2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include <asm/irq_regs.h>
41 struct remote_function_call
{
42 struct task_struct
*p
;
43 int (*func
)(void *info
);
48 static void remote_function(void *data
)
50 struct remote_function_call
*tfc
= data
;
51 struct task_struct
*p
= tfc
->p
;
55 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
59 tfc
->ret
= tfc
->func(tfc
->info
);
63 * task_function_call - call a function on the cpu on which a task runs
64 * @p: the task to evaluate
65 * @func: the function to be called
66 * @info: the function call argument
68 * Calls the function @func when the task is currently running. This might
69 * be on the current CPU, which just calls the function directly
71 * returns: @func return value, or
72 * -ESRCH - when the process isn't running
73 * -EAGAIN - when the process moved away
76 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
78 struct remote_function_call data
= {
82 .ret
= -ESRCH
, /* No such (running) process */
86 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
92 * cpu_function_call - call a function on the cpu
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func on the remote cpu.
98 * returns: @func return value or -ENXIO when the cpu is offline
100 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
102 struct remote_function_call data
= {
106 .ret
= -ENXIO
, /* No such CPU */
109 smp_call_function_single(cpu
, remote_function
, &data
, 1);
114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
115 PERF_FLAG_FD_OUTPUT |\
116 PERF_FLAG_PID_CGROUP)
119 EVENT_FLEXIBLE
= 0x1,
121 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
125 * perf_sched_events : >0 events exist
126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
128 struct jump_label_key perf_sched_events __read_mostly
;
129 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
131 static atomic_t nr_mmap_events __read_mostly
;
132 static atomic_t nr_comm_events __read_mostly
;
133 static atomic_t nr_task_events __read_mostly
;
135 static LIST_HEAD(pmus
);
136 static DEFINE_MUTEX(pmus_lock
);
137 static struct srcu_struct pmus_srcu
;
140 * perf event paranoia level:
141 * -1 - not paranoid at all
142 * 0 - disallow raw tracepoint access for unpriv
143 * 1 - disallow cpu events for unpriv
144 * 2 - disallow kernel profiling for unpriv
146 int sysctl_perf_event_paranoid __read_mostly
= 1;
148 /* Minimum for 512 kiB + 1 user control page */
149 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
152 * max perf event sample rate
154 #define DEFAULT_MAX_SAMPLE_RATE 100000
155 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
156 static int max_samples_per_tick __read_mostly
=
157 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
159 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
160 void __user
*buffer
, size_t *lenp
,
163 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
168 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
173 static atomic64_t perf_event_id
;
175 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
176 enum event_type_t event_type
);
178 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
179 enum event_type_t event_type
,
180 struct task_struct
*task
);
182 static void update_context_time(struct perf_event_context
*ctx
);
183 static u64
perf_event_time(struct perf_event
*event
);
185 void __weak
perf_event_print_debug(void) { }
187 extern __weak
const char *perf_pmu_name(void)
192 static inline u64
perf_clock(void)
194 return local_clock();
197 static inline struct perf_cpu_context
*
198 __get_cpu_context(struct perf_event_context
*ctx
)
200 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
203 #ifdef CONFIG_CGROUP_PERF
206 * Must ensure cgroup is pinned (css_get) before calling
207 * this function. In other words, we cannot call this function
208 * if there is no cgroup event for the current CPU context.
210 static inline struct perf_cgroup
*
211 perf_cgroup_from_task(struct task_struct
*task
)
213 return container_of(task_subsys_state(task
, perf_subsys_id
),
214 struct perf_cgroup
, css
);
218 perf_cgroup_match(struct perf_event
*event
)
220 struct perf_event_context
*ctx
= event
->ctx
;
221 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
223 return !event
->cgrp
|| event
->cgrp
== cpuctx
->cgrp
;
226 static inline void perf_get_cgroup(struct perf_event
*event
)
228 css_get(&event
->cgrp
->css
);
231 static inline void perf_put_cgroup(struct perf_event
*event
)
233 css_put(&event
->cgrp
->css
);
236 static inline void perf_detach_cgroup(struct perf_event
*event
)
238 perf_put_cgroup(event
);
242 static inline int is_cgroup_event(struct perf_event
*event
)
244 return event
->cgrp
!= NULL
;
247 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
249 struct perf_cgroup_info
*t
;
251 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
255 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
257 struct perf_cgroup_info
*info
;
262 info
= this_cpu_ptr(cgrp
->info
);
264 info
->time
+= now
- info
->timestamp
;
265 info
->timestamp
= now
;
268 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
270 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
272 __update_cgrp_time(cgrp_out
);
275 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
277 struct perf_cgroup
*cgrp
;
280 * ensure we access cgroup data only when needed and
281 * when we know the cgroup is pinned (css_get)
283 if (!is_cgroup_event(event
))
286 cgrp
= perf_cgroup_from_task(current
);
288 * Do not update time when cgroup is not active
290 if (cgrp
== event
->cgrp
)
291 __update_cgrp_time(event
->cgrp
);
295 perf_cgroup_set_timestamp(struct task_struct
*task
,
296 struct perf_event_context
*ctx
)
298 struct perf_cgroup
*cgrp
;
299 struct perf_cgroup_info
*info
;
302 * ctx->lock held by caller
303 * ensure we do not access cgroup data
304 * unless we have the cgroup pinned (css_get)
306 if (!task
|| !ctx
->nr_cgroups
)
309 cgrp
= perf_cgroup_from_task(task
);
310 info
= this_cpu_ptr(cgrp
->info
);
311 info
->timestamp
= ctx
->timestamp
;
314 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
315 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
318 * reschedule events based on the cgroup constraint of task.
320 * mode SWOUT : schedule out everything
321 * mode SWIN : schedule in based on cgroup for next
323 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
325 struct perf_cpu_context
*cpuctx
;
330 * disable interrupts to avoid geting nr_cgroup
331 * changes via __perf_event_disable(). Also
334 local_irq_save(flags
);
337 * we reschedule only in the presence of cgroup
338 * constrained events.
342 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
344 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
346 perf_pmu_disable(cpuctx
->ctx
.pmu
);
349 * perf_cgroup_events says at least one
350 * context on this CPU has cgroup events.
352 * ctx->nr_cgroups reports the number of cgroup
353 * events for a context.
355 if (cpuctx
->ctx
.nr_cgroups
> 0) {
357 if (mode
& PERF_CGROUP_SWOUT
) {
358 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
360 * must not be done before ctxswout due
361 * to event_filter_match() in event_sched_out()
366 if (mode
& PERF_CGROUP_SWIN
) {
367 WARN_ON_ONCE(cpuctx
->cgrp
);
368 /* set cgrp before ctxsw in to
369 * allow event_filter_match() to not
370 * have to pass task around
372 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
373 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
377 perf_pmu_enable(cpuctx
->ctx
.pmu
);
382 local_irq_restore(flags
);
385 static inline void perf_cgroup_sched_out(struct task_struct
*task
)
387 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
390 static inline void perf_cgroup_sched_in(struct task_struct
*task
)
392 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
395 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
396 struct perf_event_attr
*attr
,
397 struct perf_event
*group_leader
)
399 struct perf_cgroup
*cgrp
;
400 struct cgroup_subsys_state
*css
;
402 int ret
= 0, fput_needed
;
404 file
= fget_light(fd
, &fput_needed
);
408 css
= cgroup_css_from_dir(file
, perf_subsys_id
);
414 cgrp
= container_of(css
, struct perf_cgroup
, css
);
417 /* must be done before we fput() the file */
418 perf_get_cgroup(event
);
421 * all events in a group must monitor
422 * the same cgroup because a task belongs
423 * to only one perf cgroup at a time
425 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
426 perf_detach_cgroup(event
);
430 fput_light(file
, fput_needed
);
435 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
437 struct perf_cgroup_info
*t
;
438 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
439 event
->shadow_ctx_time
= now
- t
->timestamp
;
443 perf_cgroup_defer_enabled(struct perf_event
*event
)
446 * when the current task's perf cgroup does not match
447 * the event's, we need to remember to call the
448 * perf_mark_enable() function the first time a task with
449 * a matching perf cgroup is scheduled in.
451 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
452 event
->cgrp_defer_enabled
= 1;
456 perf_cgroup_mark_enabled(struct perf_event
*event
,
457 struct perf_event_context
*ctx
)
459 struct perf_event
*sub
;
460 u64 tstamp
= perf_event_time(event
);
462 if (!event
->cgrp_defer_enabled
)
465 event
->cgrp_defer_enabled
= 0;
467 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
468 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
469 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
470 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
471 sub
->cgrp_defer_enabled
= 0;
475 #else /* !CONFIG_CGROUP_PERF */
478 perf_cgroup_match(struct perf_event
*event
)
483 static inline void perf_detach_cgroup(struct perf_event
*event
)
486 static inline int is_cgroup_event(struct perf_event
*event
)
491 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
496 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
500 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
504 static inline void perf_cgroup_sched_out(struct task_struct
*task
)
508 static inline void perf_cgroup_sched_in(struct task_struct
*task
)
512 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
513 struct perf_event_attr
*attr
,
514 struct perf_event
*group_leader
)
520 perf_cgroup_set_timestamp(struct task_struct
*task
,
521 struct perf_event_context
*ctx
)
526 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
531 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
535 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
541 perf_cgroup_defer_enabled(struct perf_event
*event
)
546 perf_cgroup_mark_enabled(struct perf_event
*event
,
547 struct perf_event_context
*ctx
)
552 void perf_pmu_disable(struct pmu
*pmu
)
554 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
556 pmu
->pmu_disable(pmu
);
559 void perf_pmu_enable(struct pmu
*pmu
)
561 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
563 pmu
->pmu_enable(pmu
);
566 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
569 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
570 * because they're strictly cpu affine and rotate_start is called with IRQs
571 * disabled, while rotate_context is called from IRQ context.
573 static void perf_pmu_rotate_start(struct pmu
*pmu
)
575 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
576 struct list_head
*head
= &__get_cpu_var(rotation_list
);
578 WARN_ON(!irqs_disabled());
580 if (list_empty(&cpuctx
->rotation_list
))
581 list_add(&cpuctx
->rotation_list
, head
);
584 static void get_ctx(struct perf_event_context
*ctx
)
586 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
589 static void put_ctx(struct perf_event_context
*ctx
)
591 if (atomic_dec_and_test(&ctx
->refcount
)) {
593 put_ctx(ctx
->parent_ctx
);
595 put_task_struct(ctx
->task
);
596 kfree_rcu(ctx
, rcu_head
);
600 static void unclone_ctx(struct perf_event_context
*ctx
)
602 if (ctx
->parent_ctx
) {
603 put_ctx(ctx
->parent_ctx
);
604 ctx
->parent_ctx
= NULL
;
608 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
611 * only top level events have the pid namespace they were created in
614 event
= event
->parent
;
616 return task_tgid_nr_ns(p
, event
->ns
);
619 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
622 * only top level events have the pid namespace they were created in
625 event
= event
->parent
;
627 return task_pid_nr_ns(p
, event
->ns
);
631 * If we inherit events we want to return the parent event id
634 static u64
primary_event_id(struct perf_event
*event
)
639 id
= event
->parent
->id
;
645 * Get the perf_event_context for a task and lock it.
646 * This has to cope with with the fact that until it is locked,
647 * the context could get moved to another task.
649 static struct perf_event_context
*
650 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
652 struct perf_event_context
*ctx
;
656 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
659 * If this context is a clone of another, it might
660 * get swapped for another underneath us by
661 * perf_event_task_sched_out, though the
662 * rcu_read_lock() protects us from any context
663 * getting freed. Lock the context and check if it
664 * got swapped before we could get the lock, and retry
665 * if so. If we locked the right context, then it
666 * can't get swapped on us any more.
668 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
669 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
670 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
674 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
675 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
684 * Get the context for a task and increment its pin_count so it
685 * can't get swapped to another task. This also increments its
686 * reference count so that the context can't get freed.
688 static struct perf_event_context
*
689 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
691 struct perf_event_context
*ctx
;
694 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
697 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
702 static void perf_unpin_context(struct perf_event_context
*ctx
)
706 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
708 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
712 * Update the record of the current time in a context.
714 static void update_context_time(struct perf_event_context
*ctx
)
716 u64 now
= perf_clock();
718 ctx
->time
+= now
- ctx
->timestamp
;
719 ctx
->timestamp
= now
;
722 static u64
perf_event_time(struct perf_event
*event
)
724 struct perf_event_context
*ctx
= event
->ctx
;
726 if (is_cgroup_event(event
))
727 return perf_cgroup_event_time(event
);
729 return ctx
? ctx
->time
: 0;
733 * Update the total_time_enabled and total_time_running fields for a event.
735 static void update_event_times(struct perf_event
*event
)
737 struct perf_event_context
*ctx
= event
->ctx
;
740 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
741 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
744 * in cgroup mode, time_enabled represents
745 * the time the event was enabled AND active
746 * tasks were in the monitored cgroup. This is
747 * independent of the activity of the context as
748 * there may be a mix of cgroup and non-cgroup events.
750 * That is why we treat cgroup events differently
753 if (is_cgroup_event(event
))
754 run_end
= perf_event_time(event
);
755 else if (ctx
->is_active
)
758 run_end
= event
->tstamp_stopped
;
760 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
762 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
763 run_end
= event
->tstamp_stopped
;
765 run_end
= perf_event_time(event
);
767 event
->total_time_running
= run_end
- event
->tstamp_running
;
772 * Update total_time_enabled and total_time_running for all events in a group.
774 static void update_group_times(struct perf_event
*leader
)
776 struct perf_event
*event
;
778 update_event_times(leader
);
779 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
780 update_event_times(event
);
783 static struct list_head
*
784 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
786 if (event
->attr
.pinned
)
787 return &ctx
->pinned_groups
;
789 return &ctx
->flexible_groups
;
793 * Add a event from the lists for its context.
794 * Must be called with ctx->mutex and ctx->lock held.
797 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
799 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
800 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
803 * If we're a stand alone event or group leader, we go to the context
804 * list, group events are kept attached to the group so that
805 * perf_group_detach can, at all times, locate all siblings.
807 if (event
->group_leader
== event
) {
808 struct list_head
*list
;
810 if (is_software_event(event
))
811 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
813 list
= ctx_group_list(event
, ctx
);
814 list_add_tail(&event
->group_entry
, list
);
817 if (is_cgroup_event(event
))
820 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
822 perf_pmu_rotate_start(ctx
->pmu
);
824 if (event
->attr
.inherit_stat
)
829 * Called at perf_event creation and when events are attached/detached from a
832 static void perf_event__read_size(struct perf_event
*event
)
834 int entry
= sizeof(u64
); /* value */
838 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
841 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
844 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
845 entry
+= sizeof(u64
);
847 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
848 nr
+= event
->group_leader
->nr_siblings
;
853 event
->read_size
= size
;
856 static void perf_event__header_size(struct perf_event
*event
)
858 struct perf_sample_data
*data
;
859 u64 sample_type
= event
->attr
.sample_type
;
862 perf_event__read_size(event
);
864 if (sample_type
& PERF_SAMPLE_IP
)
865 size
+= sizeof(data
->ip
);
867 if (sample_type
& PERF_SAMPLE_ADDR
)
868 size
+= sizeof(data
->addr
);
870 if (sample_type
& PERF_SAMPLE_PERIOD
)
871 size
+= sizeof(data
->period
);
873 if (sample_type
& PERF_SAMPLE_READ
)
874 size
+= event
->read_size
;
876 event
->header_size
= size
;
879 static void perf_event__id_header_size(struct perf_event
*event
)
881 struct perf_sample_data
*data
;
882 u64 sample_type
= event
->attr
.sample_type
;
885 if (sample_type
& PERF_SAMPLE_TID
)
886 size
+= sizeof(data
->tid_entry
);
888 if (sample_type
& PERF_SAMPLE_TIME
)
889 size
+= sizeof(data
->time
);
891 if (sample_type
& PERF_SAMPLE_ID
)
892 size
+= sizeof(data
->id
);
894 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
895 size
+= sizeof(data
->stream_id
);
897 if (sample_type
& PERF_SAMPLE_CPU
)
898 size
+= sizeof(data
->cpu_entry
);
900 event
->id_header_size
= size
;
903 static void perf_group_attach(struct perf_event
*event
)
905 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
908 * We can have double attach due to group movement in perf_event_open.
910 if (event
->attach_state
& PERF_ATTACH_GROUP
)
913 event
->attach_state
|= PERF_ATTACH_GROUP
;
915 if (group_leader
== event
)
918 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
919 !is_software_event(event
))
920 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
922 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
923 group_leader
->nr_siblings
++;
925 perf_event__header_size(group_leader
);
927 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
928 perf_event__header_size(pos
);
932 * Remove a event from the lists for its context.
933 * Must be called with ctx->mutex and ctx->lock held.
936 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
938 struct perf_cpu_context
*cpuctx
;
940 * We can have double detach due to exit/hot-unplug + close.
942 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
945 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
947 if (is_cgroup_event(event
)) {
949 cpuctx
= __get_cpu_context(ctx
);
951 * if there are no more cgroup events
952 * then cler cgrp to avoid stale pointer
953 * in update_cgrp_time_from_cpuctx()
955 if (!ctx
->nr_cgroups
)
960 if (event
->attr
.inherit_stat
)
963 list_del_rcu(&event
->event_entry
);
965 if (event
->group_leader
== event
)
966 list_del_init(&event
->group_entry
);
968 update_group_times(event
);
971 * If event was in error state, then keep it
972 * that way, otherwise bogus counts will be
973 * returned on read(). The only way to get out
974 * of error state is by explicit re-enabling
977 if (event
->state
> PERF_EVENT_STATE_OFF
)
978 event
->state
= PERF_EVENT_STATE_OFF
;
981 static void perf_group_detach(struct perf_event
*event
)
983 struct perf_event
*sibling
, *tmp
;
984 struct list_head
*list
= NULL
;
987 * We can have double detach due to exit/hot-unplug + close.
989 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
992 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
995 * If this is a sibling, remove it from its group.
997 if (event
->group_leader
!= event
) {
998 list_del_init(&event
->group_entry
);
999 event
->group_leader
->nr_siblings
--;
1003 if (!list_empty(&event
->group_entry
))
1004 list
= &event
->group_entry
;
1007 * If this was a group event with sibling events then
1008 * upgrade the siblings to singleton events by adding them
1009 * to whatever list we are on.
1011 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1013 list_move_tail(&sibling
->group_entry
, list
);
1014 sibling
->group_leader
= sibling
;
1016 /* Inherit group flags from the previous leader */
1017 sibling
->group_flags
= event
->group_flags
;
1021 perf_event__header_size(event
->group_leader
);
1023 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1024 perf_event__header_size(tmp
);
1028 event_filter_match(struct perf_event
*event
)
1030 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1031 && perf_cgroup_match(event
);
1035 event_sched_out(struct perf_event
*event
,
1036 struct perf_cpu_context
*cpuctx
,
1037 struct perf_event_context
*ctx
)
1039 u64 tstamp
= perf_event_time(event
);
1042 * An event which could not be activated because of
1043 * filter mismatch still needs to have its timings
1044 * maintained, otherwise bogus information is return
1045 * via read() for time_enabled, time_running:
1047 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1048 && !event_filter_match(event
)) {
1049 delta
= tstamp
- event
->tstamp_stopped
;
1050 event
->tstamp_running
+= delta
;
1051 event
->tstamp_stopped
= tstamp
;
1054 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1057 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1058 if (event
->pending_disable
) {
1059 event
->pending_disable
= 0;
1060 event
->state
= PERF_EVENT_STATE_OFF
;
1062 event
->tstamp_stopped
= tstamp
;
1063 event
->pmu
->del(event
, 0);
1066 if (!is_software_event(event
))
1067 cpuctx
->active_oncpu
--;
1069 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1070 cpuctx
->exclusive
= 0;
1074 group_sched_out(struct perf_event
*group_event
,
1075 struct perf_cpu_context
*cpuctx
,
1076 struct perf_event_context
*ctx
)
1078 struct perf_event
*event
;
1079 int state
= group_event
->state
;
1081 event_sched_out(group_event
, cpuctx
, ctx
);
1084 * Schedule out siblings (if any):
1086 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1087 event_sched_out(event
, cpuctx
, ctx
);
1089 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1090 cpuctx
->exclusive
= 0;
1094 * Cross CPU call to remove a performance event
1096 * We disable the event on the hardware level first. After that we
1097 * remove it from the context list.
