2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
20 * Updated: Chad Sellers <csellers@tresys.com>
22 * Added validation of kernel classes and permissions
24 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License as published by
30 * the Free Software Foundation, version 2.
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
43 #include <net/netlabel.h>
53 #include "conditional.h"
56 #include "selinux_netlabel.h"
60 extern void selnl_notify_policyload(u32 seqno
);
61 unsigned int policydb_loaded_version
;
64 * This is declared in avc.c
66 extern const struct selinux_class_perm selinux_class_perm
;
68 static DEFINE_RWLOCK(policy_rwlock
);
69 #define POLICY_RDLOCK read_lock(&policy_rwlock)
70 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
71 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
72 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
74 static DEFINE_MUTEX(load_mutex
);
75 #define LOAD_LOCK mutex_lock(&load_mutex)
76 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
78 static struct sidtab sidtab
;
79 struct policydb policydb
;
80 int ss_initialized
= 0;
83 * The largest sequence number that has been used when
84 * providing an access decision to the access vector cache.
85 * The sequence number only changes when a policy change
88 static u32 latest_granting
= 0;
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context
*context
, char **scontext
,
95 * Return the boolean value of a constraint expression
96 * when it is applied to the specified source and target
99 * xcontext is a special beast... It is used by the validatetrans rules
100 * only. For these rules, scontext is the context before the transition,
101 * tcontext is the context after the transition, and xcontext is the context
102 * of the process performing the transition. All other callers of
103 * constraint_expr_eval should pass in NULL for xcontext.
105 static int constraint_expr_eval(struct context
*scontext
,
106 struct context
*tcontext
,
107 struct context
*xcontext
,
108 struct constraint_expr
*cexpr
)
112 struct role_datum
*r1
, *r2
;
113 struct mls_level
*l1
, *l2
;
114 struct constraint_expr
*e
;
115 int s
[CEXPR_MAXDEPTH
];
118 for (e
= cexpr
; e
; e
= e
->next
) {
119 switch (e
->expr_type
) {
135 if (sp
== (CEXPR_MAXDEPTH
-1))
139 val1
= scontext
->user
;
140 val2
= tcontext
->user
;
143 val1
= scontext
->type
;
144 val2
= tcontext
->type
;
147 val1
= scontext
->role
;
148 val2
= tcontext
->role
;
149 r1
= policydb
.role_val_to_struct
[val1
- 1];
150 r2
= policydb
.role_val_to_struct
[val2
- 1];
153 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
157 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
161 s
[++sp
] = ( !ebitmap_get_bit(&r1
->dominates
,
163 !ebitmap_get_bit(&r2
->dominates
,
171 l1
= &(scontext
->range
.level
[0]);
172 l2
= &(tcontext
->range
.level
[0]);
175 l1
= &(scontext
->range
.level
[0]);
176 l2
= &(tcontext
->range
.level
[1]);
179 l1
= &(scontext
->range
.level
[1]);
180 l2
= &(tcontext
->range
.level
[0]);
183 l1
= &(scontext
->range
.level
[1]);
184 l2
= &(tcontext
->range
.level
[1]);
187 l1
= &(scontext
->range
.level
[0]);
188 l2
= &(scontext
->range
.level
[1]);
191 l1
= &(tcontext
->range
.level
[0]);
192 l2
= &(tcontext
->range
.level
[1]);
197 s
[++sp
] = mls_level_eq(l1
, l2
);
200 s
[++sp
] = !mls_level_eq(l1
, l2
);
203 s
[++sp
] = mls_level_dom(l1
, l2
);
206 s
[++sp
] = mls_level_dom(l2
, l1
);
209 s
[++sp
] = mls_level_incomp(l2
, l1
);
223 s
[++sp
] = (val1
== val2
);
226 s
[++sp
] = (val1
!= val2
);
234 if (sp
== (CEXPR_MAXDEPTH
-1))
237 if (e
->attr
& CEXPR_TARGET
)
239 else if (e
->attr
& CEXPR_XTARGET
) {
246 if (e
->attr
& CEXPR_USER
)
248 else if (e
->attr
& CEXPR_ROLE
)
250 else if (e
->attr
& CEXPR_TYPE
)
259 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
262 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
280 * Compute access vectors based on a context structure pair for
281 * the permissions in a particular class.
283 static int context_struct_compute_av(struct context
*scontext
,
284 struct context
*tcontext
,
287 struct av_decision
*avd
)
289 struct constraint_node
*constraint
;
290 struct role_allow
*ra
;
291 struct avtab_key avkey
;
292 struct avtab_node
*node
;
293 struct class_datum
*tclass_datum
;
294 struct ebitmap
*sattr
, *tattr
;
295 struct ebitmap_node
*snode
, *tnode
;
299 * Remap extended Netlink classes for old policy versions.
300 * Do this here rather than socket_type_to_security_class()
301 * in case a newer policy version is loaded, allowing sockets
302 * to remain in the correct class.
304 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
305 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
306 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
307 tclass
= SECCLASS_NETLINK_SOCKET
;
309 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
310 printk(KERN_ERR
"security_compute_av: unrecognized class %d\n",
314 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
317 * Initialize the access vectors to the default values.
320 avd
->decided
= 0xffffffff;
322 avd
->auditdeny
= 0xffffffff;
323 avd
->seqno
= latest_granting
;
326 * If a specific type enforcement rule was defined for
327 * this permission check, then use it.
329 avkey
.target_class
= tclass
;
330 avkey
.specified
= AVTAB_AV
;
331 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
332 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
333 ebitmap_for_each_bit(sattr
, snode
, i
) {
334 if (!ebitmap_node_get_bit(snode
, i
))
336 ebitmap_for_each_bit(tattr
, tnode
, j
) {
337 if (!ebitmap_node_get_bit(tnode
, j
))
339 avkey
.source_type
= i
+ 1;
340 avkey
.target_type
= j
+ 1;
341 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
343 node
= avtab_search_node_next(node
, avkey
.specified
)) {
344 if (node
->key
.specified
== AVTAB_ALLOWED
)
345 avd
->allowed
|= node
->datum
.data
;
346 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
347 avd
->auditallow
|= node
->datum
.data
;
348 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
349 avd
->auditdeny
&= node
->datum
.data
;
352 /* Check conditional av table for additional permissions */
353 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
359 * Remove any permissions prohibited by a constraint (this includes
362 constraint
= tclass_datum
->constraints
;
364 if ((constraint
->permissions
& (avd
->allowed
)) &&
365 !constraint_expr_eval(scontext
, tcontext
, NULL
,
367 avd
->allowed
= (avd
->allowed
) & ~(constraint
->permissions
);
369 constraint
= constraint
->next
;
373 * If checking process transition permission and the
374 * role is changing, then check the (current_role, new_role)
377 if (tclass
== SECCLASS_PROCESS
&&
378 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
379 scontext
->role
!= tcontext
->role
) {
380 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
381 if (scontext
->role
== ra
->role
&&
382 tcontext
->role
== ra
->new_role
)
386 avd
->allowed
= (avd
->allowed
) & ~(PROCESS__TRANSITION
|
387 PROCESS__DYNTRANSITION
);
393 static int security_validtrans_handle_fail(struct context
*ocontext
,
394 struct context
*ncontext
,
395 struct context
*tcontext
,
398 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
399 u32 olen
, nlen
, tlen
;
401 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
403 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
405 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
407 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
408 "security_validate_transition: denied for"
409 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
410 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
416 if (!selinux_enforcing
)
421 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
424 struct context
*ocontext
;
425 struct context
*ncontext
;
426 struct context
*tcontext
;
427 struct class_datum
*tclass_datum
;
428 struct constraint_node
*constraint
;
437 * Remap extended Netlink classes for old policy versions.
