;
2211 int metalen = 0;
2212 struct ext4_sb_info *sbi = EXT4_SB(sb);
2213 struct ext4_group_info **meta_group_info;
2214 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2217 * First check if this group is the first of a reserved block.
2218 * If it's true, we have to allocate a new table of pointers
2219 * to ext4_group_info structures
2221 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2222 metalen = sizeof(*meta_group_info) <<
2223 EXT4_DESC_PER_BLOCK_BITS(sb);
2224 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2225 if (meta_group_info == NULL) {
2226 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2227 "buddy group\n");
2228 goto exit_meta_group_info;
2230 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2231 meta_group_info;
2234 meta_group_info =
2235 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2236 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2238 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2239 if (meta_group_info[i] == NULL) {
2240 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2241 goto exit_group_info;
2243 memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2244 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2245 &(meta_group_info[i]->bb_state));
2248 * initialize bb_free to be able to skip
2249 * empty groups without initialization
2251 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2252 meta_group_info[i]->bb_free =
2253 ext4_free_blocks_after_init(sb, group, desc);
2254 } else {
2255 meta_group_info[i]->bb_free =
2256 ext4_free_blks_count(sb, desc);
2259 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2260 init_rwsem(&meta_group_info[i]->alloc_sem);
2261 meta_group_info[i]->bb_free_root = RB_ROOT;
2262 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2264 #ifdef DOUBLE_CHECK
2266 struct buffer_head *bh;
2267 meta_group_info[i]->bb_bitmap =
2268 kmalloc(sb->s_blocksize, GFP_KERNEL);
2269 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2270 bh = ext4_read_block_bitmap(sb, group);
2271 BUG_ON(bh == NULL);
2272 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2273 sb->s_blocksize);
2274 put_bh(bh);
2276 #endif
2278 return 0;
2280 exit_group_info:
2281 /* If a meta_group_info table has been allocated, release it now */
2282 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2283 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2284 exit_meta_group_info:
2285 return -ENOMEM;
2286 } /* ext4_mb_add_groupinfo */
2288 static int ext4_mb_init_backend(struct super_block *sb)
2290 ext4_group_t ngroups = ext4_get_groups_count(sb);
2291 ext4_group_t i;
2292 struct ext4_sb_info *sbi = EXT4_SB(sb);
2293 struct ext4_super_block *es = sbi->s_es;
2294 int num_meta_group_infos;
2295 int num_meta_group_infos_max;
2296 int array_size;
2297 struct ext4_group_desc *desc;
2298 struct kmem_cache *cachep;
2300 /* This is the number of blocks used by GDT */
2301 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2302 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2305 * This is the total number of blocks used by GDT including
2306 * the number of reserved blocks for GDT.
2307 * The s_group_info array is allocated with this value
2308 * to allow a clean online resize without a complex
2309 * manipulation of pointer.
2310 * The drawback is the unused memory when no resize
2311 * occurs but it's very low in terms of pages
2312 * (see comments below)
2313 * Need to handle this properly when META_BG resizing is allowed
2315 num_meta_group_infos_max = num_meta_group_infos +
2316 le16_to_cpu(es->s_reserved_gdt_blocks);
2319 * array_size is the size of s_group_info array. We round it
2320 * to the next power of two because this approximation is done
2321 * internally by kmalloc so we can have some more memory
2322 * for free here (e.g. may be used for META_BG resize).
2324 array_size = 1;
2325 while (array_size < sizeof(*sbi->s_group_info) *
2326 num_meta_group_infos_max)
2327 array_size = array_size << 1;
2328 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2329 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2330 * So a two level scheme suffices for now. */
2331 sbi->s_group_info = kzalloc(array_size, GFP_KERNEL);
2332 if (sbi->s_group_info == NULL) {
2333 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2334 return -ENOMEM;
2336 sbi->s_buddy_cache = new_inode(sb);
2337 if (sbi->s_buddy_cache == NULL) {
2338 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2339 goto err_freesgi;
2341 sbi->s_buddy_cache->i_ino = get_next_ino();
2342 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2343 for (i = 0; i < ngroups; i++) {
2344 desc = ext4_get_group_desc(sb, i, NULL);
2345 if (desc == NULL) {
2346 printk(KERN_ERR
2347 "EXT4-fs: can't read descriptor %u\n", i);
2348 goto err_freebuddy;
2350 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2351 goto err_freebuddy;
2354 return 0;
2356 err_freebuddy:
2357 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2358 while (i-- > 0)
2359 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2360 i = num_meta_group_infos;
2361 while (i-- > 0)
2362 kfree(sbi->s_group_info[i]);
2363 iput(sbi->s_buddy_cache);
2364 err_freesgi:
2365 kfree(sbi->s_group_info);
2366 return -ENOMEM;
2369 static void ext4_groupinfo_destroy_slabs(void)
2371 int i;
2373 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2374 if (ext4_groupinfo_caches[i])
2375 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2376 ext4_groupinfo_caches[i] = NULL;
2380 static int ext4_groupinfo_create_slab(size_t size)
2382 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2383 int slab_size;
2384 int blocksize_bits = order_base_2(size);
2385 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2386 struct kmem_cache *cachep;
2388 if (cache_index >= NR_GRPINFO_CACHES)
2389 return -EINVAL;
2391 if (unlikely(cache_index < 0))
2392 cache_index = 0;
2394 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2395 if (ext4_groupinfo_caches[cache_index]) {
2396 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2397 return 0; /* Already created */
2400 slab_size = offsetof(struct ext4_group_info,
2401 bb_counters[blocksize_bits + 2]);
2403 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2404 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2405 NULL);
2407 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2408 if (!cachep) {
2409 printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n");
2410 return -ENOMEM;
2413 ext4_groupinfo_caches[cache_index] = cachep;
2415 return 0;
2418 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2420 struct ext4_sb_info *sbi = EXT4_SB(sb);
2421 unsigned i, j;
2422 unsigned offset;
2423 unsigned max;
2424 int ret;
2426 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2428 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2429 if (sbi->s_mb_offsets == NULL) {
2430 ret = -ENOMEM;
2431 goto out;
2434 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2435 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2436 if (sbi->s_mb_maxs == NULL) {
2437 ret = -ENOMEM;
2438 goto out;
2441 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2442 if (ret < 0)
2443 goto out;
2445 /* order 0 is regular bitmap */
2446 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2447 sbi->s_mb_offsets[0] = 0;
2449 i = 1;
2450 offset = 0;
2451 max = sb->s_blocksize << 2;
2452 do {
2453 sbi->s_mb_offsets[i] = offset;
2454 sbi->s_mb_maxs[i] = max;
2455 offset += 1 << (sb->s_blocksize_bits - i);
2456 max = max >> 1;
2457 i++;
2458 } while (i <= sb->s_blocksize_bits + 1);
2460 /* init file for buddy data */
2461 ret = ext4_mb_init_backend(sb);
2462 if (ret != 0) {
2463 goto out;
2466 spin_lock_init(&sbi->s_md_lock);
2467 spin_lock_init(&sbi->s_bal_lock);
2469 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2470 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2471 sbi->s_mb_stats = MB_DEFAULT_STATS;
2472 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2473 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2474 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2476 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2477 if (sbi->s_locality_groups == NULL) {
2478 ret = -ENOMEM;
2479 goto out;
2481 for_each_possible_cpu(i) {
2482 struct ext4_locality_group *lg;
2483 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2484 mutex_init(&lg->lg_mutex);
2485 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2486 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2487 spin_lock_init(&lg->lg_prealloc_lock);
2490 if (sbi->s_proc)
2491 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2492 &ext4_mb_seq_groups_fops, sb);
2494 if (sbi->s_journal)
2495 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2496 out:
2497 if (ret) {
2498 kfree(sbi->s_mb_offsets);
2499 kfree(sbi->s_mb_maxs);
2501 return ret;
2504 /* need to called with the ext4 group lock held */
2505 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2507 struct ext4_prealloc_space *pa;
2508 struct list_head *cur, *tmp;
2509 int count = 0;
2511 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2512 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2513 list_del(&pa->pa_group_list);
2514 count++;
2515 kmem_cache_free(ext4_pspace_cachep, pa);
2517 if (count)
2518 mb_debug(1, "mballoc: %u PAs left\n", count);
2522 int ext4_mb_release(struct super_block *sb)
2524 ext4_group_t ngroups = ext4_get_groups_count(sb);
2525 ext4_group_t i;
2526 int num_meta_group_infos;
2527 struct ext4_group_info *grinfo;
2528 struct ext4_sb_info *sbi = EXT4_SB(sb);
2529 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2531 if (sbi->s_group_info) {
2532 for (i = 0; i < ngroups; i++) {
2533 grinfo = ext4_get_group_info(sb, i);
2534 #ifdef DOUBLE_CHECK
2535 kfree(grinfo->bb_bitmap);
2536 #endif
2537 ext4_lock_group(sb, i);
2538 ext4_mb_cleanup_pa(grinfo);
2539 ext4_unlock_group(sb, i);
2540 kmem_cache_free(cachep, grinfo);
2542 num_meta_group_infos = (ngroups +
2543 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2544 EXT4_DESC_PER_BLOCK_BITS(sb);
2545 for (i = 0; i < num_meta_group_infos; i++)
2546 kfree(sbi->s_group_info[i]);
2547 kfree(sbi->s_group_info);
2549 kfree(sbi->s_mb_offsets);
2550 kfree(sbi->s_mb_maxs);
2551 if (sbi->s_buddy_cache)
2552 iput(sbi->s_buddy_cache);
2553 if (sbi->s_mb_stats) {
2554 printk(KERN_INFO
2555 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2556 atomic_read(&sbi->s_bal_allocated),
2557 atomic_read(&sbi->s_bal_reqs),
2558 atomic_read(&sbi->s_bal_success));
2559 printk(KERN_INFO
2560 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2561 "%u 2^N hits, %u breaks, %u lost\n",
2562 atomic_read(&sbi->s_bal_ex_scanned),
2563 atomic_read(&sbi->s_bal_goals),
2564 atomic_read(&sbi->s_bal_2orders),
2565 atomic_read(&sbi->s_bal_breaks),
2566 atomic_read(&sbi->s_mb_lost_chunks));
2567 printk(KERN_INFO
2568 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2569 sbi->s_mb_buddies_generated++,
2570 sbi->s_mb_generation_time);
2571 printk(KERN_INFO
2572 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2573 atomic_read(&sbi->s_mb_preallocated),
2574 atomic_read(&sbi->s_mb_discarded));
2577 free_percpu(sbi->s_locality_groups);
2578 if (sbi->s_proc)
2579 remove_proc_entry("mb_groups", sbi->s_proc);
2581 return 0;
2584 static inline int ext4_issue_discard(struct super_block *sb,
2585 ext4_group_t block_group, ext4_grpblk_t block, int count)
2587 ext4_fsblk_t discard_block;
2589 discard_block = block + ext4_group_first_block_no(sb, block_group);
2590 trace_ext4_discard_blocks(sb,
2591 (unsigned long long) discard_block, count);
2592 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2596 * This function is called by the jbd2 layer once the commit has finished,
2597 * so we know we can free the blocks that were released with that commit.
