4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
56 * Protected counters by write_lock_irq(&tasklist_lock)
58 unsigned long total_forks
; /* Handle normal Linux uptimes. */
59 int nr_threads
; /* The idle threads do not count.. */
61 int max_threads
; /* tunable limit on nr_threads */
63 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
65 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
67 EXPORT_SYMBOL(tasklist_lock
);
69 int nr_processes(void)
74 for_each_online_cpu(cpu
)
75 total
+= per_cpu(process_counts
, cpu
);
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t
*task_struct_cachep
;
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t
*signal_cachep
;
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t
*sighand_cachep
;
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t
*files_cachep
;
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t
*fs_cachep
;
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t
*vm_area_cachep
;
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t
*mm_cachep
;
104 void free_task(struct task_struct
*tsk
)
106 free_thread_info(tsk
->thread_info
);
107 free_task_struct(tsk
);
109 EXPORT_SYMBOL(free_task
);
111 void __put_task_struct(struct task_struct
*tsk
)
113 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
114 WARN_ON(atomic_read(&tsk
->usage
));
115 WARN_ON(tsk
== current
);
117 security_task_free(tsk
);
119 put_group_info(tsk
->group_info
);
121 if (!profile_handoff_task(tsk
))
125 void __init
fork_init(unsigned long mempages
)
127 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
128 #ifndef ARCH_MIN_TASKALIGN
129 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
131 /* create a slab on which task_structs can be allocated */
133 kmem_cache_create("task_struct", sizeof(struct task_struct
),
134 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
138 * The default maximum number of threads is set to a safe
139 * value: the thread structures can take up at most half
142 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
145 * we need to allow at least 20 threads to boot a system
150 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
151 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
152 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
153 init_task
.signal
->rlim
[RLIMIT_NPROC
];
156 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
158 struct task_struct
*tsk
;
159 struct thread_info
*ti
;
161 prepare_to_copy(orig
);
163 tsk
= alloc_task_struct();
167 ti
= alloc_thread_info(tsk
);
169 free_task_struct(tsk
);
174 tsk
->thread_info
= ti
;
175 setup_thread_stack(tsk
, orig
);
177 /* One for us, one for whoever does the "release_task()" (usually parent) */
178 atomic_set(&tsk
->usage
,2);
179 atomic_set(&tsk
->fs_excl
, 0);
181 tsk
->splice_pipe
= NULL
;
186 static inline int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
188 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
189 struct rb_node
**rb_link
, *rb_parent
;
191 unsigned long charge
;
192 struct mempolicy
*pol
;
194 down_write(&oldmm
->mmap_sem
);
195 flush_cache_mm(oldmm
);
196 down_write(&mm
->mmap_sem
);
200 mm
->mmap_cache
= NULL
;
201 mm
->free_area_cache
= oldmm
->mmap_base
;
202 mm
->cached_hole_size
= ~0UL;
204 cpus_clear(mm
->cpu_vm_mask
);
206 rb_link
= &mm
->mm_rb
.rb_node
;
210 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
213 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
214 long pages
= vma_pages(mpnt
);
215 mm
->total_vm
-= pages
;
216 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
221 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
222 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
223 if (security_vm_enough_memory(len
))
227 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
231 pol
= mpol_copy(vma_policy(mpnt
));
232 retval
= PTR_ERR(pol
);
234 goto fail_nomem_policy
;
235 vma_set_policy(tmp
, pol
);
236 tmp
->vm_flags
&= ~VM_LOCKED
;
242 struct inode
*inode
= file
->f_dentry
->d_inode
;
244 if (tmp
->vm_flags
& VM_DENYWRITE
)
245 atomic_dec(&inode
->i_writecount
);
247 /* insert tmp into the share list, just after mpnt */
248 spin_lock(&file
->f_mapping
->i_mmap_lock
);
249 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
250 flush_dcache_mmap_lock(file
->f_mapping
);
251 vma_prio_tree_add(tmp
, mpnt
);
252 flush_dcache_mmap_unlock(file
->f_mapping
);
253 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
257 * Link in the new vma and copy the page table entries.
