This client driver allows you to use a GPIO pin as a source for PPS
[linux-2.6/next.git] / mm / page-writeback.c
blobda6d263a8c8c26dd7fe453d81494e4df7a6e9ac2
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Estimate write bandwidth at 200ms intervals.
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51 * will look to see if it needs to force writeback or throttling.
53 static long ratelimit_pages = 32;
56 * When balance_dirty_pages decides that the caller needs to perform some
57 * non-background writeback, this is how many pages it will attempt to write.
58 * It should be somewhat larger than dirtied pages to ensure that reasonably
59 * large amounts of I/O are submitted.
61 static inline long sync_writeback_pages(unsigned long dirtied)
63 if (dirtied < ratelimit_pages)
64 dirtied = ratelimit_pages;
66 return dirtied + dirtied / 2;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 int dirty_background_ratio = 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 unsigned long dirty_background_bytes;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 int vm_highmem_is_dirtyable;
89 * The generator of dirty data starts writeback at this percentage
91 int vm_dirty_ratio = 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 unsigned long vm_dirty_bytes;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
105 * The longest time for which data is allowed to remain dirty
107 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 * Flag that makes the machine dump writes/reads and block dirtyings.
112 int block_dump;
115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116 * a full sync is triggered after this time elapses without any disk activity.
118 int laptop_mode;
120 EXPORT_SYMBOL(laptop_mode);
122 /* End of sysctl-exported parameters */
124 unsigned long global_dirty_limit;
127 * Scale the writeback cache size proportional to the relative writeout speeds.
129 * We do this by keeping a floating proportion between BDIs, based on page
130 * writeback completions [end_page_writeback()]. Those devices that write out
131 * pages fastest will get the larger share, while the slower will get a smaller
132 * share.
134 * We use page writeout completions because we are interested in getting rid of
135 * dirty pages. Having them written out is the primary goal.
137 * We introduce a concept of time, a period over which we measure these events,
138 * because demand can/will vary over time. The length of this period itself is
139 * measured in page writeback completions.
142 static struct prop_descriptor vm_completions;
143 static struct prop_descriptor vm_dirties;
146 * Work out the current dirty-memory clamping and background writeout
147 * thresholds.
149 * The main aim here is to lower them aggressively if there is a lot of mapped
150 * memory around. To avoid stressing page reclaim with lots of unreclaimable
151 * pages. It is better to clamp down on writers than to start swapping, and
152 * performing lots of scanning.
154 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
156 * We don't permit the clamping level to fall below 5% - that is getting rather
157 * excessive.
159 * We make sure that the background writeout level is below the adjusted
160 * clamping level.
162 static unsigned long highmem_dirtyable_memory(unsigned long total)
164 #ifdef CONFIG_HIGHMEM
165 int node;
166 unsigned long x = 0;
168 for_each_node_state(node, N_HIGH_MEMORY) {
169 struct zone *z =
170 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
172 x += zone_page_state(z, NR_FREE_PAGES) +
173 zone_reclaimable_pages(z);
176 * Make sure that the number of highmem pages is never larger
177 * than the number of the total dirtyable memory. This can only
178 * occur in very strange VM situations but we want to make sure
179 * that this does not occur.
181 return min(x, total);
182 #else
183 return 0;
184 #endif
188 * determine_dirtyable_memory - amount of memory that may be used
190 * Returns the numebr of pages that can currently be freed and used
191 * by the kernel for direct mappings.
193 static unsigned long determine_dirtyable_memory(void)
195 unsigned long x;
197 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
199 if (!vm_highmem_is_dirtyable)
200 x -= highmem_dirtyable_memory(x);
202 return x + 1; /* Ensure that we never return 0 */
206 * couple the period to the dirty_ratio:
208 * period/2 ~ roundup_pow_of_two(dirty limit)
210 static int calc_period_shift(void)
212 unsigned long dirty_total;
214 if (vm_dirty_bytes)
215 dirty_total = vm_dirty_bytes / PAGE_SIZE;
216 else
217 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
218 100;
219 return 2 + ilog2(dirty_total - 1);
223 * update the period when the dirty threshold changes.
225 static void update_completion_period(void)
227 int shift = calc_period_shift();
228 prop_change_shift(&vm_completions, shift);
229 prop_change_shift(&vm_dirties, shift);
232 int dirty_background_ratio_handler(struct ctl_table *table, int write,
233 void __user *buffer, size_t *lenp,
234 loff_t *ppos)
236 int ret;
238 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
239 if (ret == 0 && write)
240 dirty_background_bytes = 0;
241 return ret;
244 int dirty_background_bytes_handler(struct ctl_table *table, int write,
245 void __user *buffer, size_t *lenp,
246 loff_t *ppos)
248 int ret;
250 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
251 if (ret == 0 && write)
252 dirty_background_ratio = 0;
253 return ret;
256 int dirty_ratio_handler(struct ctl_table *table, int write,
257 void __user *buffer, size_t *lenp,
258 loff_t *ppos)
260 int old_ratio = vm_dirty_ratio;
261 int ret;
263 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
264 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
265 update_completion_period();
266 vm_dirty_bytes = 0;
268 return ret;
271 int dirty_bytes_handler(struct ctl_table *table, int write,
272 void __user *buffer, size_t *lenp,
273 loff_t *ppos)
275 unsigned long old_bytes = vm_dirty_bytes;
276 int ret;
278 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
279 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
280 update_completion_period();
281 vm_dirty_ratio = 0;
283 return ret;
287 * Increment the BDI's writeout completion count and the global writeout
288 * completion count. Called from test_clear_page_writeback().