2599 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2601 struct super_block *sb = journal->j_private;
2602 struct ext4_buddy e4b;
2603 struct ext4_group_info *db;
2604 int err, count = 0, count2 = 0;
2605 struct ext4_free_data *entry;
2606 struct list_head *l, *ltmp;
2608 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2609 entry = list_entry(l, struct ext4_free_data, list);
2611 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2612 entry->count, entry->group, entry);
2614 if (test_opt(sb, DISCARD))
2615 ext4_issue_discard(sb, entry->group,
2616 entry->start_blk, entry->count);
2618 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2619 /* we expect to find existing buddy because it's pinned */
2620 BUG_ON(err != 0);
2622 db = e4b.bd_info;
2623 /* there are blocks to put in buddy to make them really free */
2624 count += entry->count;
2625 count2++;
2626 ext4_lock_group(sb, entry->group);
2627 /* Take it out of per group rb tree */
2628 rb_erase(&entry->node, &(db->bb_free_root));
2629 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2631 if (!db->bb_free_root.rb_node) {
2632 /* No more items in the per group rb tree
2633 * balance refcounts from ext4_mb_free_metadata()
2635 page_cache_release(e4b.bd_buddy_page);
2636 page_cache_release(e4b.bd_bitmap_page);
2638 ext4_unlock_group(sb, entry->group);
2639 kmem_cache_free(ext4_free_ext_cachep, entry);
2640 ext4_mb_unload_buddy(&e4b);
2643 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2646 #ifdef CONFIG_EXT4_DEBUG
2647 u8 mb_enable_debug __read_mostly;
2649 static struct dentry *debugfs_dir;
2650 static struct dentry *debugfs_debug;
2652 static void __init ext4_create_debugfs_entry(void)
2654 debugfs_dir = debugfs_create_dir("ext4", NULL);
2655 if (debugfs_dir)
2656 debugfs_debug = debugfs_create_u8("mballoc-debug",
2657 S_IRUGO | S_IWUSR,
2658 debugfs_dir,
2659 &mb_enable_debug);
2662 static void ext4_remove_debugfs_entry(void)
2664 debugfs_remove(debugfs_debug);
2665 debugfs_remove(debugfs_dir);
2668 #else
2670 static void __init ext4_create_debugfs_entry(void)
2674 static void ext4_remove_debugfs_entry(void)
2678 #endif
2680 int __init ext4_init_mballoc(void)
2682 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2683 SLAB_RECLAIM_ACCOUNT);
2684 if (ext4_pspace_cachep == NULL)
2685 return -ENOMEM;
2687 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2688 SLAB_RECLAIM_ACCOUNT);
2689 if (ext4_ac_cachep == NULL) {
2690 kmem_cache_destroy(ext4_pspace_cachep);
2691 return -ENOMEM;
2694 ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
2695 SLAB_RECLAIM_ACCOUNT);
2696 if (ext4_free_ext_cachep == NULL) {
2697 kmem_cache_destroy(ext4_pspace_cachep);
2698 kmem_cache_destroy(ext4_ac_cachep);
2699 return -ENOMEM;
2701 ext4_create_debugfs_entry();
2702 return 0;
2705 void ext4_exit_mballoc(void)
2708 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2709 * before destroying the slab cache.
2711 rcu_barrier();
2712 kmem_cache_destroy(ext4_pspace_cachep);
2713 kmem_cache_destroy(ext4_ac_cachep);
2714 kmem_cache_destroy(ext4_free_ext_cachep);
2715 ext4_groupinfo_destroy_slabs();
2716 ext4_remove_debugfs_entry();
2721 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2722 * Returns 0 if success or error code
2724 static noinline_for_stack int
2725 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2726 handle_t *handle, unsigned int reserv_blks)
2728 struct buffer_head *bitmap_bh = NULL;
2729 struct ext4_group_desc *gdp;
2730 struct buffer_head *gdp_bh;
2731 struct ext4_sb_info *sbi;
2732 struct super_block *sb;
2733 ext4_fsblk_t block;
2734 int err, len;
2736 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2737 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2739 sb = ac->ac_sb;
2740 sbi = EXT4_SB(sb);
2742 err = -EIO;
2743 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2744 if (!bitmap_bh)
2745 goto out_err;
2747 err = ext4_journal_get_write_access(handle, bitmap_bh);
2748 if (err)
2749 goto out_err;
2751 err = -EIO;
2752 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2753 if (!gdp)
2754 goto out_err;
2756 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2757 ext4_free_blks_count(sb, gdp));
2759 err = ext4_journal_get_write_access(handle, gdp_bh);
2760 if (err)
2761 goto out_err;
2763 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2765 len = ac->ac_b_ex.fe_len;
2766 if (!ext4_data_block_valid(sbi, block, len)) {
2767 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2768 "fs metadata\n", block, block+len);
2769 /* File system mounted not to panic on error
2770 * Fix the bitmap and repeat the block allocation
2771 * We leak some of the blocks here.
2773 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2774 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2775 ac->ac_b_ex.fe_len);
2776 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2777 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2778 if (!err)
2779 err = -EAGAIN;
2780 goto out_err;
2783 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2784 #ifdef AGGRESSIVE_CHECK
2786 int i;
2787 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2788 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2789 bitmap_bh->b_data));
2792 #endif
2793 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2794 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2795 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2796 ext4_free_blks_set(sb, gdp,
2797 ext4_free_blocks_after_init(sb,
2798 ac->ac_b_ex.fe_group, gdp));
2800 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2801 ext4_free_blks_set(sb, gdp, len);
2802 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2804 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2805 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2807 * Now reduce the dirty block count also. Should not go negative
2809 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2810 /* release all the reserved blocks if non delalloc */
2811 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2813 if (sbi->s_log_groups_per_flex) {
2814 ext4_group_t flex_group = ext4_flex_group(sbi,
2815 ac->ac_b_ex.fe_group);
2816 atomic_sub(ac->ac_b_ex.fe_len,
2817 &sbi->s_flex_groups[flex_group].free_blocks);
2820 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2821 if (err)
2822 goto out_err;
2823 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2825 out_err:
2826 ext4_mark_super_dirty(sb);
2827 brelse(bitmap_bh);
2828 return err;
2832 * here we normalize request for locality group
2833 * Group request are normalized to s_strip size if we set the same via mount
2834 * option. If not we set it to s_mb_group_prealloc which can be configured via
2835 * /sys/fs/ext4/<partition>/mb_group_prealloc
2837 * XXX: should we try to preallocate more than the group has now?