438 * Do this here rather than socket_type_to_security_class()
439 * in case a newer policy version is loaded, allowing sockets
440 * to remain in the correct class.
442 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
443 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
444 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
445 tclass
= SECCLASS_NETLINK_SOCKET
;
447 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
448 printk(KERN_ERR
"security_validate_transition: "
449 "unrecognized class %d\n", tclass
);
453 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
455 ocontext
= sidtab_search(&sidtab
, oldsid
);
457 printk(KERN_ERR
"security_validate_transition: "
458 " unrecognized SID %d\n", oldsid
);
463 ncontext
= sidtab_search(&sidtab
, newsid
);
465 printk(KERN_ERR
"security_validate_transition: "
466 " unrecognized SID %d\n", newsid
);
471 tcontext
= sidtab_search(&sidtab
, tasksid
);
473 printk(KERN_ERR
"security_validate_transition: "
474 " unrecognized SID %d\n", tasksid
);
479 constraint
= tclass_datum
->validatetrans
;
481 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
483 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
487 constraint
= constraint
->next
;
496 * security_compute_av - Compute access vector decisions.
497 * @ssid: source security identifier
498 * @tsid: target security identifier
499 * @tclass: target security class
500 * @requested: requested permissions
501 * @avd: access vector decisions
503 * Compute a set of access vector decisions based on the
504 * SID pair (@ssid, @tsid) for the permissions in @tclass.
505 * Return -%EINVAL if any of the parameters are invalid or %0
506 * if the access vector decisions were computed successfully.
508 int security_compute_av(u32 ssid
,
512 struct av_decision
*avd
)
514 struct context
*scontext
= NULL
, *tcontext
= NULL
;
517 if (!ss_initialized
) {
518 avd
->allowed
= 0xffffffff;
519 avd
->decided
= 0xffffffff;
521 avd
->auditdeny
= 0xffffffff;
522 avd
->seqno
= latest_granting
;
528 scontext
= sidtab_search(&sidtab
, ssid
);
530 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
535 tcontext
= sidtab_search(&sidtab
, tsid
);
537 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
543 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
551 * Write the security context string representation of
552 * the context structure `context' into a dynamically
553 * allocated string of the correct size. Set `*scontext'
554 * to point to this string and set `*scontext_len' to
555 * the length of the string.
557 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
564 /* Compute the size of the context. */
565 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
566 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
567 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
568 *scontext_len
+= mls_compute_context_len(context
);
570 /* Allocate space for the context; caller must free this space. */
571 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
575 *scontext
= scontextp
;
578 * Copy the user name, role name and type name into the context.
580 sprintf(scontextp
, "%s:%s:%s",
581 policydb
.p_user_val_to_name
[context
->user
- 1],
582 policydb
.p_role_val_to_name
[context
->role
- 1],
583 policydb
.p_type_val_to_name
[context
->type
- 1]);
584 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
585 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
586 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
588 mls_sid_to_context(context
, &scontextp
);
595 #include "initial_sid_to_string.h"
598 * security_sid_to_context - Obtain a context for a given SID.
599 * @sid: security identifier, SID
600 * @scontext: security context
601 * @scontext_len: length in bytes
603 * Write the string representation of the context associated with @sid
604 * into a dynamically allocated string of the correct size. Set @scontext
605 * to point to this string and set @scontext_len to the length of the string.
607 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
609 struct context
*context
;
612 if (!ss_initialized
) {
613 if (sid
<= SECINITSID_NUM
) {
616 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
617 scontextp
= kmalloc(*scontext_len
,GFP_ATOMIC
);
622 strcpy(scontextp
, initial_sid_to_string
[sid
]);
623 *scontext
= scontextp
;
626 printk(KERN_ERR
"security_sid_to_context: called before initial "
627 "load_policy on unknown SID %d\n", sid
);
632 context
= sidtab_search(&sidtab
, sid
);
634 printk(KERN_ERR
"security_sid_to_context: unrecognized SID "
639 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
647 static int security_context_to_sid_core(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
650 struct context context
;
651 struct role_datum
*role
;
652 struct type_datum
*typdatum
;
653 struct user_datum
*usrdatum
;
654 char *scontextp
, *p
, oldc
;
657 if (!ss_initialized
) {
660 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
661 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
666 *sid
= SECINITSID_KERNEL
;
671 /* Copy the string so that we can modify the copy as we parse it.
672 The string should already by null terminated, but we append a
673 null suffix to the copy to avoid problems with the existing
674 attr package, which doesn't view the null terminator as part
675 of the attribute value. */
676 scontext2
= kmalloc(scontext_len
+1,GFP_KERNEL
);
681 memcpy(scontext2
, scontext
, scontext_len
);
682 scontext2
[scontext_len
] = 0;
684 context_init(&context
);
689 /* Parse the security context. */
692 scontextp
= (char *) scontext2
;
694 /* Extract the user. */
696 while (*p
&& *p
!= ':')
704 usrdatum
= hashtab_search(policydb
.p_users
.table
, scontextp
);
708 context
.user
= usrdatum
->value
;
712 while (*p
&& *p
!= ':')
720 role
= hashtab_search(policydb
.p_roles
.table
, scontextp
);
723 context
.role
= role
->value
;
727 while (*p
&& *p
!= ':')
732 typdatum
= hashtab_search(policydb
.p_types
.table
, scontextp
);
736 context
.type
= typdatum
->value
;
738 rc
= mls_context_to_sid(oldc
, &p
, &context
, &sidtab
, def_sid
);
742 if ((p
- scontext2
) < scontext_len
) {
747 /* Check the validity of the new context. */
748 if (!policydb_context_isvalid(&policydb
, &context
)) {
752 /* Obtain the new sid. */
753 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
756 context_destroy(&context
);
763 * security_context_to_sid - Obtain a SID for a given security context.
764 * @scontext: security context
765 * @scontext_len: length in bytes
766 * @sid: security identifier, SID
768 * Obtains a SID associated with the security context that
769 * has the string representation specified by @scontext.
770 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
771 * memory is available, or 0 on success.