290 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
292 __inc_bdi_stat(bdi, BDI_WRITTEN);
293 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
294 bdi->max_prop_frac);
297 void bdi_writeout_inc(struct backing_dev_info *bdi)
299 unsigned long flags;
301 local_irq_save(flags);
302 __bdi_writeout_inc(bdi);
303 local_irq_restore(flags);
305 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
307 void task_dirty_inc(struct task_struct *tsk)
309 prop_inc_single(&vm_dirties, &tsk->dirties);
313 * Obtain an accurate fraction of the BDI's portion.
315 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
316 long *numerator, long *denominator)
318 prop_fraction_percpu(&vm_completions, &bdi->completions,
319 numerator, denominator);
322 static inline void task_dirties_fraction(struct task_struct *tsk,
323 long *numerator, long *denominator)
325 prop_fraction_single(&vm_dirties, &tsk->dirties,
326 numerator, denominator);
330 * task_dirty_limit - scale down dirty throttling threshold for one task
332 * task specific dirty limit:
334 * dirty -= (dirty/8) * p_{t}
336 * To protect light/slow dirtying tasks from heavier/fast ones, we start
337 * throttling individual tasks before reaching the bdi dirty limit.
338 * Relatively low thresholds will be allocated to heavy dirtiers. So when
339 * dirty pages grow large, heavy dirtiers will be throttled first, which will
340 * effectively curb the growth of dirty pages. Light dirtiers with high enough
341 * dirty threshold may never get throttled.
343 #define TASK_LIMIT_FRACTION 8
344 static unsigned long task_dirty_limit(struct task_struct *tsk,
345 unsigned long bdi_dirty)
347 long numerator, denominator;
348 unsigned long dirty = bdi_dirty;
349 u64 inv = dirty / TASK_LIMIT_FRACTION;
351 task_dirties_fraction(tsk, &numerator, &denominator);
352 inv *= numerator;
353 do_div(inv, denominator);
355 dirty -= inv;
357 return max(dirty, bdi_dirty/2);
360 /* Minimum limit for any task */
361 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
363 return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
369 static unsigned int bdi_min_ratio;
371 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
373 int ret = 0;
375 spin_lock_bh(&bdi_lock);
376 if (min_ratio > bdi->max_ratio) {
377 ret = -EINVAL;
378 } else {
379 min_ratio -= bdi->min_ratio;
380 if (bdi_min_ratio + min_ratio < 100) {
381 bdi_min_ratio += min_ratio;
382 bdi->min_ratio += min_ratio;
383 } else {
384 ret = -EINVAL;
387 spin_unlock_bh(&bdi_lock);
389 return ret;
392 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
394 int ret = 0;
396 if (max_ratio > 100)
397 return -EINVAL;
399 spin_lock_bh(&bdi_lock);
400 if (bdi->min_ratio > max_ratio) {
401 ret = -EINVAL;
402 } else {
403 bdi->max_ratio = max_ratio;
404 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
406 spin_unlock_bh(&bdi_lock);
408 return ret;
410 EXPORT_SYMBOL(bdi_set_max_ratio);
412 static unsigned long hard_dirty_limit(unsigned long thresh)
414 return max(thresh, global_dirty_limit);
418 * global_dirty_limits - background-writeback and dirty-throttling thresholds
420 * Calculate the dirty thresholds based on sysctl parameters
421 * - vm.dirty_background_ratio or vm.dirty_background_bytes
422 * - vm.dirty_ratio or vm.dirty_bytes
423 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
424 * real-time tasks.
426 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
428 unsigned long background;
429 unsigned long dirty;
430 unsigned long uninitialized_var(available_memory);
431 struct task_struct *tsk;
433 if (!vm_dirty_bytes || !dirty_background_bytes)
434 available_memory = determine_dirtyable_memory();
436 if (vm_dirty_bytes)
437 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
438 else
439 dirty = (vm_dirty_ratio * available_memory) / 100;
441 if (dirty_background_bytes)
442 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
443 else
444 background = (dirty_background_ratio * available_memory) / 100;
446 if (background >= dirty)
447 background = dirty / 2;
448 tsk = current;
449 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
450 background += background / 4;
451 dirty += dirty / 4;
453 *pbackground = background;
454 *pdirty = dirty;
455 trace_global_dirty_state(background, dirty);
459 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
460 * @bdi: the backing_dev_info to query
461 * @dirty: global dirty limit in pages
463 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
464 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
465 * And the "limit" in the name is not seriously taken as hard limit in
466 * balance_dirty_pages().
468 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
469 * - starving fast devices
470 * - piling up dirty pages (that will take long time to sync) on slow devices
472 * The bdi's share of dirty limit will be adapting to its throughput and
473 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
475 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
477 u64 bdi_dirty;
478 long numerator, denominator;
481 * Calculate this BDI's share of the dirty ratio.