1099 static int __perf_remove_from_context(void *info
)
1101 struct perf_event
*event
= info
;
1102 struct perf_event_context
*ctx
= event
->ctx
;
1103 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1105 raw_spin_lock(&ctx
->lock
);
1106 event_sched_out(event
, cpuctx
, ctx
);
1107 list_del_event(event
, ctx
);
1108 raw_spin_unlock(&ctx
->lock
);
1115 * Remove the event from a task's (or a CPU's) list of events.
1117 * CPU events are removed with a smp call. For task events we only
1118 * call when the task is on a CPU.
1120 * If event->ctx is a cloned context, callers must make sure that
1121 * every task struct that event->ctx->task could possibly point to
1122 * remains valid. This is OK when called from perf_release since
1123 * that only calls us on the top-level context, which can't be a clone.
1124 * When called from perf_event_exit_task, it's OK because the
1125 * context has been detached from its task.
1127 static void perf_remove_from_context(struct perf_event
*event
)
1129 struct perf_event_context
*ctx
= event
->ctx
;
1130 struct task_struct
*task
= ctx
->task
;
1132 lockdep_assert_held(&ctx
->mutex
);
1136 * Per cpu events are removed via an smp call and
1137 * the removal is always successful.
1139 cpu_function_call(event
->cpu
, __perf_remove_from_context
, event
);
1144 if (!task_function_call(task
, __perf_remove_from_context
, event
))
1147 raw_spin_lock_irq(&ctx
->lock
);
1149 * If we failed to find a running task, but find the context active now
1150 * that we've acquired the ctx->lock, retry.
1152 if (ctx
->is_active
) {
1153 raw_spin_unlock_irq(&ctx
->lock
);
1158 * Since the task isn't running, its safe to remove the event, us
1159 * holding the ctx->lock ensures the task won't get scheduled in.
1161 list_del_event(event
, ctx
);
1162 raw_spin_unlock_irq(&ctx
->lock
);
1166 * Cross CPU call to disable a performance event
1168 static int __perf_event_disable(void *info
)
1170 struct perf_event
*event
= info
;
1171 struct perf_event_context
*ctx
= event
->ctx
;
1172 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1175 * If this is a per-task event, need to check whether this
1176 * event's task is the current task on this cpu.
1178 * Can trigger due to concurrent perf_event_context_sched_out()
1179 * flipping contexts around.
1181 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1184 raw_spin_lock(&ctx
->lock
);
1187 * If the event is on, turn it off.
1188 * If it is in error state, leave it in error state.
1190 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1191 update_context_time(ctx
);
1192 update_cgrp_time_from_event(event
);
1193 update_group_times(event
);
1194 if (event
== event
->group_leader
)
1195 group_sched_out(event
, cpuctx
, ctx
);
1197 event_sched_out(event
, cpuctx
, ctx
);
1198 event
->state
= PERF_EVENT_STATE_OFF
;
1201 raw_spin_unlock(&ctx
->lock
);
1209 * If event->ctx is a cloned context, callers must make sure that
1210 * every task struct that event->ctx->task could possibly point to
1211 * remains valid. This condition is satisifed when called through
1212 * perf_event_for_each_child or perf_event_for_each because they
1213 * hold the top-level event's child_mutex, so any descendant that
1214 * goes to exit will block in sync_child_event.
1215 * When called from perf_pending_event it's OK because event->ctx
1216 * is the current context on this CPU and preemption is disabled,
1217 * hence we can't get into perf_event_task_sched_out for this context.
1219 void perf_event_disable(struct perf_event
*event
)
1221 struct perf_event_context
*ctx
= event
->ctx
;
1222 struct task_struct
*task
= ctx
->task
;
1226 * Disable the event on the cpu that it's on
1228 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1233 if (!task_function_call(task
, __perf_event_disable
, event
))
1236 raw_spin_lock_irq(&ctx
->lock
);
1238 * If the event is still active, we need to retry the cross-call.
1240 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1241 raw_spin_unlock_irq(&ctx
->lock
);
1243 * Reload the task pointer, it might have been changed by
1244 * a concurrent perf_event_context_sched_out().
1251 * Since we have the lock this context can't be scheduled
1252 * in, so we can change the state safely.
1254 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1255 update_group_times(event
);
1256 event
->state
= PERF_EVENT_STATE_OFF
;
1258 raw_spin_unlock_irq(&ctx
->lock
);
1261 static void perf_set_shadow_time(struct perf_event
*event
,
1262 struct perf_event_context
*ctx
,
1266 * use the correct time source for the time snapshot
1268 * We could get by without this by leveraging the
1269 * fact that to get to this function, the caller
1270 * has most likely already called update_context_time()
1271 * and update_cgrp_time_xx() and thus both timestamp
1272 * are identical (or very close). Given that tstamp is,
1273 * already adjusted for cgroup, we could say that:
1274 * tstamp - ctx->timestamp
1276 * tstamp - cgrp->timestamp.
1278 * Then, in perf_output_read(), the calculation would
1279 * work with no changes because:
1280 * - event is guaranteed scheduled in
1281 * - no scheduled out in between
1282 * - thus the timestamp would be the same
1284 * But this is a bit hairy.
1286 * So instead, we have an explicit cgroup call to remain
1287 * within the time time source all along. We believe it
1288 * is cleaner and simpler to understand.
1290 if (is_cgroup_event(event
))
1291 perf_cgroup_set_shadow_time(event
, tstamp
);
1293 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1296 #define MAX_INTERRUPTS (~0ULL)
1298 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1301 event_sched_in(struct perf_event
*event
,
1302 struct perf_cpu_context
*cpuctx
,
1303 struct perf_event_context
*ctx
)
1305 u64 tstamp
= perf_event_time(event
);
1307 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1310 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1311 event
->oncpu
= smp_processor_id();
1314 * Unthrottle events, since we scheduled we might have missed several
1315 * ticks already, also for a heavily scheduling task there is little
1316 * guarantee it'll get a tick in a timely manner.
1318 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1319 perf_log_throttle(event
, 1);
1320 event
->hw
.interrupts
= 0;
1324 * The new state must be visible before we turn it on in the hardware:
1328 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1329 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1334 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1336 perf_set_shadow_time(event
, ctx
, tstamp
);
1338 if (!is_software_event(event
))
1339 cpuctx
->active_oncpu
++;
1342 if (event
->attr
.exclusive
)
1343 cpuctx
->exclusive
= 1;
1349 group_sched_in(struct perf_event
*group_event
,
1350 struct perf_cpu_context
*cpuctx
,
1351 struct perf_event_context
*ctx
)
1353 struct perf_event
*event
, *partial_group
= NULL
;
1354 struct pmu
*pmu
= group_event
->pmu
;
1355 u64 now
= ctx
->time
;
1356 bool simulate
= false;
1358 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1361 pmu
->start_txn(pmu
);
1363 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1364 pmu
->cancel_txn(pmu
);
1369 * Schedule in siblings as one group (if any):
1371 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1372 if (event_sched_in(event
, cpuctx
, ctx
)) {
1373 partial_group
= event
;
1378 if (!pmu
->commit_txn(pmu
))
1383 * Groups can be scheduled in as one unit only, so undo any
1384 * partial group before returning:
1385 * The events up to the failed event are scheduled out normally,
1386 * tstamp_stopped will be updated.
1388 * The failed events and the remaining siblings need to have
1389 * their timings updated as if they had gone thru event_sched_in()
1390 * and event_sched_out(). This is required to get consistent timings
1391 * across the group. This also takes care of the case where the group
1392 * could never be scheduled by ensuring tstamp_stopped is set to mark
1393 * the time the event was actually stopped, such that time delta
1394 * calculation in update_event_times() is correct.
1396 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1397 if (event
== partial_group
)
1401 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1402 event
->tstamp_stopped
= now
;
1404 event_sched_out(event
, cpuctx
, ctx
);
1407 event_sched_out(group_event
, cpuctx
, ctx
);
1409 pmu
->cancel_txn(pmu
);
1415 * Work out whether we can put this event group on the CPU now.
1417 static int group_can_go_on(struct perf_event
*event
,
1418 struct perf_cpu_context
*cpuctx
,
1422 * Groups consisting entirely of software events can always go on.
1424 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1427 * If an exclusive group is already on, no other hardware
1430 if (cpuctx
->exclusive
)
1433 * If this group is exclusive and there are already
1434 * events on the CPU, it can't go on.
1436 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1439 * Otherwise, try to add it if all previous groups were able
1445 static void add_event_to_ctx(struct perf_event
*event
,
1446 struct perf_event_context
*ctx
)
1448 u64 tstamp
= perf_event_time(event
);
1450 list_add_event(event
, ctx
);
1451 perf_group_attach(event
);
1452 event
->tstamp_enabled
= tstamp
;
1453 event
->tstamp_running
= tstamp
;
1454 event
->tstamp_stopped
= tstamp
;
1457 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
1458 struct task_struct
*tsk
);
1461 * Cross CPU call to install and enable a performance event
1463 * Must be called with ctx->mutex held
1465 static int __perf_install_in_context(void *info
)
1467 struct perf_event
*event
= info
;
1468 struct perf_event_context
*ctx
= event
->ctx
;
1469 struct perf_event
*leader
= event
->group_leader
;
1470 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1474 * In case we're installing a new context to an already running task,
1475 * could also happen before perf_event_task_sched_in() on architectures
1476 * which do context switches with IRQs enabled.
1478 if (ctx
->task
&& !cpuctx
->task_ctx
)
1479 perf_event_context_sched_in(ctx
, ctx
->task
);
1481 raw_spin_lock(&ctx
->lock
);
1483 update_context_time(ctx
);
1485 * update cgrp time only if current cgrp
1486 * matches event->cgrp. Must be done before
1487 * calling add_event_to_ctx()
1489 update_cgrp_time_from_event(event
);
1491 add_event_to_ctx(event
, ctx
);
1493 if (!event_filter_match(event
))
1497 * Don't put the event on if it is disabled or if
1498 * it is in a group and the group isn't on.
1500 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
1501 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
1505 * An exclusive event can't go on if there are already active
1506 * hardware events, and no hardware event can go on if there
1507 * is already an exclusive event on.
1509 if (!group_can_go_on(event
, cpuctx
, 1))
1512 err
= event_sched_in(event
, cpuctx
, ctx
);
1516 * This event couldn't go on. If it is in a group
1517 * then we have to pull the whole group off.
1518 * If the event group is pinned then put it in error state.
1520 if (leader
!= event
)
1521 group_sched_out(leader
, cpuctx
, ctx
);
1522 if (leader
->attr
.pinned
) {
1523 update_group_times(leader
);
1524 leader
->state
= PERF_EVENT_STATE_ERROR
;
1529 raw_spin_unlock(&ctx
->lock
);
1535 * Attach a performance event to a context
1537 * First we add the event to the list with the hardware enable bit
1538 * in event->hw_config cleared.
1540 * If the event is attached to a task which is on a CPU we use a smp
1541 * call to enable it in the task context. The task might have been
1542 * scheduled away, but we check this in the smp call again.
1545 perf_install_in_context(struct perf_event_context
*ctx
,
1546 struct perf_event
*event
,
1549 struct task_struct
*task
= ctx
->task
;
1551 lockdep_assert_held(&ctx
->mutex
);
1557 * Per cpu events are installed via an smp call and
1558 * the install is always successful.
1560 cpu_function_call(cpu
, __perf_install_in_context
, event
);
1565 if (!task_function_call(task
, __perf_install_in_context
, event
))
1568 raw_spin_lock_irq(&ctx
->lock
);
1570 * If we failed to find a running task, but find the context active now
1571 * that we've acquired the ctx->lock, retry.
1573 if (ctx
->is_active
) {
1574 raw_spin_unlock_irq(&ctx
->lock
);
1579 * Since the task isn't running, its safe to add the event, us holding
1580 * the ctx->lock ensures the task won't get scheduled in.
1582 add_event_to_ctx(event
, ctx
);
1583 raw_spin_unlock_irq(&ctx
->lock
);
1587 * Put a event into inactive state and update time fields.
1588 * Enabling the leader of a group effectively enables all
1589 * the group members that aren't explicitly disabled, so we
1590 * have to update their ->tstamp_enabled also.
1591 * Note: this works for group members as well as group leaders
1592 * since the non-leader members' sibling_lists will be empty.
1594 static void __perf_event_mark_enabled(struct perf_event
*event
,
1595 struct perf_event_context
*ctx
)
1597 struct perf_event
*sub
;
1598 u64 tstamp
= perf_event_time(event
);
1600 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1601 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1602 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1603 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1604 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1609 * Cross CPU call to enable a performance event
1611 static int __perf_event_enable(void *info
)
1613 struct perf_event
*event
= info
;
1614 struct perf_event_context
*ctx
= event
->ctx
;
1615 struct perf_event
*leader
= event
->group_leader
;
1616 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1619 if (WARN_ON_ONCE(!ctx
->is_active
))
1622 raw_spin_lock(&ctx
->lock
);
1623 update_context_time(ctx
);
1625 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1629 * set current task's cgroup time reference point
1631 perf_cgroup_set_timestamp(current
, ctx
);
1633 __perf_event_mark_enabled(event
, ctx
);
1635 if (!event_filter_match(event
)) {
1636 if (is_cgroup_event(event
))
1637 perf_cgroup_defer_enabled(event
);
1642 * If the event is in a group and isn't the group leader,
1643 * then don't put it on unless the group is on.
1645 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1648 if (!group_can_go_on(event
, cpuctx
, 1)) {
1651 if (event
== leader
)
1652 err
= group_sched_in(event
, cpuctx
, ctx
);
1654 err
= event_sched_in(event
, cpuctx
, ctx
);
1659 * If this event can't go on and it's part of a
1660 * group, then the whole group has to come off.
1662 if (leader
!= event
)
1663 group_sched_out(leader
, cpuctx
, ctx
);
1664 if (leader
->attr
.pinned
) {
1665 update_group_times(leader
);
1666 leader
->state
= PERF_EVENT_STATE_ERROR
;
1671 raw_spin_unlock(&ctx
->lock
);
1679 * If event->ctx is a cloned context, callers must make sure that
1680 * every task struct that event->ctx->task could possibly point to
1681 * remains valid. This condition is satisfied when called through
1682 * perf_event_for_each_child or perf_event_for_each as described
1683 * for perf_event_disable.
1685 void perf_event_enable(struct perf_event
*event
)
1687 struct perf_event_context
*ctx
= event
->ctx
;
1688 struct task_struct
*task
= ctx
->task
;
1692 * Enable the event on the cpu that it's on
1694 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
1698 raw_spin_lock_irq(&ctx
->lock
);
1699 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1703 * If the event is in error state, clear that first.
1704 * That way, if we see the event in error state below, we
1705 * know that it has gone back into error state, as distinct
1706 * from the task having been scheduled away before the
1707 * cross-call arrived.
1709 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1710 event
->state
= PERF_EVENT_STATE_OFF
;
1713 if (!ctx
->is_active
) {
1714 __perf_event_mark_enabled(event
, ctx
);
1718 raw_spin_unlock_irq(&ctx
->lock
);
1720 if (!task_function_call(task
, __perf_event_enable
, event
))
1723 raw_spin_lock_irq(&ctx
->lock
);
1726 * If the context is active and the event is still off,
1727 * we need to retry the cross-call.
1729 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
1731 * task could have been flipped by a concurrent
1732 * perf_event_context_sched_out()
1739 raw_spin_unlock_irq(&ctx
->lock
);
1742 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1745 * not supported on inherited events
1747 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1750 atomic_add(refresh
, &event
->event_limit
);
1751 perf_event_enable(event
);
1756 static void ctx_sched_out(struct perf_event_context
*ctx
,
1757 struct perf_cpu_context
*cpuctx
,
1758 enum event_type_t event_type
)
1760 struct perf_event
*event
;
1762 raw_spin_lock(&ctx
->lock
);
1763 perf_pmu_disable(ctx
->pmu
);
1765 if (likely(!ctx
->nr_events
))
1767 update_context_time(ctx
);
1768 update_cgrp_time_from_cpuctx(cpuctx
);
1770 if (!ctx
->nr_active
)
1773 if (event_type
& EVENT_PINNED
) {
1774 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1775 group_sched_out(event
, cpuctx
, ctx
);
1778 if (event_type
& EVENT_FLEXIBLE
) {
1779 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1780 group_sched_out(event
, cpuctx
, ctx
);
1783 perf_pmu_enable(ctx
->pmu
);
1784 raw_spin_unlock(&ctx
->lock
);
1788 * Test whether two contexts are equivalent, i.e. whether they
1789 * have both been cloned from the same version of the same context
1790 * and they both have the same number of enabled events.
1791 * If the number of enabled events is the same, then the set
1792 * of enabled events should be the same, because these are both
1793 * inherited contexts, therefore we can't access individual events
1794 * in them directly with an fd; we can only enable/disable all
1795 * events via prctl, or enable/disable all events in a family
1796 * via ioctl, which will have the same effect on both contexts.
1798 static int context_equiv(struct perf_event_context
*ctx1
,
1799 struct perf_event_context
*ctx2
)
1801 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1802 && ctx1
->parent_gen
== ctx2
->parent_gen
1803 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1806 static void __perf_event_sync_stat(struct perf_event
*event
,
1807 struct perf_event
*next_event
)
1811 if (!event
->attr
.inherit_stat
)
1815 * Update the event value, we cannot use perf_event_read()
1816 * because we're in the middle of a context switch and have IRQs
1817 * disabled, which upsets smp_call_function_single(), however
1818 * we know the event must be on the current CPU, therefore we
1819 * don't need to use it.
1821 switch (event
->state
) {
1822 case PERF_EVENT_STATE_ACTIVE
:
1823 event
->pmu
->read(event
);
1826 case PERF_EVENT_STATE_INACTIVE
:
1827 update_event_times(event
);
1835 * In order to keep per-task stats reliable we need to flip the event
1836 * values when we flip the contexts.
1838 value
= local64_read(&next_event
->count
);
1839 value
= local64_xchg(&event
->count
, value
);
1840 local64_set(&next_event
->count
, value
);
1842 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1843 swap(event
->total_time_running
, next_event
->total_time_running
);
1846 * Since we swizzled the values, update the user visible data too.