773 int security_context_to_sid(char *scontext
, u32 scontext_len
, u32
*sid
)
775 return security_context_to_sid_core(scontext
, scontext_len
,
780 * security_context_to_sid_default - Obtain a SID for a given security context,
781 * falling back to specified default if needed.
783 * @scontext: security context
784 * @scontext_len: length in bytes
785 * @sid: security identifier, SID
786 * @def_sid: default SID to assign on errror
788 * Obtains a SID associated with the security context that
789 * has the string representation specified by @scontext.
790 * The default SID is passed to the MLS layer to be used to allow
791 * kernel labeling of the MLS field if the MLS field is not present
792 * (for upgrading to MLS without full relabel).
793 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
794 * memory is available, or 0 on success.
796 int security_context_to_sid_default(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
798 return security_context_to_sid_core(scontext
, scontext_len
,
802 static int compute_sid_handle_invalid_context(
803 struct context
*scontext
,
804 struct context
*tcontext
,
806 struct context
*newcontext
)
808 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
809 u32 slen
, tlen
, nlen
;
811 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
813 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
815 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
817 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
818 "security_compute_sid: invalid context %s"
822 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
827 if (!selinux_enforcing
)
832 static int security_compute_sid(u32 ssid
,
838 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
839 struct role_trans
*roletr
= NULL
;
840 struct avtab_key avkey
;
841 struct avtab_datum
*avdatum
;
842 struct avtab_node
*node
;
845 if (!ss_initialized
) {
847 case SECCLASS_PROCESS
:
857 context_init(&newcontext
);
861 scontext
= sidtab_search(&sidtab
, ssid
);
863 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
868 tcontext
= sidtab_search(&sidtab
, tsid
);
870 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
876 /* Set the user identity. */
878 case AVTAB_TRANSITION
:
880 /* Use the process user identity. */
881 newcontext
.user
= scontext
->user
;
884 /* Use the related object owner. */
885 newcontext
.user
= tcontext
->user
;
889 /* Set the role and type to default values. */
891 case SECCLASS_PROCESS
:
892 /* Use the current role and type of process. */
893 newcontext
.role
= scontext
->role
;
894 newcontext
.type
= scontext
->type
;
897 /* Use the well-defined object role. */
898 newcontext
.role
= OBJECT_R_VAL
;
899 /* Use the type of the related object. */
900 newcontext
.type
= tcontext
->type
;
903 /* Look for a type transition/member/change rule. */
904 avkey
.source_type
= scontext
->type
;
905 avkey
.target_type
= tcontext
->type
;
906 avkey
.target_class
= tclass
;
907 avkey
.specified
= specified
;
908 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
910 /* If no permanent rule, also check for enabled conditional rules */
912 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
913 for (; node
!= NULL
; node
= avtab_search_node_next(node
, specified
)) {
914 if (node
->key
.specified
& AVTAB_ENABLED
) {
915 avdatum
= &node
->datum
;
922 /* Use the type from the type transition/member/change rule. */
923 newcontext
.type
= avdatum
->data
;
926 /* Check for class-specific changes. */
928 case SECCLASS_PROCESS
:
929 if (specified
& AVTAB_TRANSITION
) {
930 /* Look for a role transition rule. */
931 for (roletr
= policydb
.role_tr
; roletr
;
932 roletr
= roletr
->next
) {
933 if (roletr
->role
== scontext
->role
&&
934 roletr
->type
== tcontext
->type
) {
935 /* Use the role transition rule. */
936 newcontext
.role
= roletr
->new_role
;
946 /* Set the MLS attributes.
947 This is done last because it may allocate memory. */
948 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
952 /* Check the validity of the context. */
953 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
954 rc
= compute_sid_handle_invalid_context(scontext
,
961 /* Obtain the sid for the context. */
962 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
965 context_destroy(&newcontext
);
971 * security_transition_sid - Compute the SID for a new subject/object.
972 * @ssid: source security identifier
973 * @tsid: target security identifier
974 * @tclass: target security class
975 * @out_sid: security identifier for new subject/object
977 * Compute a SID to use for labeling a new subject or object in the
978 * class @tclass based on a SID pair (@ssid, @tsid).
979 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
980 * if insufficient memory is available, or %0 if the new SID was
981 * computed successfully.
983 int security_transition_sid(u32 ssid
,
988 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
992 * security_member_sid - Compute the SID for member selection.
993 * @ssid: source security identifier
994 * @tsid: target security identifier
995 * @tclass: target security class
996 * @out_sid: security identifier for selected member
998 * Compute a SID to use when selecting a member of a polyinstantiated
999 * object of class @tclass based on a SID pair (@ssid, @tsid).
1000 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1001 * if insufficient memory is available, or %0 if the SID was
1002 * computed successfully.
1004 int security_member_sid(u32 ssid
,
1009 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1013 * security_change_sid - Compute the SID for object relabeling.
1014 * @ssid: source security identifier
1015 * @tsid: target security identifier
1016 * @tclass: target security class
1017 * @out_sid: security identifier for selected member
1019 * Compute a SID to use for relabeling an object of class @tclass
1020 * based on a SID pair (@ssid, @tsid).
1021 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1022 * if insufficient memory is available, or %0 if the SID was
1023 * computed successfully.