483 bdi_writeout_fraction(bdi, &numerator, &denominator);
485 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
486 bdi_dirty *= numerator;
487 do_div(bdi_dirty, denominator);
489 bdi_dirty += (dirty * bdi->min_ratio) / 100;
490 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
491 bdi_dirty = dirty * bdi->max_ratio / 100;
493 return bdi_dirty;
496 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
497 unsigned long elapsed,
498 unsigned long written)
500 const unsigned long period = roundup_pow_of_two(3 * HZ);
501 unsigned long avg = bdi->avg_write_bandwidth;
502 unsigned long old = bdi->write_bandwidth;
503 u64 bw;
506 * bw = written * HZ / elapsed
508 * bw * elapsed + write_bandwidth * (period - elapsed)
509 * write_bandwidth = ---------------------------------------------------
510 * period
512 bw = written - bdi->written_stamp;
513 bw *= HZ;
514 if (unlikely(elapsed > period)) {
515 do_div(bw, elapsed);
516 avg = bw;
517 goto out;
519 bw += (u64)bdi->write_bandwidth * (period - elapsed);
520 bw >>= ilog2(period);
523 * one more level of smoothing, for filtering out sudden spikes
525 if (avg > old && old >= (unsigned long)bw)
526 avg -= (avg - old) >> 3;
528 if (avg < old && old <= (unsigned long)bw)
529 avg += (old - avg) >> 3;
531 out:
532 bdi->write_bandwidth = bw;
533 bdi->avg_write_bandwidth = avg;
537 * The global dirtyable memory and dirty threshold could be suddenly knocked
538 * down by a large amount (eg. on the startup of KVM in a swapless system).
539 * This may throw the system into deep dirty exceeded state and throttle
540 * heavy/light dirtiers alike. To retain good responsiveness, maintain
541 * global_dirty_limit for tracking slowly down to the knocked down dirty
542 * threshold.
544 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
546 unsigned long limit = global_dirty_limit;
549 * Follow up in one step.
551 if (limit < thresh) {
552 limit = thresh;
553 goto update;
557 * Follow down slowly. Use the higher one as the target, because thresh
558 * may drop below dirty. This is exactly the reason to introduce
559 * global_dirty_limit which is guaranteed to lie above the dirty pages.
561 thresh = max(thresh, dirty);
562 if (limit > thresh) {
563 limit -= (limit - thresh) >> 5;
564 goto update;
566 return;
567 update:
568 global_dirty_limit = limit;
571 static void global_update_bandwidth(unsigned long thresh,
572 unsigned long dirty,
573 unsigned long now)
575 static DEFINE_SPINLOCK(dirty_lock);
576 static unsigned long update_time;
579 * check locklessly first to optimize away locking for the most time
581 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
582 return;
584 spin_lock(&dirty_lock);
585 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
586 update_dirty_limit(thresh, dirty);
587 update_time = now;
589 spin_unlock(&dirty_lock);
592 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
593 unsigned long thresh,
594 unsigned long dirty,
595 unsigned long bdi_thresh,
596 unsigned long bdi_dirty,
597 unsigned long start_time)
599 unsigned long now = jiffies;
600 unsigned long elapsed = now - bdi->bw_time_stamp;
601 unsigned long written;
604 * rate-limit, only update once every 200ms.
606 if (elapsed < BANDWIDTH_INTERVAL)
607 return;
609 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
612 * Skip quiet periods when disk bandwidth is under-utilized.
613 * (at least 1s idle time between two flusher runs)
615 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
616 goto snapshot;
618 if (thresh)
619 global_update_bandwidth(thresh, dirty, now);
621 bdi_update_write_bandwidth(bdi, elapsed, written);
623 snapshot:
624 bdi->written_stamp = written;
625 bdi->bw_time_stamp = now;
628 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
629 unsigned long thresh,
630 unsigned long dirty,
631 unsigned long bdi_thresh,
632 unsigned long bdi_dirty,
633 unsigned long start_time)
635 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
636 return;
637 spin_lock(&bdi->wb.list_lock);
638 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
639 start_time);
640 spin_unlock(&bdi->wb.list_lock);
644 * balance_dirty_pages() must be called by processes which are generating dirty
645 * data. It looks at the number of dirty pages in the machine and will force
646 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
647 * If we're over `background_thresh' then the writeback threads are woken to
648 * perform some writeout.
650 static void balance_dirty_pages(struct address_space *mapping,
651 unsigned long write_chunk)
653 unsigned long nr_reclaimable, bdi_nr_reclaimable;
654 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
655 unsigned long bdi_dirty;
656 unsigned long background_thresh;
657 unsigned long dirty_thresh;
658 unsigned long bdi_thresh;
659 unsigned long task_bdi_thresh;
660 unsigned long min_task_bdi_thresh;
661 unsigned long pages_written = 0;
662 unsigned long pause = 1;
663 bool dirty_exceeded = false;
664 bool clear_dirty_exceeded = true;
665 struct backing_dev_info *bdi = mapping->backing_dev_info;
666 unsigned long start_time = jiffies;
668 for (;;) {
669 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
670 global_page_state(NR_UNSTABLE_NFS);
671 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
673 global_dirty_limits(&background_thresh, &dirty_thresh);
676 * Throttle it only when the background writeback cannot
677 * catch-up. This avoids (excessively) small writeouts
678 * when the bdi limits are ramping up.
680 if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
681 break;
683 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
684 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
685 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
688 * In order to avoid the stacked BDI deadlock we need
689 * to ensure we accurately count the 'dirty' pages when
690 * the threshold is low.
692 * Otherwise it would be possible to get thresh+n pages
693 * reported dirty, even though there are thresh-m pages
694 * actually dirty; with m+n sitting in the percpu
695 * deltas.
