4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Estimate write bandwidth at 200ms intervals.
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51 * will look to see if it needs to force writeback or throttling.
53 static long ratelimit_pages
= 32;
56 * When balance_dirty_pages decides that the caller needs to perform some
57 * non-background writeback, this is how many pages it will attempt to write.
58 * It should be somewhat larger than dirtied pages to ensure that reasonably
59 * large amounts of I/O are submitted.
61 static inline long sync_writeback_pages(unsigned long dirtied
)
63 if (dirtied
< ratelimit_pages
)
64 dirtied
= ratelimit_pages
;
66 return dirtied
+ dirtied
/ 2;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 int dirty_background_ratio
= 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 unsigned long dirty_background_bytes
;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 int vm_highmem_is_dirtyable
;
89 * The generator of dirty data starts writeback at this percentage
91 int vm_dirty_ratio
= 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 unsigned long vm_dirty_bytes
;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
105 * The longest time for which data is allowed to remain dirty
107 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
110 * Flag that makes the machine dump writes/reads and block dirtyings.
115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116 * a full sync is triggered after this time elapses without any disk activity.
120 EXPORT_SYMBOL(laptop_mode
);
122 /* End of sysctl-exported parameters */
124 unsigned long global_dirty_limit
;
127 * Scale the writeback cache size proportional to the relative writeout speeds.
129 * We do this by keeping a floating proportion between BDIs, based on page
130 * writeback completions [end_page_writeback()]. Those devices that write out
131 * pages fastest will get the larger share, while the slower will get a smaller
134 * We use page writeout completions because we are interested in getting rid of
135 * dirty pages. Having them written out is the primary goal.
137 * We introduce a concept of time, a period over which we measure these events,
138 * because demand can/will vary over time. The length of this period itself is
139 * measured in page writeback completions.
142 static struct prop_descriptor vm_completions
;
143 static struct prop_descriptor vm_dirties
;
146 * couple the period to the dirty_ratio:
148 * period/2 ~ roundup_pow_of_two(dirty limit)
150 static int calc_period_shift(void)
152 unsigned long dirty_total
;
155 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
157 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
159 return 2 + ilog2(dirty_total
- 1);
163 * update the period when the dirty threshold changes.
165 static void update_completion_period(void)
167 int shift
= calc_period_shift();
168 prop_change_shift(&vm_completions
, shift
);
169 prop_change_shift(&vm_dirties
, shift
);
172 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
173 void __user
*buffer
, size_t *lenp
,
178 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
179 if (ret
== 0 && write
)
180 dirty_background_bytes
= 0;
184 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
185 void __user
*buffer
, size_t *lenp
,
190 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
191 if (ret
== 0 && write
)
192 dirty_background_ratio
= 0;
196 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
197 void __user
*buffer
, size_t *lenp
,
200 int old_ratio
= vm_dirty_ratio
;
203 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
204 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
205 update_completion_period();
212 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
213 void __user
*buffer
, size_t *lenp
,
216 unsigned long old_bytes
= vm_dirty_bytes
;
219 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
220 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
221 update_completion_period();
228 * Increment the BDI's writeout completion count and the global writeout
229 * completion count. Called from test_clear_page_writeback().
231 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
233 __inc_bdi_stat(bdi
, BDI_WRITTEN
);
234 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
238 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
242 local_irq_save(flags
);
243 __bdi_writeout_inc(bdi
);
244 local_irq_restore(flags
);
246 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
248 void task_dirty_inc(struct task_struct
*tsk
)
250 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
254 * Obtain an accurate fraction of the BDI's portion.
256 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
257 long *numerator
, long *denominator
)
259 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
260 numerator
, denominator
);
263 static inline void task_dirties_fraction(struct task_struct
*tsk
,
264 long *numerator
, long *denominator
)
266 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
267 numerator
, denominator
);
271 * task_dirty_limit - scale down dirty throttling threshold for one task
273 * task specific dirty limit:
275 * dirty -= (dirty/8) * p_{t}
277 * To protect light/slow dirtying tasks from heavier/fast ones, we start
278 * throttling individual tasks before reaching the bdi dirty limit.
279 * Relatively low thresholds will be allocated to heavy dirtiers. So when
280 * dirty pages grow large, heavy dirtiers will be throttled first, which will
281 * effectively curb the growth of dirty pages. Light dirtiers with high enough
282 * dirty threshold may never get throttled.