260 pprev
= &tmp
->vm_next
;
262 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
263 rb_link
= &tmp
->vm_rb
.rb_right
;
264 rb_parent
= &tmp
->vm_rb
;
267 retval
= copy_page_range(mm
, oldmm
, mpnt
);
269 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
270 tmp
->vm_ops
->open(tmp
);
277 up_write(&mm
->mmap_sem
);
279 up_write(&oldmm
->mmap_sem
);
282 kmem_cache_free(vm_area_cachep
, tmp
);
285 vm_unacct_memory(charge
);
289 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
291 mm
->pgd
= pgd_alloc(mm
);
292 if (unlikely(!mm
->pgd
))
297 static inline void mm_free_pgd(struct mm_struct
* mm
)
302 #define dup_mmap(mm, oldmm) (0)
303 #define mm_alloc_pgd(mm) (0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
307 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
309 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
312 #include <linux/init_task.h>
314 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
316 atomic_set(&mm
->mm_users
, 1);
317 atomic_set(&mm
->mm_count
, 1);
318 init_rwsem(&mm
->mmap_sem
);
319 INIT_LIST_HEAD(&mm
->mmlist
);
320 mm
->core_waiters
= 0;
322 set_mm_counter(mm
, file_rss
, 0);
323 set_mm_counter(mm
, anon_rss
, 0);
324 spin_lock_init(&mm
->page_table_lock
);
325 rwlock_init(&mm
->ioctx_list_lock
);
326 mm
->ioctx_list
= NULL
;
327 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
328 mm
->cached_hole_size
= ~0UL;
330 if (likely(!mm_alloc_pgd(mm
))) {
339 * Allocate and initialize an mm_struct.
341 struct mm_struct
* mm_alloc(void)
343 struct mm_struct
* mm
;
347 memset(mm
, 0, sizeof(*mm
));
354 * Called when the last reference to the mm
355 * is dropped: either by a lazy thread or by
356 * mmput. Free the page directory and the mm.
358 void fastcall
__mmdrop(struct mm_struct
*mm
)
360 BUG_ON(mm
== &init_mm
);
367 * Decrement the use count and release all resources for an mm.
369 void mmput(struct mm_struct
*mm
)
373 if (atomic_dec_and_test(&mm
->mm_users
)) {
376 if (!list_empty(&mm
->mmlist
)) {
377 spin_lock(&mmlist_lock
);
378 list_del(&mm
->mmlist
);
379 spin_unlock(&mmlist_lock
);
385 EXPORT_SYMBOL_GPL(mmput
);
388 * get_task_mm - acquire a reference to the task's mm
390 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
391 * this kernel workthread has transiently adopted a user mm with use_mm,
392 * to do its AIO) is not set and if so returns a reference to it, after
393 * bumping up the use count. User must release the mm via mmput()
394 * after use. Typically used by /proc and ptrace.
396 struct mm_struct
*get_task_mm(struct task_struct
*task
)
398 struct mm_struct
*mm
;
403 if (task
->flags
& PF_BORROWED_MM
)
406 atomic_inc(&mm
->mm_users
);
411 EXPORT_SYMBOL_GPL(get_task_mm
);
413 /* Please note the differences between mmput and mm_release.
414 * mmput is called whenever we stop holding onto a mm_struct,
415 * error success whatever.
417 * mm_release is called after a mm_struct has been removed
418 * from the current process.
420 * This difference is important for error handling, when we
421 * only half set up a mm_struct for a new process and need to restore
422 * the old one. Because we mmput the new mm_struct before
423 * restoring the old one. . .
424 * Eric Biederman 10 January 1998
426 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
428 struct completion
*vfork_done
= tsk
->vfork_done
;
430 /* Get rid of any cached register state */
431 deactivate_mm(tsk
, mm
);
433 /* notify parent sleeping on vfork() */
435 tsk
->vfork_done
= NULL
;
436 complete(vfork_done
);
438 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
439 u32 __user
* tidptr
= tsk
->clear_child_tid
;
440 tsk
->clear_child_tid
= NULL
;
443 * We don't check the error code - if userspace has
444 * not set up a proper pointer then tough luck.
447 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
452 * Allocate a new mm structure and copy contents from the
453 * mm structure of the passed in task structure.
455 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
457 struct mm_struct
*mm
, *oldmm
= current
->mm
;
467 memcpy(mm
, oldmm
, sizeof(*mm
));
472 if (init_new_context(tsk
, mm
))
475 err
= dup_mmap(mm
, oldmm
);
479 mm
->hiwater_rss
= get_mm_rss(mm
);
480 mm
->hiwater_vm
= mm
->total_vm
;
492 * If init_new_context() failed, we cannot use mmput() to free the mm
493 * because it calls destroy_context()
500 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
502 struct mm_struct
* mm
, *oldmm
;
505 tsk
->min_flt
= tsk
->maj_flt
= 0;
506 tsk
->nvcsw
= tsk
->nivcsw
= 0;
509 tsk
->active_mm
= NULL
;
512 * Are we cloning a kernel thread?
514 * We need to steal a active VM for that..