2839 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2841 struct super_block *sb = ac->ac_sb;
2842 struct ext4_locality_group *lg = ac->ac_lg;
2844 BUG_ON(lg == NULL);
2845 if (EXT4_SB(sb)->s_stripe)
2846 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2847 else
2848 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2849 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2850 current->pid, ac->ac_g_ex.fe_len);
2854 * Normalization means making request better in terms of
2855 * size and alignment
2857 static noinline_for_stack void
2858 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2859 struct ext4_allocation_request *ar)
2861 int bsbits, max;
2862 ext4_lblk_t end;
2863 loff_t size, orig_size, start_off;
2864 ext4_lblk_t start;
2865 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2866 struct ext4_prealloc_space *pa;
2868 /* do normalize only data requests, metadata requests
2869 do not need preallocation */
2870 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2871 return;
2873 /* sometime caller may want exact blocks */
2874 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2875 return;
2877 /* caller may indicate that preallocation isn't
2878 * required (it's a tail, for example) */
2879 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2880 return;
2882 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2883 ext4_mb_normalize_group_request(ac);
2884 return ;
2887 bsbits = ac->ac_sb->s_blocksize_bits;
2889 /* first, let's learn actual file size
2890 * given current request is allocated */
2891 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2892 size = size << bsbits;
2893 if (size < i_size_read(ac->ac_inode))
2894 size = i_size_read(ac->ac_inode);
2895 orig_size = size;
2897 /* max size of free chunks */
2898 max = 2 << bsbits;
2900 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2901 (req <= (size) || max <= (chunk_size))
2903 /* first, try to predict filesize */
2904 /* XXX: should this table be tunable? */
2905 start_off = 0;
2906 if (size <= 16 * 1024) {
2907 size = 16 * 1024;
2908 } else if (size <= 32 * 1024) {
2909 size = 32 * 1024;
2910 } else if (size <= 64 * 1024) {
2911 size = 64 * 1024;
2912 } else if (size <= 128 * 1024) {
2913 size = 128 * 1024;
2914 } else if (size <= 256 * 1024) {
2915 size = 256 * 1024;
2916 } else if (size <= 512 * 1024) {
2917 size = 512 * 1024;
2918 } else if (size <= 1024 * 1024) {
2919 size = 1024 * 1024;
2920 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2921 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2922 (21 - bsbits)) << 21;
2923 size = 2 * 1024 * 1024;
2924 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2925 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2926 (22 - bsbits)) << 22;
2927 size = 4 * 1024 * 1024;
2928 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2929 (8<<20)>>bsbits, max, 8 * 1024)) {
2930 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2931 (23 - bsbits)) << 23;
2932 size = 8 * 1024 * 1024;
2933 } else {
2934 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2935 size = ac->ac_o_ex.fe_len << bsbits;
2937 size = size >> bsbits;
2938 start = start_off >> bsbits;
2940 /* don't cover already allocated blocks in selected range */
2941 if (ar->pleft && start <= ar->lleft) {
2942 size -= ar->lleft + 1 - start;
2943 start = ar->lleft + 1;
2945 if (ar->pright && start + size - 1 >= ar->lright)
2946 size -= start + size - ar->lright;
2948 end = start + size;
2950 /* check we don't cross already preallocated blocks */
2951 rcu_read_lock();
2952 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2953 ext4_lblk_t pa_end;
2955 if (pa->pa_deleted)
2956 continue;
2957 spin_lock(&pa->pa_lock);
2958 if (pa->pa_deleted) {
2959 spin_unlock(&pa->pa_lock);
2960 continue;
2963 pa_end = pa->pa_lstart + pa->pa_len;
2965 /* PA must not overlap original request */
2966 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2967 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2969 /* skip PAs this normalized request doesn't overlap with */
2970 if (pa->pa_lstart >= end || pa_end <= start) {
2971 spin_unlock(&pa->pa_lock);
2972 continue;
2974 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2976 /* adjust start or end to be adjacent to this pa */
2977 if (pa_end <= ac->ac_o_ex.fe_logical) {
2978 BUG_ON(pa_end < start);
2979 start = pa_end;
2980 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2981 BUG_ON(pa->pa_lstart > end);
2982 end = pa->pa_lstart;
2984 spin_unlock(&pa->pa_lock);
2986 rcu_read_unlock();
2987 size = end - start;
2989 /* XXX: extra loop to check we really don't overlap preallocations */
2990 rcu_read_lock();
2991 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2992 ext4_lblk_t pa_end;
2993 spin_lock(&pa->pa_lock);
2994 if (pa->pa_deleted == 0) {
2995 pa_end = pa->pa_lstart + pa->pa_len;
2996 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2998 spin_unlock(&pa->pa_lock);
3000 rcu_read_unlock();
3002 if (start + size <= ac->ac_o_ex.fe_logical &&
3003 start > ac->ac_o_ex.fe_logical) {
3004 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3005 (unsigned long) start, (unsigned long) size,
3006 (unsigned long) ac->ac_o_ex.fe_logical);
3008 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3009 start > ac->ac_o_ex.fe_logical);
3010 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3012 /* now prepare goal request */
3014 /* XXX: is it better to align blocks WRT to logical
3015 * placement or satisfy big request as is */
3016 ac->ac_g_ex.fe_logical = start;
3017 ac->ac_g_ex.fe_len = size;
3019 /* define goal start in order to merge */
3020 if (ar->pright && (ar->lright == (start + size))) {
3021 /* merge to the right */
3022 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3023 &ac->ac_f_ex.fe_group,
3024 &ac->ac_f_ex.fe_start);
3025 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3027 if (ar->pleft && (ar->lleft + 1 == start)) {
3028 /* merge to the left */
3029 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3030 &ac->ac_f_ex.fe_group,
3031 &ac->ac_f_ex.fe_start);
3032 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3035 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3036 (unsigned) orig_size, (unsigned) start);
3039 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3041 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3043 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3044 atomic_inc(&sbi->s_bal_reqs);
3045 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3046 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3047 atomic_inc(&sbi->s_bal_success);
3048 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3049 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3050 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3051 atomic_inc(&sbi->s_bal_goals);
3052 if (ac->ac_found > sbi->s_mb_max_to_scan)
3053 atomic_inc(&sbi->s_bal_breaks);
3056 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3057 trace_ext4_mballoc_alloc(ac);
3058 else
3059 trace_ext4_mballoc_prealloc(ac);
3063 * Called on failure; free up any blocks from the inode PA for this
3064 * context. We don't need this for MB_GROUP_PA because we only change
3065 * pa_free in ext4_mb_release_context(), but on failure, we've already
3066 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3068 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3070 struct ext4_prealloc_space *pa = ac->ac_pa;
3071 int len;
3073 if (pa && pa->pa_type == MB_INODE_PA) {
3074 len = ac->ac_b_ex.fe_len;
3075 pa->pa_free += len;
3081 * use blocks preallocated to inode
3083 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3084 struct ext4_prealloc_space *pa)
3086 ext4_fsblk_t start;
3087 ext4_fsblk_t end;
3088 int len;
3090 /* found preallocated blocks, use them */
3091 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3092 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3093 len = end - start;
3094 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3095 &ac->ac_b_ex.fe_start);
3096 ac->ac_b_ex.fe_len = len;
3097 ac->ac_status = AC_STATUS_FOUND;
3098 ac->ac_pa = pa;
3100 BUG_ON(start < pa->pa_pstart);
3101 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3102 BUG_ON(pa->pa_free < len);
3103 pa->pa_free -= len;
3105 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3109 * use blocks preallocated to locality group
3111 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3112 struct ext4_prealloc_space *pa)
3114 unsigned int len = ac->ac_o_ex.fe_len;
3116 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3117 &ac->ac_b_ex.fe_group,
3118 &ac->ac_b_ex.fe_start);
3119 ac->ac_b_ex.fe_len = len;
3120 ac->ac_status = AC_STATUS_FOUND;
3121 ac->ac_pa = pa;
3123 /* we don't correct pa_pstart or pa_plen here to avoid
3124 * possible race when the group is being loaded concurrently
3125 * instead we correct pa later, after blocks are marked
3126 * in on-disk bitmap -- see ext4_mb_release_context()
3127 * Other CPUs are prevented from allocating from this pa by lg_mutex
3129 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3133 * Return the prealloc space that have minimal distance
3134 * from the goal block. @cpa is the prealloc
3135 * space that is having currently known minimal distance
3136 * from the goal block.
3138 static struct ext4_prealloc_space *
3139 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3140 struct ext4_prealloc_space *pa,
3141 struct ext4_prealloc_space *cpa)
3143 ext4_fsblk_t cur_distance, new_distance;
3145 if (cpa == NULL) {
3146 atomic_inc(&pa->pa_count);
3147 return pa;
3149 cur_distance = abs(goal_block - cpa->pa_pstart);
3150 new_distance = abs(goal_block - pa->pa_pstart);
3152 if (cur_distance <= new_distance)
3153 return cpa;
3155 /* drop the previous reference */
3156 atomic_dec(&cpa->pa_count);
3157 atomic_inc(&pa->pa_count);
3158 return pa;
3162 * search goal blocks in preallocated space
3164 static noinline_for_stack int
3165 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3167 int order, i;
3168 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3169 struct ext4_locality_group *lg;
3170 struct ext4_prealloc_space *pa, *cpa = NULL;
3171 ext4_fsblk_t goal_block;
3173 /* only data can be preallocated */
3174 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3175 return 0;
3177 /* first, try per-file preallocation */
3178 rcu_read_lock();
3179 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3181 /* all fields in this condition don't change,
3182 * so we can skip locking for them */
3183 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3184 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3185 continue;
3187 /* non-extent files can't have physical blocks past 2^32 */
3188 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3189 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3190 continue;
3192 /* found preallocated blocks, use them */
3193 spin_lock(&pa->pa_lock);
3194 if (pa->pa_deleted == 0 && pa->pa_free) {
3195 atomic_inc(&pa->pa_count);
3196 ext4_mb_use_inode_pa(ac, pa);
3197 spin_unlock(&pa->pa_lock);
3198 ac->ac_criteria = 10;
3199 rcu_read_unlock();
3200 return 1;
3202 spin_unlock(&pa->pa_lock);
3204 rcu_read_unlock();
3206 /* can we use group allocation? */
3207 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3208 return 0;
3210 /* inode may have no locality group for some reason */
3211 lg = ac->ac_lg;
3212 if (lg == NULL)
3213 return 0;
3214 order = fls(ac->ac_o_ex.fe_len) - 1;
3215 if (order > PREALLOC_TB_SIZE - 1)
3216 /* The max size of hash table is PREALLOC_TB_SIZE */
3217 order = PREALLOC_TB_SIZE - 1;
3219 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3221 * search for the prealloc space that is having
3222 * minimal distance from the goal block.
3224 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3225 rcu_read_lock();
3226 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3227 pa_inode_list) {
3228 spin_lock(&pa->pa_lock);
3229 if (pa->pa_deleted == 0 &&
3230 pa->pa_free >= ac->ac_o_ex.fe_len) {
3232 cpa = ext4_mb_check_group_pa(goal_block,
3233 pa, cpa);
3235 spin_unlock(&pa->pa_lock);
3237 rcu_read_unlock();
3239 if (cpa) {
3240 ext4_mb_use_group_pa(ac, cpa);
3241 ac->ac_criteria = 20;
3242 return 1;
3244 return 0;
3248 * the function goes through all block freed in the group
3249 * but not yet committed and marks them used in in-core bitmap.
3250 * buddy must be generated from this bitmap
3251 * Need to be called with the ext4 group lock held
3253 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3254 ext4_group_t group)
3256 struct rb_node *n;
3257 struct ext4_group_info *grp;
3258 struct ext4_free_data *entry;
3260 grp = ext4_get_group_info(sb, group);
3261 n = rb_first(&(grp->bb_free_root));
3263 while (n) {
3264 entry = rb_entry(n, struct ext4_free_data, node);
3265 mb_set_bits(bitmap, entry->start_blk, entry->count);
3266 n = rb_next(n);
3268 return;
3272 * the function goes through all preallocation in this group and marks them
3273 * used in in-core bitmap. buddy must be generated from this bitmap
3274 * Need to be called with ext4 group lock held
3276 static noinline_for_stack
3277 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3278 ext4_group_t group)
3280 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3281 struct ext4_prealloc_space *pa;
3282 struct list_head *cur;
3283 ext4_group_t groupnr;
3284 ext4_grpblk_t start;
3285 int preallocated = 0;
3286 int count = 0;
3287 int len;
3289 /* all form of preallocation discards first load group,
3290 * so the only competing code is preallocation use.