1848 perf_event_update_userpage(event
);
1849 perf_event_update_userpage(next_event
);
1852 #define list_next_entry(pos, member) \
1853 list_entry(pos->member.next, typeof(*pos), member)
1855 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1856 struct perf_event_context
*next_ctx
)
1858 struct perf_event
*event
, *next_event
;
1863 update_context_time(ctx
);
1865 event
= list_first_entry(&ctx
->event_list
,
1866 struct perf_event
, event_entry
);
1868 next_event
= list_first_entry(&next_ctx
->event_list
,
1869 struct perf_event
, event_entry
);
1871 while (&event
->event_entry
!= &ctx
->event_list
&&
1872 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1874 __perf_event_sync_stat(event
, next_event
);
1876 event
= list_next_entry(event
, event_entry
);
1877 next_event
= list_next_entry(next_event
, event_entry
);
1881 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1882 struct task_struct
*next
)
1884 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1885 struct perf_event_context
*next_ctx
;
1886 struct perf_event_context
*parent
;
1887 struct perf_cpu_context
*cpuctx
;
1893 cpuctx
= __get_cpu_context(ctx
);
1894 if (!cpuctx
->task_ctx
)
1898 parent
= rcu_dereference(ctx
->parent_ctx
);
1899 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1900 if (parent
&& next_ctx
&&
1901 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1903 * Looks like the two contexts are clones, so we might be
1904 * able to optimize the context switch. We lock both
1905 * contexts and check that they are clones under the
1906 * lock (including re-checking that neither has been
1907 * uncloned in the meantime). It doesn't matter which
1908 * order we take the locks because no other cpu could
1909 * be trying to lock both of these tasks.
1911 raw_spin_lock(&ctx
->lock
);
1912 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1913 if (context_equiv(ctx
, next_ctx
)) {
1915 * XXX do we need a memory barrier of sorts
1916 * wrt to rcu_dereference() of perf_event_ctxp
1918 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1919 next
->perf_event_ctxp
[ctxn
] = ctx
;
1921 next_ctx
->task
= task
;
1924 perf_event_sync_stat(ctx
, next_ctx
);
1926 raw_spin_unlock(&next_ctx
->lock
);
1927 raw_spin_unlock(&ctx
->lock
);
1932 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1933 cpuctx
->task_ctx
= NULL
;
1937 #define for_each_task_context_nr(ctxn) \
1938 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1941 * Called from scheduler to remove the events of the current task,
1942 * with interrupts disabled.
1944 * We stop each event and update the event value in event->count.
1946 * This does not protect us against NMI, but disable()
1947 * sets the disabled bit in the control field of event _before_
1948 * accessing the event control register. If a NMI hits, then it will
1949 * not restart the event.
1951 void __perf_event_task_sched_out(struct task_struct
*task
,
1952 struct task_struct
*next
)
1956 for_each_task_context_nr(ctxn
)
1957 perf_event_context_sched_out(task
, ctxn
, next
);
1960 * if cgroup events exist on this CPU, then we need
1961 * to check if we have to switch out PMU state.
1962 * cgroup event are system-wide mode only
1964 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
1965 perf_cgroup_sched_out(task
);
1968 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1969 enum event_type_t event_type
)
1971 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1973 if (!cpuctx
->task_ctx
)
1976 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1979 ctx_sched_out(ctx
, cpuctx
, event_type
);
1980 cpuctx
->task_ctx
= NULL
;
1984 * Called with IRQs disabled
1986 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1987 enum event_type_t event_type
)
1989 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1993 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1994 struct perf_cpu_context
*cpuctx
)
1996 struct perf_event
*event
;
1998 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1999 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2001 if (!event_filter_match(event
))
2004 /* may need to reset tstamp_enabled */
2005 if (is_cgroup_event(event
))
2006 perf_cgroup_mark_enabled(event
, ctx
);
2008 if (group_can_go_on(event
, cpuctx
, 1))
2009 group_sched_in(event
, cpuctx
, ctx
);
2012 * If this pinned group hasn't been scheduled,
2013 * put it in error state.
2015 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2016 update_group_times(event
);
2017 event
->state
= PERF_EVENT_STATE_ERROR
;
2023 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2024 struct perf_cpu_context
*cpuctx
)
2026 struct perf_event
*event
;
2029 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2030 /* Ignore events in OFF or ERROR state */
2031 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2034 * Listen to the 'cpu' scheduling filter constraint
2037 if (!event_filter_match(event
))
2040 /* may need to reset tstamp_enabled */
2041 if (is_cgroup_event(event
))
2042 perf_cgroup_mark_enabled(event
, ctx
);
2044 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2045 if (group_sched_in(event
, cpuctx
, ctx
))
2052 ctx_sched_in(struct perf_event_context
*ctx
,
2053 struct perf_cpu_context
*cpuctx
,
2054 enum event_type_t event_type
,
2055 struct task_struct
*task
)
2059 raw_spin_lock(&ctx
->lock
);
2061 if (likely(!ctx
->nr_events
))
2065 ctx
->timestamp
= now
;
2066 perf_cgroup_set_timestamp(task
, ctx
);
2068 * First go through the list and put on any pinned groups
2069 * in order to give them the best chance of going on.
2071 if (event_type
& EVENT_PINNED
)
2072 ctx_pinned_sched_in(ctx
, cpuctx
);
2074 /* Then walk through the lower prio flexible groups */
2075 if (event_type
& EVENT_FLEXIBLE
)
2076 ctx_flexible_sched_in(ctx
, cpuctx
);
2079 raw_spin_unlock(&ctx
->lock
);
2082 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2083 enum event_type_t event_type
,
2084 struct task_struct
*task
)
2086 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2088 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2091 static void task_ctx_sched_in(struct perf_event_context
*ctx
,
2092 enum event_type_t event_type
)
2094 struct perf_cpu_context
*cpuctx
;
2096 cpuctx
= __get_cpu_context(ctx
);
2097 if (cpuctx
->task_ctx
== ctx
)
2100 ctx_sched_in(ctx
, cpuctx
, event_type
, NULL
);
2101 cpuctx
->task_ctx
= ctx
;
2104 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2105 struct task_struct
*task
)
2107 struct perf_cpu_context
*cpuctx
;
2109 cpuctx
= __get_cpu_context(ctx
);
2110 if (cpuctx
->task_ctx
== ctx
)
2113 perf_pmu_disable(ctx
->pmu
);
2115 * We want to keep the following priority order:
2116 * cpu pinned (that don't need to move), task pinned,
2117 * cpu flexible, task flexible.
2119 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2121 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2122 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2123 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2125 cpuctx
->task_ctx
= ctx
;
2128 * Since these rotations are per-cpu, we need to ensure the
2129 * cpu-context we got scheduled on is actually rotating.
2131 perf_pmu_rotate_start(ctx
->pmu
);
2132 perf_pmu_enable(ctx
->pmu
);
2136 * Called from scheduler to add the events of the current task
2137 * with interrupts disabled.
2139 * We restore the event value and then enable it.
2141 * This does not protect us against NMI, but enable()
2142 * sets the enabled bit in the control field of event _before_
2143 * accessing the event control register. If a NMI hits, then it will
2144 * keep the event running.
2146 void __perf_event_task_sched_in(struct task_struct
*task
)
2148 struct perf_event_context
*ctx
;
2151 for_each_task_context_nr(ctxn
) {
2152 ctx
= task
->perf_event_ctxp
[ctxn
];
2156 perf_event_context_sched_in(ctx
, task
);
2159 * if cgroup events exist on this CPU, then we need
2160 * to check if we have to switch in PMU state.
2161 * cgroup event are system-wide mode only
2163 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2164 perf_cgroup_sched_in(task
);
2167 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2169 u64 frequency
= event
->attr
.sample_freq
;
2170 u64 sec
= NSEC_PER_SEC
;
2171 u64 divisor
, dividend
;
2173 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2175 count_fls
= fls64(count
);
2176 nsec_fls
= fls64(nsec
);
2177 frequency_fls
= fls64(frequency
);
2181 * We got @count in @nsec, with a target of sample_freq HZ
2182 * the target period becomes:
2185 * period = -------------------
2186 * @nsec * sample_freq
2191 * Reduce accuracy by one bit such that @a and @b converge
2192 * to a similar magnitude.
2194 #define REDUCE_FLS(a, b) \
2196 if (a##_fls > b##_fls) { \
2206 * Reduce accuracy until either term fits in a u64, then proceed with
2207 * the other, so that finally we can do a u64/u64 division.
2209 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2210 REDUCE_FLS(nsec
, frequency
);
2211 REDUCE_FLS(sec
, count
);
2214 if (count_fls
+ sec_fls
> 64) {
2215 divisor
= nsec
* frequency
;
2217 while (count_fls
+ sec_fls
> 64) {
2218 REDUCE_FLS(count
, sec
);
2222 dividend
= count
* sec
;
2224 dividend
= count
* sec
;
2226 while (nsec_fls
+ frequency_fls
> 64) {
2227 REDUCE_FLS(nsec
, frequency
);
2231 divisor
= nsec
* frequency
;
2237 return div64_u64(dividend
, divisor
);
2240 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2242 struct hw_perf_event
*hwc
= &event
->hw
;
2243 s64 period
, sample_period
;
2246 period
= perf_calculate_period(event
, nsec
, count
);
2248 delta
= (s64
)(period
- hwc
->sample_period
);
2249 delta
= (delta
+ 7) / 8; /* low pass filter */
2251 sample_period
= hwc
->sample_period
+ delta
;
2256 hwc
->sample_period
= sample_period
;
2258 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2259 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2260 local64_set(&hwc
->period_left
, 0);
2261 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2265 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
2267 struct perf_event
*event
;
2268 struct hw_perf_event
*hwc
;
2269 u64 interrupts
, now
;
2272 raw_spin_lock(&ctx
->lock
);
2273 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2274 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2277 if (!event_filter_match(event
))
2282 interrupts
= hwc
->interrupts
;
2283 hwc
->interrupts
= 0;
2286 * unthrottle events on the tick
2288 if (interrupts
== MAX_INTERRUPTS
) {
2289 perf_log_throttle(event
, 1);
2290 event
->pmu
->start(event
, 0);
2293 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2296 event
->pmu
->read(event
);
2297 now
= local64_read(&event
->count
);
2298 delta
= now
- hwc
->freq_count_stamp
;
2299 hwc
->freq_count_stamp
= now
;
2302 perf_adjust_period(event
, period
, delta
);
2304 raw_spin_unlock(&ctx
->lock
);
2308 * Round-robin a context's events:
2310 static void rotate_ctx(struct perf_event_context
*ctx
)
2312 raw_spin_lock(&ctx
->lock
);
2315 * Rotate the first entry last of non-pinned groups. Rotation might be
2316 * disabled by the inheritance code.
2318 if (!ctx
->rotate_disable
)
2319 list_rotate_left(&ctx
->flexible_groups
);
2321 raw_spin_unlock(&ctx
->lock
);
2325 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2326 * because they're strictly cpu affine and rotate_start is called with IRQs
2327 * disabled, while rotate_context is called from IRQ context.
2329 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2331 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
2332 struct perf_event_context
*ctx
= NULL
;
2333 int rotate
= 0, remove
= 1;
2335 if (cpuctx
->ctx
.nr_events
) {
2337 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2341 ctx
= cpuctx
->task_ctx
;
2342 if (ctx
&& ctx
->nr_events
) {
2344 if (ctx
->nr_events
!= ctx
->nr_active
)
2348 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2349 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
2351 perf_ctx_adjust_freq(ctx
, interval
);
2356 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2358 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
2360 rotate_ctx(&cpuctx
->ctx
);
2364 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, current
);
2366 task_ctx_sched_in(ctx
, EVENT_FLEXIBLE
);
2370 list_del_init(&cpuctx
->rotation_list
);
2372 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2375 void perf_event_task_tick(void)
2377 struct list_head
*head
= &__get_cpu_var(rotation_list
);
2378 struct perf_cpu_context
*cpuctx
, *tmp
;
2380 WARN_ON(!irqs_disabled());
2382 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2383 if (cpuctx
->jiffies_interval
== 1 ||
2384 !(jiffies
% cpuctx
->jiffies_interval
))
2385 perf_rotate_context(cpuctx
);
2389 static int event_enable_on_exec(struct perf_event
*event
,
2390 struct perf_event_context
*ctx
)
2392 if (!event
->attr
.enable_on_exec
)
2395 event
->attr
.enable_on_exec
= 0;
2396 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2399 __perf_event_mark_enabled(event
, ctx
);
2405 * Enable all of a task's events that have been marked enable-on-exec.
2406 * This expects task == current.
2408 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
2410 struct perf_event
*event
;
2411 unsigned long flags
;
2415 local_irq_save(flags
);
2416 if (!ctx
|| !ctx
->nr_events
)
2420 * We must ctxsw out cgroup events to avoid conflict
2421 * when invoking perf_task_event_sched_in() later on
2422 * in this function. Otherwise we end up trying to
2423 * ctxswin cgroup events which are already scheduled
2426 perf_cgroup_sched_out(current
);
2427 task_ctx_sched_out(ctx
, EVENT_ALL
);
2429 raw_spin_lock(&ctx
->lock
);
2431 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2432 ret
= event_enable_on_exec(event
, ctx
);
2437 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2438 ret
= event_enable_on_exec(event
, ctx
);
2444 * Unclone this context if we enabled any event.
2449 raw_spin_unlock(&ctx
->lock
);
2452 * Also calls ctxswin for cgroup events, if any:
2454 perf_event_context_sched_in(ctx
, ctx
->task
);
2456 local_irq_restore(flags
);
2460 * Cross CPU call to read the hardware event
2462 static void __perf_event_read(void *info
)
2464 struct perf_event
*event
= info
;
2465 struct perf_event_context
*ctx
= event
->ctx
;
2466 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2469 * If this is a task context, we need to check whether it is
2470 * the current task context of this cpu. If not it has been
2471 * scheduled out before the smp call arrived. In that case
2472 * event->count would have been updated to a recent sample
2473 * when the event was scheduled out.
2475 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
2478 raw_spin_lock(&ctx
->lock
);
2479 if (ctx
->is_active
) {
2480 update_context_time(ctx
);
2481 update_cgrp_time_from_event(event
);
2483 update_event_times(event
);
2484 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2485 event
->pmu
->read(event
);
2486 raw_spin_unlock(&ctx
->lock
);
2489 static inline u64
perf_event_count(struct perf_event
*event
)
2491 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
2494 static u64
perf_event_read(struct perf_event
*event
)
2497 * If event is enabled and currently active on a CPU, update the
2498 * value in the event structure:
2500 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
2501 smp_call_function_single(event
->oncpu
,
2502 __perf_event_read
, event
, 1);
2503 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2504 struct perf_event_context
*ctx
= event
->ctx
;
2505 unsigned long flags
;
2507 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
2509 * may read while context is not active
2510 * (e.g., thread is blocked), in that case
2511 * we cannot update context time
2513 if (ctx
->is_active
) {
2514 update_context_time(ctx
);
2515 update_cgrp_time_from_event(event
);
2517 update_event_times(event
);
2518 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2521 return perf_event_count(event
);
2528 struct callchain_cpus_entries
{
2529 struct rcu_head rcu_head
;
2530 struct perf_callchain_entry
*cpu_entries
[0];
2533 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
2534 static atomic_t nr_callchain_events
;
2535 static DEFINE_MUTEX(callchain_mutex
);
2536 struct callchain_cpus_entries
*callchain_cpus_entries
;
2539 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
2540 struct pt_regs
*regs
)
2544 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
2545 struct pt_regs
*regs
)
2549 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
2551 struct callchain_cpus_entries
*entries
;
2554 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
2556 for_each_possible_cpu(cpu
)
2557 kfree(entries
->cpu_entries
[cpu
]);
2562 static void release_callchain_buffers(void)
2564 struct callchain_cpus_entries
*entries
;
2566 entries
= callchain_cpus_entries
;
2567 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
2568 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
2571 static int alloc_callchain_buffers(void)
2575 struct callchain_cpus_entries
*entries
;
2578 * We can't use the percpu allocation API for data that can be
2579 * accessed from NMI. Use a temporary manual per cpu allocation
2580 * until that gets sorted out.
2582 size
= offsetof(struct callchain_cpus_entries
, cpu_entries
[nr_cpu_ids
]);
2584 entries
= kzalloc(size
, GFP_KERNEL
);
2588 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
2590 for_each_possible_cpu(cpu
) {
2591 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
2593 if (!entries
->cpu_entries
[cpu
])
2597 rcu_assign_pointer(callchain_cpus_entries
, entries
);
2602 for_each_possible_cpu(cpu
)
2603 kfree(entries
->cpu_entries
[cpu
]);
2609 static int get_callchain_buffers(void)
2614 mutex_lock(&callchain_mutex
);
2616 count
= atomic_inc_return(&nr_callchain_events
);
2617 if (WARN_ON_ONCE(count
< 1)) {
2623 /* If the allocation failed, give up */
2624 if (!callchain_cpus_entries
)
2629 err
= alloc_callchain_buffers();
2631 release_callchain_buffers();
2633 mutex_unlock(&callchain_mutex
);
2638 static void put_callchain_buffers(void)
2640 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
2641 release_callchain_buffers();
2642 mutex_unlock(&callchain_mutex
);
2646 static int get_recursion_context(int *recursion
)
2654 else if (in_softirq())
2659 if (recursion
[rctx
])
2668 static inline void put_recursion_context(int *recursion
, int rctx
)
2674 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
2677 struct callchain_cpus_entries
*entries
;
2679 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
2683 entries
= rcu_dereference(callchain_cpus_entries
);
2687 cpu
= smp_processor_id();
2689 return &entries
->cpu_entries
[cpu
][*rctx
];
2693 put_callchain_entry(int rctx
)
2695 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
2698 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2701 struct perf_callchain_entry
*entry
;
2704 entry
= get_callchain_entry(&rctx
);
2713 if (!user_mode(regs
)) {
2714 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2715 perf_callchain_kernel(entry
, regs
);
2717 regs
= task_pt_regs(current
);
2723 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2724 perf_callchain_user(entry
, regs
);
2728 put_callchain_entry(rctx
);
2734 * Initialize the perf_event context in a task_struct:
2736 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2738 raw_spin_lock_init(&ctx
->lock
);
2739 mutex_init(&ctx
->mutex
);
2740 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2741 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2742 INIT_LIST_HEAD(&ctx
->event_list
);
2743 atomic_set(&ctx
->refcount
, 1);
2746 static struct perf_event_context
*
2747 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2749 struct perf_event_context
*ctx
;
2751 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2755 __perf_event_init_context(ctx
);
2758 get_task_struct(task
);
2765 static struct task_struct
*
2766 find_lively_task_by_vpid(pid_t vpid
)
2768 struct task_struct
*task
;
2775 task
= find_task_by_vpid(vpid
);
2777 get_task_struct(task
);
2781 return ERR_PTR(-ESRCH
);
2783 /* Reuse ptrace permission checks for now. */
2785 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2790 put_task_struct(task
);
2791 return ERR_PTR(err
);
2796 * Returns a matching context with refcount and pincount.
2798 static struct perf_event_context
*
2799 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2801 struct perf_event_context
*ctx
;
2802 struct perf_cpu_context
*cpuctx
;
2803 unsigned long flags
;
2807 /* Must be root to operate on a CPU event: */
2808 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2809 return ERR_PTR(-EACCES
);
2812 * We could be clever and allow to attach a event to an
2813 * offline CPU and activate it when the CPU comes up, but
2816 if (!cpu_online(cpu
))
2817 return ERR_PTR(-ENODEV
);
2819 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2828 ctxn
= pmu
->task_ctx_nr
;
2833 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2837 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2841 ctx
= alloc_perf_context(pmu
, task
);
2849 mutex_lock(&task
->perf_event_mutex
);
2851 * If it has already passed perf_event_exit_task().
2852 * we must see PF_EXITING, it takes this mutex too.