520 if (clone_flags
& CLONE_VM
) {
521 atomic_inc(&oldmm
->mm_users
);
540 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
542 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
543 /* We don't need to lock fs - think why ;-) */
545 atomic_set(&fs
->count
, 1);
546 rwlock_init(&fs
->lock
);
547 fs
->umask
= old
->umask
;
548 read_lock(&old
->lock
);
549 fs
->rootmnt
= mntget(old
->rootmnt
);
550 fs
->root
= dget(old
->root
);
551 fs
->pwdmnt
= mntget(old
->pwdmnt
);
552 fs
->pwd
= dget(old
->pwd
);
554 fs
->altrootmnt
= mntget(old
->altrootmnt
);
555 fs
->altroot
= dget(old
->altroot
);
557 fs
->altrootmnt
= NULL
;
560 read_unlock(&old
->lock
);
565 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
567 return __copy_fs_struct(old
);
570 EXPORT_SYMBOL_GPL(copy_fs_struct
);
572 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
574 if (clone_flags
& CLONE_FS
) {
575 atomic_inc(¤t
->fs
->count
);
578 tsk
->fs
= __copy_fs_struct(current
->fs
);
584 static int count_open_files(struct fdtable
*fdt
)
586 int size
= fdt
->max_fdset
;
589 /* Find the last open fd */
590 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
591 if (fdt
->open_fds
->fds_bits
[--i
])
594 i
= (i
+1) * 8 * sizeof(long);
598 static struct files_struct
*alloc_files(void)
600 struct files_struct
*newf
;
603 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
607 atomic_set(&newf
->count
, 1);
609 spin_lock_init(&newf
->file_lock
);
612 fdt
->max_fds
= NR_OPEN_DEFAULT
;
613 fdt
->max_fdset
= EMBEDDED_FD_SET_SIZE
;
614 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
615 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
616 fdt
->fd
= &newf
->fd_array
[0];
617 INIT_RCU_HEAD(&fdt
->rcu
);
618 fdt
->free_files
= NULL
;
620 rcu_assign_pointer(newf
->fdt
, fdt
);
626 * Allocate a new files structure and copy contents from the
627 * passed in files structure.
628 * errorp will be valid only when the returned files_struct is NULL.
630 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
632 struct files_struct
*newf
;
633 struct file
**old_fds
, **new_fds
;
634 int open_files
, size
, i
, expand
;
635 struct fdtable
*old_fdt
, *new_fdt
;
638 newf
= alloc_files();
642 spin_lock(&oldf
->file_lock
);
643 old_fdt
= files_fdtable(oldf
);
644 new_fdt
= files_fdtable(newf
);
645 size
= old_fdt
->max_fdset
;
646 open_files
= count_open_files(old_fdt
);
650 * Check whether we need to allocate a larger fd array or fd set.
651 * Note: we're not a clone task, so the open count won't change.
653 if (open_files
> new_fdt
->max_fdset
) {
654 new_fdt
->max_fdset
= 0;
657 if (open_files
> new_fdt
->max_fds
) {
658 new_fdt
->max_fds
= 0;
662 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
664 spin_unlock(&oldf
->file_lock
);
665 spin_lock(&newf
->file_lock
);
666 *errorp
= expand_files(newf
, open_files
-1);
667 spin_unlock(&newf
->file_lock
);
670 new_fdt
= files_fdtable(newf
);
672 * Reacquire the oldf lock and a pointer to its fd table
673 * who knows it may have a new bigger fd table. We need
674 * the latest pointer.
676 spin_lock(&oldf
->file_lock
);
677 old_fdt
= files_fdtable(oldf
);
680 old_fds
= old_fdt
->fd
;
681 new_fds
= new_fdt
->fd
;
683 memcpy(new_fdt
->open_fds
->fds_bits
, old_fdt
->open_fds
->fds_bits
, open_files
/8);
684 memcpy(new_fdt
->close_on_exec
->fds_bits
, old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
686 for (i
= open_files
; i
!= 0; i
--) {
687 struct file
*f
= *old_fds
++;
692 * The fd may be claimed in the fd bitmap but not yet
693 * instantiated in the files array if a sibling thread
694 * is partway through open(). So make sure that this
695 * fd is available to the new process.
697 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
699 rcu_assign_pointer(*new_fds
++, f
);
701 spin_unlock(&oldf
->file_lock
);
703 /* compute the remainder to be cleared */
704 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
706 /* This is long word aligned thus could use a optimized version */
707 memset(new_fds
, 0, size
);
709 if (new_fdt
->max_fdset
> open_files
) {
710 int left
= (new_fdt
->max_fdset
-open_files
)/8;
711 int start
= open_files
/ (8 * sizeof(unsigned long));
713 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
714 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
721 free_fdset (new_fdt
->close_on_exec
, new_fdt
->max_fdset
);
722 free_fdset (new_fdt
->open_fds
, new_fdt
->max_fdset
);
723 free_fd_array(new_fdt
->fd
, new_fdt
->max_fds
);
724 kmem_cache_free(files_cachep
, newf
);
728 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
730 struct files_struct
*oldf
, *newf
;
734 * A background process may not have any files ...