3291 * we don't need any locking here
3292 * notice we do NOT ignore preallocations with pa_deleted
3293 * otherwise we could leave used blocks available for
3294 * allocation in buddy when concurrent ext4_mb_put_pa()
3295 * is dropping preallocation
3297 list_for_each(cur, &grp->bb_prealloc_list) {
3298 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3299 spin_lock(&pa->pa_lock);
3300 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3301 &groupnr, &start);
3302 len = pa->pa_len;
3303 spin_unlock(&pa->pa_lock);
3304 if (unlikely(len == 0))
3305 continue;
3306 BUG_ON(groupnr != group);
3307 mb_set_bits(bitmap, start, len);
3308 preallocated += len;
3309 count++;
3311 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3314 static void ext4_mb_pa_callback(struct rcu_head *head)
3316 struct ext4_prealloc_space *pa;
3317 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3318 kmem_cache_free(ext4_pspace_cachep, pa);
3322 * drops a reference to preallocated space descriptor
3323 * if this was the last reference and the space is consumed
3325 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3326 struct super_block *sb, struct ext4_prealloc_space *pa)
3328 ext4_group_t grp;
3329 ext4_fsblk_t grp_blk;
3331 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3332 return;
3334 /* in this short window concurrent discard can set pa_deleted */
3335 spin_lock(&pa->pa_lock);
3336 if (pa->pa_deleted == 1) {
3337 spin_unlock(&pa->pa_lock);
3338 return;
3341 pa->pa_deleted = 1;
3342 spin_unlock(&pa->pa_lock);
3344 grp_blk = pa->pa_pstart;
3346 * If doing group-based preallocation, pa_pstart may be in the
3347 * next group when pa is used up
3349 if (pa->pa_type == MB_GROUP_PA)
3350 grp_blk--;
3352 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3355 * possible race:
3357 * P1 (buddy init) P2 (regular allocation)
3358 * find block B in PA
3359 * copy on-disk bitmap to buddy
3360 * mark B in on-disk bitmap
3361 * drop PA from group
3362 * mark all PAs in buddy
3364 * thus, P1 initializes buddy with B available. to prevent this
3365 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3366 * against that pair
3368 ext4_lock_group(sb, grp);
3369 list_del(&pa->pa_group_list);
3370 ext4_unlock_group(sb, grp);
3372 spin_lock(pa->pa_obj_lock);
3373 list_del_rcu(&pa->pa_inode_list);
3374 spin_unlock(pa->pa_obj_lock);
3376 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3380 * creates new preallocated space for given inode
3382 static noinline_for_stack int
3383 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3385 struct super_block *sb = ac->ac_sb;
3386 struct ext4_prealloc_space *pa;
3387 struct ext4_group_info *grp;
3388 struct ext4_inode_info *ei;
3390 /* preallocate only when found space is larger then requested */
3391 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3392 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3393 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3395 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3396 if (pa == NULL)
3397 return -ENOMEM;
3399 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3400 int winl;
3401 int wins;
3402 int win;
3403 int offs;
3405 /* we can't allocate as much as normalizer wants.
3406 * so, found space must get proper lstart
3407 * to cover original request */
3408 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3409 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3411 /* we're limited by original request in that
3412 * logical block must be covered any way
3413 * winl is window we can move our chunk within */
3414 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3416 /* also, we should cover whole original request */
3417 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3419 /* the smallest one defines real window */
3420 win = min(winl, wins);
3422 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3423 if (offs && offs < win)
3424 win = offs;
3426 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3427 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3428 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3431 /* preallocation can change ac_b_ex, thus we store actually
3432 * allocated blocks for history */
3433 ac->ac_f_ex = ac->ac_b_ex;
3435 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3436 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3437 pa->pa_len = ac->ac_b_ex.fe_len;
3438 pa->pa_free = pa->pa_len;
3439 atomic_set(&pa->pa_count, 1);
3440 spin_lock_init(&pa->pa_lock);
3441 INIT_LIST_HEAD(&pa->pa_inode_list);
3442 INIT_LIST_HEAD(&pa->pa_group_list);
3443 pa->pa_deleted = 0;
3444 pa->pa_type = MB_INODE_PA;
3446 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3447 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3448 trace_ext4_mb_new_inode_pa(ac, pa);
3450 ext4_mb_use_inode_pa(ac, pa);
3451 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3453 ei = EXT4_I(ac->ac_inode);
3454 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3456 pa->pa_obj_lock = &ei->i_prealloc_lock;
3457 pa->pa_inode = ac->ac_inode;
3459 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3460 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3461 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3463 spin_lock(pa->pa_obj_lock);
3464 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3465 spin_unlock(pa->pa_obj_lock);
3467 return 0;
3471 * creates new preallocated space for locality group inodes belongs to
3473 static noinline_for_stack int
3474 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3476 struct super_block *sb = ac->ac_sb;
3477 struct ext4_locality_group *lg;
3478 struct ext4_prealloc_space *pa;
3479 struct ext4_group_info *grp;
3481 /* preallocate only when found space is larger then requested */
3482 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3483 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3484 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3486 BUG_ON(ext4_pspace_cachep == NULL);
3487 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3488 if (pa == NULL)
3489 return -ENOMEM;
3491 /* preallocation can change ac_b_ex, thus we store actually
3492 * allocated blocks for history */
3493 ac->ac_f_ex = ac->ac_b_ex;
3495 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3496 pa->pa_lstart = pa->pa_pstart;
3497 pa->pa_len = ac->ac_b_ex.fe_len;
3498 pa->pa_free = pa->pa_len;
3499 atomic_set(&pa->pa_count, 1);
3500 spin_lock_init(&pa->pa_lock);
3501 INIT_LIST_HEAD(&pa->pa_inode_list);
3502 INIT_LIST_HEAD(&pa->pa_group_list);
3503 pa->pa_deleted = 0;
3504 pa->pa_type = MB_GROUP_PA;
3506 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3507 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3508 trace_ext4_mb_new_group_pa(ac, pa);
3510 ext4_mb_use_group_pa(ac, pa);
3511 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3513 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3514 lg = ac->ac_lg;
3515 BUG_ON(lg == NULL);
3517 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3518 pa->pa_inode = NULL;
3520 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3521 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3522 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3525 * We will later add the new pa to the right bucket
3526 * after updating the pa_free in ext4_mb_release_context
3528 return 0;
3531 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3533 int err;
3535 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3536 err = ext4_mb_new_group_pa(ac);
3537 else
3538 err = ext4_mb_new_inode_pa(ac);
3539 return err;
3543 * finds all unused blocks in on-disk bitmap, frees them in
3544 * in-core bitmap and buddy.
3545 * @pa must be unlinked from inode and group lists, so that
3546 * nobody else can find/use it.
3547 * the caller MUST hold group/inode locks.
3548 * TODO: optimize the case when there are no in-core structures yet
3550 static noinline_for_stack int
3551 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3552 struct ext4_prealloc_space *pa)
3554 struct super_block *sb = e4b->bd_sb;
3555 struct ext4_sb_info *sbi = EXT4_SB(sb);
3556 unsigned int end;
3557 unsigned int next;
3558 ext4_group_t group;
3559 ext4_grpblk_t bit;
3560 unsigned long long grp_blk_start;
3561 int err = 0;
3562 int free = 0;
3564 BUG_ON(pa->pa_deleted == 0);
3565 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3566 grp_blk_start = pa->pa_pstart - bit;
3567 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3568 end = bit + pa->pa_len;
3570 while (bit < end) {
3571 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3572 if (bit >= end)
3573 break;
3574 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3575 mb_debug(1, " free preallocated %u/%u in group %u\n",
3576 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3577 (unsigned) next - bit, (unsigned) group);
3578 free += next - bit;
3580 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3581 trace_ext4_mb_release_inode_pa(pa, grp_blk_start + bit,
3582 next - bit);
3583 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3584 bit = next + 1;
3586 if (free != pa->pa_free) {
3587 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3588 pa, (unsigned long) pa->pa_lstart,
3589 (unsigned long) pa->pa_pstart,
3590 (unsigned long) pa->pa_len);
3591 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3592 free, pa->pa_free);
3594 * pa is already deleted so we use the value obtained
3595 * from the bitmap and continue.
