powerpc/pseries/eeh: Handle functional reset on non-PCIe device
[linux-2.6/next.git] / arch / ia64 / mm / contig.c
blob9a018cde5d84d5c3718c3fef41d6557aa392d14b
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
15 * memory.
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/mm.h>
20 #include <linux/nmi.h>
21 #include <linux/swap.h>
23 #include <asm/meminit.h>
24 #include <asm/pgalloc.h>
25 #include <asm/pgtable.h>
26 #include <asm/sections.h>
27 #include <asm/mca.h>
29 #ifdef CONFIG_VIRTUAL_MEM_MAP
30 static unsigned long max_gap;
31 #endif
33 /**
34 * show_mem - give short summary of memory stats
36 * Shows a simple page count of reserved and used pages in the system.
37 * For discontig machines, it does this on a per-pgdat basis.
39 void show_mem(unsigned int filter)
41 int i, total_reserved = 0;
42 int total_shared = 0, total_cached = 0;
43 unsigned long total_present = 0;
44 pg_data_t *pgdat;
46 printk(KERN_INFO "Mem-info:\n");
47 show_free_areas();
48 printk(KERN_INFO "Node memory in pages:\n");
49 for_each_online_pgdat(pgdat) {
50 unsigned long present;
51 unsigned long flags;
52 int shared = 0, cached = 0, reserved = 0;
54 pgdat_resize_lock(pgdat, &flags);
55 present = pgdat->node_present_pages;
56 for(i = 0; i < pgdat->node_spanned_pages; i++) {
57 struct page *page;
58 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
59 touch_nmi_watchdog();
60 if (pfn_valid(pgdat->node_start_pfn + i))
61 page = pfn_to_page(pgdat->node_start_pfn + i);
62 else {
63 #ifdef CONFIG_VIRTUAL_MEM_MAP
64 if (max_gap < LARGE_GAP)
65 continue;
66 #endif
67 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
68 i) - 1;
69 continue;
71 if (PageReserved(page))
72 reserved++;
73 else if (PageSwapCache(page))
74 cached++;
75 else if (page_count(page))
76 shared += page_count(page)-1;
78 pgdat_resize_unlock(pgdat, &flags);
79 total_present += present;
80 total_reserved += reserved;
81 total_cached += cached;
82 total_shared += shared;
83 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
84 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
85 present, reserved, shared, cached);
87 printk(KERN_INFO "%ld pages of RAM\n", total_present);
88 printk(KERN_INFO "%d reserved pages\n", total_reserved);
89 printk(KERN_INFO "%d pages shared\n", total_shared);
90 printk(KERN_INFO "%d pages swap cached\n", total_cached);
91 printk(KERN_INFO "Total of %ld pages in page table cache\n",
92 quicklist_total_size());
93 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
97 /* physical address where the bootmem map is located */
98 unsigned long bootmap_start;
101 * find_bootmap_location - callback to find a memory area for the bootmap
102 * @start: start of region
103 * @end: end of region
104 * @arg: unused callback data
106 * Find a place to put the bootmap and return its starting address in
107 * bootmap_start. This address must be page-aligned.
109 static int __init
110 find_bootmap_location (u64 start, u64 end, void *arg)
112 u64 needed = *(unsigned long *)arg;
113 u64 range_start, range_end, free_start;
114 int i;
116 #if IGNORE_PFN0
117 if (start == PAGE_OFFSET) {
118 start += PAGE_SIZE;
119 if (start >= end)
120 return 0;
122 #endif
124 free_start = PAGE_OFFSET;
126 for (i = 0; i < num_rsvd_regions; i++) {
127 range_start = max(start, free_start);
128 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
130 free_start = PAGE_ALIGN(rsvd_region[i].end);
132 if (range_end <= range_start)
133 continue; /* skip over empty range */
135 if (range_end - range_start >= needed) {
136 bootmap_start = __pa(range_start);
137 return -1; /* done */
140 /* nothing more available in this segment */
141 if (range_end == end)
142 return 0;
144 return 0;
147 #ifdef CONFIG_SMP
148 static void *cpu_data;
150 * per_cpu_init - setup per-cpu variables
152 * Allocate and setup per-cpu data areas.
154 void * __cpuinit
155 per_cpu_init (void)
157 static bool first_time = true;
158 void *cpu0_data = __cpu0_per_cpu;
159 unsigned int cpu;
161 if (!first_time)
162 goto skip;
163 first_time = false;
166 * get_free_pages() cannot be used before cpu_init() done.
167 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
168 * to avoid that AP calls get_zeroed_page().
170 for_each_possible_cpu(cpu) {
171 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
173 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
174 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
175 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
178 * percpu area for cpu0 is moved from the __init area
179 * which is setup by head.S and used till this point.