697 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
698 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
699 bdi_dirty = bdi_nr_reclaimable +
700 bdi_stat_sum(bdi, BDI_WRITEBACK);
701 } else {
702 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
703 bdi_dirty = bdi_nr_reclaimable +
704 bdi_stat(bdi, BDI_WRITEBACK);
708 * The bdi thresh is somehow "soft" limit derived from the
709 * global "hard" limit. The former helps to prevent heavy IO
710 * bdi or process from holding back light ones; The latter is
711 * the last resort safeguard.
713 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
714 (nr_dirty > dirty_thresh);
715 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
716 (nr_dirty <= dirty_thresh);
718 if (!dirty_exceeded)
719 break;
721 if (!bdi->dirty_exceeded)
722 bdi->dirty_exceeded = 1;
724 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
725 bdi_thresh, bdi_dirty, start_time);
727 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
728 * Unstable writes are a feature of certain networked
729 * filesystems (i.e. NFS) in which data may have been
730 * written to the server's write cache, but has not yet
731 * been flushed to permanent storage.
732 * Only move pages to writeback if this bdi is over its
733 * threshold otherwise wait until the disk writes catch
734 * up.
736 trace_balance_dirty_start(bdi);
737 if (bdi_nr_reclaimable > task_bdi_thresh) {
738 pages_written += writeback_inodes_wb(&bdi->wb,
739 write_chunk);
740 trace_balance_dirty_written(bdi, pages_written);
741 if (pages_written >= write_chunk)
742 break; /* We've done our duty */
744 __set_current_state(TASK_UNINTERRUPTIBLE);
745 io_schedule_timeout(pause);
746 trace_balance_dirty_wait(bdi);
748 dirty_thresh = hard_dirty_limit(dirty_thresh);
750 * max-pause area. If dirty exceeded but still within this
751 * area, no need to sleep for more than 200ms: (a) 8 pages per
752 * 200ms is typically more than enough to curb heavy dirtiers;
753 * (b) the pause time limit makes the dirtiers more responsive.
755 if (nr_dirty < dirty_thresh &&
756 bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
757 time_after(jiffies, start_time + MAX_PAUSE))
758 break;
761 * Increase the delay for each loop, up to our previous
762 * default of taking a 100ms nap.
764 pause <<= 1;
765 if (pause > HZ / 10)
766 pause = HZ / 10;
769 /* Clear dirty_exceeded flag only when no task can exceed the limit */
770 if (clear_dirty_exceeded && bdi->dirty_exceeded)
771 bdi->dirty_exceeded = 0;
773 if (writeback_in_progress(bdi))
774 return;
777 * In laptop mode, we wait until hitting the higher threshold before
778 * starting background writeout, and then write out all the way down
779 * to the lower threshold. So slow writers cause minimal disk activity.
781 * In normal mode, we start background writeout at the lower
782 * background_thresh, to keep the amount of dirty memory low.
784 if ((laptop_mode && pages_written) ||
785 (!laptop_mode && (nr_reclaimable > background_thresh)))
786 bdi_start_background_writeback(bdi);
789 void set_page_dirty_balance(struct page *page, int page_mkwrite)
791 if (set_page_dirty(page) || page_mkwrite) {
792 struct address_space *mapping = page_mapping(page);
794 if (mapping)
795 balance_dirty_pages_ratelimited(mapping);
799 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
802 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
803 * @mapping: address_space which was dirtied
804 * @nr_pages_dirtied: number of pages which the caller has just dirtied
806 * Processes which are dirtying memory should call in here once for each page
807 * which was newly dirtied. The function will periodically check the system's
808 * dirty state and will initiate writeback if needed.
810 * On really big machines, get_writeback_state is expensive, so try to avoid
811 * calling it too often (ratelimiting). But once we're over the dirty memory
812 * limit we decrease the ratelimiting by a lot, to prevent individual processes
813 * from overshooting the limit by (ratelimit_pages) each.
815 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
816 unsigned long nr_pages_dirtied)
818 struct backing_dev_info *bdi = mapping->backing_dev_info;
819 unsigned long ratelimit;
820 unsigned long *p;
822 if (!bdi_cap_account_dirty(bdi))
823 return;
825 ratelimit = ratelimit_pages;
826 if (mapping->backing_dev_info->dirty_exceeded)
827 ratelimit = 8;
830 * Check the rate limiting. Also, we do not want to throttle real-time
831 * tasks in balance_dirty_pages(). Period.
833 preempt_disable();
834 p = &__get_cpu_var(bdp_ratelimits);
835 *p += nr_pages_dirtied;
836 if (unlikely(*p >= ratelimit)) {
837 ratelimit = sync_writeback_pages(*p);
838 *p = 0;
839 preempt_enable();
840 balance_dirty_pages(mapping, ratelimit);
841 return;
843 preempt_enable();
845 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
847 void throttle_vm_writeout(gfp_t gfp_mask)
849 unsigned long background_thresh;
850 unsigned long dirty_thresh;
852 for ( ; ; ) {
853 global_dirty_limits(&background_thresh, &dirty_thresh);
856 * Boost the allowable dirty threshold a bit for page
857 * allocators so they don't get DoS'ed by heavy writers
859 dirty_thresh += dirty_thresh / 10; /* wheeee... */
861 if (global_page_state(NR_UNSTABLE_NFS) +
862 global_page_state(NR_WRITEBACK) <= dirty_thresh)
863 break;
864 congestion_wait(BLK_RW_ASYNC, HZ/10);
867 * The caller might hold locks which can prevent IO completion
868 * or progress in the filesystem. So we cannot just sit here
869 * waiting for IO to complete.