2854 if (task
->flags
& PF_EXITING
)
2856 else if (task
->perf_event_ctxp
[ctxn
])
2860 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2862 mutex_unlock(&task
->perf_event_mutex
);
2864 if (unlikely(err
)) {
2865 put_task_struct(task
);
2877 return ERR_PTR(err
);
2880 static void perf_event_free_filter(struct perf_event
*event
);
2882 static void free_event_rcu(struct rcu_head
*head
)
2884 struct perf_event
*event
;
2886 event
= container_of(head
, struct perf_event
, rcu_head
);
2888 put_pid_ns(event
->ns
);
2889 perf_event_free_filter(event
);
2893 static void perf_buffer_put(struct perf_buffer
*buffer
);
2895 static void free_event(struct perf_event
*event
)
2897 irq_work_sync(&event
->pending
);
2899 if (!event
->parent
) {
2900 if (event
->attach_state
& PERF_ATTACH_TASK
)
2901 jump_label_dec(&perf_sched_events
);
2902 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2903 atomic_dec(&nr_mmap_events
);
2904 if (event
->attr
.comm
)
2905 atomic_dec(&nr_comm_events
);
2906 if (event
->attr
.task
)
2907 atomic_dec(&nr_task_events
);
2908 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2909 put_callchain_buffers();
2910 if (is_cgroup_event(event
)) {
2911 atomic_dec(&per_cpu(perf_cgroup_events
, event
->cpu
));
2912 jump_label_dec(&perf_sched_events
);
2916 if (event
->buffer
) {
2917 perf_buffer_put(event
->buffer
);
2918 event
->buffer
= NULL
;
2921 if (is_cgroup_event(event
))
2922 perf_detach_cgroup(event
);
2925 event
->destroy(event
);
2928 put_ctx(event
->ctx
);
2930 call_rcu(&event
->rcu_head
, free_event_rcu
);
2933 int perf_event_release_kernel(struct perf_event
*event
)
2935 struct perf_event_context
*ctx
= event
->ctx
;
2938 * Remove from the PMU, can't get re-enabled since we got
2939 * here because the last ref went.
2941 perf_event_disable(event
);
2943 WARN_ON_ONCE(ctx
->parent_ctx
);
2945 * There are two ways this annotation is useful:
2947 * 1) there is a lock recursion from perf_event_exit_task
2948 * see the comment there.
2950 * 2) there is a lock-inversion with mmap_sem through
2951 * perf_event_read_group(), which takes faults while
2952 * holding ctx->mutex, however this is called after
2953 * the last filedesc died, so there is no possibility
2954 * to trigger the AB-BA case.
2956 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2957 raw_spin_lock_irq(&ctx
->lock
);
2958 perf_group_detach(event
);
2959 list_del_event(event
, ctx
);
2960 raw_spin_unlock_irq(&ctx
->lock
);
2961 mutex_unlock(&ctx
->mutex
);
2967 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2970 * Called when the last reference to the file is gone.
2972 static int perf_release(struct inode
*inode
, struct file
*file
)
2974 struct perf_event
*event
= file
->private_data
;
2975 struct task_struct
*owner
;
2977 file
->private_data
= NULL
;
2980 owner
= ACCESS_ONCE(event
->owner
);
2982 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2983 * !owner it means the list deletion is complete and we can indeed
2984 * free this event, otherwise we need to serialize on
2985 * owner->perf_event_mutex.
2987 smp_read_barrier_depends();
2990 * Since delayed_put_task_struct() also drops the last
2991 * task reference we can safely take a new reference
2992 * while holding the rcu_read_lock().
2994 get_task_struct(owner
);
2999 mutex_lock(&owner
->perf_event_mutex
);
3001 * We have to re-check the event->owner field, if it is cleared
3002 * we raced with perf_event_exit_task(), acquiring the mutex
3003 * ensured they're done, and we can proceed with freeing the
3007 list_del_init(&event
->owner_entry
);
3008 mutex_unlock(&owner
->perf_event_mutex
);
3009 put_task_struct(owner
);
3012 return perf_event_release_kernel(event
);
3015 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3017 struct perf_event
*child
;
3023 mutex_lock(&event
->child_mutex
);
3024 total
+= perf_event_read(event
);
3025 *enabled
+= event
->total_time_enabled
+
3026 atomic64_read(&event
->child_total_time_enabled
);
3027 *running
+= event
->total_time_running
+
3028 atomic64_read(&event
->child_total_time_running
);
3030 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3031 total
+= perf_event_read(child
);
3032 *enabled
+= child
->total_time_enabled
;
3033 *running
+= child
->total_time_running
;
3035 mutex_unlock(&event
->child_mutex
);
3039 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3041 static int perf_event_read_group(struct perf_event
*event
,
3042 u64 read_format
, char __user
*buf
)
3044 struct perf_event
*leader
= event
->group_leader
, *sub
;
3045 int n
= 0, size
= 0, ret
= -EFAULT
;
3046 struct perf_event_context
*ctx
= leader
->ctx
;
3048 u64 count
, enabled
, running
;
3050 mutex_lock(&ctx
->mutex
);
3051 count
= perf_event_read_value(leader
, &enabled
, &running
);
3053 values
[n
++] = 1 + leader
->nr_siblings
;
3054 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3055 values
[n
++] = enabled
;
3056 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3057 values
[n
++] = running
;
3058 values
[n
++] = count
;
3059 if (read_format
& PERF_FORMAT_ID
)
3060 values
[n
++] = primary_event_id(leader
);
3062 size
= n
* sizeof(u64
);
3064 if (copy_to_user(buf
, values
, size
))
3069 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3072 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3073 if (read_format
& PERF_FORMAT_ID
)
3074 values
[n
++] = primary_event_id(sub
);
3076 size
= n
* sizeof(u64
);
3078 if (copy_to_user(buf
+ ret
, values
, size
)) {
3086 mutex_unlock(&ctx
->mutex
);
3091 static int perf_event_read_one(struct perf_event
*event
,
3092 u64 read_format
, char __user
*buf
)
3094 u64 enabled
, running
;
3098 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3099 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3100 values
[n
++] = enabled
;
3101 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3102 values
[n
++] = running
;
3103 if (read_format
& PERF_FORMAT_ID
)
3104 values
[n
++] = primary_event_id(event
);
3106 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3109 return n
* sizeof(u64
);
3113 * Read the performance event - simple non blocking version for now
3116 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3118 u64 read_format
= event
->attr
.read_format
;
3122 * Return end-of-file for a read on a event that is in
3123 * error state (i.e. because it was pinned but it couldn't be
3124 * scheduled on to the CPU at some point).
3126 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3129 if (count
< event
->read_size
)
3132 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3133 if (read_format
& PERF_FORMAT_GROUP
)
3134 ret
= perf_event_read_group(event
, read_format
, buf
);
3136 ret
= perf_event_read_one(event
, read_format
, buf
);
3142 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3144 struct perf_event
*event
= file
->private_data
;
3146 return perf_read_hw(event
, buf
, count
);
3149 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3151 struct perf_event
*event
= file
->private_data
;
3152 struct perf_buffer
*buffer
;
3153 unsigned int events
= POLL_HUP
;
3156 buffer
= rcu_dereference(event
->buffer
);
3158 events
= atomic_xchg(&buffer
->poll
, 0);
3161 poll_wait(file
, &event
->waitq
, wait
);
3166 static void perf_event_reset(struct perf_event
*event
)
3168 (void)perf_event_read(event
);
3169 local64_set(&event
->count
, 0);
3170 perf_event_update_userpage(event
);
3174 * Holding the top-level event's child_mutex means that any
3175 * descendant process that has inherited this event will block
3176 * in sync_child_event if it goes to exit, thus satisfying the
3177 * task existence requirements of perf_event_enable/disable.
3179 static void perf_event_for_each_child(struct perf_event
*event
,
3180 void (*func
)(struct perf_event
*))
3182 struct perf_event
*child
;
3184 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3185 mutex_lock(&event
->child_mutex
);
3187 list_for_each_entry(child
, &event
->child_list
, child_list
)
3189 mutex_unlock(&event
->child_mutex
);
3192 static void perf_event_for_each(struct perf_event
*event
,
3193 void (*func
)(struct perf_event
*))
3195 struct perf_event_context
*ctx
= event
->ctx
;
3196 struct perf_event
*sibling
;
3198 WARN_ON_ONCE(ctx
->parent_ctx
);
3199 mutex_lock(&ctx
->mutex
);
3200 event
= event
->group_leader
;
3202 perf_event_for_each_child(event
, func
);
3204 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3205 perf_event_for_each_child(event
, func
);
3206 mutex_unlock(&ctx
->mutex
);
3209 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3211 struct perf_event_context
*ctx
= event
->ctx
;
3215 if (!is_sampling_event(event
))
3218 if (copy_from_user(&value
, arg
, sizeof(value
)))
3224 raw_spin_lock_irq(&ctx
->lock
);
3225 if (event
->attr
.freq
) {
3226 if (value
> sysctl_perf_event_sample_rate
) {
3231 event
->attr
.sample_freq
= value
;
3233 event
->attr
.sample_period
= value
;
3234 event
->hw
.sample_period
= value
;
3237 raw_spin_unlock_irq(&ctx
->lock
);
3242 static const struct file_operations perf_fops
;
3244 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
3248 file
= fget_light(fd
, fput_needed
);
3250 return ERR_PTR(-EBADF
);
3252 if (file
->f_op
!= &perf_fops
) {
3253 fput_light(file
, *fput_needed
);
3255 return ERR_PTR(-EBADF
);
3258 return file
->private_data
;
3261 static int perf_event_set_output(struct perf_event
*event
,
3262 struct perf_event
*output_event
);
3263 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3265 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3267 struct perf_event
*event
= file
->private_data
;
3268 void (*func
)(struct perf_event
*);
3272 case PERF_EVENT_IOC_ENABLE
:
3273 func
= perf_event_enable
;
3275 case PERF_EVENT_IOC_DISABLE
:
3276 func
= perf_event_disable
;
3278 case PERF_EVENT_IOC_RESET
:
3279 func
= perf_event_reset
;
3282 case PERF_EVENT_IOC_REFRESH
:
3283 return perf_event_refresh(event
, arg
);
3285 case PERF_EVENT_IOC_PERIOD
:
3286 return perf_event_period(event
, (u64 __user
*)arg
);
3288 case PERF_EVENT_IOC_SET_OUTPUT
:
3290 struct perf_event
*output_event
= NULL
;
3291 int fput_needed
= 0;
3295 output_event
= perf_fget_light(arg
, &fput_needed
);
3296 if (IS_ERR(output_event
))
3297 return PTR_ERR(output_event
);
3300 ret
= perf_event_set_output(event
, output_event
);
3302 fput_light(output_event
->filp
, fput_needed
);
3307 case PERF_EVENT_IOC_SET_FILTER
:
3308 return perf_event_set_filter(event
, (void __user
*)arg
);
3314 if (flags
& PERF_IOC_FLAG_GROUP
)
3315 perf_event_for_each(event
, func
);
3317 perf_event_for_each_child(event
, func
);
3322 int perf_event_task_enable(void)
3324 struct perf_event
*event
;
3326 mutex_lock(¤t
->perf_event_mutex
);
3327 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3328 perf_event_for_each_child(event
, perf_event_enable
);
3329 mutex_unlock(¤t
->perf_event_mutex
);
3334 int perf_event_task_disable(void)
3336 struct perf_event
*event
;
3338 mutex_lock(¤t
->perf_event_mutex
);
3339 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3340 perf_event_for_each_child(event
, perf_event_disable
);
3341 mutex_unlock(¤t
->perf_event_mutex
);
3346 #ifndef PERF_EVENT_INDEX_OFFSET
3347 # define PERF_EVENT_INDEX_OFFSET 0
3350 static int perf_event_index(struct perf_event
*event
)
3352 if (event
->hw
.state
& PERF_HES_STOPPED
)
3355 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3358 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
3362 * Callers need to ensure there can be no nesting of this function, otherwise
3363 * the seqlock logic goes bad. We can not serialize this because the arch
3364 * code calls this from NMI context.
3366 void perf_event_update_userpage(struct perf_event
*event
)
3368 struct perf_event_mmap_page
*userpg
;
3369 struct perf_buffer
*buffer
;
3372 buffer
= rcu_dereference(event
->buffer
);
3376 userpg
= buffer
->user_page
;
3379 * Disable preemption so as to not let the corresponding user-space
3380 * spin too long if we get preempted.
3385 userpg
->index
= perf_event_index(event
);
3386 userpg
->offset
= perf_event_count(event
);
3387 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3388 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
3390 userpg
->time_enabled
= event
->total_time_enabled
+
3391 atomic64_read(&event
->child_total_time_enabled
);
3393 userpg
->time_running
= event
->total_time_running
+
3394 atomic64_read(&event
->child_total_time_running
);
3403 static unsigned long perf_data_size(struct perf_buffer
*buffer
);
3406 perf_buffer_init(struct perf_buffer
*buffer
, long watermark
, int flags
)
3408 long max_size
= perf_data_size(buffer
);
3411 buffer
->watermark
= min(max_size
, watermark
);
3413 if (!buffer
->watermark
)
3414 buffer
->watermark
= max_size
/ 2;
3416 if (flags
& PERF_BUFFER_WRITABLE
)
3417 buffer
->writable
= 1;
3419 atomic_set(&buffer
->refcount
, 1);
3422 #ifndef CONFIG_PERF_USE_VMALLOC
3425 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
3428 static struct page
*
3429 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
3431 if (pgoff
> buffer
->nr_pages
)
3435 return virt_to_page(buffer
->user_page
);
3437 return virt_to_page(buffer
->data_pages
[pgoff
- 1]);
3440 static void *perf_mmap_alloc_page(int cpu
)
3445 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
3446 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
3450 return page_address(page
);
3453 static struct perf_buffer
*
3454 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
3456 struct perf_buffer
*buffer
;
3460 size
= sizeof(struct perf_buffer
);
3461 size
+= nr_pages
* sizeof(void *);
3463 buffer
= kzalloc(size
, GFP_KERNEL
);
3467 buffer
->user_page
= perf_mmap_alloc_page(cpu
);
3468 if (!buffer
->user_page
)
3469 goto fail_user_page
;
3471 for (i
= 0; i
< nr_pages
; i
++) {
3472 buffer
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
3473 if (!buffer
->data_pages
[i
])
3474 goto fail_data_pages
;
3477 buffer
->nr_pages
= nr_pages
;
3479 perf_buffer_init(buffer
, watermark
, flags
);
3484 for (i
--; i
>= 0; i
--)
3485 free_page((unsigned long)buffer
->data_pages
[i
]);
3487 free_page((unsigned long)buffer
->user_page
);
3496 static void perf_mmap_free_page(unsigned long addr
)
3498 struct page
*page
= virt_to_page((void *)addr
);
3500 page
->mapping
= NULL
;
3504 static void perf_buffer_free(struct perf_buffer
*buffer
)
3508 perf_mmap_free_page((unsigned long)buffer
->user_page
);
3509 for (i
= 0; i
< buffer
->nr_pages
; i
++)
3510 perf_mmap_free_page((unsigned long)buffer
->data_pages
[i
]);
3514 static inline int page_order(struct perf_buffer
*buffer
)
3522 * Back perf_mmap() with vmalloc memory.
3524 * Required for architectures that have d-cache aliasing issues.
3527 static inline int page_order(struct perf_buffer
*buffer
)
3529 return buffer
->page_order
;
3532 static struct page
*
3533 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
3535 if (pgoff
> (1UL << page_order(buffer
)))
3538 return vmalloc_to_page((void *)buffer
->user_page
+ pgoff
* PAGE_SIZE
);
3541 static void perf_mmap_unmark_page(void *addr
)
3543 struct page
*page
= vmalloc_to_page(addr
);
3545 page
->mapping
= NULL
;
3548 static void perf_buffer_free_work(struct work_struct
*work
)
3550 struct perf_buffer
*buffer
;
3554 buffer
= container_of(work
, struct perf_buffer
, work
);
3555 nr
= 1 << page_order(buffer
);
3557 base
= buffer
->user_page
;
3558 for (i
= 0; i
< nr
+ 1; i
++)
3559 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
3565 static void perf_buffer_free(struct perf_buffer
*buffer
)
3567 schedule_work(&buffer
->work
);
3570 static struct perf_buffer
*
3571 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
3573 struct perf_buffer
*buffer
;
3577 size
= sizeof(struct perf_buffer
);
3578 size
+= sizeof(void *);
3580 buffer
= kzalloc(size
, GFP_KERNEL
);
3584 INIT_WORK(&buffer
->work
, perf_buffer_free_work
);
3586 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
3590 buffer
->user_page
= all_buf
;
3591 buffer
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
3592 buffer
->page_order
= ilog2(nr_pages
);
3593 buffer
->nr_pages
= 1;
3595 perf_buffer_init(buffer
, watermark
, flags
);
3608 static unsigned long perf_data_size(struct perf_buffer
*buffer
)
3610 return buffer
->nr_pages
<< (PAGE_SHIFT
+ page_order(buffer
));
3613 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3615 struct perf_event
*event
= vma
->vm_file
->private_data
;
3616 struct perf_buffer
*buffer
;
3617 int ret
= VM_FAULT_SIGBUS
;
3619 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3620 if (vmf
->pgoff
== 0)
3626 buffer
= rcu_dereference(event
->buffer
);
3630 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3633 vmf
->page
= perf_mmap_to_page(buffer
, vmf
->pgoff
);
3637 get_page(vmf
->page
);
3638 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3639 vmf
->page
->index
= vmf
->pgoff
;
3648 static void perf_buffer_free_rcu(struct rcu_head
*rcu_head
)
3650 struct perf_buffer
*buffer
;
3652 buffer
= container_of(rcu_head
, struct perf_buffer
, rcu_head
);
3653 perf_buffer_free(buffer
);
3656 static struct perf_buffer
*perf_buffer_get(struct perf_event
*event
)
3658 struct perf_buffer
*buffer
;
3661 buffer
= rcu_dereference(event
->buffer
);
3663 if (!atomic_inc_not_zero(&buffer
->refcount
))
3671 static void perf_buffer_put(struct perf_buffer
*buffer
)
3673 if (!atomic_dec_and_test(&buffer
->refcount
))
3676 call_rcu(&buffer
->rcu_head
, perf_buffer_free_rcu
);
3679 static void perf_mmap_open(struct vm_area_struct
*vma
)
3681 struct perf_event
*event
= vma
->vm_file
->private_data
;
3683 atomic_inc(&event
->mmap_count
);
3686 static void perf_mmap_close(struct vm_area_struct
*vma
)
3688 struct perf_event
*event
= vma
->vm_file
->private_data
;
3690 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3691 unsigned long size
= perf_data_size(event
->buffer
);
3692 struct user_struct
*user
= event
->mmap_user
;
3693 struct perf_buffer
*buffer
= event
->buffer
;
3695 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3696 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
3697 rcu_assign_pointer(event
->buffer
, NULL
);
3698 mutex_unlock(&event
->mmap_mutex
);
3700 perf_buffer_put(buffer
);
3705 static const struct vm_operations_struct perf_mmap_vmops
= {
3706 .open
= perf_mmap_open
,
3707 .close
= perf_mmap_close
,
3708 .fault
= perf_mmap_fault
,
3709 .page_mkwrite
= perf_mmap_fault
,
3712 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3714 struct perf_event
*event
= file
->private_data
;
3715 unsigned long user_locked
, user_lock_limit
;
3716 struct user_struct
*user
= current_user();
3717 unsigned long locked
, lock_limit
;
3718 struct perf_buffer
*buffer
;
3719 unsigned long vma_size
;
3720 unsigned long nr_pages
;
3721 long user_extra
, extra
;
3722 int ret
= 0, flags
= 0;
3725 * Don't allow mmap() of inherited per-task counters. This would
3726 * create a performance issue due to all children writing to the
3729 if (event
->cpu
== -1 && event
->attr
.inherit
)
3732 if (!(vma
->vm_flags
& VM_SHARED
))
3735 vma_size
= vma
->vm_end
- vma
->vm_start
;
3736 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3739 * If we have buffer pages ensure they're a power-of-two number, so we
3740 * can do bitmasks instead of modulo.