1025 int security_change_sid(u32 ssid
,
1030 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1034 * Verify that each kernel class that is defined in the
1037 static int validate_classes(struct policydb
*p
)
1040 struct class_datum
*cladatum
;
1041 struct perm_datum
*perdatum
;
1042 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1044 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1045 const char *def_class
, *def_perm
, *pol_class
;
1046 struct symtab
*perms
;
1048 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1049 def_class
= kdefs
->class_to_string
[i
];
1050 if (i
> p
->p_classes
.nprim
) {
1052 "security: class %s not defined in policy\n",
1056 pol_class
= p
->p_class_val_to_name
[i
-1];
1057 if (strcmp(pol_class
, def_class
)) {
1059 "security: class %d is incorrect, found %s but should be %s\n",
1060 i
, pol_class
, def_class
);
1064 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1065 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1066 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1067 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1068 if (class_val
> p
->p_classes
.nprim
)
1070 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1071 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1073 perms
= &cladatum
->permissions
;
1074 nprim
= 1 << (perms
->nprim
- 1);
1075 if (perm_val
> nprim
) {
1077 "security: permission %s in class %s not defined in policy\n",
1078 def_perm
, pol_class
);
1081 perdatum
= hashtab_search(perms
->table
, def_perm
);
1082 if (perdatum
== NULL
) {
1084 "security: permission %s in class %s not found in policy\n",
1085 def_perm
, pol_class
);
1088 pol_val
= 1 << (perdatum
->value
- 1);
1089 if (pol_val
!= perm_val
) {
1091 "security: permission %s in class %s has incorrect value\n",
1092 def_perm
, pol_class
);
1096 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1097 class_val
= kdefs
->av_inherit
[i
].tclass
;
1098 if (class_val
> p
->p_classes
.nprim
)
1100 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1101 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1103 if (!cladatum
->comdatum
) {
1105 "security: class %s should have an inherits clause but does not\n",
1109 tmp
= kdefs
->av_inherit
[i
].common_base
;
1111 while (!(tmp
& 0x01)) {
1115 perms
= &cladatum
->comdatum
->permissions
;
1116 for (j
= 0; j
< common_pts_len
; j
++) {
1117 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1118 if (j
>= perms
->nprim
) {
1120 "security: permission %s in class %s not defined in policy\n",
1121 def_perm
, pol_class
);
1124 perdatum
= hashtab_search(perms
->table
, def_perm
);
1125 if (perdatum
== NULL
) {
1127 "security: permission %s in class %s not found in policy\n",
1128 def_perm
, pol_class
);
1131 if (perdatum
->value
!= j
+ 1) {
1133 "security: permission %s in class %s has incorrect value\n",
1134 def_perm
, pol_class
);
1142 /* Clone the SID into the new SID table. */
1143 static int clone_sid(u32 sid
,
1144 struct context
*context
,
1147 struct sidtab
*s
= arg
;
1149 return sidtab_insert(s
, sid
, context
);
1152 static inline int convert_context_handle_invalid_context(struct context
*context
)
1156 if (selinux_enforcing
) {
1162 context_struct_to_string(context
, &s
, &len
);
1163 printk(KERN_ERR
"security: context %s is invalid\n", s
);
1169 struct convert_context_args
{
1170 struct policydb
*oldp
;
1171 struct policydb
*newp
;
1175 * Convert the values in the security context
1176 * structure `c' from the values specified
1177 * in the policy `p->oldp' to the values specified
1178 * in the policy `p->newp'. Verify that the
1179 * context is valid under the new policy.
1181 static int convert_context(u32 key
,
1185 struct convert_context_args
*args
;
1186 struct context oldc
;
1187 struct role_datum
*role
;
1188 struct type_datum
*typdatum
;
1189 struct user_datum
*usrdatum
;
1196 rc
= context_cpy(&oldc
, c
);
1202 /* Convert the user. */
1203 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1204 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1208 c
->user
= usrdatum
->value
;
1210 /* Convert the role. */
1211 role
= hashtab_search(args
->newp
->p_roles
.table
,
1212 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1216 c
->role
= role
->value
;
1218 /* Convert the type. */
1219 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1220 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1224 c
->type
= typdatum
->value
;
1226 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1230 /* Check the validity of the new context. */
1231 if (!policydb_context_isvalid(args
->newp
, c
)) {
1232 rc
= convert_context_handle_invalid_context(&oldc
);
1237 context_destroy(&oldc
);
1241 context_struct_to_string(&oldc
, &s
, &len
);
1242 context_destroy(&oldc
);
1243 printk(KERN_ERR
"security: invalidating context %s\n", s
);
1248 extern void selinux_complete_init(void);
1251 * security_load_policy - Load a security policy configuration.
1252 * @data: binary policy data
1253 * @len: length of data in bytes
1255 * Load a new set of security policy configuration data,
1256 * validate it and convert the SID table as necessary.
1257 * This function will flush the access vector cache after
1258 * loading the new policy.
1260 int security_load_policy(void *data
, size_t len
)
1262 struct policydb oldpolicydb
, newpolicydb
;
1263 struct sidtab oldsidtab
, newsidtab
;
1264 struct convert_context_args args
;
1267 struct policy_file file
= { data
, len
}, *fp
= &file
;
1271 if (!ss_initialized
) {
1273 if (policydb_read(&policydb
, fp
)) {
1275 avtab_cache_destroy();
1278 if (policydb_load_isids(&policydb
, &sidtab
)) {
1280 policydb_destroy(&policydb
);
1281 avtab_cache_destroy();
1284 /* Verify that the kernel defined classes are correct. */
1285 if (validate_classes(&policydb
)) {
1287 "security: the definition of a class is incorrect\n");
1289 sidtab_destroy(&sidtab
);
1290 policydb_destroy(&policydb
);
1291 avtab_cache_destroy();
1294 policydb_loaded_version
= policydb
.policyvers
;
1296 seqno
= ++latest_granting
;
1298 selinux_complete_init();
1299 avc_ss_reset(seqno
);
1300 selnl_notify_policyload(seqno
);
1301 selinux_netlbl_cache_invalidate();
1302 atomic_inc(&flow_cache_genid
);
1307 sidtab_hash_eval(&sidtab
, "sids");
1310 if (policydb_read(&newpolicydb
, fp
)) {
1315 sidtab_init(&newsidtab
);
1317 /* Verify that the kernel defined classes are correct. */
1318 if (validate_classes(&newpolicydb
)) {
1320 "security: the definition of a class is incorrect\n");
1325 /* Clone the SID table. */
1326 sidtab_shutdown(&sidtab
);
1327 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1332 /* Convert the internal representations of contexts
1333 in the new SID table and remove invalid SIDs. */
1334 args
.oldp
= &policydb
;
1335 args
.newp
= &newpolicydb
;
1336 sidtab_map_remove_on_error(&newsidtab
, convert_context
, &args
);
1338 /* Save the old policydb and SID table to free later. */
1339 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1340 sidtab_set(&oldsidtab
, &sidtab
);
1342 /* Install the new policydb and SID table. */
1344 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1345 sidtab_set(&sidtab
, &newsidtab
);
1346 seqno
= ++latest_granting
;
1347 policydb_loaded_version
= policydb
.policyvers
;
1351 /* Free the old policydb and SID table. */
1352 policydb_destroy(&oldpolicydb
);
1353 sidtab_destroy(&oldsidtab
);
1355 avc_ss_reset(seqno
);
1356 selnl_notify_policyload(seqno
);
1357 selinux_netlbl_cache_invalidate();
1358 atomic_inc(&flow_cache_genid
);
1364 sidtab_destroy(&newsidtab
);
1365 policydb_destroy(&newpolicydb
);
1371 * security_port_sid - Obtain the SID for a port.
1372 * @domain: communication domain aka address family
1373 * @type: socket type
1374 * @protocol: protocol number
1375 * @port: port number
1376 * @out_sid: security identifier
1378 int security_port_sid(u16 domain
,
1389 c
= policydb
.ocontexts
[OCON_PORT
];
1391 if (c
->u
.port
.protocol
== protocol
&&
1392 c
->u
.port
.low_port
<= port
&&
1393 c
->u
.port
.high_port
>= port
)
1400 rc
= sidtab_context_to_sid(&sidtab
,
1406 *out_sid
= c
->sid
[0];
1408 *out_sid
= SECINITSID_PORT
;
1417 * security_netif_sid - Obtain the SID for a network interface.