736 oldf
= current
->files
;
740 if (clone_flags
& CLONE_FILES
) {
741 atomic_inc(&oldf
->count
);
746 * Note: we may be using current for both targets (See exec.c)
747 * This works because we cache current->files (old) as oldf. Don't
751 newf
= dup_fd(oldf
, &error
);
762 * Helper to unshare the files of the current task.
763 * We don't want to expose copy_files internals to
764 * the exec layer of the kernel.
767 int unshare_files(void)
769 struct files_struct
*files
= current
->files
;
774 /* This can race but the race causes us to copy when we don't
775 need to and drop the copy */
776 if(atomic_read(&files
->count
) == 1)
778 atomic_inc(&files
->count
);
781 rc
= copy_files(0, current
);
783 current
->files
= files
;
787 EXPORT_SYMBOL(unshare_files
);
789 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
791 struct sighand_struct
*sig
;
793 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
794 atomic_inc(¤t
->sighand
->count
);
797 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
798 rcu_assign_pointer(tsk
->sighand
, sig
);
801 atomic_set(&sig
->count
, 1);
802 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
806 void __cleanup_sighand(struct sighand_struct
*sighand
)
808 if (atomic_dec_and_test(&sighand
->count
))
809 kmem_cache_free(sighand_cachep
, sighand
);
812 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
814 struct signal_struct
*sig
;
817 if (clone_flags
& CLONE_THREAD
) {
818 atomic_inc(¤t
->signal
->count
);
819 atomic_inc(¤t
->signal
->live
);
822 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
827 ret
= copy_thread_group_keys(tsk
);
829 kmem_cache_free(signal_cachep
, sig
);
833 atomic_set(&sig
->count
, 1);
834 atomic_set(&sig
->live
, 1);
835 init_waitqueue_head(&sig
->wait_chldexit
);
837 sig
->group_exit_code
= 0;
838 sig
->group_exit_task
= NULL
;
839 sig
->group_stop_count
= 0;
840 sig
->curr_target
= NULL
;
841 init_sigpending(&sig
->shared_pending
);
842 INIT_LIST_HEAD(&sig
->posix_timers
);
844 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_REL
);
845 sig
->it_real_incr
.tv64
= 0;
846 sig
->real_timer
.function
= it_real_fn
;
849 sig
->it_virt_expires
= cputime_zero
;
850 sig
->it_virt_incr
= cputime_zero
;
851 sig
->it_prof_expires
= cputime_zero
;
852 sig
->it_prof_incr
= cputime_zero
;
854 sig
->leader
= 0; /* session leadership doesn't inherit */
855 sig
->tty_old_pgrp
= 0;
857 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
858 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
859 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
861 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
862 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
863 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
865 task_lock(current
->group_leader
);
866 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
867 task_unlock(current
->group_leader
);
869 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
871 * New sole thread in the process gets an expiry time
872 * of the whole CPU time limit.
874 tsk
->it_prof_expires
=
875 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
877 acct_init_pacct(&sig
->pacct
);
882 void __cleanup_signal(struct signal_struct
*sig
)
884 exit_thread_group_keys(sig
);
885 kmem_cache_free(signal_cachep
, sig
);
888 static inline void cleanup_signal(struct task_struct
*tsk
)
890 struct signal_struct
*sig
= tsk
->signal
;
892 atomic_dec(&sig
->live
);
894 if (atomic_dec_and_test(&sig
->count
))
895 __cleanup_signal(sig
);
898 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
900 unsigned long new_flags
= p
->flags
;
902 new_flags
&= ~(PF_SUPERPRIV
| PF_NOFREEZE
);
903 new_flags
|= PF_FORKNOEXEC
;
904 if (!(clone_flags
& CLONE_PTRACE
))
906 p
->flags
= new_flags
;
909 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
911 current
->clear_child_tid
= tidptr
;
917 * This creates a new process as a copy of the old one,
918 * but does not actually start it yet.
920 * It copies the registers, and all the appropriate
921 * parts of the process environment (as per the clone
922 * flags). The actual kick-off is left to the caller.
924 static task_t
*copy_process(unsigned long clone_flags
,
925 unsigned long stack_start
,
926 struct pt_regs
*regs
,
927 unsigned long stack_size
,
928 int __user
*parent_tidptr
,
929 int __user
*child_tidptr
,
933 struct task_struct
*p
= NULL
;
935 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
936 return ERR_PTR(-EINVAL
);
939 * Thread groups must share signals as well, and detached threads
940 * can only be started up within the thread group.