284 #define TASK_LIMIT_FRACTION 8
285 static unsigned long task_dirty_limit(struct task_struct
*tsk
,
286 unsigned long bdi_dirty
)
288 long numerator
, denominator
;
289 unsigned long dirty
= bdi_dirty
;
290 u64 inv
= dirty
/ TASK_LIMIT_FRACTION
;
292 task_dirties_fraction(tsk
, &numerator
, &denominator
);
294 do_div(inv
, denominator
);
298 return max(dirty
, bdi_dirty
/2);
301 /* Minimum limit for any task */
302 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty
)
304 return bdi_dirty
- bdi_dirty
/ TASK_LIMIT_FRACTION
;
310 static unsigned int bdi_min_ratio
;
312 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
316 spin_lock_bh(&bdi_lock
);
317 if (min_ratio
> bdi
->max_ratio
) {
320 min_ratio
-= bdi
->min_ratio
;
321 if (bdi_min_ratio
+ min_ratio
< 100) {
322 bdi_min_ratio
+= min_ratio
;
323 bdi
->min_ratio
+= min_ratio
;
328 spin_unlock_bh(&bdi_lock
);
333 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
340 spin_lock_bh(&bdi_lock
);
341 if (bdi
->min_ratio
> max_ratio
) {
344 bdi
->max_ratio
= max_ratio
;
345 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
347 spin_unlock_bh(&bdi_lock
);
351 EXPORT_SYMBOL(bdi_set_max_ratio
);
354 * Work out the current dirty-memory clamping and background writeout
357 * The main aim here is to lower them aggressively if there is a lot of mapped
358 * memory around. To avoid stressing page reclaim with lots of unreclaimable
359 * pages. It is better to clamp down on writers than to start swapping, and
360 * performing lots of scanning.
362 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
364 * We don't permit the clamping level to fall below 5% - that is getting rather
367 * We make sure that the background writeout level is below the adjusted
371 static unsigned long highmem_dirtyable_memory(unsigned long total
)
373 #ifdef CONFIG_HIGHMEM
377 for_each_node_state(node
, N_HIGH_MEMORY
) {
379 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
381 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
382 zone_reclaimable_pages(z
);
385 * Make sure that the number of highmem pages is never larger
386 * than the number of the total dirtyable memory. This can only
387 * occur in very strange VM situations but we want to make sure
388 * that this does not occur.
390 return min(x
, total
);
397 * determine_dirtyable_memory - amount of memory that may be used
399 * Returns the numebr of pages that can currently be freed and used
400 * by the kernel for direct mappings.
402 unsigned long determine_dirtyable_memory(void)
406 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages();
408 if (!vm_highmem_is_dirtyable
)
409 x
-= highmem_dirtyable_memory(x
);
411 return x
+ 1; /* Ensure that we never return 0 */
414 static unsigned long hard_dirty_limit(unsigned long thresh
)
416 return max(thresh
, global_dirty_limit
);
420 * global_dirty_limits - background-writeback and dirty-throttling thresholds
422 * Calculate the dirty thresholds based on sysctl parameters
423 * - vm.dirty_background_ratio or vm.dirty_background_bytes
424 * - vm.dirty_ratio or vm.dirty_bytes
425 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
428 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
430 unsigned long background
;
432 unsigned long uninitialized_var(available_memory
);
433 struct task_struct
*tsk
;
435 if (!vm_dirty_bytes
|| !dirty_background_bytes
)
436 available_memory
= determine_dirtyable_memory();
439 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
441 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
443 if (dirty_background_bytes
)
444 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
446 background
= (dirty_background_ratio
* available_memory
) / 100;
448 if (background
>= dirty
)
449 background
= dirty
/ 2;
451 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
452 background
+= background
/ 4;
455 *pbackground
= background
;
457 trace_global_dirty_state(background
, dirty
);
461 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
462 * @bdi: the backing_dev_info to query
463 * @dirty: global dirty limit in pages
465 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
466 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
467 * And the "limit" in the name is not seriously taken as hard limit in
468 * balance_dirty_pages().
470 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
471 * - starving fast devices
472 * - piling up dirty pages (that will take long time to sync) on slow devices
474 * The bdi's share of dirty limit will be adapting to its throughput and
475 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
477 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
480 long numerator
, denominator
;
483 * Calculate this BDI's share of the dirty ratio.
485 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
487 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
488 bdi_dirty
*= numerator
;
489 do_div(bdi_dirty
, denominator
);
491 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
492 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
493 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
498 static void bdi_update_write_bandwidth(struct backing_dev_info
*bdi
,
499 unsigned long elapsed
,
500 unsigned long written
)
502 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
503 unsigned long avg
= bdi
->avg_write_bandwidth
;
504 unsigned long old
= bdi
->write_bandwidth
;
508 * bw = written * HZ / elapsed
510 * bw * elapsed + write_bandwidth * (period - elapsed)
511 * write_bandwidth = ---------------------------------------------------
514 bw
= written
- bdi
->written_stamp
;
516 if (unlikely(elapsed
> period
)) {
521 bw
+= (u64
)bdi
->write_bandwidth
* (period
- elapsed
);
522 bw
>>= ilog2(period
);
525 * one more level of smoothing, for filtering out sudden spikes
527 if (avg
> old
&& old
>= (unsigned long)bw
)
528 avg
-= (avg
- old
) >> 3;
530 if (avg
< old
&& old
<= (unsigned long)bw
)
531 avg
+= (old
- avg
) >> 3;
534 bdi
->write_bandwidth
= bw
;
535 bdi
->avg_write_bandwidth
= avg
;
539 * The global dirtyable memory and dirty threshold could be suddenly knocked
540 * down by a large amount (eg. on the startup of KVM in a swapless system).