1418 * @name: interface name
1419 * @if_sid: interface SID
1420 * @msg_sid: default SID for received packets
1422 int security_netif_sid(char *name
,
1431 c
= policydb
.ocontexts
[OCON_NETIF
];
1433 if (strcmp(name
, c
->u
.name
) == 0)
1439 if (!c
->sid
[0] || !c
->sid
[1]) {
1440 rc
= sidtab_context_to_sid(&sidtab
,
1445 rc
= sidtab_context_to_sid(&sidtab
,
1451 *if_sid
= c
->sid
[0];
1452 *msg_sid
= c
->sid
[1];
1454 *if_sid
= SECINITSID_NETIF
;
1455 *msg_sid
= SECINITSID_NETMSG
;
1463 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1467 for(i
= 0; i
< 4; i
++)
1468 if(addr
[i
] != (input
[i
] & mask
[i
])) {
1477 * security_node_sid - Obtain the SID for a node (host).
1478 * @domain: communication domain aka address family
1480 * @addrlen: address length in bytes
1481 * @out_sid: security identifier
1483 int security_node_sid(u16 domain
,
1497 if (addrlen
!= sizeof(u32
)) {
1502 addr
= *((u32
*)addrp
);
1504 c
= policydb
.ocontexts
[OCON_NODE
];
1506 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1514 if (addrlen
!= sizeof(u64
) * 2) {
1518 c
= policydb
.ocontexts
[OCON_NODE6
];
1520 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1528 *out_sid
= SECINITSID_NODE
;
1534 rc
= sidtab_context_to_sid(&sidtab
,
1540 *out_sid
= c
->sid
[0];
1542 *out_sid
= SECINITSID_NODE
;
1553 * security_get_user_sids - Obtain reachable SIDs for a user.
1554 * @fromsid: starting SID
1555 * @username: username
1556 * @sids: array of reachable SIDs for user
1557 * @nel: number of elements in @sids
1559 * Generate the set of SIDs for legal security contexts
1560 * for a given user that can be reached by @fromsid.
1561 * Set *@sids to point to a dynamically allocated
1562 * array containing the set of SIDs. Set *@nel to the
1563 * number of elements in the array.
1566 int security_get_user_sids(u32 fromsid
,
1571 struct context
*fromcon
, usercon
;
1572 u32
*mysids
, *mysids2
, sid
;
1573 u32 mynel
= 0, maxnel
= SIDS_NEL
;
1574 struct user_datum
*user
;
1575 struct role_datum
*role
;
1576 struct av_decision avd
;
1577 struct ebitmap_node
*rnode
, *tnode
;
1580 if (!ss_initialized
) {
1588 fromcon
= sidtab_search(&sidtab
, fromsid
);
1594 user
= hashtab_search(policydb
.p_users
.table
, username
);
1599 usercon
.user
= user
->value
;
1601 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
1607 ebitmap_for_each_bit(&user
->roles
, rnode
, i
) {
1608 if (!ebitmap_node_get_bit(rnode
, i
))
1610 role
= policydb
.role_val_to_struct
[i
];
1612 ebitmap_for_each_bit(&role
->types
, tnode
, j
) {
1613 if (!ebitmap_node_get_bit(tnode
, j
))
1617 if (mls_setup_user_range(fromcon
, user
, &usercon
))
1620 rc
= context_struct_compute_av(fromcon
, &usercon
,
1622 PROCESS__TRANSITION
,
1624 if (rc
|| !(avd
.allowed
& PROCESS__TRANSITION
))
1626 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
1631 if (mynel
< maxnel
) {
1632 mysids
[mynel
++] = sid
;
1635 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
1641 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
1644 mysids
[mynel
++] = sid
;
1659 * security_genfs_sid - Obtain a SID for a file in a filesystem
1660 * @fstype: filesystem type
1661 * @path: path from root of mount
1662 * @sclass: file security class
1663 * @sid: SID for path
1665 * Obtain a SID to use for a file in a filesystem that
1666 * cannot support xattr or use a fixed labeling behavior like
1667 * transition SIDs or task SIDs.
1669 int security_genfs_sid(const char *fstype
,
1675 struct genfs
*genfs
;
1677 int rc
= 0, cmp
= 0;
1681 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
1682 cmp
= strcmp(fstype
, genfs
->fstype
);
1687 if (!genfs
|| cmp
) {
1688 *sid
= SECINITSID_UNLABELED
;
1693 for (c
= genfs
->head
; c
; c
= c
->next
) {
1694 len
= strlen(c
->u
.name
);
1695 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
1696 (strncmp(c
->u
.name
, path
, len
) == 0))
1701 *sid
= SECINITSID_UNLABELED
;
1707 rc
= sidtab_context_to_sid(&sidtab
,
1721 * security_fs_use - Determine how to handle labeling for a filesystem.
1722 * @fstype: filesystem type
1723 * @behavior: labeling behavior
1724 * @sid: SID for filesystem (superblock)
1726 int security_fs_use(
1728 unsigned int *behavior
,
1736 c
= policydb
.ocontexts
[OCON_FSUSE
];
1738 if (strcmp(fstype
, c
->u
.name
) == 0)
1744 *behavior
= c
->v
.behavior
;
1746 rc
= sidtab_context_to_sid(&sidtab
,
1754 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
1756 *behavior
= SECURITY_FS_USE_NONE
;
1759 *behavior
= SECURITY_FS_USE_GENFS
;
1768 int security_get_bools(int *len
, char ***names
, int **values
)
1770 int i
, rc
= -ENOMEM
;
1776 *len
= policydb
.p_bools
.nprim
;
1782 *names
= kcalloc(*len
, sizeof(char*), GFP_ATOMIC
);
1786 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
1790 for (i
= 0; i
< *len
; i
++) {
1792 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
1793 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
1794 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
1797 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
1798 (*names
)[i
][name_len
- 1] = 0;
1806 for (i
= 0; i
< *len
; i
++)
1814 int security_set_bools(int len
, int *values
)
1817 int lenp
, seqno
= 0;
1818 struct cond_node
*cur
;
1822 lenp
= policydb
.p_bools
.nprim
;
1828 for (i
= 0; i
< len
; i
++) {
1829 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
1830 audit_log(current
->audit_context
, GFP_ATOMIC
,
1831 AUDIT_MAC_CONFIG_CHANGE
,
1832 "bool=%s val=%d old_val=%d auid=%u",
1833 policydb
.p_bool_val_to_name
[i
],
1835 policydb
.bool_val_to_struct
[i
]->state
,
1836 audit_get_loginuid(current
->audit_context
));
1839 policydb
.bool_val_to_struct
[i
]->state
= 1;
1841 policydb
.bool_val_to_struct
[i
]->state
= 0;
1845 for (cur
= policydb
.cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1846 rc
= evaluate_cond_node(&policydb
, cur
);
1851 seqno
= ++latest_granting
;
1856 avc_ss_reset(seqno
);
1857 selnl_notify_policyload(seqno
);
1858 atomic_inc(&flow_cache_genid
);
1863 int security_get_bool_value(int bool)
1870 len
= policydb
.p_bools
.nprim
;
1876 rc
= policydb
.bool_val_to_struct
[bool]->state
;
1883 * security_sid_mls_copy() - computes a new sid based on the given
1884 * sid and the mls portion of mls_sid.