3742 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3745 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3748 if (vma
->vm_pgoff
!= 0)
3751 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3752 mutex_lock(&event
->mmap_mutex
);
3753 if (event
->buffer
) {
3754 if (event
->buffer
->nr_pages
== nr_pages
)
3755 atomic_inc(&event
->buffer
->refcount
);
3761 user_extra
= nr_pages
+ 1;
3762 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3765 * Increase the limit linearly with more CPUs:
3767 user_lock_limit
*= num_online_cpus();
3769 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3772 if (user_locked
> user_lock_limit
)
3773 extra
= user_locked
- user_lock_limit
;
3775 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3776 lock_limit
>>= PAGE_SHIFT
;
3777 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3779 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3780 !capable(CAP_IPC_LOCK
)) {
3785 WARN_ON(event
->buffer
);
3787 if (vma
->vm_flags
& VM_WRITE
)
3788 flags
|= PERF_BUFFER_WRITABLE
;
3790 buffer
= perf_buffer_alloc(nr_pages
, event
->attr
.wakeup_watermark
,
3796 rcu_assign_pointer(event
->buffer
, buffer
);
3798 atomic_long_add(user_extra
, &user
->locked_vm
);
3799 event
->mmap_locked
= extra
;
3800 event
->mmap_user
= get_current_user();
3801 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3805 atomic_inc(&event
->mmap_count
);
3806 mutex_unlock(&event
->mmap_mutex
);
3808 vma
->vm_flags
|= VM_RESERVED
;
3809 vma
->vm_ops
= &perf_mmap_vmops
;
3814 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3816 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3817 struct perf_event
*event
= filp
->private_data
;
3820 mutex_lock(&inode
->i_mutex
);
3821 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3822 mutex_unlock(&inode
->i_mutex
);
3830 static const struct file_operations perf_fops
= {
3831 .llseek
= no_llseek
,
3832 .release
= perf_release
,
3835 .unlocked_ioctl
= perf_ioctl
,
3836 .compat_ioctl
= perf_ioctl
,
3838 .fasync
= perf_fasync
,
3844 * If there's data, ensure we set the poll() state and publish everything
3845 * to user-space before waking everybody up.
3848 void perf_event_wakeup(struct perf_event
*event
)
3850 wake_up_all(&event
->waitq
);
3852 if (event
->pending_kill
) {
3853 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3854 event
->pending_kill
= 0;
3858 static void perf_pending_event(struct irq_work
*entry
)
3860 struct perf_event
*event
= container_of(entry
,
3861 struct perf_event
, pending
);
3863 if (event
->pending_disable
) {
3864 event
->pending_disable
= 0;
3865 __perf_event_disable(event
);
3868 if (event
->pending_wakeup
) {
3869 event
->pending_wakeup
= 0;
3870 perf_event_wakeup(event
);
3875 * We assume there is only KVM supporting the callbacks.
3876 * Later on, we might change it to a list if there is
3877 * another virtualization implementation supporting the callbacks.
3879 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3881 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3883 perf_guest_cbs
= cbs
;
3886 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3888 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3890 perf_guest_cbs
= NULL
;
3893 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3898 static bool perf_output_space(struct perf_buffer
*buffer
, unsigned long tail
,
3899 unsigned long offset
, unsigned long head
)
3903 if (!buffer
->writable
)
3906 mask
= perf_data_size(buffer
) - 1;
3908 offset
= (offset
- tail
) & mask
;
3909 head
= (head
- tail
) & mask
;
3911 if ((int)(head
- offset
) < 0)
3917 static void perf_output_wakeup(struct perf_output_handle
*handle
)
3919 atomic_set(&handle
->buffer
->poll
, POLL_IN
);
3922 handle
->event
->pending_wakeup
= 1;
3923 irq_work_queue(&handle
->event
->pending
);
3925 perf_event_wakeup(handle
->event
);
3929 * We need to ensure a later event_id doesn't publish a head when a former
3930 * event isn't done writing. However since we need to deal with NMIs we
3931 * cannot fully serialize things.
3933 * We only publish the head (and generate a wakeup) when the outer-most
3936 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3938 struct perf_buffer
*buffer
= handle
->buffer
;
3941 local_inc(&buffer
->nest
);
3942 handle
->wakeup
= local_read(&buffer
->wakeup
);
3945 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3947 struct perf_buffer
*buffer
= handle
->buffer
;
3951 head
= local_read(&buffer
->head
);
3954 * IRQ/NMI can happen here, which means we can miss a head update.
3957 if (!local_dec_and_test(&buffer
->nest
))
3961 * Publish the known good head. Rely on the full barrier implied
3962 * by atomic_dec_and_test() order the buffer->head read and this
3965 buffer
->user_page
->data_head
= head
;
3968 * Now check if we missed an update, rely on the (compiler)
3969 * barrier in atomic_dec_and_test() to re-read buffer->head.
3971 if (unlikely(head
!= local_read(&buffer
->head
))) {
3972 local_inc(&buffer
->nest
);
3976 if (handle
->wakeup
!= local_read(&buffer
->wakeup
))
3977 perf_output_wakeup(handle
);
3983 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3984 const void *buf
, unsigned int len
)
3987 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3989 memcpy(handle
->addr
, buf
, size
);
3992 handle
->addr
+= size
;
3994 handle
->size
-= size
;
3995 if (!handle
->size
) {
3996 struct perf_buffer
*buffer
= handle
->buffer
;
3999 handle
->page
&= buffer
->nr_pages
- 1;
4000 handle
->addr
= buffer
->data_pages
[handle
->page
];
4001 handle
->size
= PAGE_SIZE
<< page_order(buffer
);
4006 static void __perf_event_header__init_id(struct perf_event_header
*header
,
4007 struct perf_sample_data
*data
,
4008 struct perf_event
*event
)
4010 u64 sample_type
= event
->attr
.sample_type
;
4012 data
->type
= sample_type
;
4013 header
->size
+= event
->id_header_size
;
4015 if (sample_type
& PERF_SAMPLE_TID
) {
4016 /* namespace issues */
4017 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
4018 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
4021 if (sample_type
& PERF_SAMPLE_TIME
)
4022 data
->time
= perf_clock();
4024 if (sample_type
& PERF_SAMPLE_ID
)
4025 data
->id
= primary_event_id(event
);
4027 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4028 data
->stream_id
= event
->id
;
4030 if (sample_type
& PERF_SAMPLE_CPU
) {
4031 data
->cpu_entry
.cpu
= raw_smp_processor_id();
4032 data
->cpu_entry
.reserved
= 0;
4036 static void perf_event_header__init_id(struct perf_event_header
*header
,
4037 struct perf_sample_data
*data
,
4038 struct perf_event
*event
)
4040 if (event
->attr
.sample_id_all
)
4041 __perf_event_header__init_id(header
, data
, event
);
4044 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
4045 struct perf_sample_data
*data
)
4047 u64 sample_type
= data
->type
;
4049 if (sample_type
& PERF_SAMPLE_TID
)
4050 perf_output_put(handle
, data
->tid_entry
);
4052 if (sample_type
& PERF_SAMPLE_TIME
)
4053 perf_output_put(handle
, data
->time
);
4055 if (sample_type
& PERF_SAMPLE_ID
)
4056 perf_output_put(handle
, data
->id
);
4058 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4059 perf_output_put(handle
, data
->stream_id
);
4061 if (sample_type
& PERF_SAMPLE_CPU
)
4062 perf_output_put(handle
, data
->cpu_entry
);
4065 static void perf_event__output_id_sample(struct perf_event
*event
,
4066 struct perf_output_handle
*handle
,
4067 struct perf_sample_data
*sample
)
4069 if (event
->attr
.sample_id_all
)
4070 __perf_event__output_id_sample(handle
, sample
);
4073 int perf_output_begin(struct perf_output_handle
*handle
,
4074 struct perf_event
*event
, unsigned int size
,
4075 int nmi
, int sample
)
4077 struct perf_buffer
*buffer
;
4078 unsigned long tail
, offset
, head
;
4080 struct perf_sample_data sample_data
;
4082 struct perf_event_header header
;
4089 * For inherited events we send all the output towards the parent.
4092 event
= event
->parent
;
4094 buffer
= rcu_dereference(event
->buffer
);
4098 handle
->buffer
= buffer
;
4099 handle
->event
= event
;
4101 handle
->sample
= sample
;
4103 if (!buffer
->nr_pages
)
4106 have_lost
= local_read(&buffer
->lost
);
4108 lost_event
.header
.size
= sizeof(lost_event
);
4109 perf_event_header__init_id(&lost_event
.header
, &sample_data
,
4111 size
+= lost_event
.header
.size
;
4114 perf_output_get_handle(handle
);
4118 * Userspace could choose to issue a mb() before updating the
4119 * tail pointer. So that all reads will be completed before the
4122 tail
= ACCESS_ONCE(buffer
->user_page
->data_tail
);
4124 offset
= head
= local_read(&buffer
->head
);
4126 if (unlikely(!perf_output_space(buffer
, tail
, offset
, head
)))
4128 } while (local_cmpxchg(&buffer
->head
, offset
, head
) != offset
);
4130 if (head
- local_read(&buffer
->wakeup
) > buffer
->watermark
)
4131 local_add(buffer
->watermark
, &buffer
->wakeup
);
4133 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(buffer
));
4134 handle
->page
&= buffer
->nr_pages
- 1;
4135 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(buffer
)) - 1);
4136 handle
->addr
= buffer
->data_pages
[handle
->page
];
4137 handle
->addr
+= handle
->size
;
4138 handle
->size
= (PAGE_SIZE
<< page_order(buffer
)) - handle
->size
;
4141 lost_event
.header
.type
= PERF_RECORD_LOST
;
4142 lost_event
.header
.misc
= 0;
4143 lost_event
.id
= event
->id
;
4144 lost_event
.lost
= local_xchg(&buffer
->lost
, 0);
4146 perf_output_put(handle
, lost_event
);
4147 perf_event__output_id_sample(event
, handle
, &sample_data
);
4153 local_inc(&buffer
->lost
);
4154 perf_output_put_handle(handle
);
4161 void perf_output_end(struct perf_output_handle
*handle
)
4163 struct perf_event
*event
= handle
->event
;
4164 struct perf_buffer
*buffer
= handle
->buffer
;
4166 int wakeup_events
= event
->attr
.wakeup_events
;
4168 if (handle
->sample
&& wakeup_events
) {
4169 int events
= local_inc_return(&buffer
->events
);
4170 if (events
>= wakeup_events
) {
4171 local_sub(wakeup_events
, &buffer
->events
);
4172 local_inc(&buffer
->wakeup
);
4176 perf_output_put_handle(handle
);
4180 static void perf_output_read_one(struct perf_output_handle
*handle
,
4181 struct perf_event
*event
,
4182 u64 enabled
, u64 running
)
4184 u64 read_format
= event
->attr
.read_format
;
4188 values
[n
++] = perf_event_count(event
);
4189 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4190 values
[n
++] = enabled
+
4191 atomic64_read(&event
->child_total_time_enabled
);
4193 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4194 values
[n
++] = running
+
4195 atomic64_read(&event
->child_total_time_running
);
4197 if (read_format
& PERF_FORMAT_ID
)
4198 values
[n
++] = primary_event_id(event
);
4200 perf_output_copy(handle
, values
, n
* sizeof(u64
));
4204 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4206 static void perf_output_read_group(struct perf_output_handle
*handle
,
4207 struct perf_event
*event
,
4208 u64 enabled
, u64 running
)
4210 struct perf_event
*leader
= event
->group_leader
, *sub
;
4211 u64 read_format
= event
->attr
.read_format
;
4215 values
[n
++] = 1 + leader
->nr_siblings
;
4217 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4218 values
[n
++] = enabled
;
4220 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4221 values
[n
++] = running
;
4223 if (leader
!= event
)
4224 leader
->pmu
->read(leader
);
4226 values
[n
++] = perf_event_count(leader
);
4227 if (read_format
& PERF_FORMAT_ID
)
4228 values
[n
++] = primary_event_id(leader
);
4230 perf_output_copy(handle
, values
, n
* sizeof(u64
));
4232 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4236 sub
->pmu
->read(sub
);
4238 values
[n
++] = perf_event_count(sub
);
4239 if (read_format
& PERF_FORMAT_ID
)
4240 values
[n
++] = primary_event_id(sub
);
4242 perf_output_copy(handle
, values
, n
* sizeof(u64
));
4246 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4247 PERF_FORMAT_TOTAL_TIME_RUNNING)
4249 static void perf_output_read(struct perf_output_handle
*handle
,
4250 struct perf_event
*event
)
4252 u64 enabled
= 0, running
= 0, now
, ctx_time
;
4253 u64 read_format
= event
->attr
.read_format
;
4256 * compute total_time_enabled, total_time_running
4257 * based on snapshot values taken when the event
4258 * was last scheduled in.
4260 * we cannot simply called update_context_time()
4261 * because of locking issue as we are called in
4264 if (read_format
& PERF_FORMAT_TOTAL_TIMES
) {
4266 ctx_time
= event
->shadow_ctx_time
+ now
;
4267 enabled
= ctx_time
- event
->tstamp_enabled
;
4268 running
= ctx_time
- event
->tstamp_running
;
4271 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
4272 perf_output_read_group(handle
, event
, enabled
, running
);
4274 perf_output_read_one(handle
, event
, enabled
, running
);
4277 void perf_output_sample(struct perf_output_handle
*handle
,
4278 struct perf_event_header
*header
,
4279 struct perf_sample_data
*data
,
4280 struct perf_event
*event
)
4282 u64 sample_type
= data
->type
;
4284 perf_output_put(handle
, *header
);
4286 if (sample_type
& PERF_SAMPLE_IP
)
4287 perf_output_put(handle
, data
->ip
);
4289 if (sample_type
& PERF_SAMPLE_TID
)
4290 perf_output_put(handle
, data
->tid_entry
);
4292 if (sample_type
& PERF_SAMPLE_TIME
)
4293 perf_output_put(handle
, data
->time
);
4295 if (sample_type
& PERF_SAMPLE_ADDR
)
4296 perf_output_put(handle
, data
->addr
);
4298 if (sample_type
& PERF_SAMPLE_ID
)
4299 perf_output_put(handle
, data
->id
);
4301 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4302 perf_output_put(handle
, data
->stream_id
);
4304 if (sample_type
& PERF_SAMPLE_CPU
)
4305 perf_output_put(handle
, data
->cpu_entry
);
4307 if (sample_type
& PERF_SAMPLE_PERIOD
)
4308 perf_output_put(handle
, data
->period
);
4310 if (sample_type
& PERF_SAMPLE_READ
)
4311 perf_output_read(handle
, event
);
4313 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4314 if (data
->callchain
) {
4317 if (data
->callchain
)
4318 size
+= data
->callchain
->nr
;
4320 size
*= sizeof(u64
);
4322 perf_output_copy(handle
, data
->callchain
, size
);
4325 perf_output_put(handle
, nr
);
4329 if (sample_type
& PERF_SAMPLE_RAW
) {
4331 perf_output_put(handle
, data
->raw
->size
);
4332 perf_output_copy(handle
, data
->raw
->data
,
4339 .size
= sizeof(u32
),
4342 perf_output_put(handle
, raw
);
4347 void perf_prepare_sample(struct perf_event_header
*header
,
4348 struct perf_sample_data
*data
,
4349 struct perf_event
*event
,
4350 struct pt_regs
*regs
)
4352 u64 sample_type
= event
->attr
.sample_type
;
4354 header
->type
= PERF_RECORD_SAMPLE
;
4355 header
->size
= sizeof(*header
) + event
->header_size
;
4358 header
->misc
|= perf_misc_flags(regs
);
4360 __perf_event_header__init_id(header
, data
, event
);
4362 if (sample_type
& PERF_SAMPLE_IP
)
4363 data
->ip
= perf_instruction_pointer(regs
);
4365 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4368 data
->callchain
= perf_callchain(regs
);
4370 if (data
->callchain
)
4371 size
+= data
->callchain
->nr
;
4373 header
->size
+= size
* sizeof(u64
);
4376 if (sample_type
& PERF_SAMPLE_RAW
) {
4377 int size
= sizeof(u32
);
4380 size
+= data
->raw
->size
;
4382 size
+= sizeof(u32
);
4384 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
4385 header
->size
+= size
;
4389 static void perf_event_output(struct perf_event
*event
, int nmi
,
4390 struct perf_sample_data
*data
,
4391 struct pt_regs
*regs
)
4393 struct perf_output_handle handle
;
4394 struct perf_event_header header
;
4396 /* protect the callchain buffers */
4399 perf_prepare_sample(&header
, data
, event
, regs
);
4401 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
4404 perf_output_sample(&handle
, &header
, data
, event
);
4406 perf_output_end(&handle
);
4416 struct perf_read_event
{
4417 struct perf_event_header header
;
4424 perf_event_read_event(struct perf_event
*event
,
4425 struct task_struct
*task
)
4427 struct perf_output_handle handle
;
4428 struct perf_sample_data sample
;
4429 struct perf_read_event read_event
= {
4431 .type
= PERF_RECORD_READ
,
4433 .size
= sizeof(read_event
) + event
->read_size
,
4435 .pid
= perf_event_pid(event
, task
),
4436 .tid
= perf_event_tid(event
, task
),
4440 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
4441 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
4445 perf_output_put(&handle
, read_event
);
4446 perf_output_read(&handle
, event
);
4447 perf_event__output_id_sample(event
, &handle
, &sample
);
4449 perf_output_end(&handle
);
4453 * task tracking -- fork/exit
4455 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4458 struct perf_task_event
{
4459 struct task_struct
*task
;
4460 struct perf_event_context
*task_ctx
;
4463 struct perf_event_header header
;
4473 static void perf_event_task_output(struct perf_event
*event
,
4474 struct perf_task_event
*task_event
)
4476 struct perf_output_handle handle
;
4477 struct perf_sample_data sample
;
4478 struct task_struct
*task
= task_event
->task
;
4479 int ret
, size
= task_event
->event_id
.header
.size
;
4481 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
4483 ret
= perf_output_begin(&handle
, event
,
4484 task_event
->event_id
.header
.size
, 0, 0);
4488 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
4489 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
4491 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
4492 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
4494 perf_output_put(&handle
, task_event
->event_id
);
4496 perf_event__output_id_sample(event
, &handle
, &sample
);
4498 perf_output_end(&handle
);
4500 task_event
->event_id
.header
.size
= size
;
4503 static int perf_event_task_match(struct perf_event
*event
)
4505 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4508 if (!event_filter_match(event
))
4511 if (event
->attr
.comm
|| event
->attr
.mmap
||
4512 event
->attr
.mmap_data
|| event
->attr
.task
)
4518 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
4519 struct perf_task_event
*task_event
)
4521 struct perf_event
*event
;
4523 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4524 if (perf_event_task_match(event
))
4525 perf_event_task_output(event
, task_event
);
4529 static void perf_event_task_event(struct perf_task_event
*task_event
)
4531 struct perf_cpu_context
*cpuctx
;
4532 struct perf_event_context
*ctx
;
4537 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4538 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4539 if (cpuctx
->active_pmu
!= pmu
)
4541 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
4543 ctx
= task_event
->task_ctx
;
4545 ctxn
= pmu
->task_ctx_nr
;
4548 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4551 perf_event_task_ctx(ctx
, task_event
);
4553 put_cpu_ptr(pmu
->pmu_cpu_context
);
4558 static void perf_event_task(struct task_struct
*task
,
4559 struct perf_event_context
*task_ctx
,
4562 struct perf_task_event task_event
;
4564 if (!atomic_read(&nr_comm_events
) &&
4565 !atomic_read(&nr_mmap_events
) &&
4566 !atomic_read(&nr_task_events
))
4569 task_event
= (struct perf_task_event
){
4571 .task_ctx
= task_ctx
,
4574 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
4576 .size
= sizeof(task_event
.event_id
),
4582 .time
= perf_clock(),
4586 perf_event_task_event(&task_event
);
4589 void perf_event_fork(struct task_struct
*task
)
4591 perf_event_task(task
, NULL
, 1);
4598 struct perf_comm_event
{
4599 struct task_struct
*task
;
4604 struct perf_event_header header
;
4611 static void perf_event_comm_output(struct perf_event
*event
,
4612 struct perf_comm_event
*comm_event
)
4614 struct perf_output_handle handle
;
4615 struct perf_sample_data sample
;
4616 int size
= comm_event
->event_id
.header
.size
;
4619 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4620 ret
= perf_output_begin(&handle
, event
,
4621 comm_event
->event_id
.header
.size
, 0, 0);
4626 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4627 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4629 perf_output_put(&handle
, comm_event
->event_id
);
4630 perf_output_copy(&handle
, comm_event
->comm
,
4631 comm_event
->comm_size
);
4633 perf_event__output_id_sample(event
, &handle
, &sample
);
4635 perf_output_end(&handle
);
4637 comm_event
->event_id
.header
.size
= size
;
4640 static int perf_event_comm_match(struct perf_event
*event
)
4642 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4645 if (!event_filter_match(event
))
4648 if (event
->attr
.comm
)
4654 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4655 struct perf_comm_event
*comm_event
)
4657 struct perf_event
*event
;
4659 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4660 if (perf_event_comm_match(event
))
4661 perf_event_comm_output(event
, comm_event
);
4665 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4667 struct perf_cpu_context
*cpuctx
;
4668 struct perf_event_context
*ctx
;
4669 char comm
[TASK_COMM_LEN
];
4674 memset(comm
, 0, sizeof(comm
));
4675 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4676 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4678 comm_event
->comm
= comm
;
4679 comm_event
->comm_size
= size
;
4681 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4683 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4684 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4685 if (cpuctx
->active_pmu
!= pmu
)
4687 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4689 ctxn
= pmu
->task_ctx_nr
;
4693 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4695 perf_event_comm_ctx(ctx
, comm_event
);
4697 put_cpu_ptr(pmu
->pmu_cpu_context
);
4702 void perf_event_comm(struct task_struct
*task
)
4704 struct perf_comm_event comm_event
;
4705 struct perf_event_context
*ctx
;
4708 for_each_task_context_nr(ctxn
) {
4709 ctx
= task
->perf_event_ctxp
[ctxn
];
4713 perf_event_enable_on_exec(ctx
);
4716 if (!atomic_read(&nr_comm_events
))
4719 comm_event
= (struct perf_comm_event
){
4725 .type
= PERF_RECORD_COMM
,
4734 perf_event_comm_event(&comm_event
);
4741 struct perf_mmap_event
{
4742 struct vm_area_struct
*vma
;
4744 const char *file_name
;
4748 struct perf_event_header header
;
4758 static void perf_event_mmap_output(struct perf_event
*event
,
4759 struct perf_mmap_event
*mmap_event
)
4761 struct perf_output_handle handle
;
4762 struct perf_sample_data sample
;
4763 int size
= mmap_event
->event_id
.header
.size
;
4766 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4767 ret
= perf_output_begin(&handle
, event
,
4768 mmap_event
->event_id
.header
.size
, 0, 0);
4772 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4773 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4775 perf_output_put(&handle
, mmap_event
->event_id
);
4776 perf_output_copy(&handle
, mmap_event
->file_name
,
4777 mmap_event
->file_size
);
4779 perf_event__output_id_sample(event
, &handle
, &sample
);
4781 perf_output_end(&handle
);
4783 mmap_event
->event_id
.header
.size
= size
;
4786 static int perf_event_mmap_match(struct perf_event
*event
,
4787 struct perf_mmap_event
*mmap_event
,
4790 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4793 if (!event_filter_match(event
))
4796 if ((!executable
&& event
->attr
.mmap_data
) ||
4797 (executable
&& event
->attr
.mmap
))
4803 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4804 struct perf_mmap_event
*mmap_event
,
4807 struct perf_event
*event
;
4809 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4810 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4811 perf_event_mmap_output(event
, mmap_event
);
4815 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4817 struct perf_cpu_context
*cpuctx
;
4818 struct perf_event_context
*ctx
;
4819 struct vm_area_struct
*vma
= mmap_event
->vma
;
4820 struct file
*file
= vma
->vm_file
;
4828 memset(tmp
, 0, sizeof(tmp
));
4832 * d_path works from the end of the buffer backwards, so we
4833 * need to add enough zero bytes after the string to handle
4834 * the 64bit alignment we do later.