3598 atomic_add(free, &sbi->s_mb_discarded);
3600 return err;
3603 static noinline_for_stack int
3604 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3605 struct ext4_prealloc_space *pa)
3607 struct super_block *sb = e4b->bd_sb;
3608 ext4_group_t group;
3609 ext4_grpblk_t bit;
3611 trace_ext4_mb_release_group_pa(pa);
3612 BUG_ON(pa->pa_deleted == 0);
3613 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3614 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3615 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3616 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3617 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3619 return 0;
3623 * releases all preallocations in given group
3625 * first, we need to decide discard policy:
3626 * - when do we discard
3627 * 1) ENOSPC
3628 * - how many do we discard
3629 * 1) how many requested
3631 static noinline_for_stack int
3632 ext4_mb_discard_group_preallocations(struct super_block *sb,
3633 ext4_group_t group, int needed)
3635 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3636 struct buffer_head *bitmap_bh = NULL;
3637 struct ext4_prealloc_space *pa, *tmp;
3638 struct list_head list;
3639 struct ext4_buddy e4b;
3640 int err;
3641 int busy = 0;
3642 int free = 0;
3644 mb_debug(1, "discard preallocation for group %u\n", group);
3646 if (list_empty(&grp->bb_prealloc_list))
3647 return 0;
3649 bitmap_bh = ext4_read_block_bitmap(sb, group);
3650 if (bitmap_bh == NULL) {
3651 ext4_error(sb, "Error reading block bitmap for %u", group);
3652 return 0;
3655 err = ext4_mb_load_buddy(sb, group, &e4b);
3656 if (err) {
3657 ext4_error(sb, "Error loading buddy information for %u", group);
3658 put_bh(bitmap_bh);
3659 return 0;
3662 if (needed == 0)
3663 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3665 INIT_LIST_HEAD(&list);
3666 repeat:
3667 ext4_lock_group(sb, group);
3668 list_for_each_entry_safe(pa, tmp,
3669 &grp->bb_prealloc_list, pa_group_list) {
3670 spin_lock(&pa->pa_lock);
3671 if (atomic_read(&pa->pa_count)) {
3672 spin_unlock(&pa->pa_lock);
3673 busy = 1;
3674 continue;
3676 if (pa->pa_deleted) {
3677 spin_unlock(&pa->pa_lock);
3678 continue;
3681 /* seems this one can be freed ... */
3682 pa->pa_deleted = 1;
3684 /* we can trust pa_free ... */
3685 free += pa->pa_free;
3687 spin_unlock(&pa->pa_lock);
3689 list_del(&pa->pa_group_list);
3690 list_add(&pa->u.pa_tmp_list, &list);
3693 /* if we still need more blocks and some PAs were used, try again */
3694 if (free < needed && busy) {
3695 busy = 0;
3696 ext4_unlock_group(sb, group);
3698 * Yield the CPU here so that we don't get soft lockup
3699 * in non preempt case.
3701 yield();
3702 goto repeat;
3705 /* found anything to free? */
3706 if (list_empty(&list)) {
3707 BUG_ON(free != 0);
3708 goto out;
3711 /* now free all selected PAs */
3712 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3714 /* remove from object (inode or locality group) */
3715 spin_lock(pa->pa_obj_lock);
3716 list_del_rcu(&pa->pa_inode_list);
3717 spin_unlock(pa->pa_obj_lock);
3719 if (pa->pa_type == MB_GROUP_PA)
3720 ext4_mb_release_group_pa(&e4b, pa);
3721 else
3722 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3724 list_del(&pa->u.pa_tmp_list);
3725 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3728 out:
3729 ext4_unlock_group(sb, group);
3730 ext4_mb_unload_buddy(&e4b);
3731 put_bh(bitmap_bh);
3732 return free;
3736 * releases all non-used preallocated blocks for given inode
3738 * It's important to discard preallocations under i_data_sem
3739 * We don't want another block to be served from the prealloc
3740 * space when we are discarding the inode prealloc space.
3742 * FIXME!! Make sure it is valid at all the call sites
3744 void ext4_discard_preallocations(struct inode *inode)
3746 struct ext4_inode_info *ei = EXT4_I(inode);
3747 struct super_block *sb = inode->i_sb;
3748 struct buffer_head *bitmap_bh = NULL;
3749 struct ext4_prealloc_space *pa, *tmp;
3750 ext4_group_t group = 0;
3751 struct list_head list;
3752 struct ext4_buddy e4b;
3753 int err;
3755 if (!S_ISREG(inode->i_mode)) {
3756 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3757 return;
3760 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3761 trace_ext4_discard_preallocations(inode);
3763 INIT_LIST_HEAD(&list);
3765 repeat:
3766 /* first, collect all pa's in the inode */
3767 spin_lock(&ei->i_prealloc_lock);
3768 while (!list_empty(&ei->i_prealloc_list)) {
3769 pa = list_entry(ei->i_prealloc_list.next,
3770 struct ext4_prealloc_space, pa_inode_list);
3771 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3772 spin_lock(&pa->pa_lock);
3773 if (atomic_read(&pa->pa_count)) {
3774 /* this shouldn't happen often - nobody should
3775 * use preallocation while we're discarding it */
3776 spin_unlock(&pa->pa_lock);
3777 spin_unlock(&ei->i_prealloc_lock);
3778 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3779 WARN_ON(1);
3780 schedule_timeout_uninterruptible(HZ);
3781 goto repeat;
3784 if (pa->pa_deleted == 0) {
3785 pa->pa_deleted = 1;
3786 spin_unlock(&pa->pa_lock);
3787 list_del_rcu(&pa->pa_inode_list);
3788 list_add(&pa->u.pa_tmp_list, &list);
3789 continue;
3792 /* someone is deleting pa right now */
3793 spin_unlock(&pa->pa_lock);
3794 spin_unlock(&ei->i_prealloc_lock);
3796 /* we have to wait here because pa_deleted
3797 * doesn't mean pa is already unlinked from
3798 * the list. as we might be called from
3799 * ->clear_inode() the inode will get freed
3800 * and concurrent thread which is unlinking
3801 * pa from inode's list may access already
3802 * freed memory, bad-bad-bad */
3804 /* XXX: if this happens too often, we can
3805 * add a flag to force wait only in case
3806 * of ->clear_inode(), but not in case of
3807 * regular truncate */
3808 schedule_timeout_uninterruptible(HZ);
3809 goto repeat;
3811 spin_unlock(&ei->i_prealloc_lock);
3813 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3814 BUG_ON(pa->pa_type != MB_INODE_PA);
3815 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3817 err = ext4_mb_load_buddy(sb, group, &e4b);
3818 if (err) {
3819 ext4_error(sb, "Error loading buddy information for %u",
3820 group);
3821 continue;
3824 bitmap_bh = ext4_read_block_bitmap(sb, group);
3825 if (bitmap_bh == NULL) {
3826 ext4_error(sb, "Error reading block bitmap for %u",
3827 group);
3828 ext4_mb_unload_buddy(&e4b);
3829 continue;
3832 ext4_lock_group(sb, group);
3833 list_del(&pa->pa_group_list);
3834 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3835 ext4_unlock_group(sb, group);
3837 ext4_mb_unload_buddy(&e4b);
3838 put_bh(bitmap_bh);
3840 list_del(&pa->u.pa_tmp_list);
3841 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3845 #ifdef CONFIG_EXT4_DEBUG
3846 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3848 struct super_block *sb = ac->ac_sb;
3849 ext4_group_t ngroups, i;
3851 if (!mb_enable_debug ||
3852 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3853 return;
3855 printk(KERN_ERR "EXT4-fs: Can't allocate:"
3856 " Allocation context details:\n");
3857 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3858 ac->ac_status, ac->ac_flags);
3859 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3860 "best %lu/%lu/%lu@%lu cr %d\n",
3861 (unsigned long)ac->ac_o_ex.fe_group,
3862 (unsigned long)ac->ac_o_ex.fe_start,
3863 (unsigned long)ac->ac_o_ex.fe_len,
3864 (unsigned long)ac->ac_o_ex.fe_logical,
3865 (unsigned long)ac->ac_g_ex.fe_group,
3866 (unsigned long)ac->ac_g_ex.fe_start,
3867 (unsigned long)ac->ac_g_ex.fe_len,
3868 (unsigned long)ac->ac_g_ex.fe_logical,
3869 (unsigned long)ac->ac_b_ex.fe_group,
3870 (unsigned long)ac->ac_b_ex.fe_start,
3871 (unsigned long)ac->ac_b_ex.fe_len,
3872 (unsigned long)ac->ac_b_ex.fe_logical,
3873 (int)ac->ac_criteria);
3874 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3875 ac->ac_found);
3876 printk(KERN_ERR "EXT4-fs: groups: \n");
3877 ngroups = ext4_get_groups_count(sb);
3878 for (i = 0; i < ngroups; i++) {
3879 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3880 struct ext4_prealloc_space *pa;
3881 ext4_grpblk_t start;
3882 struct list_head *cur;
3883 ext4_lock_group(sb, i);
3884 list_for_each(cur, &grp->bb_prealloc_list) {
3885 pa = list_entry(cur, struct ext4_prealloc_space,
3886 pa_group_list);
3887 spin_lock(&pa->pa_lock);
3888 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3889 NULL, &start);
3890 spin_unlock(&pa->pa_lock);
3891 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3892 start, pa->pa_len);
3894 ext4_unlock_group(sb, i);
3896 if (grp->bb_free == 0)
3897 continue;
3898 printk(KERN_ERR "%u: %d/%d \n",
3899 i, grp->bb_free, grp->bb_fragments);
3901 printk(KERN_ERR "\n");
3903 #else
3904 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3906 return;
3908 #endif
3911 * We use locality group preallocation for small size file. The size of the
3912 * file is determined by the current size or the resulting size after
3913 * allocation which ever is larger
3915 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3917 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3920 int bsbits = ac->ac_sb->s_blocksize_bits;
3921 loff_t size, isize;
3923 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3924 return;
3926 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3927 return;
3929 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3930 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3931 >> bsbits;
3933 if ((size == isize) &&
3934 !ext4_fs_is_busy(sbi) &&
3935 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3936 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3937 return;
3940 /* don't use group allocation for large files */
3941 size = max(size, isize);
3942 if (size > sbi->s_mb_stream_request) {
3943 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3944 return;
3947 BUG_ON(ac->ac_lg != NULL);
3949 * locality group prealloc space are per cpu. The reason for having
3950 * per cpu locality group is to reduce the contention between block
3951 * request from multiple CPUs.