1886 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
1888 struct context
*context1
;
1889 struct context
*context2
;
1890 struct context newcon
;
1895 if (!ss_initialized
|| !selinux_mls_enabled
) {
1900 context_init(&newcon
);
1903 context1
= sidtab_search(&sidtab
, sid
);
1905 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
1911 context2
= sidtab_search(&sidtab
, mls_sid
);
1913 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
1919 newcon
.user
= context1
->user
;
1920 newcon
.role
= context1
->role
;
1921 newcon
.type
= context1
->type
;
1922 rc
= mls_context_cpy(&newcon
, context2
);
1926 /* Check the validity of the new context. */
1927 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
1928 rc
= convert_context_handle_invalid_context(&newcon
);
1933 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
1937 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
1938 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1939 "security_sid_mls_copy: invalid context %s", s
);
1945 context_destroy(&newcon
);
1950 struct selinux_audit_rule
{
1952 struct context au_ctxt
;
1955 void selinux_audit_rule_free(struct selinux_audit_rule
*rule
)
1958 context_destroy(&rule
->au_ctxt
);
1963 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
,
1964 struct selinux_audit_rule
**rule
)
1966 struct selinux_audit_rule
*tmprule
;
1967 struct role_datum
*roledatum
;
1968 struct type_datum
*typedatum
;
1969 struct user_datum
*userdatum
;
1974 if (!ss_initialized
)
1978 case AUDIT_SUBJ_USER
:
1979 case AUDIT_SUBJ_ROLE
:
1980 case AUDIT_SUBJ_TYPE
:
1981 case AUDIT_OBJ_USER
:
1982 case AUDIT_OBJ_ROLE
:
1983 case AUDIT_OBJ_TYPE
:
1984 /* only 'equals' and 'not equals' fit user, role, and type */
1985 if (op
!= AUDIT_EQUAL
&& op
!= AUDIT_NOT_EQUAL
)
1988 case AUDIT_SUBJ_SEN
:
1989 case AUDIT_SUBJ_CLR
:
1990 case AUDIT_OBJ_LEV_LOW
:
1991 case AUDIT_OBJ_LEV_HIGH
:
1992 /* we do not allow a range, indicated by the presense of '-' */
1993 if (strchr(rulestr
, '-'))
1997 /* only the above fields are valid */
2001 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2005 context_init(&tmprule
->au_ctxt
);
2009 tmprule
->au_seqno
= latest_granting
;
2012 case AUDIT_SUBJ_USER
:
2013 case AUDIT_OBJ_USER
:
2014 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2018 tmprule
->au_ctxt
.user
= userdatum
->value
;
2020 case AUDIT_SUBJ_ROLE
:
2021 case AUDIT_OBJ_ROLE
:
2022 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2026 tmprule
->au_ctxt
.role
= roledatum
->value
;
2028 case AUDIT_SUBJ_TYPE
:
2029 case AUDIT_OBJ_TYPE
:
2030 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2034 tmprule
->au_ctxt
.type
= typedatum
->value
;
2036 case AUDIT_SUBJ_SEN
:
2037 case AUDIT_SUBJ_CLR
:
2038 case AUDIT_OBJ_LEV_LOW
:
2039 case AUDIT_OBJ_LEV_HIGH
:
2040 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2047 selinux_audit_rule_free(tmprule
);
2056 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
,
2057 struct selinux_audit_rule
*rule
,
2058 struct audit_context
*actx
)
2060 struct context
*ctxt
;
2061 struct mls_level
*level
;
2065 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2066 "selinux_audit_rule_match: missing rule\n");
2072 if (rule
->au_seqno
< latest_granting
) {
2073 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2074 "selinux_audit_rule_match: stale rule\n");
2079 ctxt
= sidtab_search(&sidtab
, sid
);
2081 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2082 "selinux_audit_rule_match: unrecognized SID %d\n",
2088 /* a field/op pair that is not caught here will simply fall through
2091 case AUDIT_SUBJ_USER
:
2092 case AUDIT_OBJ_USER
:
2095 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2097 case AUDIT_NOT_EQUAL
:
2098 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2102 case AUDIT_SUBJ_ROLE
:
2103 case AUDIT_OBJ_ROLE
:
2106 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2108 case AUDIT_NOT_EQUAL
:
2109 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2113 case AUDIT_SUBJ_TYPE
:
2114 case AUDIT_OBJ_TYPE
:
2117 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2119 case AUDIT_NOT_EQUAL
:
2120 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2124 case AUDIT_SUBJ_SEN
:
2125 case AUDIT_SUBJ_CLR
:
2126 case AUDIT_OBJ_LEV_LOW
:
2127 case AUDIT_OBJ_LEV_HIGH
:
2128 level
= ((field
== AUDIT_SUBJ_SEN
||
2129 field
== AUDIT_OBJ_LEV_LOW
) ?
2130 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2133 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2136 case AUDIT_NOT_EQUAL
:
2137 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2140 case AUDIT_LESS_THAN
:
2141 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2143 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2146 case AUDIT_LESS_THAN_OR_EQUAL
:
2147 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2150 case AUDIT_GREATER_THAN
:
2151 match
= (mls_level_dom(level
,
2152 &rule
->au_ctxt
.range
.level
[0]) &&
2153 !mls_level_eq(level
,
2154 &rule
->au_ctxt
.range
.level
[0]));
2156 case AUDIT_GREATER_THAN_OR_EQUAL
:
2157 match
= mls_level_dom(level
,
2158 &rule
->au_ctxt
.range
.level
[0]);
2168 static int (*aurule_callback
)(void) = NULL
;
2170 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2171 u16
class, u32 perms
, u32
*retained
)
2175 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2176 err
= aurule_callback();
2180 static int __init
aurule_init(void)
2184 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2185 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2187 panic("avc_add_callback() failed, error %d\n", err
);
2191 __initcall(aurule_init
);
2193 void selinux_audit_set_callback(int (*callback
)(void))
2195 aurule_callback
= callback
;
2199 * security_skb_extlbl_sid - Determine the external label of a packet
2201 * @base_sid: the SELinux SID to use as a context for MLS only external labels
2202 * @sid: the packet's SID
2205 * Check the various different forms of external packet labeling and determine
2206 * the external SID for the packet.
2209 void security_skb_extlbl_sid(struct sk_buff
*skb
, u32 base_sid
, u32
*sid
)
2214 selinux_skb_xfrm_sid(skb
, &xfrm_sid
);
2215 if (selinux_netlbl_skbuff_getsid(skb
,
2216 (xfrm_sid
== SECSID_NULL
?