942 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
943 return ERR_PTR(-EINVAL
);
946 * Shared signal handlers imply shared VM. By way of the above,
947 * thread groups also imply shared VM. Blocking this case allows
948 * for various simplifications in other code.
950 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
951 return ERR_PTR(-EINVAL
);
953 retval
= security_task_create(clone_flags
);
958 p
= dup_task_struct(current
);
963 if (atomic_read(&p
->user
->processes
) >=
964 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
965 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
966 p
->user
!= &root_user
)
970 atomic_inc(&p
->user
->__count
);
971 atomic_inc(&p
->user
->processes
);
972 get_group_info(p
->group_info
);
975 * If multiple threads are within copy_process(), then this check
976 * triggers too late. This doesn't hurt, the check is only there
977 * to stop root fork bombs.
979 if (nr_threads
>= max_threads
)
980 goto bad_fork_cleanup_count
;
982 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
983 goto bad_fork_cleanup_count
;
985 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
986 goto bad_fork_cleanup_put_domain
;
989 copy_flags(clone_flags
, p
);
992 if (clone_flags
& CLONE_PARENT_SETTID
)
993 if (put_user(p
->pid
, parent_tidptr
))
994 goto bad_fork_cleanup
;
996 p
->proc_dentry
= NULL
;
998 INIT_LIST_HEAD(&p
->children
);
999 INIT_LIST_HEAD(&p
->sibling
);
1000 p
->vfork_done
= NULL
;
1001 spin_lock_init(&p
->alloc_lock
);
1002 spin_lock_init(&p
->proc_lock
);
1004 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1005 init_sigpending(&p
->pending
);
1007 p
->utime
= cputime_zero
;
1008 p
->stime
= cputime_zero
;
1010 p
->rchar
= 0; /* I/O counter: bytes read */
1011 p
->wchar
= 0; /* I/O counter: bytes written */
1012 p
->syscr
= 0; /* I/O counter: read syscalls */
1013 p
->syscw
= 0; /* I/O counter: write syscalls */
1014 acct_clear_integrals(p
);
1016 p
->it_virt_expires
= cputime_zero
;
1017 p
->it_prof_expires
= cputime_zero
;
1018 p
->it_sched_expires
= 0;
1019 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1020 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1021 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1023 p
->lock_depth
= -1; /* -1 = no lock */
1024 do_posix_clock_monotonic_gettime(&p
->start_time
);
1026 p
->io_context
= NULL
;
1028 p
->audit_context
= NULL
;
1031 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1032 if (IS_ERR(p
->mempolicy
)) {
1033 retval
= PTR_ERR(p
->mempolicy
);
1034 p
->mempolicy
= NULL
;
1035 goto bad_fork_cleanup_cpuset
;
1037 mpol_fix_fork_child_flag(p
);
1040 #ifdef CONFIG_DEBUG_MUTEXES
1041 p
->blocked_on
= NULL
; /* not blocked yet */
1045 if (clone_flags
& CLONE_THREAD
)
1046 p
->tgid
= current
->tgid
;
1048 if ((retval
= security_task_alloc(p
)))
1049 goto bad_fork_cleanup_policy
;
1050 if ((retval
= audit_alloc(p
)))
1051 goto bad_fork_cleanup_security
;
1052 /* copy all the process information */
1053 if ((retval
= copy_semundo(clone_flags
, p
)))
1054 goto bad_fork_cleanup_audit
;
1055 if ((retval
= copy_files(clone_flags
, p
)))
1056 goto bad_fork_cleanup_semundo
;
1057 if ((retval
= copy_fs(clone_flags
, p
)))
1058 goto bad_fork_cleanup_files
;
1059 if ((retval
= copy_sighand(clone_flags
, p
)))
1060 goto bad_fork_cleanup_fs
;
1061 if ((retval
= copy_signal(clone_flags
, p
)))
1062 goto bad_fork_cleanup_sighand
;
1063 if ((retval
= copy_mm(clone_flags
, p
)))
1064 goto bad_fork_cleanup_signal
;
1065 if ((retval
= copy_keys(clone_flags
, p
)))
1066 goto bad_fork_cleanup_mm
;
1067 if ((retval
= copy_namespace(clone_flags
, p
)))
1068 goto bad_fork_cleanup_keys
;
1069 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1071 goto bad_fork_cleanup_namespace
;
1073 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1075 * Clear TID on mm_release()?
1077 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1078 p
->robust_list
= NULL
;
1079 #ifdef CONFIG_COMPAT
1080 p
->compat_robust_list
= NULL
;
1083 * sigaltstack should be cleared when sharing the same VM
1085 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1086 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1089 * Syscall tracing should be turned off in the child regardless
1092 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1093 #ifdef TIF_SYSCALL_EMU
1094 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1097 /* Our parent execution domain becomes current domain
1098 These must match for thread signalling to apply */
1100 p
->parent_exec_id
= p
->self_exec_id
;
1102 /* ok, now we should be set up.. */
1103 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1104 p
->pdeath_signal
= 0;
1108 * Ok, make it visible to the rest of the system.