3953 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3955 /* we're going to use group allocation */
3956 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3958 /* serialize all allocations in the group */
3959 mutex_lock(&ac->ac_lg->lg_mutex);
3962 static noinline_for_stack int
3963 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3964 struct ext4_allocation_request *ar)
3966 struct super_block *sb = ar->inode->i_sb;
3967 struct ext4_sb_info *sbi = EXT4_SB(sb);
3968 struct ext4_super_block *es = sbi->s_es;
3969 ext4_group_t group;
3970 unsigned int len;
3971 ext4_fsblk_t goal;
3972 ext4_grpblk_t block;
3974 /* we can't allocate > group size */
3975 len = ar->len;
3977 /* just a dirty hack to filter too big requests */
3978 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
3979 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
3981 /* start searching from the goal */
3982 goal = ar->goal;
3983 if (goal < le32_to_cpu(es->s_first_data_block) ||
3984 goal >= ext4_blocks_count(es))
3985 goal = le32_to_cpu(es->s_first_data_block);
3986 ext4_get_group_no_and_offset(sb, goal, &group, &block);
3988 /* set up allocation goals */
3989 memset(ac, 0, sizeof(struct ext4_allocation_context));
3990 ac->ac_b_ex.fe_logical = ar->logical;
3991 ac->ac_status = AC_STATUS_CONTINUE;
3992 ac->ac_sb = sb;
3993 ac->ac_inode = ar->inode;
3994 ac->ac_o_ex.fe_logical = ar->logical;
3995 ac->ac_o_ex.fe_group = group;
3996 ac->ac_o_ex.fe_start = block;
3997 ac->ac_o_ex.fe_len = len;
3998 ac->ac_g_ex.fe_logical = ar->logical;
3999 ac->ac_g_ex.fe_group = group;
4000 ac->ac_g_ex.fe_start = block;
4001 ac->ac_g_ex.fe_len = len;
4002 ac->ac_flags = ar->flags;
4004 /* we have to define context: we'll we work with a file or
4005 * locality group. this is a policy, actually */
4006 ext4_mb_group_or_file(ac);
4008 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4009 "left: %u/%u, right %u/%u to %swritable\n",
4010 (unsigned) ar->len, (unsigned) ar->logical,
4011 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4012 (unsigned) ar->lleft, (unsigned) ar->pleft,
4013 (unsigned) ar->lright, (unsigned) ar->pright,
4014 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4015 return 0;
4019 static noinline_for_stack void
4020 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4021 struct ext4_locality_group *lg,
4022 int order, int total_entries)
4024 ext4_group_t group = 0;
4025 struct ext4_buddy e4b;
4026 struct list_head discard_list;
4027 struct ext4_prealloc_space *pa, *tmp;
4029 mb_debug(1, "discard locality group preallocation\n");
4031 INIT_LIST_HEAD(&discard_list);
4033 spin_lock(&lg->lg_prealloc_lock);
4034 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4035 pa_inode_list) {
4036 spin_lock(&pa->pa_lock);
4037 if (atomic_read(&pa->pa_count)) {
4039 * This is the pa that we just used
4040 * for block allocation. So don't
4041 * free that
4043 spin_unlock(&pa->pa_lock);
4044 continue;
4046 if (pa->pa_deleted) {
4047 spin_unlock(&pa->pa_lock);
4048 continue;
4050 /* only lg prealloc space */
4051 BUG_ON(pa->pa_type != MB_GROUP_PA);
4053 /* seems this one can be freed ... */
4054 pa->pa_deleted = 1;
4055 spin_unlock(&pa->pa_lock);
4057 list_del_rcu(&pa->pa_inode_list);
4058 list_add(&pa->u.pa_tmp_list, &discard_list);
4060 total_entries--;
4061 if (total_entries <= 5) {
4063 * we want to keep only 5 entries
4064 * allowing it to grow to 8. This
4065 * mak sure we don't call discard
4066 * soon for this list.
4068 break;
4071 spin_unlock(&lg->lg_prealloc_lock);
4073 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4075 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4076 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4077 ext4_error(sb, "Error loading buddy information for %u",
4078 group);
4079 continue;
4081 ext4_lock_group(sb, group);
4082 list_del(&pa->pa_group_list);
4083 ext4_mb_release_group_pa(&e4b, pa);
4084 ext4_unlock_group(sb, group);
4086 ext4_mb_unload_buddy(&e4b);
4087 list_del(&pa->u.pa_tmp_list);
4088 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4093 * We have incremented pa_count. So it cannot be freed at this
4094 * point. Also we hold lg_mutex. So no parallel allocation is
4095 * possible from this lg. That means pa_free cannot be updated.
4097 * A parallel ext4_mb_discard_group_preallocations is possible.
4098 * which can cause the lg_prealloc_list to be updated.
4101 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4103 int order, added = 0, lg_prealloc_count = 1;
4104 struct super_block *sb = ac->ac_sb;
4105 struct ext4_locality_group *lg = ac->ac_lg;
4106 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4108 order = fls(pa->pa_free) - 1;
4109 if (order > PREALLOC_TB_SIZE - 1)
4110 /* The max size of hash table is PREALLOC_TB_SIZE */
4111 order = PREALLOC_TB_SIZE - 1;
4112 /* Add the prealloc space to lg */
4113 rcu_read_lock();
4114 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4115 pa_inode_list) {
4116 spin_lock(&tmp_pa->pa_lock);
4117 if (tmp_pa->pa_deleted) {
4118 spin_unlock(&tmp_pa->pa_lock);
4119 continue;
4121 if (!added && pa->pa_free < tmp_pa->pa_free) {
4122 /* Add to the tail of the previous entry */
4123 list_add_tail_rcu(&pa->pa_inode_list,
4124 &tmp_pa->pa_inode_list);
4125 added = 1;
4127 * we want to count the total
4128 * number of entries in the list
4131 spin_unlock(&tmp_pa->pa_lock);
4132 lg_prealloc_count++;
4134 if (!added)
4135 list_add_tail_rcu(&pa->pa_inode_list,
4136 &lg->lg_prealloc_list[order]);
4137 rcu_read_unlock();
4139 /* Now trim the list to be not more than 8 elements */
4140 if (lg_prealloc_count > 8) {
4141 ext4_mb_discard_lg_preallocations(sb, lg,
4142 order, lg_prealloc_count);
4143 return;
4145 return ;
4149 * release all resource we used in allocation
4151 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4153 struct ext4_prealloc_space *pa = ac->ac_pa;
4154 if (pa) {
4155 if (pa->pa_type == MB_GROUP_PA) {
4156 /* see comment in ext4_mb_use_group_pa() */
4157 spin_lock(&pa->pa_lock);
4158 pa->pa_pstart += ac->ac_b_ex.fe_len;
4159 pa->pa_lstart += ac->ac_b_ex.fe_len;
4160 pa->pa_free -= ac->ac_b_ex.fe_len;
4161 pa->pa_len -= ac->ac_b_ex.fe_len;
4162 spin_unlock(&pa->pa_lock);
4165 if (pa) {
4167 * We want to add the pa to the right bucket.
4168 * Remove it from the list and while adding
4169 * make sure the list to which we are adding
4170 * doesn't grow big.
4172 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4173 spin_lock(pa->pa_obj_lock);
4174 list_del_rcu(&pa->pa_inode_list);
4175 spin_unlock(pa->pa_obj_lock);
4176 ext4_mb_add_n_trim(ac);
4178 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4180 if (ac->ac_bitmap_page)
4181 page_cache_release(ac->ac_bitmap_page);
4182 if (ac->ac_buddy_page)
4183 page_cache_release(ac->ac_buddy_page);
4184 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4185 mutex_unlock(&ac->ac_lg->lg_mutex);
4186 ext4_mb_collect_stats(ac);
4187 return 0;
4190 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4192 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4193 int ret;
4194 int freed = 0;
4196 trace_ext4_mb_discard_preallocations(sb, needed);
4197 for (i = 0; i < ngroups && needed > 0; i++) {
4198 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4199 freed += ret;
4200 needed -= ret;
4203 return freed;
4207 * Main entry point into mballoc to allocate blocks
4208 * it tries to use preallocation first, then falls back
4209 * to usual allocation
4211 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4212 struct ext4_allocation_request *ar, int *errp)
4214 int freed;
4215 struct ext4_allocation_context *ac = NULL;
4216 struct ext4_sb_info *sbi;
4217 struct super_block *sb;
4218 ext4_fsblk_t block = 0;
4219 unsigned int inquota = 0;
4220 unsigned int reserv_blks = 0;
4222 sb = ar->inode->i_sb;
4223 sbi = EXT4_SB(sb);
4225 trace_ext4_request_blocks(ar);
4228 * For delayed allocation, we could skip the ENOSPC and
4229 * EDQUOT check, as blocks and quotas have been already
4230 * reserved when data being copied into pagecache.
4232 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4233 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4234 else {
4235 /* Without delayed allocation we need to verify
4236 * there is enough free blocks to do block allocation
4237 * and verify allocation doesn't exceed the quota limits.
4239 while (ar->len &&
4240 ext4_claim_free_blocks(sbi, ar->len, ar->flags)) {
4242 /* let others to free the space */
4243 yield();
4244 ar->len = ar->len >> 1;
4246 if (!ar->len) {
4247 *errp = -ENOSPC;
4248 return 0;
4250 reserv_blks = ar->len;
4251 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4252 dquot_alloc_block_nofail(ar->inode, ar->len);
4253 } else {
4254 while (ar->len &&
4255 dquot_alloc_block(ar->inode, ar->len)) {
4257 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4258 ar->len--;
4261 inquota = ar->len;
4262 if (ar->len == 0) {
4263 *errp = -EDQUOT;
4264 goto out;
4268 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4269 if (!ac) {
4270 ar->len = 0;
4271 *errp = -ENOMEM;
4272 goto out;
4275 *errp = ext4_mb_initialize_context(ac, ar);
4276 if (*errp) {
4277 ar->len = 0;
4278 goto out;
4281 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4282 if (!ext4_mb_use_preallocated(ac)) {
4283 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4284 ext4_mb_normalize_request(ac, ar);
4285 repeat:
4286 /* allocate space in core */
4287 *errp = ext4_mb_regular_allocator(ac);
4288 if (*errp)
4289 goto errout;
4291 /* as we've just preallocated more space than
4292 * user requested orinally, we store allocated
4293 * space in a special descriptor */
4294 if (ac->ac_status == AC_STATUS_FOUND &&
4295 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4296 ext4_mb_new_preallocation(ac);
4298 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4299 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4300 if (*errp == -EAGAIN) {
4302 * drop the reference that we took
4303 * in ext4_mb_use_best_found
4305 ext4_mb_release_context(ac);
4306 ac->ac_b_ex.fe_group = 0;
4307 ac->ac_b_ex.fe_start = 0;
4308 ac->ac_b_ex.fe_len = 0;
4309 ac->ac_status = AC_STATUS_CONTINUE;
4310 goto repeat;
4311 } else if (*errp)
4312 errout:
4313 ext4_discard_allocated_blocks(ac);
4314 else {
4315 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4316 ar->len = ac->ac_b_ex.fe_len;
4318 } else {
4319 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4320 if (freed)
4321 goto repeat;
4322 *errp = -ENOSPC;
4325 if (*errp) {
4326 ac->ac_b_ex.fe_len = 0;
4327 ar->len = 0;
4328 ext4_mb_show_ac(ac);
4330 ext4_mb_release_context(ac);
4331 out:
4332 if (ac)
4333 kmem_cache_free(ext4_ac_cachep, ac);
4334 if (inquota && ar->len < inquota)
4335 dquot_free_block(ar->inode, inquota - ar->len);
4336 if (!ar->len) {
4337 if (!ext4_test_inode_state(ar->inode,
4338 EXT4_STATE_DELALLOC_RESERVED))
4339 /* release all the reserved blocks if non delalloc */
4340 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4341 reserv_blks);
4344 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4346 return block;
4350 * We can merge two free data extents only if the physical blocks
4351 * are contiguous, AND the extents were freed by the same transaction,
4352 * AND the blocks are associated with the same group.