871 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
872 break;
877 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
879 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
880 void __user *buffer, size_t *length, loff_t *ppos)
882 proc_dointvec(table, write, buffer, length, ppos);
883 bdi_arm_supers_timer();
884 return 0;
887 #ifdef CONFIG_BLOCK
888 void laptop_mode_timer_fn(unsigned long data)
890 struct request_queue *q = (struct request_queue *)data;
891 int nr_pages = global_page_state(NR_FILE_DIRTY) +
892 global_page_state(NR_UNSTABLE_NFS);
895 * We want to write everything out, not just down to the dirty
896 * threshold
898 if (bdi_has_dirty_io(&q->backing_dev_info))
899 bdi_start_writeback(&q->backing_dev_info, nr_pages);
903 * We've spun up the disk and we're in laptop mode: schedule writeback
904 * of all dirty data a few seconds from now. If the flush is already scheduled
905 * then push it back - the user is still using the disk.
907 void laptop_io_completion(struct backing_dev_info *info)
909 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
913 * We're in laptop mode and we've just synced. The sync's writes will have
914 * caused another writeback to be scheduled by laptop_io_completion.
915 * Nothing needs to be written back anymore, so we unschedule the writeback.
917 void laptop_sync_completion(void)
919 struct backing_dev_info *bdi;
921 rcu_read_lock();
923 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
924 del_timer(&bdi->laptop_mode_wb_timer);
926 rcu_read_unlock();
928 #endif
931 * If ratelimit_pages is too high then we can get into dirty-data overload
932 * if a large number of processes all perform writes at the same time.
933 * If it is too low then SMP machines will call the (expensive)
934 * get_writeback_state too often.
936 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
937 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
938 * thresholds before writeback cuts in.
940 * But the limit should not be set too high. Because it also controls the
941 * amount of memory which the balance_dirty_pages() caller has to write back.
942 * If this is too large then the caller will block on the IO queue all the
943 * time. So limit it to four megabytes - the balance_dirty_pages() caller
944 * will write six megabyte chunks, max.
947 void writeback_set_ratelimit(void)
949 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
950 if (ratelimit_pages < 16)
951 ratelimit_pages = 16;
952 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
953 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
956 static int __cpuinit
957 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
959 writeback_set_ratelimit();
960 return NOTIFY_DONE;
963 static struct notifier_block __cpuinitdata ratelimit_nb = {
964 .notifier_call = ratelimit_handler,
965 .next = NULL,
969 * Called early on to tune the page writeback dirty limits.
971 * We used to scale dirty pages according to how total memory
972 * related to pages that could be allocated for buffers (by
973 * comparing nr_free_buffer_pages() to vm_total_pages.
975 * However, that was when we used "dirty_ratio" to scale with
976 * all memory, and we don't do that any more. "dirty_ratio"
977 * is now applied to total non-HIGHPAGE memory (by subtracting
978 * totalhigh_pages from vm_total_pages), and as such we can't
979 * get into the old insane situation any more where we had
980 * large amounts of dirty pages compared to a small amount of
981 * non-HIGHMEM memory.
983 * But we might still want to scale the dirty_ratio by how
984 * much memory the box has..
986 void __init page_writeback_init(void)
988 int shift;
990 writeback_set_ratelimit();
991 register_cpu_notifier(&ratelimit_nb);
993 shift = calc_period_shift();
994 prop_descriptor_init(&vm_completions, shift);
995 prop_descriptor_init(&vm_dirties, shift);
999 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1000 * @mapping: address space structure to write
1001 * @start: starting page index
1002 * @end: ending page index (inclusive)
1004 * This function scans the page range from @start to @end (inclusive) and tags
1005 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1006 * that write_cache_pages (or whoever calls this function) will then use
1007 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1008 * used to avoid livelocking of writeback by a process steadily creating new
1009 * dirty pages in the file (thus it is important for this function to be quick
1010 * so that it can tag pages faster than a dirtying process can create them).
1013 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1015 void tag_pages_for_writeback(struct address_space *mapping,
1016 pgoff_t start, pgoff_t end)
1018 #define WRITEBACK_TAG_BATCH 4096
1019 unsigned long tagged;
1021 do {
1022 spin_lock_irq(&mapping->tree_lock);
1023 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1024 &start, end, WRITEBACK_TAG_BATCH,
1025 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1026 spin_unlock_irq(&mapping->tree_lock);
1027 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1028 cond_resched();
1029 /* We check 'start' to handle wrapping when end == ~0UL */
1030 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1032 EXPORT_SYMBOL(tag_pages_for_writeback);
1035 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1036 * @mapping: address space structure to write
1037 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1038 * @writepage: function called for each page
1039 * @data: data passed to writepage function
1041 * If a page is already under I/O, write_cache_pages() skips it, even
1042 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1043 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1044 * and msync() need to guarantee that all the data which was dirty at the time
1045 * the call was made get new I/O started against them. If wbc->sync_mode is
1046 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1047 * existing IO to complete.
1049 * To avoid livelocks (when other process dirties new pages), we first tag
1050 * pages which should be written back with TOWRITE tag and only then start
1051 * writing them. For data-integrity sync we have to be careful so that we do
1052 * not miss some pages (e.g., because some other process has cleared TOWRITE
1053 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1054 * by the process clearing the DIRTY tag (and submitting the page for IO).