1109 * We dont wake it up yet.
1111 p
->group_leader
= p
;
1112 INIT_LIST_HEAD(&p
->thread_group
);
1113 INIT_LIST_HEAD(&p
->ptrace_children
);
1114 INIT_LIST_HEAD(&p
->ptrace_list
);
1116 /* Perform scheduler related setup. Assign this task to a CPU. */
1117 sched_fork(p
, clone_flags
);
1119 /* Need tasklist lock for parent etc handling! */
1120 write_lock_irq(&tasklist_lock
);
1123 * The task hasn't been attached yet, so its cpus_allowed mask will
1124 * not be changed, nor will its assigned CPU.
1126 * The cpus_allowed mask of the parent may have changed after it was
1127 * copied first time - so re-copy it here, then check the child's CPU
1128 * to ensure it is on a valid CPU (and if not, just force it back to
1129 * parent's CPU). This avoids alot of nasty races.
1131 p
->cpus_allowed
= current
->cpus_allowed
;
1132 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1133 !cpu_online(task_cpu(p
))))
1134 set_task_cpu(p
, smp_processor_id());
1136 /* CLONE_PARENT re-uses the old parent */
1137 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1138 p
->real_parent
= current
->real_parent
;
1140 p
->real_parent
= current
;
1141 p
->parent
= p
->real_parent
;
1143 spin_lock(¤t
->sighand
->siglock
);
1146 * Process group and session signals need to be delivered to just the
1147 * parent before the fork or both the parent and the child after the
1148 * fork. Restart if a signal comes in before we add the new process to
1149 * it's process group.
1150 * A fatal signal pending means that current will exit, so the new
1151 * thread can't slip out of an OOM kill (or normal SIGKILL).
1153 recalc_sigpending();
1154 if (signal_pending(current
)) {
1155 spin_unlock(¤t
->sighand
->siglock
);
1156 write_unlock_irq(&tasklist_lock
);
1157 retval
= -ERESTARTNOINTR
;
1158 goto bad_fork_cleanup_namespace
;
1161 if (clone_flags
& CLONE_THREAD
) {
1163 * Important: if an exit-all has been started then
1164 * do not create this new thread - the whole thread
1165 * group is supposed to exit anyway.
1167 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
) {
1168 spin_unlock(¤t
->sighand
->siglock
);
1169 write_unlock_irq(&tasklist_lock
);
1171 goto bad_fork_cleanup_namespace
;
1174 p
->group_leader
= current
->group_leader
;
1175 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1177 if (!cputime_eq(current
->signal
->it_virt_expires
,
1179 !cputime_eq(current
->signal
->it_prof_expires
,
1181 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1182 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1183 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1184 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1186 * Have child wake up on its first tick to check
1187 * for process CPU timers.
1189 p
->it_prof_expires
= jiffies_to_cputime(1);
1196 p
->ioprio
= current
->ioprio
;
1198 if (likely(p
->pid
)) {
1200 if (unlikely(p
->ptrace
& PT_PTRACED
))
1201 __ptrace_link(p
, current
->parent
);
1203 if (thread_group_leader(p
)) {
1204 p
->signal
->tty
= current
->signal
->tty
;
1205 p
->signal
->pgrp
= process_group(current
);
1206 p
->signal
->session
= current
->signal
->session
;
1207 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1208 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1210 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1211 __get_cpu_var(process_counts
)++;
1213 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1218 spin_unlock(¤t
->sighand
->siglock
);
1219 write_unlock_irq(&tasklist_lock
);
1220 proc_fork_connector(p
);
1223 bad_fork_cleanup_namespace
:
1225 bad_fork_cleanup_keys
:
1227 bad_fork_cleanup_mm
:
1230 bad_fork_cleanup_signal
:
1232 bad_fork_cleanup_sighand
:
1233 __cleanup_sighand(p
->sighand
);
1234 bad_fork_cleanup_fs
:
1235 exit_fs(p
); /* blocking */
1236 bad_fork_cleanup_files
:
1237 exit_files(p
); /* blocking */
1238 bad_fork_cleanup_semundo
:
1240 bad_fork_cleanup_audit
:
1242 bad_fork_cleanup_security
:
1243 security_task_free(p
);
1244 bad_fork_cleanup_policy
:
1246 mpol_free(p
->mempolicy
);
1247 bad_fork_cleanup_cpuset
:
1252 module_put(p
->binfmt
->module
);
1253 bad_fork_cleanup_put_domain
:
1254 module_put(task_thread_info(p
)->exec_domain
->module
);
1255 bad_fork_cleanup_count
:
1256 put_group_info(p
->group_info
);
1257 atomic_dec(&p
->user
->processes
);
1262 return ERR_PTR(retval
);
1265 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1267 memset(regs
, 0, sizeof(struct pt_regs
));
1271 task_t
* __devinit
fork_idle(int cpu
)
1274 struct pt_regs regs
;
1276 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1278 return ERR_PTR(-ENOMEM
);
1279 init_idle(task
, cpu
);
1284 static inline int fork_traceflag (unsigned clone_flags
)
1286 if (clone_flags
& CLONE_UNTRACED
)
1288 else if (clone_flags
& CLONE_VFORK
) {
1289 if (current
->ptrace
& PT_TRACE_VFORK
)
1290 return PTRACE_EVENT_VFORK
;
1291 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1292 if (current
->ptrace
& PT_TRACE_CLONE
)
1293 return PTRACE_EVENT_CLONE
;
1294 } else if (current
->ptrace
& PT_TRACE_FORK
)
1295 return PTRACE_EVENT_FORK
;
1301 * Ok, this is the main fork-routine.