541 * This may throw the system into deep dirty exceeded state and throttle
542 * heavy/light dirtiers alike. To retain good responsiveness, maintain
543 * global_dirty_limit for tracking slowly down to the knocked down dirty
546 static void update_dirty_limit(unsigned long thresh
, unsigned long dirty
)
548 unsigned long limit
= global_dirty_limit
;
551 * Follow up in one step.
553 if (limit
< thresh
) {
559 * Follow down slowly. Use the higher one as the target, because thresh
560 * may drop below dirty. This is exactly the reason to introduce
561 * global_dirty_limit which is guaranteed to lie above the dirty pages.
563 thresh
= max(thresh
, dirty
);
564 if (limit
> thresh
) {
565 limit
-= (limit
- thresh
) >> 5;
570 global_dirty_limit
= limit
;
573 static void global_update_bandwidth(unsigned long thresh
,
577 static DEFINE_SPINLOCK(dirty_lock
);
578 static unsigned long update_time
;
581 * check locklessly first to optimize away locking for the most time
583 if (time_before(now
, update_time
+ BANDWIDTH_INTERVAL
))
586 spin_lock(&dirty_lock
);
587 if (time_after_eq(now
, update_time
+ BANDWIDTH_INTERVAL
)) {
588 update_dirty_limit(thresh
, dirty
);
591 spin_unlock(&dirty_lock
);
594 void __bdi_update_bandwidth(struct backing_dev_info
*bdi
,
595 unsigned long thresh
,
597 unsigned long bdi_thresh
,
598 unsigned long bdi_dirty
,
599 unsigned long start_time
)
601 unsigned long now
= jiffies
;
602 unsigned long elapsed
= now
- bdi
->bw_time_stamp
;
603 unsigned long written
;
606 * rate-limit, only update once every 200ms.
608 if (elapsed
< BANDWIDTH_INTERVAL
)
611 written
= percpu_counter_read(&bdi
->bdi_stat
[BDI_WRITTEN
]);
614 * Skip quiet periods when disk bandwidth is under-utilized.
615 * (at least 1s idle time between two flusher runs)
617 if (elapsed
> HZ
&& time_before(bdi
->bw_time_stamp
, start_time
))
621 global_update_bandwidth(thresh
, dirty
, now
);
623 bdi_update_write_bandwidth(bdi
, elapsed
, written
);
626 bdi
->written_stamp
= written
;
627 bdi
->bw_time_stamp
= now
;
630 static void bdi_update_bandwidth(struct backing_dev_info
*bdi
,
631 unsigned long thresh
,
633 unsigned long bdi_thresh
,
634 unsigned long bdi_dirty
,
635 unsigned long start_time
)
637 if (time_is_after_eq_jiffies(bdi
->bw_time_stamp
+ BANDWIDTH_INTERVAL
))
639 spin_lock(&bdi
->wb
.list_lock
);
640 __bdi_update_bandwidth(bdi
, thresh
, dirty
, bdi_thresh
, bdi_dirty
,
642 spin_unlock(&bdi
->wb
.list_lock
);
646 * balance_dirty_pages() must be called by processes which are generating dirty
647 * data. It looks at the number of dirty pages in the machine and will force
648 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
649 * If we're over `background_thresh' then the writeback threads are woken to
650 * perform some writeout.
652 static void balance_dirty_pages(struct address_space
*mapping
,
653 unsigned long write_chunk
)
655 unsigned long nr_reclaimable
, bdi_nr_reclaimable
;
656 unsigned long nr_dirty
; /* = file_dirty + writeback + unstable_nfs */
657 unsigned long bdi_dirty
;
658 unsigned long background_thresh
;
659 unsigned long dirty_thresh
;
660 unsigned long bdi_thresh
;
661 unsigned long min_task_bdi_thresh
;
662 unsigned long pages_written
= 0;
663 unsigned long pause
= 1;
664 bool dirty_exceeded
= false;
665 bool clear_dirty_exceeded
= true;
666 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
667 unsigned long start_time
= jiffies
;
670 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
671 global_page_state(NR_UNSTABLE_NFS
);
672 nr_dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
674 global_dirty_limits(&background_thresh
, &dirty_thresh
);
677 * Throttle it only when the background writeback cannot
678 * catch-up. This avoids (excessively) small writeouts
679 * when the bdi limits are ramping up.
681 if (nr_dirty
<= (background_thresh
+ dirty_thresh
) / 2)
684 bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
685 min_task_bdi_thresh
= task_min_dirty_limit(bdi_thresh
);
686 bdi_thresh
= task_dirty_limit(current
, bdi_thresh
);
689 * In order to avoid the stacked BDI deadlock we need
690 * to ensure we accurately count the 'dirty' pages when
691 * the threshold is low.
693 * Otherwise it would be possible to get thresh+n pages
694 * reported dirty, even though there are thresh-m pages
695 * actually dirty; with m+n sitting in the percpu
698 if (bdi_thresh
< 2 * bdi_stat_error(bdi
)) {
699 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
700 bdi_dirty
= bdi_nr_reclaimable
+
701 bdi_stat_sum(bdi
, BDI_WRITEBACK
);
703 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
704 bdi_dirty
= bdi_nr_reclaimable
+
705 bdi_stat(bdi
, BDI_WRITEBACK
);
709 * The bdi thresh is somehow "soft" limit derived from the
710 * global "hard" limit. The former helps to prevent heavy IO
711 * bdi or process from holding back light ones; The latter is
712 * the last resort safeguard.
714 dirty_exceeded
= (bdi_dirty
> bdi_thresh
) ||
715 (nr_dirty
> dirty_thresh
);
716 clear_dirty_exceeded
= (bdi_dirty
<= min_task_bdi_thresh
) &&
717 (nr_dirty
<= dirty_thresh
);
722 if (!bdi
->dirty_exceeded
)
723 bdi
->dirty_exceeded
= 1;
725 bdi_update_bandwidth(bdi
, dirty_thresh
, nr_dirty
,
726 bdi_thresh
, bdi_dirty
, start_time
);
728 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
729 * Unstable writes are a feature of certain networked
730 * filesystems (i.e. NFS) in which data may have been
731 * written to the server's write cache, but has not yet
732 * been flushed to permanent storage.
733 * Only move pages to writeback if this bdi is over its
734 * threshold otherwise wait until the disk writes catch
737 trace_balance_dirty_start(bdi
);
738 if (bdi_nr_reclaimable
> bdi_thresh
) {
739 pages_written
+= writeback_inodes_wb(&bdi
->wb
,
741 trace_balance_dirty_written(bdi
, pages_written
);
742 if (pages_written
>= write_chunk
)
743 break; /* We've done our duty */
745 __set_current_state(TASK_UNINTERRUPTIBLE
);
746 io_schedule_timeout(pause
);
747 trace_balance_dirty_wait(bdi
);
749 dirty_thresh
= hard_dirty_limit(dirty_thresh
);
751 * max-pause area. If dirty exceeded but still within this
752 * area, no need to sleep for more than 200ms: (a) 8 pages per
753 * 200ms is typically more than enough to curb heavy dirtiers;
754 * (b) the pause time limit makes the dirtiers more responsive.
756 if (nr_dirty
< dirty_thresh
+
757 dirty_thresh
/ DIRTY_MAXPAUSE_AREA
&&
758 time_after(jiffies
, start_time
+ MAX_PAUSE
))
761 * pass-good area. When some bdi gets blocked (eg. NFS server
762 * not responding), or write bandwidth dropped dramatically due
763 * to concurrent reads, or dirty threshold suddenly dropped and
764 * the dirty pages cannot be brought down anytime soon (eg. on
765 * slow USB stick), at least let go of the good bdi's.
767 if (nr_dirty
< dirty_thresh
+
768 dirty_thresh
/ DIRTY_PASSGOOD_AREA
&&
769 bdi_dirty
< bdi_thresh
)
773 * Increase the delay for each loop, up to our previous
774 * default of taking a 100ms nap.
781 /* Clear dirty_exceeded flag only when no task can exceed the limit */
782 if (clear_dirty_exceeded
&& bdi
->dirty_exceeded
)
783 bdi
->dirty_exceeded
= 0;
785 if (writeback_in_progress(bdi
))
789 * In laptop mode, we wait until hitting the higher threshold before
790 * starting background writeout, and then write out all the way down
791 * to the lower threshold. So slow writers cause minimal disk activity.
793 * In normal mode, we start background writeout at the lower
794 * background_thresh, to keep the amount of dirty memory low.
796 if ((laptop_mode
&& pages_written
) ||
797 (!laptop_mode
&& (nr_reclaimable
> background_thresh
)))
798 bdi_start_background_writeback(bdi
);
801 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
803 if (set_page_dirty(page
) || page_mkwrite
) {
804 struct address_space
*mapping
= page_mapping(page
);
807 balance_dirty_pages_ratelimited(mapping
);
811 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits
) = 0;
814 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
815 * @mapping: address_space which was dirtied
816 * @nr_pages_dirtied: number of pages which the caller has just dirtied
818 * Processes which are dirtying memory should call in here once for each page
819 * which was newly dirtied. The function will periodically check the system's
820 * dirty state and will initiate writeback if needed.
822 * On really big machines, get_writeback_state is expensive, so try to avoid
823 * calling it too often (ratelimiting). But once we're over the dirty memory
824 * limit we decrease the ratelimiting by a lot, to prevent individual processes
825 * from overshooting the limit by (ratelimit_pages) each.
827 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
828 unsigned long nr_pages_dirtied
)
830 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
831 unsigned long ratelimit
;
834 if (!bdi_cap_account_dirty(bdi
))
837 ratelimit
= ratelimit_pages
;
838 if (mapping
->backing_dev_info
->dirty_exceeded
)
842 * Check the rate limiting. Also, we do not want to throttle real-time
843 * tasks in balance_dirty_pages(). Period.
846 p
= &__get_cpu_var(bdp_ratelimits
);
847 *p
+= nr_pages_dirtied
;
848 if (unlikely(*p
>= ratelimit
)) {
849 ratelimit
= sync_writeback_pages(*p
);
852 balance_dirty_pages(mapping
, ratelimit
);
857 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
859 void throttle_vm_writeout(gfp_t gfp_mask
)
861 unsigned long background_thresh
;
862 unsigned long dirty_thresh
;
865 global_dirty_limits(&background_thresh
, &dirty_thresh
);
868 * Boost the allowable dirty threshold a bit for page
869 * allocators so they don't get DoS'ed by heavy writers
871 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
873 if (global_page_state(NR_UNSTABLE_NFS
) +
874 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
876 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
879 * The caller might hold locks which can prevent IO completion
880 * or progress in the filesystem. So we cannot just sit here
881 * waiting for IO to complete.
883 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
889 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
891 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
892 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
894 proc_dointvec(table
, write
, buffer
, length
, ppos
);
895 bdi_arm_supers_timer();
900 void laptop_mode_timer_fn(unsigned long data
)
902 struct request_queue
*q
= (struct request_queue
*)data
;
903 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
904 global_page_state(NR_UNSTABLE_NFS
);
907 * We want to write everything out, not just down to the dirty
910 if (bdi_has_dirty_io(&q
->backing_dev_info
))
911 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
);
915 * We've spun up the disk and we're in laptop mode: schedule writeback
916 * of all dirty data a few seconds from now. If the flush is already scheduled
917 * then push it back - the user is still using the disk.
919 void laptop_io_completion(struct backing_dev_info
*info
)
921 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
925 * We're in laptop mode and we've just synced. The sync's writes will have
926 * caused another writeback to be scheduled by laptop_io_completion.
927 * Nothing needs to be written back anymore, so we unschedule the writeback.
929 void laptop_sync_completion(void)
931 struct backing_dev_info
*bdi
;
935 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
936 del_timer(&bdi
->laptop_mode_wb_timer
);
943 * If ratelimit_pages is too high then we can get into dirty-data overload
944 * if a large number of processes all perform writes at the same time.
945 * If it is too low then SMP machines will call the (expensive)
946 * get_writeback_state too often.
948 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
949 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
950 * thresholds before writeback cuts in.
952 * But the limit should not be set too high. Because it also controls the
953 * amount of memory which the balance_dirty_pages() caller has to write back.
954 * If this is too large then the caller will block on the IO queue all the
955 * time. So limit it to four megabytes - the balance_dirty_pages() caller
956 * will write six megabyte chunks, max.
959 void writeback_set_ratelimit(void)
961 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
962 if (ratelimit_pages
< 16)
963 ratelimit_pages
= 16;
964 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
965 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
969 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
971 writeback_set_ratelimit();
975 static struct notifier_block __cpuinitdata ratelimit_nb
= {
976 .notifier_call
= ratelimit_handler
,
981 * Called early on to tune the page writeback dirty limits.
983 * We used to scale dirty pages according to how total memory
984 * related to pages that could be allocated for buffers (by
985 * comparing nr_free_buffer_pages() to vm_total_pages.
987 * However, that was when we used "dirty_ratio" to scale with
988 * all memory, and we don't do that any more. "dirty_ratio"
989 * is now applied to total non-HIGHPAGE memory (by subtracting
990 * totalhigh_pages from vm_total_pages), and as such we can't
991 * get into the old insane situation any more where we had
992 * large amounts of dirty pages compared to a small amount of
993 * non-HIGHMEM memory.
995 * But we might still want to scale the dirty_ratio by how
996 * much memory the box has..
998 void __init
page_writeback_init(void)
1002 writeback_set_ratelimit();
1003 register_cpu_notifier(&ratelimit_nb
);
1005 shift
= calc_period_shift();
1006 prop_descriptor_init(&vm_completions
, shift
);
1007 prop_descriptor_init(&vm_dirties
, shift
);
1011 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1012 * @mapping: address space structure to write
1013 * @start: starting page index
1014 * @end: ending page index (inclusive)
1016 * This function scans the page range from @start to @end (inclusive) and tags
1017 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1018 * that write_cache_pages (or whoever calls this function) will then use
1019 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1020 * used to avoid livelocking of writeback by a process steadily creating new
1021 * dirty pages in the file (thus it is important for this function to be quick
1022 * so that it can tag pages faster than a dirtying process can create them).
1025 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1027 void tag_pages_for_writeback(struct address_space
*mapping
,
1028 pgoff_t start
, pgoff_t end
)
1030 #define WRITEBACK_TAG_BATCH 4096
1031 unsigned long tagged
;
1034 spin_lock_irq(&mapping
->tree_lock
);
1035 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
1036 &start
, end
, WRITEBACK_TAG_BATCH
,
1037 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
1038 spin_unlock_irq(&mapping
->tree_lock
);
1039 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
1041 /* We check 'start' to handle wrapping when end == ~0UL */
1042 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
1044 EXPORT_SYMBOL(tag_pages_for_writeback
);
1047 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1048 * @mapping: address space structure to write
1049 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1050 * @writepage: function called for each page
1051 * @data: data passed to writepage function
1053 * If a page is already under I/O, write_cache_pages() skips it, even
1054 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1055 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1056 * and msync() need to guarantee that all the data which was dirty at the time
1057 * the call was made get new I/O started against them. If wbc->sync_mode is
1058 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1059 * existing IO to complete.
1061 * To avoid livelocks (when other process dirties new pages), we first tag
1062 * pages which should be written back with TOWRITE tag and only then start
1063 * writing them. For data-integrity sync we have to be careful so that we do
1064 * not miss some pages (e.g., because some other process has cleared TOWRITE
1065 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1066 * by the process clearing the DIRTY tag (and submitting the page for IO).
1068 int write_cache_pages(struct address_space
*mapping
,
1069 struct writeback_control
*wbc
, writepage_t writepage
,
1074 struct pagevec pvec
;
1076 pgoff_t
uninitialized_var(writeback_index
);
1078 pgoff_t end
; /* Inclusive */
1081 int range_whole
= 0;
1084 pagevec_init(&pvec
, 0);
1085 if (wbc
->range_cyclic
) {
1086 writeback_index
= mapping
->writeback_index
; /* prev offset */
1087 index
= writeback_index
;
1094 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1095 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1096 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
1098 cycled
= 1; /* ignore range_cyclic tests */
1100 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1101 tag
= PAGECACHE_TAG_TOWRITE
;
1103 tag
= PAGECACHE_TAG_DIRTY
;
1105 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1106 tag_pages_for_writeback(mapping
, index
, end
);
1108 while (!done
&& (index
<= end
)) {
1111 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1112 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1116 for (i
= 0; i
< nr_pages
; i
++) {
1117 struct page
*page
= pvec
.pages
[i
];
1120 * At this point, the page may be truncated or
1121 * invalidated (changing page->mapping to NULL), or
1122 * even swizzled back from swapper_space to tmpfs file
1123 * mapping. However, page->index will not change
1124 * because we have a reference on the page.
1126 if (page
->index
> end
) {
1128 * can't be range_cyclic (1st pass) because
1129 * end == -1 in that case.
1135 done_index
= page
->index
;
1140 * Page truncated or invalidated. We can freely skip it
1141 * then, even for data integrity operations: the page
1142 * has disappeared concurrently, so there could be no
1143 * real expectation of this data interity operation
1144 * even if there is now a new, dirty page at the same
1145 * pagecache address.
1147 if (unlikely(page
->mapping
!= mapping
)) {
1153 if (!PageDirty(page
)) {
1154 /* someone wrote it for us */
1155 goto continue_unlock
;
1158 if (PageWriteback(page
)) {
1159 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
1160 wait_on_page_writeback(page
);
1162 goto continue_unlock
;
1165 BUG_ON(PageWriteback(page
));
1166 if (!clear_page_dirty_for_io(page
))
1167 goto continue_unlock
;
1169 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
1170 ret
= (*writepage
)(page
, wbc
, data
);
1171 if (unlikely(ret
)) {
1172 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
1177 * done_index is set past this page,
1178 * so media errors will not choke
1179 * background writeout for the entire
1180 * file. This has consequences for
1181 * range_cyclic semantics (ie. it may
1182 * not be suitable for data integrity
1185 done_index
= page
->index
+ 1;
1192 * We stop writing back only if we are not doing
1193 * integrity sync. In case of integrity sync we have to
1194 * keep going until we have written all the pages
1195 * we tagged for writeback prior to entering this loop.
1197 if (--wbc
->nr_to_write
<= 0 &&
1198 wbc
->sync_mode
== WB_SYNC_NONE
) {
1203 pagevec_release(&pvec
);
1206 if (!cycled
&& !done
) {
1209 * We hit the last page and there is more work to be done: wrap
1210 * back to the start of the file
1214 end
= writeback_index
- 1;
1217 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1218 mapping
->writeback_index
= done_index
;
1222 EXPORT_SYMBOL(write_cache_pages
);
1225 * Function used by generic_writepages to call the real writepage
1226 * function and set the mapping flags on error
1228 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1231 struct address_space
*mapping
= data
;
1232 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1233 mapping_set_error(mapping
, ret
);
1238 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1239 * @mapping: address space structure to write
1240 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1242 * This is a library function, which implements the writepages()
1243 * address_space_operation.
1245 int generic_writepages(struct address_space
*mapping
,
1246 struct writeback_control
*wbc
)
1248 struct blk_plug plug
;
1251 /* deal with chardevs and other special file */
1252 if (!mapping
->a_ops
->writepage
)
1255 blk_start_plug(&plug
);
1256 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1257 blk_finish_plug(&plug
);
1261 EXPORT_SYMBOL(generic_writepages
);
1263 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1267 if (wbc
->nr_to_write
<= 0)
1269 if (mapping
->a_ops
->writepages
)
1270 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1272 ret
= generic_writepages(mapping
, wbc
);
1277 * write_one_page - write out a single page and optionally wait on I/O
1278 * @page: the page to write
1279 * @wait: if true, wait on writeout
1281 * The page must be locked by the caller and will be unlocked upon return.
1283 * write_one_page() returns a negative error code if I/O failed.
1285 int write_one_page(struct page
*page
, int wait
)
1287 struct address_space
*mapping
= page
->mapping
;
1289 struct writeback_control wbc
= {
1290 .sync_mode
= WB_SYNC_ALL
,
1294 BUG_ON(!PageLocked(page
));
1297 wait_on_page_writeback(page
);
1299 if (clear_page_dirty_for_io(page
)) {
1300 page_cache_get(page
);
1301 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1302 if (ret
== 0 && wait
) {
1303 wait_on_page_writeback(page
);
1304 if (PageError(page
))
1307 page_cache_release(page
);
1313 EXPORT_SYMBOL(write_one_page
);
1316 * For address_spaces which do not use buffers nor write back.
1318 int __set_page_dirty_no_writeback(struct page
*page
)
1320 if (!PageDirty(page
))
1321 return !TestSetPageDirty(page
);
1326 * Helper function for set_page_dirty family.
1327 * NOTE: This relies on being atomic wrt interrupts.
1329 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1331 if (mapping_cap_account_dirty(mapping
)) {
1332 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1333 __inc_zone_page_state(page
, NR_DIRTIED
);
1334 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1335 task_dirty_inc(current
);
1336 task_io_account_write(PAGE_CACHE_SIZE
);
1339 EXPORT_SYMBOL(account_page_dirtied
);
1342 * Helper function for set_page_writeback family.
1343 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1346 void account_page_writeback(struct page
*page
)
1348 inc_zone_page_state(page
, NR_WRITEBACK
);
1349 inc_zone_page_state(page
, NR_WRITTEN
);
1351 EXPORT_SYMBOL(account_page_writeback
);
1354 * For address_spaces which do not use buffers. Just tag the page as dirty in
1357 * This is also used when a single buffer is being dirtied: we want to set the
1358 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1359 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1361 * Most callers have locked the page, which pins the address_space in memory.
1362 * But zap_pte_range() does not lock the page, however in that case the
1363 * mapping is pinned by the vma's ->vm_file reference.
1365 * We take care to handle the case where the page was truncated from the
1366 * mapping by re-checking page_mapping() inside tree_lock.
1368 int __set_page_dirty_nobuffers(struct page
*page
)
1370 if (!TestSetPageDirty(page
)) {
1371 struct address_space
*mapping
= page_mapping(page
);
1372 struct address_space
*mapping2
;
1377 spin_lock_irq(&mapping
->tree_lock
);
1378 mapping2
= page_mapping(page
);
1379 if (mapping2
) { /* Race with truncate? */
1380 BUG_ON(mapping2
!= mapping
);
1381 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1382 account_page_dirtied(page
, mapping
);
1383 radix_tree_tag_set(&mapping
->page_tree
,
1384 page_index(page
), PAGECACHE_TAG_DIRTY
);
1386 spin_unlock_irq(&mapping
->tree_lock
);
1387 if (mapping
->host
) {
1388 /* !PageAnon && !swapper_space */
1389 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1395 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1398 * When a writepage implementation decides that it doesn't want to write this
1399 * page for some reason, it should redirty the locked page via
1400 * redirty_page_for_writepage() and it should then unlock the page and return 0
1402 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1404 wbc
->pages_skipped
++;
1405 return __set_page_dirty_nobuffers(page
);
1407 EXPORT_SYMBOL(redirty_page_for_writepage
);
1412 * For pages with a mapping this should be done under the page lock
1413 * for the benefit of asynchronous memory errors who prefer a consistent
1414 * dirty state. This rule can be broken in some special cases,
1415 * but should be better not to.
1417 * If the mapping doesn't provide a set_page_dirty a_op, then
1418 * just fall through and assume that it wants buffer_heads.
1420 int set_page_dirty(struct page
*page
)
1422 struct address_space
*mapping
= page_mapping(page
);
1424 if (likely(mapping
)) {
1425 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1427 * readahead/lru_deactivate_page could remain
1428 * PG_readahead/PG_reclaim due to race with end_page_writeback
1429 * About readahead, if the page is written, the flags would be
1430 * reset. So no problem.
1431 * About lru_deactivate_page, if the page is redirty, the flag
1432 * will be reset. So no problem. but if the page is used by readahead
1433 * it will confuse readahead and make it restart the size rampup
1434 * process. But it's a trivial problem.
1436 ClearPageReclaim(page
);
1439 spd
= __set_page_dirty_buffers
;
1441 return (*spd
)(page
);
1443 if (!PageDirty(page
)) {
1444 if (!TestSetPageDirty(page
))
1449 EXPORT_SYMBOL(set_page_dirty
);
1452 * set_page_dirty() is racy if the caller has no reference against
1453 * page->mapping->host, and if the page is unlocked. This is because another
1454 * CPU could truncate the page off the mapping and then free the mapping.
1456 * Usually, the page _is_ locked, or the caller is a user-space process which
1457 * holds a reference on the inode by having an open file.
1459 * In other cases, the page should be locked before running set_page_dirty().
1461 int set_page_dirty_lock(struct page
*page
)
1466 ret
= set_page_dirty(page
);
1470 EXPORT_SYMBOL(set_page_dirty_lock
);
1473 * Clear a page's dirty flag, while caring for dirty memory accounting.
1474 * Returns true if the page was previously dirty.
1476 * This is for preparing to put the page under writeout. We leave the page
1477 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1478 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1479 * implementation will run either set_page_writeback() or set_page_dirty(),
1480 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1483 * This incoherency between the page's dirty flag and radix-tree tag is
1484 * unfortunate, but it only exists while the page is locked.
1486 int clear_page_dirty_for_io(struct page
*page
)
1488 struct address_space
*mapping
= page_mapping(page
);
1490 BUG_ON(!PageLocked(page
));
1492 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1494 * Yes, Virginia, this is indeed insane.
1496 * We use this sequence to make sure that
1497 * (a) we account for dirty stats properly
1498 * (b) we tell the low-level filesystem to
1499 * mark the whole page dirty if it was
1500 * dirty in a pagetable. Only to then
1501 * (c) clean the page again and return 1 to
1502 * cause the writeback.
1504 * This way we avoid all nasty races with the
1505 * dirty bit in multiple places and clearing
1506 * them concurrently from different threads.
1508 * Note! Normally the "set_page_dirty(page)"
1509 * has no effect on the actual dirty bit - since
1510 * that will already usually be set. But we
1511 * need the side effects, and it can help us
1514 * We basically use the page "master dirty bit"
1515 * as a serialization point for all the different
1516 * threads doing their things.
1518 if (page_mkclean(page
))
1519 set_page_dirty(page
);
1521 * We carefully synchronise fault handlers against
1522 * installing a dirty pte and marking the page dirty
1523 * at this point. We do this by having them hold the
1524 * page lock at some point after installing their
1525 * pte, but before marking the page dirty.
1526 * Pages are always locked coming in here, so we get
1527 * the desired exclusion. See mm/memory.c:do_wp_page()
1528 * for more comments.
1530 if (TestClearPageDirty(page
)) {
1531 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1532 dec_bdi_stat(mapping
->backing_dev_info
,
1538 return TestClearPageDirty(page
);
1540 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1542 int test_clear_page_writeback(struct page
*page
)
1544 struct address_space
*mapping
= page_mapping(page
);
1548 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1549 unsigned long flags
;
1551 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1552 ret
= TestClearPageWriteback(page
);
1554 radix_tree_tag_clear(&mapping
->page_tree
,
1556 PAGECACHE_TAG_WRITEBACK
);
1557 if (bdi_cap_account_writeback(bdi
)) {
1558 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1559 __bdi_writeout_inc(bdi
);
1562 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1564 ret
= TestClearPageWriteback(page
);
1567 dec_zone_page_state(page
, NR_WRITEBACK
);
1571 int test_set_page_writeback(struct page
*page
)
1573 struct address_space
*mapping
= page_mapping(page
);
1577 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1578 unsigned long flags
;
1580 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1581 ret
= TestSetPageWriteback(page
);
1583 radix_tree_tag_set(&mapping
->page_tree
,
1585 PAGECACHE_TAG_WRITEBACK
);
1586 if (bdi_cap_account_writeback(bdi
))
1587 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1589 if (!PageDirty(page
))
1590 radix_tree_tag_clear(&mapping
->page_tree
,
1592 PAGECACHE_TAG_DIRTY
);
1593 radix_tree_tag_clear(&mapping
->page_tree
,
1595 PAGECACHE_TAG_TOWRITE
);
1596 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1598 ret
= TestSetPageWriteback(page
);
1601 account_page_writeback(page
);
1605 EXPORT_SYMBOL(test_set_page_writeback
);
1608 * Return true if any of the pages in the mapping are marked with the
1611 int mapping_tagged(struct address_space
*mapping
, int tag
)
1615 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1619 EXPORT_SYMBOL(mapping_tagged
);