1056 int write_cache_pages(struct address_space *mapping,
1057 struct writeback_control *wbc, writepage_t writepage,
1058 void *data)
1060 int ret = 0;
1061 int done = 0;
1062 struct pagevec pvec;
1063 int nr_pages;
1064 pgoff_t uninitialized_var(writeback_index);
1065 pgoff_t index;
1066 pgoff_t end; /* Inclusive */
1067 pgoff_t done_index;
1068 int cycled;
1069 int range_whole = 0;
1070 int tag;
1072 pagevec_init(&pvec, 0);
1073 if (wbc->range_cyclic) {
1074 writeback_index = mapping->writeback_index; /* prev offset */
1075 index = writeback_index;
1076 if (index == 0)
1077 cycled = 1;
1078 else
1079 cycled = 0;
1080 end = -1;
1081 } else {
1082 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1083 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1084 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1085 range_whole = 1;
1086 cycled = 1; /* ignore range_cyclic tests */
1088 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1089 tag = PAGECACHE_TAG_TOWRITE;
1090 else
1091 tag = PAGECACHE_TAG_DIRTY;
1092 retry:
1093 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1094 tag_pages_for_writeback(mapping, index, end);
1095 done_index = index;
1096 while (!done && (index <= end)) {
1097 int i;
1099 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1100 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1101 if (nr_pages == 0)
1102 break;
1104 for (i = 0; i < nr_pages; i++) {
1105 struct page *page = pvec.pages[i];
1108 * At this point, the page may be truncated or
1109 * invalidated (changing page->mapping to NULL), or
1110 * even swizzled back from swapper_space to tmpfs file
1111 * mapping. However, page->index will not change
1112 * because we have a reference on the page.
1114 if (page->index > end) {
1116 * can't be range_cyclic (1st pass) because
1117 * end == -1 in that case.
1119 done = 1;
1120 break;
1123 done_index = page->index;
1125 lock_page(page);
1128 * Page truncated or invalidated. We can freely skip it
1129 * then, even for data integrity operations: the page
1130 * has disappeared concurrently, so there could be no
1131 * real expectation of this data interity operation
1132 * even if there is now a new, dirty page at the same
1133 * pagecache address.
1135 if (unlikely(page->mapping != mapping)) {
1136 continue_unlock:
1137 unlock_page(page);
1138 continue;
1141 if (!PageDirty(page)) {
1142 /* someone wrote it for us */
1143 goto continue_unlock;
1146 if (PageWriteback(page)) {
1147 if (wbc->sync_mode != WB_SYNC_NONE)
1148 wait_on_page_writeback(page);
1149 else
1150 goto continue_unlock;
1153 BUG_ON(PageWriteback(page));
1154 if (!clear_page_dirty_for_io(page))
1155 goto continue_unlock;
1157 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1158 ret = (*writepage)(page, wbc, data);
1159 if (unlikely(ret)) {
1160 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1161 unlock_page(page);
1162 ret = 0;
1163 } else {
1165 * done_index is set past this page,
1166 * so media errors will not choke
1167 * background writeout for the entire
1168 * file. This has consequences for
1169 * range_cyclic semantics (ie. it may
1170 * not be suitable for data integrity
1171 * writeout).
1173 done_index = page->index + 1;
1174 done = 1;
1175 break;
1180 * We stop writing back only if we are not doing
1181 * integrity sync. In case of integrity sync we have to
1182 * keep going until we have written all the pages
1183 * we tagged for writeback prior to entering this loop.
1185 if (--wbc->nr_to_write <= 0 &&
1186 wbc->sync_mode == WB_SYNC_NONE) {
1187 done = 1;
1188 break;
1191 pagevec_release(&pvec);
1192 cond_resched();
1194 if (!cycled && !done) {
1196 * range_cyclic:
1197 * We hit the last page and there is more work to be done: wrap
1198 * back to the start of the file
1200 cycled = 1;
1201 index = 0;
1202 end = writeback_index - 1;
1203 goto retry;
1205 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1206 mapping->writeback_index = done_index;
1208 return ret;
1210 EXPORT_SYMBOL(write_cache_pages);
1213 * Function used by generic_writepages to call the real writepage
1214 * function and set the mapping flags on error
1216 static int __writepage(struct page *page, struct writeback_control *wbc,
1217 void *data)
1219 struct address_space *mapping = data;
1220 int ret = mapping->a_ops->writepage(page, wbc);
1221 mapping_set_error(mapping, ret);
1222 return ret;
1226 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1227 * @mapping: address space structure to write
1228 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1230 * This is a library function, which implements the writepages()
1231 * address_space_operation.
1233 int generic_writepages(struct address_space *mapping,
1234 struct writeback_control *wbc)
1236 struct blk_plug plug;
1237 int ret;
1239 /* deal with chardevs and other special file */
1240 if (!mapping->a_ops->writepage)
1241 return 0;
1243 blk_start_plug(&plug);
1244 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1245 blk_finish_plug(&plug);
1246 return ret;
1249 EXPORT_SYMBOL(generic_writepages);
1251 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1253 int ret;
1255 if (wbc->nr_to_write <= 0)
1256 return 0;
1257 if (mapping->a_ops->writepages)
1258 ret = mapping->a_ops->writepages(mapping, wbc);
1259 else
1260 ret = generic_writepages(mapping, wbc);
1261 return ret;
1265 * write_one_page - write out a single page and optionally wait on I/O
1266 * @page: the page to write
1267 * @wait: if true, wait on writeout
1269 * The page must be locked by the caller and will be unlocked upon return.