1303 * It copies the process, and if successful kick-starts
1304 * it and waits for it to finish using the VM if required.
1306 long do_fork(unsigned long clone_flags
,
1307 unsigned long stack_start
,
1308 struct pt_regs
*regs
,
1309 unsigned long stack_size
,
1310 int __user
*parent_tidptr
,
1311 int __user
*child_tidptr
)
1313 struct task_struct
*p
;
1315 struct pid
*pid
= alloc_pid();
1321 if (unlikely(current
->ptrace
)) {
1322 trace
= fork_traceflag (clone_flags
);
1324 clone_flags
|= CLONE_PTRACE
;
1327 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, nr
);
1329 * Do this prior waking up the new thread - the thread pointer
1330 * might get invalid after that point, if the thread exits quickly.
1333 struct completion vfork
;
1335 if (clone_flags
& CLONE_VFORK
) {
1336 p
->vfork_done
= &vfork
;
1337 init_completion(&vfork
);
1340 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1342 * We'll start up with an immediate SIGSTOP.
1344 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1345 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1348 if (!(clone_flags
& CLONE_STOPPED
))
1349 wake_up_new_task(p
, clone_flags
);
1351 p
->state
= TASK_STOPPED
;
1353 if (unlikely (trace
)) {
1354 current
->ptrace_message
= nr
;
1355 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1358 if (clone_flags
& CLONE_VFORK
) {
1359 wait_for_completion(&vfork
);
1360 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
))
1361 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1370 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1371 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1374 static void sighand_ctor(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
1376 struct sighand_struct
*sighand
= data
;
1378 if ((flags
& (SLAB_CTOR_VERIFY
| SLAB_CTOR_CONSTRUCTOR
)) ==
1379 SLAB_CTOR_CONSTRUCTOR
)
1380 spin_lock_init(&sighand
->siglock
);
1383 void __init
proc_caches_init(void)
1385 sighand_cachep
= kmem_cache_create("sighand_cache",
1386 sizeof(struct sighand_struct
), 0,
1387 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1388 sighand_ctor
, NULL
);
1389 signal_cachep
= kmem_cache_create("signal_cache",
1390 sizeof(struct signal_struct
), 0,
1391 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1392 files_cachep
= kmem_cache_create("files_cache",
1393 sizeof(struct files_struct
), 0,
1394 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1395 fs_cachep
= kmem_cache_create("fs_cache",
1396 sizeof(struct fs_struct
), 0,
1397 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1398 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1399 sizeof(struct vm_area_struct
), 0,
1400 SLAB_PANIC
, NULL
, NULL
);
1401 mm_cachep
= kmem_cache_create("mm_struct",
1402 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1403 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1408 * Check constraints on flags passed to the unshare system call and
1409 * force unsharing of additional process context as appropriate.
1411 static inline void check_unshare_flags(unsigned long *flags_ptr
)
1414 * If unsharing a thread from a thread group, must also
1417 if (*flags_ptr
& CLONE_THREAD
)
1418 *flags_ptr
|= CLONE_VM
;
1421 * If unsharing vm, must also unshare signal handlers.
1423 if (*flags_ptr
& CLONE_VM
)
1424 *flags_ptr
|= CLONE_SIGHAND
;
1427 * If unsharing signal handlers and the task was created
1428 * using CLONE_THREAD, then must unshare the thread
1430 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1431 (atomic_read(¤t
->signal
->count
) > 1))
1432 *flags_ptr
|= CLONE_THREAD
;
1435 * If unsharing namespace, must also unshare filesystem information.