4354 static int can_merge(struct ext4_free_data *entry1,
4355 struct ext4_free_data *entry2)
4357 if ((entry1->t_tid == entry2->t_tid) &&
4358 (entry1->group == entry2->group) &&
4359 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4360 return 1;
4361 return 0;
4364 static noinline_for_stack int
4365 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4366 struct ext4_free_data *new_entry)
4368 ext4_group_t group = e4b->bd_group;
4369 ext4_grpblk_t block;
4370 struct ext4_free_data *entry;
4371 struct ext4_group_info *db = e4b->bd_info;
4372 struct super_block *sb = e4b->bd_sb;
4373 struct ext4_sb_info *sbi = EXT4_SB(sb);
4374 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4375 struct rb_node *parent = NULL, *new_node;
4377 BUG_ON(!ext4_handle_valid(handle));
4378 BUG_ON(e4b->bd_bitmap_page == NULL);
4379 BUG_ON(e4b->bd_buddy_page == NULL);
4381 new_node = &new_entry->node;
4382 block = new_entry->start_blk;
4384 if (!*n) {
4385 /* first free block exent. We need to
4386 protect buddy cache from being freed,
4387 * otherwise we'll refresh it from
4388 * on-disk bitmap and lose not-yet-available
4389 * blocks */
4390 page_cache_get(e4b->bd_buddy_page);
4391 page_cache_get(e4b->bd_bitmap_page);
4393 while (*n) {
4394 parent = *n;
4395 entry = rb_entry(parent, struct ext4_free_data, node);
4396 if (block < entry->start_blk)
4397 n = &(*n)->rb_left;
4398 else if (block >= (entry->start_blk + entry->count))
4399 n = &(*n)->rb_right;
4400 else {
4401 ext4_grp_locked_error(sb, group, 0,
4402 ext4_group_first_block_no(sb, group) + block,
4403 "Block already on to-be-freed list");
4404 return 0;
4408 rb_link_node(new_node, parent, n);
4409 rb_insert_color(new_node, &db->bb_free_root);
4411 /* Now try to see the extent can be merged to left and right */
4412 node = rb_prev(new_node);
4413 if (node) {
4414 entry = rb_entry(node, struct ext4_free_data, node);
4415 if (can_merge(entry, new_entry)) {
4416 new_entry->start_blk = entry->start_blk;
4417 new_entry->count += entry->count;
4418 rb_erase(node, &(db->bb_free_root));
4419 spin_lock(&sbi->s_md_lock);
4420 list_del(&entry->list);
4421 spin_unlock(&sbi->s_md_lock);
4422 kmem_cache_free(ext4_free_ext_cachep, entry);
4426 node = rb_next(new_node);
4427 if (node) {
4428 entry = rb_entry(node, struct ext4_free_data, node);
4429 if (can_merge(new_entry, entry)) {
4430 new_entry->count += entry->count;
4431 rb_erase(node, &(db->bb_free_root));
4432 spin_lock(&sbi->s_md_lock);
4433 list_del(&entry->list);
4434 spin_unlock(&sbi->s_md_lock);
4435 kmem_cache_free(ext4_free_ext_cachep, entry);
4438 /* Add the extent to transaction's private list */
4439 spin_lock(&sbi->s_md_lock);
4440 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4441 spin_unlock(&sbi->s_md_lock);
4442 return 0;
4446 * ext4_free_blocks() -- Free given blocks and update quota
4447 * @handle: handle for this transaction
4448 * @inode: inode
4449 * @block: start physical block to free
4450 * @count: number of blocks to count
4451 * @flags: flags used by ext4_free_blocks
4453 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4454 struct buffer_head *bh, ext4_fsblk_t block,
4455 unsigned long count, int flags)
4457 struct buffer_head *bitmap_bh = NULL;
4458 struct super_block *sb = inode->i_sb;
4459 struct ext4_group_desc *gdp;
4460 unsigned long freed = 0;
4461 unsigned int overflow;
4462 ext4_grpblk_t bit;
4463 struct buffer_head *gd_bh;
4464 ext4_group_t block_group;
4465 struct ext4_sb_info *sbi;
4466 struct ext4_buddy e4b;
4467 int err = 0;
4468 int ret;
4470 if (bh) {
4471 if (block)
4472 BUG_ON(block != bh->b_blocknr);
4473 else
4474 block = bh->b_blocknr;
4477 sbi = EXT4_SB(sb);
4478 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4479 !ext4_data_block_valid(sbi, block, count)) {
4480 ext4_error(sb, "Freeing blocks not in datazone - "
4481 "block = %llu, count = %lu", block, count);
4482 goto error_return;
4485 ext4_debug("freeing block %llu\n", block);
4486 trace_ext4_free_blocks(inode, block, count, flags);
4488 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4489 struct buffer_head *tbh = bh;
4490 int i;
4492 BUG_ON(bh && (count > 1));
4494 for (i = 0; i < count; i++) {
4495 if (!bh)
4496 tbh = sb_find_get_block(inode->i_sb,
4497 block + i);
4498 if (unlikely(!tbh))
4499 continue;
4500 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4501 inode, tbh, block + i);
4506 * We need to make sure we don't reuse the freed block until
4507 * after the transaction is committed, which we can do by
4508 * treating the block as metadata, below. We make an
4509 * exception if the inode is to be written in writeback mode
4510 * since writeback mode has weak data consistency guarantees.
4512 if (!ext4_should_writeback_data(inode))
4513 flags |= EXT4_FREE_BLOCKS_METADATA;
4515 do_more:
4516 overflow = 0;
4517 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4520 * Check to see if we are freeing blocks across a group
4521 * boundary.
4523 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4524 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4525 count -= overflow;
4527 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4528 if (!bitmap_bh) {
4529 err = -EIO;
4530 goto error_return;
4532 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4533 if (!gdp) {
4534 err = -EIO;
4535 goto error_return;
4538 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4539 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4540 in_range(block, ext4_inode_table(sb, gdp),
4541 EXT4_SB(sb)->s_itb_per_group) ||
4542 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4543 EXT4_SB(sb)->s_itb_per_group)) {
4545 ext4_error(sb, "Freeing blocks in system zone - "
4546 "Block = %llu, count = %lu", block, count);
4547 /* err = 0. ext4_std_error should be a no op */
4548 goto error_return;
4551 BUFFER_TRACE(bitmap_bh, "getting write access");
4552 err = ext4_journal_get_write_access(handle, bitmap_bh);
4553 if (err)
4554 goto error_return;
4557 * We are about to modify some metadata. Call the journal APIs
4558 * to unshare ->b_data if a currently-committing transaction is
4559 * using it
4561 BUFFER_TRACE(gd_bh, "get_write_access");
4562 err = ext4_journal_get_write_access(handle, gd_bh);
4563 if (err)
4564 goto error_return;
4565 #ifdef AGGRESSIVE_CHECK
4567 int i;
4568 for (i = 0; i < count; i++)
4569 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4571 #endif
4572 trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4574 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4575 if (err)
4576 goto error_return;
4578 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4579 struct ext4_free_data *new_entry;
4581 * blocks being freed are metadata. these blocks shouldn't
4582 * be used until this transaction is committed
4584 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4585 if (!new_entry) {
4586 err = -ENOMEM;
4587 goto error_return;
4589 new_entry->start_blk = bit;
4590 new_entry->group = block_group;
4591 new_entry->count = count;
4592 new_entry->t_tid = handle->h_transaction->t_tid;
4594 ext4_lock_group(sb, block_group);
4595 mb_clear_bits(bitmap_bh->b_data, bit, count);
4596 ext4_mb_free_metadata(handle, &e4b, new_entry);
4597 } else {
4598 /* need to update group_info->bb_free and bitmap
4599 * with group lock held. generate_buddy look at
4600 * them with group lock_held
4602 ext4_lock_group(sb, block_group);
4603 mb_clear_bits(bitmap_bh->b_data, bit, count);
4604 mb_free_blocks(inode, &e4b, bit, count);
4607 ret = ext4_free_blks_count(sb, gdp) + count;
4608 ext4_free_blks_set(sb, gdp, ret);
4609 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4610 ext4_unlock_group(sb, block_group);
4611 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4613 if (sbi->s_log_groups_per_flex) {
4614 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4615 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4618 ext4_mb_unload_buddy(&e4b);
4620 freed += count;
4622 /* We dirtied the bitmap block */
4623 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4624 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4626 /* And the group descriptor block */
4627 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4628 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4629 if (!err)
4630 err = ret;
4632 if (overflow && !err) {
4633 block += count;
4634 count = overflow;
4635 put_bh(bitmap_bh);
4636 goto do_more;
4638 ext4_mark_super_dirty(sb);
4639 error_return:
4640 if (freed)
4641 dquot_free_block(inode, freed);
4642 brelse(bitmap_bh);
4643 ext4_std_error(sb, err);
4644 return;
4648 * ext4_add_groupblocks() -- Add given blocks to an existing group
4649 * @handle: handle to this transaction
4650 * @sb: super block
4651 * @block: start physcial block to add to the block group
4652 * @count: number of blocks to free
4654 * This marks the blocks as free in the bitmap and buddy.