2217 base_sid
: xfrm_sid
),
2219 nlbl_sid
= SECSID_NULL
;
2221 *sid
= (nlbl_sid
== SECSID_NULL
? xfrm_sid
: nlbl_sid
);
2224 #ifdef CONFIG_NETLABEL
2226 * This is the structure we store inside the NetLabel cache block.
2228 #define NETLBL_CACHE(x) ((struct netlbl_cache *)(x))
2229 #define NETLBL_CACHE_T_NONE 0
2230 #define NETLBL_CACHE_T_SID 1
2231 #define NETLBL_CACHE_T_MLS 2
2232 struct netlbl_cache
{
2236 struct mls_range mls_label
;
2241 * selinux_netlbl_cache_free - Free the NetLabel cached data
2242 * @data: the data to free
2245 * This function is intended to be used as the free() callback inside the
2246 * netlbl_lsm_cache structure.
2249 static void selinux_netlbl_cache_free(const void *data
)
2251 struct netlbl_cache
*cache
;
2256 cache
= NETLBL_CACHE(data
);
2257 switch (cache
->type
) {
2258 case NETLBL_CACHE_T_MLS
:
2259 ebitmap_destroy(&cache
->data
.mls_label
.level
[0].cat
);
2266 * selinux_netlbl_cache_add - Add an entry to the NetLabel cache
2268 * @ctx: the SELinux context
2271 * Attempt to cache the context in @ctx, which was derived from the packet in
2272 * @skb, in the NetLabel subsystem cache.
2275 static void selinux_netlbl_cache_add(struct sk_buff
*skb
, struct context
*ctx
)
2277 struct netlbl_cache
*cache
= NULL
;
2278 struct netlbl_lsm_secattr secattr
;
2280 netlbl_secattr_init(&secattr
);
2281 secattr
.cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2282 if (secattr
.cache
== NULL
)
2283 goto netlbl_cache_add_return
;
2285 cache
= kzalloc(sizeof(*cache
), GFP_ATOMIC
);
2287 goto netlbl_cache_add_return
;
2289 cache
->type
= NETLBL_CACHE_T_MLS
;
2290 if (ebitmap_cpy(&cache
->data
.mls_label
.level
[0].cat
,
2291 &ctx
->range
.level
[0].cat
) != 0)
2292 goto netlbl_cache_add_return
;
2293 cache
->data
.mls_label
.level
[1].cat
.highbit
=
2294 cache
->data
.mls_label
.level
[0].cat
.highbit
;
2295 cache
->data
.mls_label
.level
[1].cat
.node
=
2296 cache
->data
.mls_label
.level
[0].cat
.node
;
2297 cache
->data
.mls_label
.level
[0].sens
= ctx
->range
.level
[0].sens
;
2298 cache
->data
.mls_label
.level
[1].sens
= ctx
->range
.level
[0].sens
;
2300 secattr
.cache
->free
= selinux_netlbl_cache_free
;
2301 secattr
.cache
->data
= (void *)cache
;
2302 secattr
.flags
= NETLBL_SECATTR_CACHE
;
2304 netlbl_cache_add(skb
, &secattr
);
2306 netlbl_cache_add_return
:
2307 netlbl_secattr_destroy(&secattr
);
2311 * selinux_netlbl_cache_invalidate - Invalidate the NetLabel cache
2314 * Invalidate the NetLabel security attribute mapping cache.
2317 void selinux_netlbl_cache_invalidate(void)
2319 netlbl_cache_invalidate();
2323 * selinux_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2324 * @skb: the network packet
2325 * @secattr: the NetLabel packet security attributes
2326 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2327 * @sid: the SELinux SID
2330 * Convert the given NetLabel packet security attributes in @secattr into a
2331 * SELinux SID. If the @secattr field does not contain a full SELinux
2332 * SID/context then use the context in @base_sid as the foundation. If @skb
2333 * is not NULL attempt to cache as much data as possibile. Returns zero on
2334 * success, negative values on failure.
2337 static int selinux_netlbl_secattr_to_sid(struct sk_buff
*skb
,
2338 struct netlbl_lsm_secattr
*secattr
,
2343 struct context
*ctx
;
2344 struct context ctx_new
;
2345 struct netlbl_cache
*cache
;
2349 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2350 cache
= NETLBL_CACHE(secattr
->cache
->data
);
2351 switch (cache
->type
) {
2352 case NETLBL_CACHE_T_SID
:
2353 *sid
= cache
->data
.sid
;
2356 case NETLBL_CACHE_T_MLS
:
2357 ctx
= sidtab_search(&sidtab
, base_sid
);
2359 goto netlbl_secattr_to_sid_return
;
2361 ctx_new
.user
= ctx
->user
;
2362 ctx_new
.role
= ctx
->role
;
2363 ctx_new
.type
= ctx
->type
;
2364 ctx_new
.range
.level
[0].sens
=
2365 cache
->data
.mls_label
.level
[0].sens
;
2366 ctx_new
.range
.level
[0].cat
.highbit
=
2367 cache
->data
.mls_label
.level
[0].cat
.highbit
;
2368 ctx_new
.range
.level
[0].cat
.node
=
2369 cache
->data
.mls_label
.level
[0].cat
.node
;
2370 ctx_new
.range
.level
[1].sens
=
2371 cache
->data
.mls_label
.level
[1].sens
;
2372 ctx_new
.range
.level
[1].cat
.highbit
=
2373 cache
->data
.mls_label
.level
[1].cat
.highbit
;
2374 ctx_new
.range
.level
[1].cat
.node
=
2375 cache
->data
.mls_label
.level
[1].cat
.node
;
2377 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2380 goto netlbl_secattr_to_sid_return
;
2382 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2383 ctx
= sidtab_search(&sidtab
, base_sid
);
2385 goto netlbl_secattr_to_sid_return
;
2387 ctx_new
.user
= ctx
->user
;
2388 ctx_new
.role
= ctx
->role
;
2389 ctx_new
.type
= ctx
->type
;
2390 mls_import_netlbl_lvl(&ctx_new
, secattr
);
2391 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2392 if (ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
2393 secattr
->mls_cat
) != 0)
2394 goto netlbl_secattr_to_sid_return
;
2395 ctx_new
.range
.level
[1].cat
.highbit
=
2396 ctx_new
.range
.level
[0].cat
.highbit
;
2397 ctx_new
.range
.level
[1].cat
.node
=
2398 ctx_new
.range
.level
[0].cat
.node
;
2400 ebitmap_init(&ctx_new
.range
.level
[0].cat
);
2401 ebitmap_init(&ctx_new
.range
.level
[1].cat
);
2403 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
2404 goto netlbl_secattr_to_sid_return_cleanup
;
2406 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2408 goto netlbl_secattr_to_sid_return_cleanup
;
2411 selinux_netlbl_cache_add(skb
, &ctx_new
);
2412 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2418 netlbl_secattr_to_sid_return
:
2421 netlbl_secattr_to_sid_return_cleanup
:
2422 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2423 goto netlbl_secattr_to_sid_return
;
2427 * selinux_netlbl_skbuff_getsid - Get the sid of a packet using NetLabel
2429 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2433 * Call the NetLabel mechanism to get the security attributes of the given
2434 * packet and use those attributes to determine the correct context/SID to
2435 * assign to the packet. Returns zero on success, negative values on failure.