4836 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4838 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4841 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4843 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4847 if (arch_vma_name(mmap_event
->vma
)) {
4848 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4854 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4856 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4857 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4858 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4860 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4861 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4862 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4866 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4871 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4873 mmap_event
->file_name
= name
;
4874 mmap_event
->file_size
= size
;
4876 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4879 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4880 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4881 if (cpuctx
->active_pmu
!= pmu
)
4883 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4884 vma
->vm_flags
& VM_EXEC
);
4886 ctxn
= pmu
->task_ctx_nr
;
4890 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4892 perf_event_mmap_ctx(ctx
, mmap_event
,
4893 vma
->vm_flags
& VM_EXEC
);
4896 put_cpu_ptr(pmu
->pmu_cpu_context
);
4903 void perf_event_mmap(struct vm_area_struct
*vma
)
4905 struct perf_mmap_event mmap_event
;
4907 if (!atomic_read(&nr_mmap_events
))
4910 mmap_event
= (struct perf_mmap_event
){
4916 .type
= PERF_RECORD_MMAP
,
4917 .misc
= PERF_RECORD_MISC_USER
,
4922 .start
= vma
->vm_start
,
4923 .len
= vma
->vm_end
- vma
->vm_start
,
4924 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4928 perf_event_mmap_event(&mmap_event
);
4932 * IRQ throttle logging
4935 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4937 struct perf_output_handle handle
;
4938 struct perf_sample_data sample
;
4942 struct perf_event_header header
;
4946 } throttle_event
= {
4948 .type
= PERF_RECORD_THROTTLE
,
4950 .size
= sizeof(throttle_event
),
4952 .time
= perf_clock(),
4953 .id
= primary_event_id(event
),
4954 .stream_id
= event
->id
,
4958 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4960 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4962 ret
= perf_output_begin(&handle
, event
,
4963 throttle_event
.header
.size
, 1, 0);
4967 perf_output_put(&handle
, throttle_event
);
4968 perf_event__output_id_sample(event
, &handle
, &sample
);
4969 perf_output_end(&handle
);
4973 * Generic event overflow handling, sampling.
4976 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
4977 int throttle
, struct perf_sample_data
*data
,
4978 struct pt_regs
*regs
)
4980 int events
= atomic_read(&event
->event_limit
);
4981 struct hw_perf_event
*hwc
= &event
->hw
;
4985 * Non-sampling counters might still use the PMI to fold short
4986 * hardware counters, ignore those.
4988 if (unlikely(!is_sampling_event(event
)))
4991 if (unlikely(hwc
->interrupts
>= max_samples_per_tick
)) {
4993 hwc
->interrupts
= MAX_INTERRUPTS
;
4994 perf_log_throttle(event
, 0);
5000 if (event
->attr
.freq
) {
5001 u64 now
= perf_clock();
5002 s64 delta
= now
- hwc
->freq_time_stamp
;
5004 hwc
->freq_time_stamp
= now
;
5006 if (delta
> 0 && delta
< 2*TICK_NSEC
)
5007 perf_adjust_period(event
, delta
, hwc
->last_period
);
5011 * XXX event_limit might not quite work as expected on inherited
5015 event
->pending_kill
= POLL_IN
;
5016 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
5018 event
->pending_kill
= POLL_HUP
;
5020 event
->pending_disable
= 1;
5021 irq_work_queue(&event
->pending
);
5023 perf_event_disable(event
);
5026 if (event
->overflow_handler
)
5027 event
->overflow_handler(event
, nmi
, data
, regs
);
5029 perf_event_output(event
, nmi
, data
, regs
);
5031 if (event
->fasync
&& event
->pending_kill
) {
5033 event
->pending_wakeup
= 1;
5034 irq_work_queue(&event
->pending
);
5036 perf_event_wakeup(event
);
5042 int perf_event_overflow(struct perf_event
*event
, int nmi
,
5043 struct perf_sample_data
*data
,
5044 struct pt_regs
*regs
)
5046 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
5050 * Generic software event infrastructure
5053 struct swevent_htable
{
5054 struct swevent_hlist
*swevent_hlist
;
5055 struct mutex hlist_mutex
;
5058 /* Recursion avoidance in each contexts */
5059 int recursion
[PERF_NR_CONTEXTS
];
5062 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
5065 * We directly increment event->count and keep a second value in
5066 * event->hw.period_left to count intervals. This period event
5067 * is kept in the range [-sample_period, 0] so that we can use the
5071 static u64
perf_swevent_set_period(struct perf_event
*event
)
5073 struct hw_perf_event
*hwc
= &event
->hw
;
5074 u64 period
= hwc
->last_period
;
5078 hwc
->last_period
= hwc
->sample_period
;
5081 old
= val
= local64_read(&hwc
->period_left
);
5085 nr
= div64_u64(period
+ val
, period
);
5086 offset
= nr
* period
;
5088 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
5094 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
5095 int nmi
, struct perf_sample_data
*data
,
5096 struct pt_regs
*regs
)
5098 struct hw_perf_event
*hwc
= &event
->hw
;
5101 data
->period
= event
->hw
.last_period
;
5103 overflow
= perf_swevent_set_period(event
);
5105 if (hwc
->interrupts
== MAX_INTERRUPTS
)
5108 for (; overflow
; overflow
--) {
5109 if (__perf_event_overflow(event
, nmi
, throttle
,
5112 * We inhibit the overflow from happening when
5113 * hwc->interrupts == MAX_INTERRUPTS.
5121 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
5122 int nmi
, struct perf_sample_data
*data
,
5123 struct pt_regs
*regs
)
5125 struct hw_perf_event
*hwc
= &event
->hw
;
5127 local64_add(nr
, &event
->count
);
5132 if (!is_sampling_event(event
))
5135 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
5136 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
5138 if (local64_add_negative(nr
, &hwc
->period_left
))
5141 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
5144 static int perf_exclude_event(struct perf_event
*event
,
5145 struct pt_regs
*regs
)
5147 if (event
->hw
.state
& PERF_HES_STOPPED
)
5151 if (event
->attr
.exclude_user
&& user_mode(regs
))
5154 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
5161 static int perf_swevent_match(struct perf_event
*event
,
5162 enum perf_type_id type
,
5164 struct perf_sample_data
*data
,
5165 struct pt_regs
*regs
)
5167 if (event
->attr
.type
!= type
)
5170 if (event
->attr
.config
!= event_id
)
5173 if (perf_exclude_event(event
, regs
))
5179 static inline u64
swevent_hash(u64 type
, u32 event_id
)
5181 u64 val
= event_id
| (type
<< 32);
5183 return hash_64(val
, SWEVENT_HLIST_BITS
);
5186 static inline struct hlist_head
*
5187 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
5189 u64 hash
= swevent_hash(type
, event_id
);
5191 return &hlist
->heads
[hash
];
5194 /* For the read side: events when they trigger */
5195 static inline struct hlist_head
*
5196 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
5198 struct swevent_hlist
*hlist
;
5200 hlist
= rcu_dereference(swhash
->swevent_hlist
);
5204 return __find_swevent_head(hlist
, type
, event_id
);
5207 /* For the event head insertion and removal in the hlist */
5208 static inline struct hlist_head
*
5209 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
5211 struct swevent_hlist
*hlist
;
5212 u32 event_id
= event
->attr
.config
;
5213 u64 type
= event
->attr
.type
;
5216 * Event scheduling is always serialized against hlist allocation
5217 * and release. Which makes the protected version suitable here.
5218 * The context lock guarantees that.
5220 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
5221 lockdep_is_held(&event
->ctx
->lock
));
5225 return __find_swevent_head(hlist
, type
, event_id
);
5228 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
5230 struct perf_sample_data
*data
,
5231 struct pt_regs
*regs
)
5233 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5234 struct perf_event
*event
;
5235 struct hlist_node
*node
;
5236 struct hlist_head
*head
;
5239 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
5243 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5244 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
5245 perf_swevent_event(event
, nr
, nmi
, data
, regs
);
5251 int perf_swevent_get_recursion_context(void)
5253 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5255 return get_recursion_context(swhash
->recursion
);
5257 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
5259 inline void perf_swevent_put_recursion_context(int rctx
)
5261 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5263 put_recursion_context(swhash
->recursion
, rctx
);
5266 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
5267 struct pt_regs
*regs
, u64 addr
)
5269 struct perf_sample_data data
;
5272 preempt_disable_notrace();
5273 rctx
= perf_swevent_get_recursion_context();
5277 perf_sample_data_init(&data
, addr
);
5279 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
5281 perf_swevent_put_recursion_context(rctx
);
5282 preempt_enable_notrace();
5285 static void perf_swevent_read(struct perf_event
*event
)
5289 static int perf_swevent_add(struct perf_event
*event
, int flags
)
5291 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
5292 struct hw_perf_event
*hwc
= &event
->hw
;
5293 struct hlist_head
*head
;
5295 if (is_sampling_event(event
)) {
5296 hwc
->last_period
= hwc
->sample_period
;
5297 perf_swevent_set_period(event
);
5300 hwc
->state
= !(flags
& PERF_EF_START
);
5302 head
= find_swevent_head(swhash
, event
);
5303 if (WARN_ON_ONCE(!head
))
5306 hlist_add_head_rcu(&event
->hlist_entry
, head
);
5311 static void perf_swevent_del(struct perf_event
*event
, int flags
)
5313 hlist_del_rcu(&event
->hlist_entry
);
5316 static void perf_swevent_start(struct perf_event
*event
, int flags
)
5318 event
->hw
.state
= 0;
5321 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
5323 event
->hw
.state
= PERF_HES_STOPPED
;
5326 /* Deref the hlist from the update side */
5327 static inline struct swevent_hlist
*
5328 swevent_hlist_deref(struct swevent_htable
*swhash
)
5330 return rcu_dereference_protected(swhash
->swevent_hlist
,
5331 lockdep_is_held(&swhash
->hlist_mutex
));
5334 static void swevent_hlist_release(struct swevent_htable
*swhash
)
5336 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
5341 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
5342 kfree_rcu(hlist
, rcu_head
);
5345 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
5347 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5349 mutex_lock(&swhash
->hlist_mutex
);
5351 if (!--swhash
->hlist_refcount
)
5352 swevent_hlist_release(swhash
);
5354 mutex_unlock(&swhash
->hlist_mutex
);
5357 static void swevent_hlist_put(struct perf_event
*event
)
5361 if (event
->cpu
!= -1) {
5362 swevent_hlist_put_cpu(event
, event
->cpu
);
5366 for_each_possible_cpu(cpu
)
5367 swevent_hlist_put_cpu(event
, cpu
);
5370 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
5372 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5375 mutex_lock(&swhash
->hlist_mutex
);
5377 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
5378 struct swevent_hlist
*hlist
;
5380 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5385 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
5387 swhash
->hlist_refcount
++;
5389 mutex_unlock(&swhash
->hlist_mutex
);
5394 static int swevent_hlist_get(struct perf_event
*event
)
5397 int cpu
, failed_cpu
;
5399 if (event
->cpu
!= -1)
5400 return swevent_hlist_get_cpu(event
, event
->cpu
);
5403 for_each_possible_cpu(cpu
) {
5404 err
= swevent_hlist_get_cpu(event
, cpu
);
5414 for_each_possible_cpu(cpu
) {
5415 if (cpu
== failed_cpu
)
5417 swevent_hlist_put_cpu(event
, cpu
);
5424 struct jump_label_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
5426 static void sw_perf_event_destroy(struct perf_event
*event
)
5428 u64 event_id
= event
->attr
.config
;
5430 WARN_ON(event
->parent
);
5432 jump_label_dec(&perf_swevent_enabled
[event_id
]);
5433 swevent_hlist_put(event
);
5436 static int perf_swevent_init(struct perf_event
*event
)
5438 int event_id
= event
->attr
.config
;
5440 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5444 case PERF_COUNT_SW_CPU_CLOCK
:
5445 case PERF_COUNT_SW_TASK_CLOCK
:
5452 if (event_id
>= PERF_COUNT_SW_MAX
)
5455 if (!event
->parent
) {
5458 err
= swevent_hlist_get(event
);
5462 jump_label_inc(&perf_swevent_enabled
[event_id
]);
5463 event
->destroy
= sw_perf_event_destroy
;
5469 static struct pmu perf_swevent
= {
5470 .task_ctx_nr
= perf_sw_context
,
5472 .event_init
= perf_swevent_init
,
5473 .add
= perf_swevent_add
,
5474 .del
= perf_swevent_del
,
5475 .start
= perf_swevent_start
,
5476 .stop
= perf_swevent_stop
,
5477 .read
= perf_swevent_read
,
5480 #ifdef CONFIG_EVENT_TRACING
5482 static int perf_tp_filter_match(struct perf_event
*event
,
5483 struct perf_sample_data
*data
)
5485 void *record
= data
->raw
->data
;
5487 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
5492 static int perf_tp_event_match(struct perf_event
*event
,
5493 struct perf_sample_data
*data
,
5494 struct pt_regs
*regs
)
5496 if (event
->hw
.state
& PERF_HES_STOPPED
)
5499 * All tracepoints are from kernel-space.
5501 if (event
->attr
.exclude_kernel
)
5504 if (!perf_tp_filter_match(event
, data
))
5510 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
5511 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
5513 struct perf_sample_data data
;
5514 struct perf_event
*event
;
5515 struct hlist_node
*node
;
5517 struct perf_raw_record raw
= {
5522 perf_sample_data_init(&data
, addr
);
5525 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5526 if (perf_tp_event_match(event
, &data
, regs
))
5527 perf_swevent_event(event
, count
, 1, &data
, regs
);
5530 perf_swevent_put_recursion_context(rctx
);
5532 EXPORT_SYMBOL_GPL(perf_tp_event
);
5534 static void tp_perf_event_destroy(struct perf_event
*event
)
5536 perf_trace_destroy(event
);
5539 static int perf_tp_event_init(struct perf_event
*event
)
5543 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5546 err
= perf_trace_init(event
);
5550 event
->destroy
= tp_perf_event_destroy
;
5555 static struct pmu perf_tracepoint
= {
5556 .task_ctx_nr
= perf_sw_context
,
5558 .event_init
= perf_tp_event_init
,
5559 .add
= perf_trace_add
,
5560 .del
= perf_trace_del
,
5561 .start
= perf_swevent_start
,
5562 .stop
= perf_swevent_stop
,
5563 .read
= perf_swevent_read
,
5566 static inline void perf_tp_register(void)
5568 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
5571 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5576 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5579 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5580 if (IS_ERR(filter_str
))
5581 return PTR_ERR(filter_str
);
5583 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5589 static void perf_event_free_filter(struct perf_event
*event
)
5591 ftrace_profile_free_filter(event
);
5596 static inline void perf_tp_register(void)
5600 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5605 static void perf_event_free_filter(struct perf_event
*event
)
5609 #endif /* CONFIG_EVENT_TRACING */
5611 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5612 void perf_bp_event(struct perf_event
*bp
, void *data
)
5614 struct perf_sample_data sample
;
5615 struct pt_regs
*regs
= data
;
5617 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
5619 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5620 perf_swevent_event(bp
, 1, 1, &sample
, regs
);
5625 * hrtimer based swevent callback
5628 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5630 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5631 struct perf_sample_data data
;
5632 struct pt_regs
*regs
;
5633 struct perf_event
*event
;
5636 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5638 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5639 return HRTIMER_NORESTART
;
5641 event
->pmu
->read(event
);
5643 perf_sample_data_init(&data
, 0);
5644 data
.period
= event
->hw
.last_period
;
5645 regs
= get_irq_regs();
5647 if (regs
&& !perf_exclude_event(event
, regs
)) {
5648 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
5649 if (perf_event_overflow(event
, 0, &data
, regs
))
5650 ret
= HRTIMER_NORESTART
;
5653 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5654 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5659 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5661 struct hw_perf_event
*hwc
= &event
->hw
;
5664 if (!is_sampling_event(event
))
5667 period
= local64_read(&hwc
->period_left
);
5672 local64_set(&hwc
->period_left
, 0);
5674 period
= max_t(u64
, 10000, hwc
->sample_period
);
5676 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5677 ns_to_ktime(period
), 0,
5678 HRTIMER_MODE_REL_PINNED
, 0);
5681 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5683 struct hw_perf_event
*hwc
= &event
->hw
;
5685 if (is_sampling_event(event
)) {
5686 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5687 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5689 hrtimer_cancel(&hwc
->hrtimer
);
5693 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
5695 struct hw_perf_event
*hwc
= &event
->hw
;
5697 if (!is_sampling_event(event
))
5700 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5701 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5704 * Since hrtimers have a fixed rate, we can do a static freq->period
5705 * mapping and avoid the whole period adjust feedback stuff.
5707 if (event
->attr
.freq
) {
5708 long freq
= event
->attr
.sample_freq
;
5710 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
5711 hwc
->sample_period
= event
->attr
.sample_period
;
5712 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5713 event
->attr
.freq
= 0;
5718 * Software event: cpu wall time clock
5721 static void cpu_clock_event_update(struct perf_event
*event
)
5726 now
= local_clock();
5727 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5728 local64_add(now
- prev
, &event
->count
);
5731 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5733 local64_set(&event
->hw
.prev_count
, local_clock());
5734 perf_swevent_start_hrtimer(event
);
5737 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5739 perf_swevent_cancel_hrtimer(event
);
5740 cpu_clock_event_update(event
);
5743 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5745 if (flags
& PERF_EF_START
)
5746 cpu_clock_event_start(event
, flags
);
5751 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5753 cpu_clock_event_stop(event
, flags
);
5756 static void cpu_clock_event_read(struct perf_event
*event
)
5758 cpu_clock_event_update(event
);
5761 static int cpu_clock_event_init(struct perf_event
*event
)
5763 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5766 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5769 perf_swevent_init_hrtimer(event
);
5774 static struct pmu perf_cpu_clock
= {
5775 .task_ctx_nr
= perf_sw_context
,
5777 .event_init
= cpu_clock_event_init
,
5778 .add
= cpu_clock_event_add
,
5779 .del
= cpu_clock_event_del
,
5780 .start
= cpu_clock_event_start
,
5781 .stop
= cpu_clock_event_stop
,
5782 .read
= cpu_clock_event_read
,
5786 * Software event: task time clock
5789 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5794 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5796 local64_add(delta
, &event
->count
);
5799 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5801 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5802 perf_swevent_start_hrtimer(event
);
5805 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5807 perf_swevent_cancel_hrtimer(event
);
5808 task_clock_event_update(event
, event
->ctx
->time
);
5811 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5813 if (flags
& PERF_EF_START
)
5814 task_clock_event_start(event
, flags
);
5819 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5821 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5824 static void task_clock_event_read(struct perf_event
*event
)
5826 u64 now
= perf_clock();
5827 u64 delta
= now
- event
->ctx
->timestamp
;
5828 u64 time
= event
->ctx
->time
+ delta
;
5830 task_clock_event_update(event
, time
);
5833 static int task_clock_event_init(struct perf_event
*event
)
5835 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5838 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5841 perf_swevent_init_hrtimer(event
);
5846 static struct pmu perf_task_clock
= {
5847 .task_ctx_nr
= perf_sw_context
,
5849 .event_init
= task_clock_event_init
,
5850 .add
= task_clock_event_add
,
5851 .del
= task_clock_event_del
,
5852 .start
= task_clock_event_start
,
5853 .stop
= task_clock_event_stop
,
5854 .read
= task_clock_event_read
,
5857 static void perf_pmu_nop_void(struct pmu
*pmu
)
5861 static int perf_pmu_nop_int(struct pmu
*pmu
)
5866 static void perf_pmu_start_txn(struct pmu
*pmu
)
5868 perf_pmu_disable(pmu
);
5871 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5873 perf_pmu_enable(pmu
);
5877 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5879 perf_pmu_enable(pmu
);
5883 * Ensures all contexts with the same task_ctx_nr have the same
5884 * pmu_cpu_context too.
5886 static void *find_pmu_context(int ctxn
)
5893 list_for_each_entry(pmu
, &pmus
, entry
) {
5894 if (pmu
->task_ctx_nr
== ctxn
)
5895 return pmu
->pmu_cpu_context
;
5901 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5905 for_each_possible_cpu(cpu
) {
5906 struct perf_cpu_context
*cpuctx
;
5908 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5910 if (cpuctx
->active_pmu
== old_pmu
)
5911 cpuctx
->active_pmu
= pmu
;
5915 static void free_pmu_context(struct pmu
*pmu
)
5919 mutex_lock(&pmus_lock
);
5921 * Like a real lame refcount.
5923 list_for_each_entry(i
, &pmus
, entry
) {
5924 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5925 update_pmu_context(i
, pmu
);
5930 free_percpu(pmu
->pmu_cpu_context
);
5932 mutex_unlock(&pmus_lock
);
5934 static struct idr pmu_idr
;
5937 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5939 struct pmu
*pmu
= dev_get_drvdata(dev
);
5941 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5944 static struct device_attribute pmu_dev_attrs
[] = {
5949 static int pmu_bus_running
;
5950 static struct bus_type pmu_bus
= {
5951 .name
= "event_source",
5952 .dev_attrs
= pmu_dev_attrs
,
5955 static void pmu_dev_release(struct device
*dev
)
5960 static int pmu_dev_alloc(struct pmu
*pmu
)
5964 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5968 device_initialize(pmu
->dev
);
5969 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5973 dev_set_drvdata(pmu
->dev
, pmu
);
5974 pmu
->dev
->bus
= &pmu_bus
;
5975 pmu
->dev
->release
= pmu_dev_release
;
5976 ret
= device_add(pmu
->dev
);
5984 put_device(pmu
->dev
);
5988 static struct lock_class_key cpuctx_mutex
;
5990 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5994 mutex_lock(&pmus_lock
);
5996 pmu
->pmu_disable_count
= alloc_percpu(int);
5997 if (!pmu
->pmu_disable_count
)
6006 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
6010 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
6018 if (pmu_bus_running
) {
6019 ret
= pmu_dev_alloc(pmu
);
6025 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
6026 if (pmu
->pmu_cpu_context
)
6027 goto got_cpu_context
;
6029 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
6030 if (!pmu
->pmu_cpu_context
)
6033 for_each_possible_cpu(cpu
) {
6034 struct perf_cpu_context
*cpuctx
;
6036 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6037 __perf_event_init_context(&cpuctx
->ctx
);
6038 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
6039 cpuctx
->ctx
.type
= cpu_context
;
6040 cpuctx
->ctx
.pmu
= pmu
;
6041 cpuctx
->jiffies_interval
= 1;
6042 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
6043 cpuctx
->active_pmu
= pmu
;
6047 if (!pmu
->start_txn
) {
6048 if (pmu
->pmu_enable
) {
6050 * If we have pmu_enable/pmu_disable calls, install
6051 * transaction stubs that use that to try and batch
6052 * hardware accesses.
6054 pmu
->start_txn
= perf_pmu_start_txn
;
6055 pmu
->commit_txn
= perf_pmu_commit_txn
;
6056 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
6058 pmu
->start_txn
= perf_pmu_nop_void
;
6059 pmu
->commit_txn
= perf_pmu_nop_int
;
6060 pmu
->cancel_txn
= perf_pmu_nop_void
;
6064 if (!pmu
->pmu_enable
) {
6065 pmu
->pmu_enable
= perf_pmu_nop_void
;
6066 pmu
->pmu_disable
= perf_pmu_nop_void
;
6069 list_add_rcu(&pmu
->entry
, &pmus
);
6072 mutex_unlock(&pmus_lock
);
6077 device_del(pmu
->dev
);
6078 put_device(pmu
->dev
);
6081 if (pmu
->type
>= PERF_TYPE_MAX
)
6082 idr_remove(&pmu_idr
, pmu
->type
);
6085 free_percpu(pmu
->pmu_disable_count
);
6089 void perf_pmu_unregister(struct pmu
*pmu
)
6091 mutex_lock(&pmus_lock
);
6092 list_del_rcu(&pmu
->entry
);
6093 mutex_unlock(&pmus_lock
);
6096 * We dereference the pmu list under both SRCU and regular RCU, so
6097 * synchronize against both of those.
6099 synchronize_srcu(&pmus_srcu
);
6102 free_percpu(pmu
->pmu_disable_count
);
6103 if (pmu
->type
>= PERF_TYPE_MAX
)
6104 idr_remove(&pmu_idr
, pmu
->type
);
6105 device_del(pmu
->dev
);
6106 put_device(pmu
->dev
);
6107 free_pmu_context(pmu
);
6110 struct pmu
*perf_init_event(struct perf_event
*event
)
6112 struct pmu
*pmu
= NULL
;
6116 idx
= srcu_read_lock(&pmus_srcu
);
6119 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
6122 ret
= pmu
->event_init(event
);
6128 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6129 ret
= pmu
->event_init(event
);
6133 if (ret
!= -ENOENT
) {
6138 pmu
= ERR_PTR(-ENOENT
);
6140 srcu_read_unlock(&pmus_srcu
, idx
);
6146 * Allocate and initialize a event structure
6148 static struct perf_event
*
6149 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
6150 struct task_struct
*task
,
6151 struct perf_event
*group_leader
,
6152 struct perf_event
*parent_event
,
6153 perf_overflow_handler_t overflow_handler
)
6156 struct perf_event
*event
;
6157 struct hw_perf_event
*hwc
;
6160 if ((unsigned)cpu
>= nr_cpu_ids
) {
6161 if (!task
|| cpu
!= -1)
6162 return ERR_PTR(-EINVAL
);
6165 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
6167 return ERR_PTR(-ENOMEM
);
6170 * Single events are their own group leaders, with an
6171 * empty sibling list:
6174 group_leader
= event
;
6176 mutex_init(&event
->child_mutex
);
6177 INIT_LIST_HEAD(&event
->child_list
);
6179 INIT_LIST_HEAD(&event
->group_entry
);
6180 INIT_LIST_HEAD(&event
->event_entry
);
6181 INIT_LIST_HEAD(&event
->sibling_list
);
6182 init_waitqueue_head(&event
->waitq
);
6183 init_irq_work(&event
->pending
, perf_pending_event
);
6185 mutex_init(&event
->mmap_mutex
);
6188 event
->attr
= *attr
;
6189 event
->group_leader
= group_leader
;
6193 event
->parent
= parent_event
;
6195 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
6196 event
->id
= atomic64_inc_return(&perf_event_id
);
6198 event
->state
= PERF_EVENT_STATE_INACTIVE
;
6201 event
->attach_state
= PERF_ATTACH_TASK
;
6202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6204 * hw_breakpoint is a bit difficult here..
6206 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
6207 event
->hw
.bp_target
= task
;
6211 if (!overflow_handler
&& parent_event
)
6212 overflow_handler
= parent_event
->overflow_handler
;
6214 event
->overflow_handler
= overflow_handler
;
6217 event
->state
= PERF_EVENT_STATE_OFF
;
6222 hwc
->sample_period
= attr
->sample_period
;
6223 if (attr
->freq
&& attr
->sample_freq
)
6224 hwc
->sample_period
= 1;
6225 hwc
->last_period
= hwc
->sample_period
;
6227 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6230 * we currently do not support PERF_FORMAT_GROUP on inherited events
6232 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
6235 pmu
= perf_init_event(event
);
6241 else if (IS_ERR(pmu
))
6246 put_pid_ns(event
->ns
);
6248 return ERR_PTR(err
);
6253 if (!event
->parent
) {
6254 if (event
->attach_state
& PERF_ATTACH_TASK
)
6255 jump_label_inc(&perf_sched_events
);
6256 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
6257 atomic_inc(&nr_mmap_events
);
6258 if (event
->attr
.comm
)
6259 atomic_inc(&nr_comm_events
);
6260 if (event
->attr
.task
)
6261 atomic_inc(&nr_task_events
);
6262 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6263 err
= get_callchain_buffers();
6266 return ERR_PTR(err
);
6274 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
6275 struct perf_event_attr
*attr
)
6280 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
6284 * zero the full structure, so that a short copy will be nice.
6286 memset(attr
, 0, sizeof(*attr
));
6288 ret
= get_user(size
, &uattr
->size
);
6292 if (size
> PAGE_SIZE
) /* silly large */
6295 if (!size
) /* abi compat */
6296 size
= PERF_ATTR_SIZE_VER0
;
6298 if (size
< PERF_ATTR_SIZE_VER0
)
6302 * If we're handed a bigger struct than we know of,
6303 * ensure all the unknown bits are 0 - i.e. new
6304 * user-space does not rely on any kernel feature
6305 * extensions we dont know about yet.
6307 if (size
> sizeof(*attr
)) {
6308 unsigned char __user
*addr
;
6309 unsigned char __user
*end
;
6312 addr
= (void __user
*)uattr
+ sizeof(*attr
);
6313 end
= (void __user
*)uattr
+ size
;
6315 for (; addr
< end
; addr
++) {
6316 ret
= get_user(val
, addr
);
6322 size
= sizeof(*attr
);
6325 ret
= copy_from_user(attr
, uattr
, size
);
6330 * If the type exists, the corresponding creation will verify
6333 if (attr
->type
>= PERF_TYPE_MAX
)
6336 if (attr
->__reserved_1
)
6339 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
6342 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
6349 put_user(sizeof(*attr
), &uattr
->size
);
6355 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
6357 struct perf_buffer
*buffer
= NULL
, *old_buffer
= NULL
;
6363 /* don't allow circular references */
6364 if (event
== output_event
)
6368 * Don't allow cross-cpu buffers
6370 if (output_event
->cpu
!= event
->cpu
)
6374 * If its not a per-cpu buffer, it must be the same task.
6376 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
6380 mutex_lock(&event
->mmap_mutex
);
6381 /* Can't redirect output if we've got an active mmap() */
6382 if (atomic_read(&event
->mmap_count
))
6386 /* get the buffer we want to redirect to */
6387 buffer
= perf_buffer_get(output_event
);
6392 old_buffer
= event
->buffer
;
6393 rcu_assign_pointer(event
->buffer
, buffer
);
6396 mutex_unlock(&event
->mmap_mutex
);
6399 perf_buffer_put(old_buffer
);
6405 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6407 * @attr_uptr: event_id type attributes for monitoring/sampling
6410 * @group_fd: group leader event fd
6412 SYSCALL_DEFINE5(perf_event_open
,
6413 struct perf_event_attr __user
*, attr_uptr
,
6414 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
6416 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
6417 struct perf_event
*event
, *sibling
;
6418 struct perf_event_attr attr
;
6419 struct perf_event_context
*ctx
;
6420 struct file
*event_file
= NULL
;
6421 struct file
*group_file
= NULL
;
6422 struct task_struct
*task
= NULL
;
6426 int fput_needed
= 0;
6429 /* for future expandability... */
6430 if (flags
& ~PERF_FLAG_ALL
)
6433 err
= perf_copy_attr(attr_uptr
, &attr
);
6437 if (!attr
.exclude_kernel
) {
6438 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6443 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
6448 * In cgroup mode, the pid argument is used to pass the fd
6449 * opened to the cgroup directory in cgroupfs. The cpu argument
6450 * designates the cpu on which to monitor threads from that
6453 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
6456 event_fd
= get_unused_fd_flags(O_RDWR
);
6460 if (group_fd
!= -1) {
6461 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
6462 if (IS_ERR(group_leader
)) {
6463 err
= PTR_ERR(group_leader
);
6466 group_file
= group_leader
->filp
;
6467 if (flags
& PERF_FLAG_FD_OUTPUT
)
6468 output_event
= group_leader
;
6469 if (flags
& PERF_FLAG_FD_NO_GROUP
)
6470 group_leader
= NULL
;
6473 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
6474 task
= find_lively_task_by_vpid(pid
);
6476 err
= PTR_ERR(task
);
6481 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
, NULL
);
6482 if (IS_ERR(event
)) {
6483 err
= PTR_ERR(event
);
6487 if (flags
& PERF_FLAG_PID_CGROUP
) {
6488 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
6493 * - that has cgroup constraint on event->cpu
6494 * - that may need work on context switch
6496 atomic_inc(&per_cpu(perf_cgroup_events
, event
->cpu
));
6497 jump_label_inc(&perf_sched_events
);
6501 * Special case software events and allow them to be part of
6502 * any hardware group.
6507 (is_software_event(event
) != is_software_event(group_leader
))) {
6508 if (is_software_event(event
)) {
6510 * If event and group_leader are not both a software
6511 * event, and event is, then group leader is not.
6513 * Allow the addition of software events to !software
6514 * groups, this is safe because software events never
6517 pmu
= group_leader
->pmu
;
6518 } else if (is_software_event(group_leader
) &&
6519 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
6521 * In case the group is a pure software group, and we
6522 * try to add a hardware event, move the whole group to
6523 * the hardware context.