1271 * write_one_page() returns a negative error code if I/O failed.
1273 int write_one_page(struct page *page, int wait)
1275 struct address_space *mapping = page->mapping;
1276 int ret = 0;
1277 struct writeback_control wbc = {
1278 .sync_mode = WB_SYNC_ALL,
1279 .nr_to_write = 1,
1282 BUG_ON(!PageLocked(page));
1284 if (wait)
1285 wait_on_page_writeback(page);
1287 if (clear_page_dirty_for_io(page)) {
1288 page_cache_get(page);
1289 ret = mapping->a_ops->writepage(page, &wbc);
1290 if (ret == 0 && wait) {
1291 wait_on_page_writeback(page);
1292 if (PageError(page))
1293 ret = -EIO;
1295 page_cache_release(page);
1296 } else {
1297 unlock_page(page);
1299 return ret;
1301 EXPORT_SYMBOL(write_one_page);
1304 * For address_spaces which do not use buffers nor write back.
1306 int __set_page_dirty_no_writeback(struct page *page)
1308 if (!PageDirty(page))
1309 return !TestSetPageDirty(page);
1310 return 0;
1314 * Helper function for set_page_dirty family.
1315 * NOTE: This relies on being atomic wrt interrupts.
1317 void account_page_dirtied(struct page *page, struct address_space *mapping)
1319 if (mapping_cap_account_dirty(mapping)) {
1320 __inc_zone_page_state(page, NR_FILE_DIRTY);
1321 __inc_zone_page_state(page, NR_DIRTIED);
1322 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1323 task_dirty_inc(current);
1324 task_io_account_write(PAGE_CACHE_SIZE);
1327 EXPORT_SYMBOL(account_page_dirtied);
1330 * Helper function for set_page_writeback family.
1331 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1332 * wrt interrupts.
1334 void account_page_writeback(struct page *page)
1336 inc_zone_page_state(page, NR_WRITEBACK);
1338 EXPORT_SYMBOL(account_page_writeback);
1341 * For address_spaces which do not use buffers. Just tag the page as dirty in
1342 * its radix tree.
1344 * This is also used when a single buffer is being dirtied: we want to set the
1345 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1346 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1348 * Most callers have locked the page, which pins the address_space in memory.
1349 * But zap_pte_range() does not lock the page, however in that case the
1350 * mapping is pinned by the vma's ->vm_file reference.
1352 * We take care to handle the case where the page was truncated from the
1353 * mapping by re-checking page_mapping() inside tree_lock.
1355 int __set_page_dirty_nobuffers(struct page *page)
1357 if (!TestSetPageDirty(page)) {
1358 struct address_space *mapping = page_mapping(page);
1359 struct address_space *mapping2;
1361 if (!mapping)
1362 return 1;
1364 spin_lock_irq(&mapping->tree_lock);
1365 mapping2 = page_mapping(page);
1366 if (mapping2) { /* Race with truncate? */
1367 BUG_ON(mapping2 != mapping);
1368 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1369 account_page_dirtied(page, mapping);
1370 radix_tree_tag_set(&mapping->page_tree,
1371 page_index(page), PAGECACHE_TAG_DIRTY);
1373 spin_unlock_irq(&mapping->tree_lock);
1374 if (mapping->host) {
1375 /* !PageAnon && !swapper_space */
1376 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1378 return 1;
1380 return 0;
1382 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1385 * When a writepage implementation decides that it doesn't want to write this
1386 * page for some reason, it should redirty the locked page via
1387 * redirty_page_for_writepage() and it should then unlock the page and return 0
1389 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1391 wbc->pages_skipped++;
1392 return __set_page_dirty_nobuffers(page);
1394 EXPORT_SYMBOL(redirty_page_for_writepage);
1397 * Dirty a page.
1399 * For pages with a mapping this should be done under the page lock
1400 * for the benefit of asynchronous memory errors who prefer a consistent
1401 * dirty state. This rule can be broken in some special cases,
1402 * but should be better not to.
1404 * If the mapping doesn't provide a set_page_dirty a_op, then
1405 * just fall through and assume that it wants buffer_heads.
1407 int set_page_dirty(struct page *page)
1409 struct address_space *mapping = page_mapping(page);
1411 if (likely(mapping)) {
1412 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1414 * readahead/lru_deactivate_page could remain
1415 * PG_readahead/PG_reclaim due to race with end_page_writeback
1416 * About readahead, if the page is written, the flags would be
1417 * reset. So no problem.
1418 * About lru_deactivate_page, if the page is redirty, the flag
1419 * will be reset. So no problem. but if the page is used by readahead
1420 * it will confuse readahead and make it restart the size rampup
1421 * process. But it's a trivial problem.
1423 ClearPageReclaim(page);
1424 #ifdef CONFIG_BLOCK
1425 if (!spd)
1426 spd = __set_page_dirty_buffers;
1427 #endif
1428 return (*spd)(page);
1430 if (!PageDirty(page)) {
1431 if (!TestSetPageDirty(page))
1432 return 1;
1434 return 0;
1436 EXPORT_SYMBOL(set_page_dirty);
1439 * set_page_dirty() is racy if the caller has no reference against
1440 * page->mapping->host, and if the page is unlocked. This is because another
1441 * CPU could truncate the page off the mapping and then free the mapping.