180 * Update ar.k3. This move is ensures that percpu
181 * area for cpu0 is on the correct node and its
182 * virtual address isn't insanely far from other
183 * percpu areas which is important for congruent
184 * percpu allocator.
186 if (cpu == 0)
187 ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
188 (unsigned long)__per_cpu_start);
190 cpu_data += PERCPU_PAGE_SIZE;
192 skip:
193 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
196 static inline void
197 alloc_per_cpu_data(void)
199 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
200 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
204 * setup_per_cpu_areas - setup percpu areas
206 * Arch code has already allocated and initialized percpu areas. All
207 * this function has to do is to teach the determined layout to the
208 * dynamic percpu allocator, which happens to be more complex than
209 * creating whole new ones using helpers.
211 void __init
212 setup_per_cpu_areas(void)
214 struct pcpu_alloc_info *ai;
215 struct pcpu_group_info *gi;
216 unsigned int cpu;
217 ssize_t static_size, reserved_size, dyn_size;
218 int rc;
220 ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
221 if (!ai)
222 panic("failed to allocate pcpu_alloc_info");
223 gi = &ai->groups[0];
225 /* units are assigned consecutively to possible cpus */
226 for_each_possible_cpu(cpu)
227 gi->cpu_map[gi->nr_units++] = cpu;
229 /* set parameters */
230 static_size = __per_cpu_end - __per_cpu_start;
231 reserved_size = PERCPU_MODULE_RESERVE;
232 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
233 if (dyn_size < 0)
234 panic("percpu area overflow static=%zd reserved=%zd\n",
235 static_size, reserved_size);
237 ai->static_size = static_size;
238 ai->reserved_size = reserved_size;
239 ai->dyn_size = dyn_size;
240 ai->unit_size = PERCPU_PAGE_SIZE;
241 ai->atom_size = PAGE_SIZE;
242 ai->alloc_size = PERCPU_PAGE_SIZE;
244 rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
245 if (rc)
246 panic("failed to setup percpu area (err=%d)", rc);
248 pcpu_free_alloc_info(ai);
250 #else
251 #define alloc_per_cpu_data() do { } while (0)
252 #endif /* CONFIG_SMP */
255 * find_memory - setup memory map
257 * Walk the EFI memory map and find usable memory for the system, taking
258 * into account reserved areas.
260 void __init
261 find_memory (void)
263 unsigned long bootmap_size;
265 reserve_memory();
267 /* first find highest page frame number */
268 min_low_pfn = ~0UL;
269 max_low_pfn = 0;
270 efi_memmap_walk(find_max_min_low_pfn, NULL);
271 max_pfn = max_low_pfn;
272 /* how many bytes to cover all the pages */
273 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
275 /* look for a location to hold the bootmap */
276 bootmap_start = ~0UL;
277 efi_memmap_walk(find_bootmap_location, &bootmap_size);
278 if (bootmap_start == ~0UL)
279 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
281 bootmap_size = init_bootmem_node(NODE_DATA(0),
282 (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
284 /* Free all available memory, then mark bootmem-map as being in use. */
285 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
286 reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
288 find_initrd();
290 alloc_per_cpu_data();
293 static int count_pages(u64 start, u64 end, void *arg)
295 unsigned long *count = arg;
297 *count += (end - start) >> PAGE_SHIFT;
298 return 0;
302 * Set up the page tables.
305 void __init
306 paging_init (void)
308 unsigned long max_dma;
309 unsigned long max_zone_pfns[MAX_NR_ZONES];
311 num_physpages = 0;
312 efi_memmap_walk(count_pages, &num_physpages);
314 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
315 #ifdef CONFIG_ZONE_DMA
316 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
317 max_zone_pfns[ZONE_DMA] = max_dma;
318 #endif
319 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
321 #ifdef CONFIG_VIRTUAL_MEM_MAP
322 efi_memmap_walk(filter_memory, register_active_ranges);
323 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
324 if (max_gap < LARGE_GAP) {
325 vmem_map = (struct page *) 0;
326 free_area_init_nodes(max_zone_pfns);
327 } else {
328 unsigned long map_size;
330 /* allocate virtual_mem_map */
332 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
333 sizeof(struct page));
334 VMALLOC_END -= map_size;
335 vmem_map = (struct page *) VMALLOC_END;
336 efi_memmap_walk(create_mem_map_page_table, NULL);
339 * alloc_node_mem_map makes an adjustment for mem_map
340 * which isn't compatible with vmem_map.
342 NODE_DATA(0)->node_mem_map = vmem_map +
343 find_min_pfn_with_active_regions();
344 free_area_init_nodes(max_zone_pfns);
346 printk("Virtual mem_map starts at 0x%p\n", mem_map);
348 #else /* !CONFIG_VIRTUAL_MEM_MAP */
349 add_active_range(0, 0, max_low_pfn);
350 free_area_init_nodes(max_zone_pfns);
351 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
352 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));