1437 if (*flags_ptr
& CLONE_NEWNS
)
1438 *flags_ptr
|= CLONE_FS
;
1442 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1444 static int unshare_thread(unsigned long unshare_flags
)
1446 if (unshare_flags
& CLONE_THREAD
)
1453 * Unshare the filesystem structure if it is being shared
1455 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1457 struct fs_struct
*fs
= current
->fs
;
1459 if ((unshare_flags
& CLONE_FS
) &&
1460 (fs
&& atomic_read(&fs
->count
) > 1)) {
1461 *new_fsp
= __copy_fs_struct(current
->fs
);
1470 * Unshare the namespace structure if it is being shared
1472 static int unshare_namespace(unsigned long unshare_flags
, struct namespace **new_nsp
, struct fs_struct
*new_fs
)
1474 struct namespace *ns
= current
->namespace;
1476 if ((unshare_flags
& CLONE_NEWNS
) &&
1477 (ns
&& atomic_read(&ns
->count
) > 1)) {
1478 if (!capable(CAP_SYS_ADMIN
))
1481 *new_nsp
= dup_namespace(current
, new_fs
? new_fs
: current
->fs
);
1490 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1493 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1495 struct sighand_struct
*sigh
= current
->sighand
;
1497 if ((unshare_flags
& CLONE_SIGHAND
) &&
1498 (sigh
&& atomic_read(&sigh
->count
) > 1))
1505 * Unshare vm if it is being shared
1507 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1509 struct mm_struct
*mm
= current
->mm
;
1511 if ((unshare_flags
& CLONE_VM
) &&
1512 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1520 * Unshare file descriptor table if it is being shared
1522 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1524 struct files_struct
*fd
= current
->files
;
1527 if ((unshare_flags
& CLONE_FILES
) &&
1528 (fd
&& atomic_read(&fd
->count
) > 1)) {
1529 *new_fdp
= dup_fd(fd
, &error
);
1538 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1541 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1543 if (unshare_flags
& CLONE_SYSVSEM
)
1550 * unshare allows a process to 'unshare' part of the process
1551 * context which was originally shared using clone. copy_*
1552 * functions used by do_fork() cannot be used here directly
1553 * because they modify an inactive task_struct that is being
1554 * constructed. Here we are modifying the current, active,
1557 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1560 struct fs_struct
*fs
, *new_fs
= NULL
;
1561 struct namespace *ns
, *new_ns
= NULL
;
1562 struct sighand_struct
*sigh
, *new_sigh
= NULL
;
1563 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1564 struct files_struct
*fd
, *new_fd
= NULL
;
1565 struct sem_undo_list
*new_ulist
= NULL
;
1567 check_unshare_flags(&unshare_flags
);
1569 /* Return -EINVAL for all unsupported flags */
1571 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1572 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
))
1573 goto bad_unshare_out
;
1575 if ((err
= unshare_thread(unshare_flags
)))
1576 goto bad_unshare_out
;
1577 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1578 goto bad_unshare_cleanup_thread
;
1579 if ((err
= unshare_namespace(unshare_flags
, &new_ns
, new_fs
)))
1580 goto bad_unshare_cleanup_fs
;
1581 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1582 goto bad_unshare_cleanup_ns
;
1583 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1584 goto bad_unshare_cleanup_sigh
;
1585 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1586 goto bad_unshare_cleanup_vm
;
1587 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1588 goto bad_unshare_cleanup_fd
;
1590 if (new_fs
|| new_ns
|| new_sigh
|| new_mm
|| new_fd
|| new_ulist
) {
1596 current
->fs
= new_fs
;
1601 ns
= current
->namespace;
1602 current
->namespace = new_ns
;
1607 sigh
= current
->sighand
;
1608 rcu_assign_pointer(current
->sighand
, new_sigh
);
1614 active_mm
= current
->active_mm
;
1615 current
->mm
= new_mm
;
1616 current
->active_mm
= new_mm
;
1617 activate_mm(active_mm
, new_mm
);
1622 fd
= current
->files
;
1623 current
->files
= new_fd
;
1627 task_unlock(current
);
1630 bad_unshare_cleanup_fd
:
1632 put_files_struct(new_fd
);
1634 bad_unshare_cleanup_vm
:
1638 bad_unshare_cleanup_sigh
:
1640 if (atomic_dec_and_test(&new_sigh
->count
))
1641 kmem_cache_free(sighand_cachep
, new_sigh
);
1643 bad_unshare_cleanup_ns
:
1645 put_namespace(new_ns
);
1647 bad_unshare_cleanup_fs
:
1649 put_fs_struct(new_fs
);
1651 bad_unshare_cleanup_thread
: