2 * Malta Platform-specific hooks for SMP operation
5 #include <linux/init.h>
7 #include <asm/mipsregs.h>
8 #include <asm/mipsmtregs.h>
10 #include <asm/smtc_ipi.h>
12 /* VPE/SMP Prototype implements platform interfaces directly */
15 * Cause the specified action to be performed on a targeted "CPU"
18 static void msmtc_send_ipi_single(int cpu
, unsigned int action
)
20 /* "CPU" may be TC of same VPE, VPE of same CPU, or different CPU */
21 smtc_send_ipi(cpu
, LINUX_SMP_IPI
, action
);
24 static void msmtc_send_ipi_mask(const struct cpumask
*mask
, unsigned int action
)
29 msmtc_send_ipi_single(i
, action
);
33 * Post-config but pre-boot cleanup entry point
35 static void __cpuinit
msmtc_init_secondary(void)
39 /* Don't enable Malta I/O interrupts (IP2) for secondary VPEs */
40 myvpe
= read_c0_tcbind() & TCBIND_CURVPE
;
42 /* Ideally, this should be done only once per VPE, but... */
43 clear_c0_status(ST0_IM
);
44 set_c0_status((0x100 << cp0_compare_irq
)
45 | (0x100 << MIPS_CPU_IPI_IRQ
));
46 if (cp0_perfcount_irq
>= 0)
47 set_c0_status(0x100 << cp0_perfcount_irq
);
50 smtc_init_secondary();
54 * Platform "CPU" startup hook
56 static void __cpuinit
msmtc_boot_secondary(int cpu
, struct task_struct
*idle
)
58 smtc_boot_secondary(cpu
, idle
);
62 * SMP initialization finalization entry point
64 static void __cpuinit
msmtc_smp_finish(void)
70 * Hook for after all CPUs are online
73 static void msmtc_cpus_done(void)
78 * Platform SMP pre-initialization
80 * As noted above, we can assume a single CPU for now
81 * but it may be multithreaded.
84 static void __init
msmtc_smp_setup(void)
87 * we won't get the definitive value until
88 * we've run smtc_prepare_cpus later, but
89 * we would appear to need an upper bound now.
91 smp_num_siblings
= smtc_build_cpu_map(0);
94 static void __init
msmtc_prepare_cpus(unsigned int max_cpus
)
96 smtc_prepare_cpus(max_cpus
);
99 struct plat_smp_ops msmtc_smp_ops
= {
100 .send_ipi_single
= msmtc_send_ipi_single
,
101 .send_ipi_mask
= msmtc_send_ipi_mask
,
102 .init_secondary
= msmtc_init_secondary
,
103 .smp_finish
= msmtc_smp_finish
,
104 .cpus_done
= msmtc_cpus_done
,
105 .boot_secondary
= msmtc_boot_secondary
,
106 .smp_setup
= msmtc_smp_setup
,
107 .prepare_cpus
= msmtc_prepare_cpus
,
110 #ifdef CONFIG_MIPS_MT_SMTC_IRQAFF
116 int plat_set_irq_affinity(struct irq_data
*d
, const struct cpumask
*affinity
,
121 void smtc_set_irq_affinity(unsigned int irq
, cpumask_t aff
);
124 * On the legacy Malta development board, all I/O interrupts
125 * are routed through the 8259 and combined in a single signal
126 * to the CPU daughterboard, and on the CoreFPGA2/3 34K models,
127 * that signal is brought to IP2 of both VPEs. To avoid racing
128 * concurrent interrupt service events, IP2 is enabled only on
129 * one VPE, by convention VPE0. So long as no bits are ever
130 * cleared in the affinity mask, there will never be any
131 * interrupt forwarding. But as soon as a program or operator
132 * sets affinity for one of the related IRQs, we need to make
133 * sure that we don't ever try to forward across the VPE boundary,
134 * at least not until we engineer a system where the interrupt
135 * _ack() or _end() function can somehow know that it corresponds
136 * to an interrupt taken on another VPE, and perform the appropriate
137 * restoration of Status.IM state using MFTR/MTTR instead of the
138 * normal local behavior. We also ensure that no attempt will
139 * be made to forward to an offline "CPU".
142 cpumask_copy(&tmask
, affinity
);
143 for_each_cpu(cpu
, affinity
) {
144 if ((cpu_data
[cpu
].vpe_id
!= 0) || !cpu_online(cpu
))
145 cpu_clear(cpu
, tmask
);
147 cpumask_copy(d
->affinity
, &tmask
);
149 if (cpus_empty(tmask
))
151 * We could restore a default mask here, but the
152 * runtime code can anyway deal with the null set
155 "IRQ affinity leaves no legal CPU for IRQ %d\n", irq
);
157 /* Do any generic SMTC IRQ affinity setup */
158 smtc_set_irq_affinity(d
->irq
, tmask
);
160 return IRQ_SET_MASK_OK_NOCOPY
;
162 #endif /* CONFIG_MIPS_MT_SMTC_IRQAFF */