6530 * Get the target context (task or percpu):
6532 ctx
= find_get_context(pmu
, task
, cpu
);
6539 put_task_struct(task
);
6544 * Look up the group leader (we will attach this event to it):
6550 * Do not allow a recursive hierarchy (this new sibling
6551 * becoming part of another group-sibling):
6553 if (group_leader
->group_leader
!= group_leader
)
6556 * Do not allow to attach to a group in a different
6557 * task or CPU context:
6560 if (group_leader
->ctx
->type
!= ctx
->type
)
6563 if (group_leader
->ctx
!= ctx
)
6568 * Only a group leader can be exclusive or pinned
6570 if (attr
.exclusive
|| attr
.pinned
)
6575 err
= perf_event_set_output(event
, output_event
);
6580 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
6581 if (IS_ERR(event_file
)) {
6582 err
= PTR_ERR(event_file
);
6587 struct perf_event_context
*gctx
= group_leader
->ctx
;
6589 mutex_lock(&gctx
->mutex
);
6590 perf_remove_from_context(group_leader
);
6591 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6593 perf_remove_from_context(sibling
);
6596 mutex_unlock(&gctx
->mutex
);
6600 event
->filp
= event_file
;
6601 WARN_ON_ONCE(ctx
->parent_ctx
);
6602 mutex_lock(&ctx
->mutex
);
6605 perf_install_in_context(ctx
, group_leader
, cpu
);
6607 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6609 perf_install_in_context(ctx
, sibling
, cpu
);
6614 perf_install_in_context(ctx
, event
, cpu
);
6616 perf_unpin_context(ctx
);
6617 mutex_unlock(&ctx
->mutex
);
6619 event
->owner
= current
;
6621 mutex_lock(¤t
->perf_event_mutex
);
6622 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
6623 mutex_unlock(¤t
->perf_event_mutex
);
6626 * Precalculate sample_data sizes
6628 perf_event__header_size(event
);
6629 perf_event__id_header_size(event
);
6632 * Drop the reference on the group_event after placing the
6633 * new event on the sibling_list. This ensures destruction
6634 * of the group leader will find the pointer to itself in
6635 * perf_group_detach().
6637 fput_light(group_file
, fput_needed
);
6638 fd_install(event_fd
, event_file
);
6642 perf_unpin_context(ctx
);
6648 put_task_struct(task
);
6650 fput_light(group_file
, fput_needed
);
6652 put_unused_fd(event_fd
);
6657 * perf_event_create_kernel_counter
6659 * @attr: attributes of the counter to create
6660 * @cpu: cpu in which the counter is bound
6661 * @task: task to profile (NULL for percpu)
6664 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6665 struct task_struct
*task
,
6666 perf_overflow_handler_t overflow_handler
)
6668 struct perf_event_context
*ctx
;
6669 struct perf_event
*event
;
6673 * Get the target context (task or percpu):
6676 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
, overflow_handler
);
6677 if (IS_ERR(event
)) {
6678 err
= PTR_ERR(event
);
6682 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6689 WARN_ON_ONCE(ctx
->parent_ctx
);
6690 mutex_lock(&ctx
->mutex
);
6691 perf_install_in_context(ctx
, event
, cpu
);
6693 perf_unpin_context(ctx
);
6694 mutex_unlock(&ctx
->mutex
);
6701 return ERR_PTR(err
);
6703 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6705 static void sync_child_event(struct perf_event
*child_event
,
6706 struct task_struct
*child
)
6708 struct perf_event
*parent_event
= child_event
->parent
;
6711 if (child_event
->attr
.inherit_stat
)
6712 perf_event_read_event(child_event
, child
);
6714 child_val
= perf_event_count(child_event
);
6717 * Add back the child's count to the parent's count:
6719 atomic64_add(child_val
, &parent_event
->child_count
);
6720 atomic64_add(child_event
->total_time_enabled
,
6721 &parent_event
->child_total_time_enabled
);
6722 atomic64_add(child_event
->total_time_running
,
6723 &parent_event
->child_total_time_running
);
6726 * Remove this event from the parent's list
6728 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6729 mutex_lock(&parent_event
->child_mutex
);
6730 list_del_init(&child_event
->child_list
);
6731 mutex_unlock(&parent_event
->child_mutex
);
6734 * Release the parent event, if this was the last
6737 fput(parent_event
->filp
);
6741 __perf_event_exit_task(struct perf_event
*child_event
,
6742 struct perf_event_context
*child_ctx
,
6743 struct task_struct
*child
)
6745 if (child_event
->parent
) {
6746 raw_spin_lock_irq(&child_ctx
->lock
);
6747 perf_group_detach(child_event
);
6748 raw_spin_unlock_irq(&child_ctx
->lock
);
6751 perf_remove_from_context(child_event
);
6754 * It can happen that the parent exits first, and has events
6755 * that are still around due to the child reference. These
6756 * events need to be zapped.
6758 if (child_event
->parent
) {
6759 sync_child_event(child_event
, child
);
6760 free_event(child_event
);
6764 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6766 struct perf_event
*child_event
, *tmp
;
6767 struct perf_event_context
*child_ctx
;
6768 unsigned long flags
;
6770 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6771 perf_event_task(child
, NULL
, 0);
6775 local_irq_save(flags
);
6777 * We can't reschedule here because interrupts are disabled,
6778 * and either child is current or it is a task that can't be
6779 * scheduled, so we are now safe from rescheduling changing
6782 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6783 task_ctx_sched_out(child_ctx
, EVENT_ALL
);
6786 * Take the context lock here so that if find_get_context is
6787 * reading child->perf_event_ctxp, we wait until it has
6788 * incremented the context's refcount before we do put_ctx below.
6790 raw_spin_lock(&child_ctx
->lock
);
6791 child
->perf_event_ctxp
[ctxn
] = NULL
;
6793 * If this context is a clone; unclone it so it can't get
6794 * swapped to another process while we're removing all
6795 * the events from it.
6797 unclone_ctx(child_ctx
);
6798 update_context_time(child_ctx
);
6799 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6802 * Report the task dead after unscheduling the events so that we
6803 * won't get any samples after PERF_RECORD_EXIT. We can however still
6804 * get a few PERF_RECORD_READ events.
6806 perf_event_task(child
, child_ctx
, 0);
6809 * We can recurse on the same lock type through:
6811 * __perf_event_exit_task()
6812 * sync_child_event()
6813 * fput(parent_event->filp)
6815 * mutex_lock(&ctx->mutex)
6817 * But since its the parent context it won't be the same instance.
6819 mutex_lock(&child_ctx
->mutex
);
6822 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6824 __perf_event_exit_task(child_event
, child_ctx
, child
);
6826 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6828 __perf_event_exit_task(child_event
, child_ctx
, child
);
6831 * If the last event was a group event, it will have appended all
6832 * its siblings to the list, but we obtained 'tmp' before that which
6833 * will still point to the list head terminating the iteration.
6835 if (!list_empty(&child_ctx
->pinned_groups
) ||
6836 !list_empty(&child_ctx
->flexible_groups
))
6839 mutex_unlock(&child_ctx
->mutex
);
6845 * When a child task exits, feed back event values to parent events.
6847 void perf_event_exit_task(struct task_struct
*child
)
6849 struct perf_event
*event
, *tmp
;
6852 mutex_lock(&child
->perf_event_mutex
);
6853 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6855 list_del_init(&event
->owner_entry
);
6858 * Ensure the list deletion is visible before we clear
6859 * the owner, closes a race against perf_release() where
6860 * we need to serialize on the owner->perf_event_mutex.
6863 event
->owner
= NULL
;
6865 mutex_unlock(&child
->perf_event_mutex
);
6867 for_each_task_context_nr(ctxn
)
6868 perf_event_exit_task_context(child
, ctxn
);
6871 static void perf_free_event(struct perf_event
*event
,
6872 struct perf_event_context
*ctx
)
6874 struct perf_event
*parent
= event
->parent
;
6876 if (WARN_ON_ONCE(!parent
))
6879 mutex_lock(&parent
->child_mutex
);
6880 list_del_init(&event
->child_list
);
6881 mutex_unlock(&parent
->child_mutex
);
6885 perf_group_detach(event
);
6886 list_del_event(event
, ctx
);
6891 * free an unexposed, unused context as created by inheritance by
6892 * perf_event_init_task below, used by fork() in case of fail.
6894 void perf_event_free_task(struct task_struct
*task
)
6896 struct perf_event_context
*ctx
;
6897 struct perf_event
*event
, *tmp
;
6900 for_each_task_context_nr(ctxn
) {
6901 ctx
= task
->perf_event_ctxp
[ctxn
];
6905 mutex_lock(&ctx
->mutex
);
6907 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6909 perf_free_event(event
, ctx
);
6911 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6913 perf_free_event(event
, ctx
);
6915 if (!list_empty(&ctx
->pinned_groups
) ||
6916 !list_empty(&ctx
->flexible_groups
))
6919 mutex_unlock(&ctx
->mutex
);
6925 void perf_event_delayed_put(struct task_struct
*task
)
6929 for_each_task_context_nr(ctxn
)
6930 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6934 * inherit a event from parent task to child task:
6936 static struct perf_event
*
6937 inherit_event(struct perf_event
*parent_event
,
6938 struct task_struct
*parent
,
6939 struct perf_event_context
*parent_ctx
,
6940 struct task_struct
*child
,
6941 struct perf_event
*group_leader
,
6942 struct perf_event_context
*child_ctx
)
6944 struct perf_event
*child_event
;
6945 unsigned long flags
;
6948 * Instead of creating recursive hierarchies of events,
6949 * we link inherited events back to the original parent,
6950 * which has a filp for sure, which we use as the reference
6953 if (parent_event
->parent
)
6954 parent_event
= parent_event
->parent
;
6956 child_event
= perf_event_alloc(&parent_event
->attr
,
6959 group_leader
, parent_event
,
6961 if (IS_ERR(child_event
))
6966 * Make the child state follow the state of the parent event,
6967 * not its attr.disabled bit. We hold the parent's mutex,
6968 * so we won't race with perf_event_{en, dis}able_family.
6970 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6971 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6973 child_event
->state
= PERF_EVENT_STATE_OFF
;
6975 if (parent_event
->attr
.freq
) {
6976 u64 sample_period
= parent_event
->hw
.sample_period
;
6977 struct hw_perf_event
*hwc
= &child_event
->hw
;
6979 hwc
->sample_period
= sample_period
;
6980 hwc
->last_period
= sample_period
;
6982 local64_set(&hwc
->period_left
, sample_period
);
6985 child_event
->ctx
= child_ctx
;
6986 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6989 * Precalculate sample_data sizes
6991 perf_event__header_size(child_event
);
6992 perf_event__id_header_size(child_event
);
6995 * Link it up in the child's context:
6997 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6998 add_event_to_ctx(child_event
, child_ctx
);
6999 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
7002 * Get a reference to the parent filp - we will fput it
7003 * when the child event exits. This is safe to do because
7004 * we are in the parent and we know that the filp still
7005 * exists and has a nonzero count:
7007 atomic_long_inc(&parent_event
->filp
->f_count
);
7010 * Link this into the parent event's child list
7012 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7013 mutex_lock(&parent_event
->child_mutex
);
7014 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
7015 mutex_unlock(&parent_event
->child_mutex
);
7020 static int inherit_group(struct perf_event
*parent_event
,
7021 struct task_struct
*parent
,
7022 struct perf_event_context
*parent_ctx
,
7023 struct task_struct
*child
,
7024 struct perf_event_context
*child_ctx
)
7026 struct perf_event
*leader
;
7027 struct perf_event
*sub
;
7028 struct perf_event
*child_ctr
;
7030 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
7031 child
, NULL
, child_ctx
);
7033 return PTR_ERR(leader
);
7034 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
7035 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
7036 child
, leader
, child_ctx
);
7037 if (IS_ERR(child_ctr
))
7038 return PTR_ERR(child_ctr
);
7044 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
7045 struct perf_event_context
*parent_ctx
,
7046 struct task_struct
*child
, int ctxn
,
7050 struct perf_event_context
*child_ctx
;
7052 if (!event
->attr
.inherit
) {
7057 child_ctx
= child
->perf_event_ctxp
[ctxn
];
7060 * This is executed from the parent task context, so
7061 * inherit events that have been marked for cloning.
7062 * First allocate and initialize a context for the
7066 child_ctx
= alloc_perf_context(event
->pmu
, child
);
7070 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
7073 ret
= inherit_group(event
, parent
, parent_ctx
,
7083 * Initialize the perf_event context in task_struct
7085 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
7087 struct perf_event_context
*child_ctx
, *parent_ctx
;
7088 struct perf_event_context
*cloned_ctx
;
7089 struct perf_event
*event
;
7090 struct task_struct
*parent
= current
;
7091 int inherited_all
= 1;
7092 unsigned long flags
;
7095 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
7099 * If the parent's context is a clone, pin it so it won't get
7102 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
7105 * No need to check if parent_ctx != NULL here; since we saw
7106 * it non-NULL earlier, the only reason for it to become NULL
7107 * is if we exit, and since we're currently in the middle of
7108 * a fork we can't be exiting at the same time.
7112 * Lock the parent list. No need to lock the child - not PID
7113 * hashed yet and not running, so nobody can access it.
7115 mutex_lock(&parent_ctx
->mutex
);
7118 * We dont have to disable NMIs - we are only looking at
7119 * the list, not manipulating it:
7121 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
7122 ret
= inherit_task_group(event
, parent
, parent_ctx
,
7123 child
, ctxn
, &inherited_all
);
7129 * We can't hold ctx->lock when iterating the ->flexible_group list due
7130 * to allocations, but we need to prevent rotation because
7131 * rotate_ctx() will change the list from interrupt context.
7133 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
7134 parent_ctx
->rotate_disable
= 1;
7135 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
7137 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
7138 ret
= inherit_task_group(event
, parent
, parent_ctx
,
7139 child
, ctxn
, &inherited_all
);
7144 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
7145 parent_ctx
->rotate_disable
= 0;
7147 child_ctx
= child
->perf_event_ctxp
[ctxn
];
7149 if (child_ctx
&& inherited_all
) {
7151 * Mark the child context as a clone of the parent
7152 * context, or of whatever the parent is a clone of.
7154 * Note that if the parent is a clone, the holding of
7155 * parent_ctx->lock avoids it from being uncloned.
7157 cloned_ctx
= parent_ctx
->parent_ctx
;
7159 child_ctx
->parent_ctx
= cloned_ctx
;
7160 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
7162 child_ctx
->parent_ctx
= parent_ctx
;
7163 child_ctx
->parent_gen
= parent_ctx
->generation
;
7165 get_ctx(child_ctx
->parent_ctx
);
7168 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
7169 mutex_unlock(&parent_ctx
->mutex
);
7171 perf_unpin_context(parent_ctx
);
7172 put_ctx(parent_ctx
);
7178 * Initialize the perf_event context in task_struct
7180 int perf_event_init_task(struct task_struct
*child
)
7184 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
7185 mutex_init(&child
->perf_event_mutex
);
7186 INIT_LIST_HEAD(&child
->perf_event_list
);
7188 for_each_task_context_nr(ctxn
) {
7189 ret
= perf_event_init_context(child
, ctxn
);
7197 static void __init
perf_event_init_all_cpus(void)
7199 struct swevent_htable
*swhash
;
7202 for_each_possible_cpu(cpu
) {
7203 swhash
= &per_cpu(swevent_htable
, cpu
);
7204 mutex_init(&swhash
->hlist_mutex
);
7205 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
7209 static void __cpuinit
perf_event_init_cpu(int cpu
)
7211 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7213 mutex_lock(&swhash
->hlist_mutex
);
7214 if (swhash
->hlist_refcount
> 0) {
7215 struct swevent_hlist
*hlist
;
7217 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
7219 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7221 mutex_unlock(&swhash
->hlist_mutex
);
7224 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7225 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
7227 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
7229 WARN_ON(!irqs_disabled());
7231 list_del_init(&cpuctx
->rotation_list
);
7234 static void __perf_event_exit_context(void *__info
)
7236 struct perf_event_context
*ctx
= __info
;
7237 struct perf_event
*event
, *tmp
;
7239 perf_pmu_rotate_stop(ctx
->pmu
);
7241 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
7242 __perf_remove_from_context(event
);
7243 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
7244 __perf_remove_from_context(event
);
7247 static void perf_event_exit_cpu_context(int cpu
)
7249 struct perf_event_context
*ctx
;
7253 idx
= srcu_read_lock(&pmus_srcu
);
7254 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7255 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
7257 mutex_lock(&ctx
->mutex
);
7258 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
7259 mutex_unlock(&ctx
->mutex
);
7261 srcu_read_unlock(&pmus_srcu
, idx
);
7264 static void perf_event_exit_cpu(int cpu
)
7266 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7268 mutex_lock(&swhash
->hlist_mutex
);
7269 swevent_hlist_release(swhash
);
7270 mutex_unlock(&swhash
->hlist_mutex
);
7272 perf_event_exit_cpu_context(cpu
);
7275 static inline void perf_event_exit_cpu(int cpu
) { }
7279 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
7283 for_each_online_cpu(cpu
)
7284 perf_event_exit_cpu(cpu
);
7290 * Run the perf reboot notifier at the very last possible moment so that
7291 * the generic watchdog code runs as long as possible.
7293 static struct notifier_block perf_reboot_notifier
= {
7294 .notifier_call
= perf_reboot
,
7295 .priority
= INT_MIN
,
7298 static int __cpuinit
7299 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
7301 unsigned int cpu
= (long)hcpu
;
7303 switch (action
& ~CPU_TASKS_FROZEN
) {
7305 case CPU_UP_PREPARE
:
7306 case CPU_DOWN_FAILED
:
7307 perf_event_init_cpu(cpu
);
7310 case CPU_UP_CANCELED
:
7311 case CPU_DOWN_PREPARE
:
7312 perf_event_exit_cpu(cpu
);
7322 void __init
perf_event_init(void)
7328 perf_event_init_all_cpus();
7329 init_srcu_struct(&pmus_srcu
);
7330 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
7331 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
7332 perf_pmu_register(&perf_task_clock
, NULL
, -1);
7334 perf_cpu_notifier(perf_cpu_notify
);
7335 register_reboot_notifier(&perf_reboot_notifier
);
7337 ret
= init_hw_breakpoint();
7338 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
7341 static int __init
perf_event_sysfs_init(void)
7346 mutex_lock(&pmus_lock
);
7348 ret
= bus_register(&pmu_bus
);
7352 list_for_each_entry(pmu
, &pmus
, entry
) {
7353 if (!pmu
->name
|| pmu
->type
< 0)
7356 ret
= pmu_dev_alloc(pmu
);
7357 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
7359 pmu_bus_running
= 1;
7363 mutex_unlock(&pmus_lock
);
7367 device_initcall(perf_event_sysfs_init
);
7369 #ifdef CONFIG_CGROUP_PERF
7370 static struct cgroup_subsys_state
*perf_cgroup_create(
7371 struct cgroup_subsys
*ss
, struct cgroup
*cont
)
7373 struct perf_cgroup
*jc
;
7375 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
7377 return ERR_PTR(-ENOMEM
);
7379 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
7382 return ERR_PTR(-ENOMEM
);
7388 static void perf_cgroup_destroy(struct cgroup_subsys
*ss
,
7389 struct cgroup
*cont
)
7391 struct perf_cgroup
*jc
;
7392 jc
= container_of(cgroup_subsys_state(cont
, perf_subsys_id
),
7393 struct perf_cgroup
, css
);
7394 free_percpu(jc
->info
);
7398 static int __perf_cgroup_move(void *info
)
7400 struct task_struct
*task
= info
;
7401 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
7406 perf_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*task
)
7408 task_function_call(task
, __perf_cgroup_move
, task
);
7411 static void perf_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
7412 struct cgroup
*old_cgrp
, struct task_struct
*task
)
7415 * cgroup_exit() is called in the copy_process() failure path.
7416 * Ignore this case since the task hasn't ran yet, this avoids
7417 * trying to poke a half freed task state from generic code.
7419 if (!(task
->flags
& PF_EXITING
))
7422 perf_cgroup_attach_task(cgrp
, task
);
7425 struct cgroup_subsys perf_subsys
= {
7426 .name
= "perf_event",
7427 .subsys_id
= perf_subsys_id
,
7428 .create
= perf_cgroup_create
,
7429 .destroy
= perf_cgroup_destroy
,
7430 .exit
= perf_cgroup_exit
,
7431 .attach_task
= perf_cgroup_attach_task
,
7433 #endif /* CONFIG_CGROUP_PERF */