1443 * Usually, the page _is_ locked, or the caller is a user-space process which
1444 * holds a reference on the inode by having an open file.
1446 * In other cases, the page should be locked before running set_page_dirty().
1448 int set_page_dirty_lock(struct page *page)
1450 int ret;
1452 lock_page(page);
1453 ret = set_page_dirty(page);
1454 unlock_page(page);
1455 return ret;
1457 EXPORT_SYMBOL(set_page_dirty_lock);
1460 * Clear a page's dirty flag, while caring for dirty memory accounting.
1461 * Returns true if the page was previously dirty.
1463 * This is for preparing to put the page under writeout. We leave the page
1464 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1465 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1466 * implementation will run either set_page_writeback() or set_page_dirty(),
1467 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1468 * back into sync.
1470 * This incoherency between the page's dirty flag and radix-tree tag is
1471 * unfortunate, but it only exists while the page is locked.
1473 int clear_page_dirty_for_io(struct page *page)
1475 struct address_space *mapping = page_mapping(page);
1477 BUG_ON(!PageLocked(page));
1479 if (mapping && mapping_cap_account_dirty(mapping)) {
1481 * Yes, Virginia, this is indeed insane.
1483 * We use this sequence to make sure that
1484 * (a) we account for dirty stats properly
1485 * (b) we tell the low-level filesystem to
1486 * mark the whole page dirty if it was
1487 * dirty in a pagetable. Only to then
1488 * (c) clean the page again and return 1 to
1489 * cause the writeback.
1491 * This way we avoid all nasty races with the
1492 * dirty bit in multiple places and clearing
1493 * them concurrently from different threads.
1495 * Note! Normally the "set_page_dirty(page)"
1496 * has no effect on the actual dirty bit - since
1497 * that will already usually be set. But we
1498 * need the side effects, and it can help us
1499 * avoid races.
1501 * We basically use the page "master dirty bit"
1502 * as a serialization point for all the different
1503 * threads doing their things.
1505 if (page_mkclean(page))
1506 set_page_dirty(page);
1508 * We carefully synchronise fault handlers against
1509 * installing a dirty pte and marking the page dirty
1510 * at this point. We do this by having them hold the
1511 * page lock at some point after installing their
1512 * pte, but before marking the page dirty.
1513 * Pages are always locked coming in here, so we get
1514 * the desired exclusion. See mm/memory.c:do_wp_page()
1515 * for more comments.
1517 if (TestClearPageDirty(page)) {
1518 dec_zone_page_state(page, NR_FILE_DIRTY);
1519 dec_bdi_stat(mapping->backing_dev_info,
1520 BDI_RECLAIMABLE);
1521 return 1;
1523 return 0;
1525 return TestClearPageDirty(page);
1527 EXPORT_SYMBOL(clear_page_dirty_for_io);
1529 int test_clear_page_writeback(struct page *page)
1531 struct address_space *mapping = page_mapping(page);
1532 int ret;
1534 if (mapping) {
1535 struct backing_dev_info *bdi = mapping->backing_dev_info;
1536 unsigned long flags;
1538 spin_lock_irqsave(&mapping->tree_lock, flags);
1539 ret = TestClearPageWriteback(page);
1540 if (ret) {
1541 radix_tree_tag_clear(&mapping->page_tree,
1542 page_index(page),
1543 PAGECACHE_TAG_WRITEBACK);
1544 if (bdi_cap_account_writeback(bdi)) {
1545 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1546 __bdi_writeout_inc(bdi);
1549 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1550 } else {
1551 ret = TestClearPageWriteback(page);
1553 if (ret) {
1554 dec_zone_page_state(page, NR_WRITEBACK);
1555 inc_zone_page_state(page, NR_WRITTEN);
1557 return ret;
1560 int test_set_page_writeback(struct page *page)
1562 struct address_space *mapping = page_mapping(page);
1563 int ret;
1565 if (mapping) {
1566 struct backing_dev_info *bdi = mapping->backing_dev_info;
1567 unsigned long flags;
1569 spin_lock_irqsave(&mapping->tree_lock, flags);
1570 ret = TestSetPageWriteback(page);
1571 if (!ret) {
1572 radix_tree_tag_set(&mapping->page_tree,
1573 page_index(page),
1574 PAGECACHE_TAG_WRITEBACK);
1575 if (bdi_cap_account_writeback(bdi))
1576 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1578 if (!PageDirty(page))
1579 radix_tree_tag_clear(&mapping->page_tree,
1580 page_index(page),
1581 PAGECACHE_TAG_DIRTY);
1582 radix_tree_tag_clear(&mapping->page_tree,
1583 page_index(page),
1584 PAGECACHE_TAG_TOWRITE);
1585 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1586 } else {
1587 ret = TestSetPageWriteback(page);
1589 if (!ret)
1590 account_page_writeback(page);
1591 return ret;
1594 EXPORT_SYMBOL(test_set_page_writeback);
1597 * Return true if any of the pages in the mapping are marked with the
1598 * passed tag.
1600 int mapping_tagged(struct address_space *mapping, int tag)
1602 return radix_tree_tagged(&mapping->page_tree, tag);
1604 EXPORT_SYMBOL(mapping_tagged);