4656 void ext4_add_groupblocks(handle_t *handle, struct super_block *sb,
4657 ext4_fsblk_t block, unsigned long count)
4659 struct buffer_head *bitmap_bh = NULL;
4660 struct buffer_head *gd_bh;
4661 ext4_group_t block_group;
4662 ext4_grpblk_t bit;
4663 unsigned int i;
4664 struct ext4_group_desc *desc;
4665 struct ext4_sb_info *sbi = EXT4_SB(sb);
4666 struct ext4_buddy e4b;
4667 int err = 0, ret, blk_free_count;
4668 ext4_grpblk_t blocks_freed;
4669 struct ext4_group_info *grp;
4671 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4673 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4674 grp = ext4_get_group_info(sb, block_group);
4676 * Check to see if we are freeing blocks across a group
4677 * boundary.
4679 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb))
4680 goto error_return;
4682 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4683 if (!bitmap_bh)
4684 goto error_return;
4685 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4686 if (!desc)
4687 goto error_return;
4689 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4690 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4691 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4692 in_range(block + count - 1, ext4_inode_table(sb, desc),
4693 sbi->s_itb_per_group)) {
4694 ext4_error(sb, "Adding blocks in system zones - "
4695 "Block = %llu, count = %lu",
4696 block, count);
4697 goto error_return;
4700 BUFFER_TRACE(bitmap_bh, "getting write access");
4701 err = ext4_journal_get_write_access(handle, bitmap_bh);
4702 if (err)
4703 goto error_return;
4706 * We are about to modify some metadata. Call the journal APIs
4707 * to unshare ->b_data if a currently-committing transaction is
4708 * using it
4710 BUFFER_TRACE(gd_bh, "get_write_access");
4711 err = ext4_journal_get_write_access(handle, gd_bh);
4712 if (err)
4713 goto error_return;
4715 for (i = 0, blocks_freed = 0; i < count; i++) {
4716 BUFFER_TRACE(bitmap_bh, "clear bit");
4717 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4718 ext4_error(sb, "bit already cleared for block %llu",
4719 (ext4_fsblk_t)(block + i));
4720 BUFFER_TRACE(bitmap_bh, "bit already cleared");
4721 } else {
4722 blocks_freed++;
4726 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4727 if (err)
4728 goto error_return;
4731 * need to update group_info->bb_free and bitmap
4732 * with group lock held. generate_buddy look at
4733 * them with group lock_held
4735 ext4_lock_group(sb, block_group);
4736 mb_clear_bits(bitmap_bh->b_data, bit, count);
4737 mb_free_blocks(NULL, &e4b, bit, count);
4738 blk_free_count = blocks_freed + ext4_free_blks_count(sb, desc);
4739 ext4_free_blks_set(sb, desc, blk_free_count);
4740 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4741 ext4_unlock_group(sb, block_group);
4742 percpu_counter_add(&sbi->s_freeblocks_counter, blocks_freed);
4744 if (sbi->s_log_groups_per_flex) {
4745 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4746 atomic_add(blocks_freed,
4747 &sbi->s_flex_groups[flex_group].free_blocks);
4750 ext4_mb_unload_buddy(&e4b);
4752 /* We dirtied the bitmap block */
4753 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4754 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4756 /* And the group descriptor block */
4757 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4758 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4759 if (!err)
4760 err = ret;
4762 error_return:
4763 brelse(bitmap_bh);
4764 ext4_std_error(sb, err);
4765 return;
4769 * ext4_trim_extent -- function to TRIM one single free extent in the group
4770 * @sb: super block for the file system
4771 * @start: starting block of the free extent in the alloc. group
4772 * @count: number of blocks to TRIM
4773 * @group: alloc. group we are working with
4774 * @e4b: ext4 buddy for the group
4776 * Trim "count" blocks starting at "start" in the "group". To assure that no
4777 * one will allocate those blocks, mark it as used in buddy bitmap. This must
4778 * be called with under the group lock.
4780 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4781 ext4_group_t group, struct ext4_buddy *e4b)
4783 struct ext4_free_extent ex;
4785 assert_spin_locked(ext4_group_lock_ptr(sb, group));
4787 ex.fe_start = start;
4788 ex.fe_group = group;
4789 ex.fe_len = count;
4792 * Mark blocks used, so no one can reuse them while
4793 * being trimmed.
4795 mb_mark_used(e4b, &ex);
4796 ext4_unlock_group(sb, group);
4797 ext4_issue_discard(sb, group, start, count);
4798 ext4_lock_group(sb, group);
4799 mb_free_blocks(NULL, e4b, start, ex.fe_len);
4803 * ext4_trim_all_free -- function to trim all free space in alloc. group
4804 * @sb: super block for file system
4805 * @e4b: ext4 buddy
4806 * @start: first group block to examine
4807 * @max: last group block to examine
4808 * @minblocks: minimum extent block count
4810 * ext4_trim_all_free walks through group's buddy bitmap searching for free
4811 * extents. When the free block is found, ext4_trim_extent is called to TRIM
4812 * the extent.
4815 * ext4_trim_all_free walks through group's block bitmap searching for free
4816 * extents. When the free extent is found, mark it as used in group buddy
4817 * bitmap. Then issue a TRIM command on this extent and free the extent in
4818 * the group buddy bitmap. This is done until whole group is scanned.
4820 static ext4_grpblk_t
4821 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4822 ext4_grpblk_t start, ext4_grpblk_t max,
4823 ext4_grpblk_t minblocks)
4825 void *bitmap;
4826 ext4_grpblk_t next, count = 0;
4827 struct ext4_buddy e4b;
4828 int ret;
4830 ret = ext4_mb_load_buddy(sb, group, &e4b);
4831 if (ret) {
4832 ext4_error(sb, "Error in loading buddy "
4833 "information for %u", group);
4834 return ret;
4836 bitmap = e4b.bd_bitmap;
4838 ext4_lock_group(sb, group);
4839 start = (e4b.bd_info->bb_first_free > start) ?
4840 e4b.bd_info->bb_first_free : start;
4842 while (start < max) {
4843 start = mb_find_next_zero_bit(bitmap, max, start);
4844 if (start >= max)
4845 break;
4846 next = mb_find_next_bit(bitmap, max, start);
4848 if ((next - start) >= minblocks) {
4849 ext4_trim_extent(sb, start,
4850 next - start, group, &e4b);
4851 count += next - start;
4853 start = next + 1;
4855 if (fatal_signal_pending(current)) {
4856 count = -ERESTARTSYS;
4857 break;
4860 if (need_resched()) {
4861 ext4_unlock_group(sb, group);
4862 cond_resched();
4863 ext4_lock_group(sb, group);
4866 if ((e4b.bd_info->bb_free - count) < minblocks)
4867 break;
4869 ext4_unlock_group(sb, group);
4870 ext4_mb_unload_buddy(&e4b);
4872 ext4_debug("trimmed %d blocks in the group %d\n",
4873 count, group);
4875 return count;
4879 * ext4_trim_fs() -- trim ioctl handle function
4880 * @sb: superblock for filesystem
4881 * @range: fstrim_range structure
4883 * start: First Byte to trim
4884 * len: number of Bytes to trim from start
4885 * minlen: minimum extent length in Bytes
4886 * ext4_trim_fs goes through all allocation groups containing Bytes from
4887 * start to start+len. For each such a group ext4_trim_all_free function
4888 * is invoked to trim all free space.
4890 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4892 struct ext4_group_info *grp;
4893 ext4_group_t first_group, last_group;
4894 ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4895 ext4_grpblk_t cnt = 0, first_block, last_block;
4896 uint64_t start, len, minlen, trimmed = 0;
4897 ext4_fsblk_t first_data_blk =
4898 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4899 int ret = 0;
4901 start = range->start >> sb->s_blocksize_bits;
4902 len = range->len >> sb->s_blocksize_bits;
4903 minlen = range->minlen >> sb->s_blocksize_bits;
4905 if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
4906 return -EINVAL;
4907 if (start < first_data_blk) {
4908 len -= first_data_blk - start;
4909 start = first_data_blk;
4912 /* Determine first and last group to examine based on start and len */
4913 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4914 &first_group, &first_block);
4915 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
4916 &last_group, &last_block);
4917 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
4918 last_block = EXT4_BLOCKS_PER_GROUP(sb);
4920 if (first_group > last_group)
4921 return -EINVAL;
4923 for (group = first_group; group <= last_group; group++) {
4924 grp = ext4_get_group_info(sb, group);
4925 /* We only do this if the grp has never been initialized */
4926 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
4927 ret = ext4_mb_init_group(sb, group);
4928 if (ret)
4929 break;
4933 * For all the groups except the last one, last block will
4934 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
4935 * change it for the last group in which case start +
4936 * len < EXT4_BLOCKS_PER_GROUP(sb).
4938 if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb))
4939 last_block = first_block + len;
4940 len -= last_block - first_block;
4942 if (grp->bb_free >= minlen) {
4943 cnt = ext4_trim_all_free(sb, group, first_block,
4944 last_block, minlen);
4945 if (cnt < 0) {
4946 ret = cnt;
4947 break;
4950 trimmed += cnt;
4951 first_block = 0;
4953 range->len = trimmed * sb->s_blocksize;
4955 return ret;