2438 int selinux_netlbl_skbuff_getsid(struct sk_buff
*skb
, u32 base_sid
, u32
*sid
)
2441 struct netlbl_lsm_secattr secattr
;
2443 netlbl_secattr_init(&secattr
);
2444 rc
= netlbl_skbuff_getattr(skb
, &secattr
);
2445 if (rc
== 0 && secattr
.flags
!= NETLBL_SECATTR_NONE
)
2446 rc
= selinux_netlbl_secattr_to_sid(skb
,
2452 netlbl_secattr_destroy(&secattr
);
2458 * selinux_netlbl_socket_setsid - Label a socket using the NetLabel mechanism
2459 * @sock: the socket to label
2460 * @sid: the SID to use
2463 * Attempt to label a socket using the NetLabel mechanism using the given
2464 * SID. Returns zero values on success, negative values on failure. The
2465 * caller is responsibile for calling rcu_read_lock() before calling this
2466 * this function and rcu_read_unlock() after this function returns.
2469 static int selinux_netlbl_socket_setsid(struct socket
*sock
, u32 sid
)
2472 struct sk_security_struct
*sksec
= sock
->sk
->sk_security
;
2473 struct netlbl_lsm_secattr secattr
;
2474 struct context
*ctx
;
2476 if (!ss_initialized
)
2479 netlbl_secattr_init(&secattr
);
2483 ctx
= sidtab_search(&sidtab
, sid
);
2485 goto netlbl_socket_setsid_return
;
2487 secattr
.domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
2489 secattr
.flags
|= NETLBL_SECATTR_DOMAIN
;
2490 mls_export_netlbl_lvl(ctx
, &secattr
);
2491 rc
= mls_export_netlbl_cat(ctx
, &secattr
);
2493 goto netlbl_socket_setsid_return
;
2495 rc
= netlbl_socket_setattr(sock
, &secattr
);
2497 spin_lock_bh(&sksec
->nlbl_lock
);
2498 sksec
->nlbl_state
= NLBL_LABELED
;
2499 spin_unlock_bh(&sksec
->nlbl_lock
);
2502 netlbl_socket_setsid_return
:
2504 netlbl_secattr_destroy(&secattr
);
2509 * selinux_netlbl_sk_security_reset - Reset the NetLabel fields
2510 * @ssec: the sk_security_struct
2511 * @family: the socket family
2514 * Called when the NetLabel state of a sk_security_struct needs to be reset.
2515 * The caller is responsibile for all the NetLabel sk_security_struct locking.
2518 void selinux_netlbl_sk_security_reset(struct sk_security_struct
*ssec
,
2521 if (family
== PF_INET
)
2522 ssec
->nlbl_state
= NLBL_REQUIRE
;
2524 ssec
->nlbl_state
= NLBL_UNSET
;
2528 * selinux_netlbl_sk_security_init - Setup the NetLabel fields
2529 * @ssec: the sk_security_struct
2530 * @family: the socket family
2533 * Called when a new sk_security_struct is allocated to initialize the NetLabel
2537 void selinux_netlbl_sk_security_init(struct sk_security_struct
*ssec
,
2540 /* No locking needed, we are the only one who has access to ssec */
2541 selinux_netlbl_sk_security_reset(ssec
, family
);
2542 spin_lock_init(&ssec
->nlbl_lock
);
2546 * selinux_netlbl_sk_security_clone - Copy the NetLabel fields
2547 * @ssec: the original sk_security_struct
2548 * @newssec: the cloned sk_security_struct
2551 * Clone the NetLabel specific sk_security_struct fields from @ssec to
2555 void selinux_netlbl_sk_security_clone(struct sk_security_struct
*ssec
,
2556 struct sk_security_struct
*newssec
)
2558 /* We don't need to take newssec->nlbl_lock because we are the only
2559 * thread with access to newssec, but we do need to take the RCU read
2560 * lock as other threads could have access to ssec */
2562 selinux_netlbl_sk_security_reset(newssec
, ssec
->sk
->sk_family
);
2563 newssec
->sclass
= ssec
->sclass
;
2568 * selinux_netlbl_socket_post_create - Label a socket using NetLabel
2569 * @sock: the socket to label
2572 * Attempt to label a socket using the NetLabel mechanism using the given
2573 * SID. Returns zero values on success, negative values on failure.
2576 int selinux_netlbl_socket_post_create(struct socket
*sock
)
2579 struct inode_security_struct
*isec
= SOCK_INODE(sock
)->i_security
;
2580 struct sk_security_struct
*sksec
= sock
->sk
->sk_security
;
2582 sksec
->sclass
= isec
->sclass
;
2585 if (sksec
->nlbl_state
== NLBL_REQUIRE
)
2586 rc
= selinux_netlbl_socket_setsid(sock
, sksec
->sid
);
2593 * selinux_netlbl_sock_graft - Netlabel the new socket
2594 * @sk: the new connection
2595 * @sock: the new socket
2598 * The connection represented by @sk is being grafted onto @sock so set the
2599 * socket's NetLabel to match the SID of @sk.
2602 void selinux_netlbl_sock_graft(struct sock
*sk
, struct socket
*sock
)
2604 struct inode_security_struct
*isec
= SOCK_INODE(sock
)->i_security
;
2605 struct sk_security_struct
*sksec
= sk
->sk_security
;
2606 struct netlbl_lsm_secattr secattr
;
2609 sksec
->sclass
= isec
->sclass
;
2613 if (sksec
->nlbl_state
!= NLBL_REQUIRE
) {
2618 netlbl_secattr_init(&secattr
);
2619 if (netlbl_sock_getattr(sk
, &secattr
) == 0 &&
2620 secattr
.flags
!= NETLBL_SECATTR_NONE
&&
2621 selinux_netlbl_secattr_to_sid(NULL
,
2623 SECINITSID_UNLABELED
,
2624 &nlbl_peer_sid
) == 0)
2625 sksec
->peer_sid
= nlbl_peer_sid
;
2626 netlbl_secattr_destroy(&secattr
);
2628 /* Try to set the NetLabel on the socket to save time later, if we fail
2629 * here we will pick up the pieces in later calls to
2630 * selinux_netlbl_inode_permission(). */
2631 selinux_netlbl_socket_setsid(sock
, sksec
->sid
);
2637 * selinux_netlbl_inode_permission - Verify the socket is NetLabel labeled
2638 * @inode: the file descriptor's inode
2639 * @mask: the permission mask
2642 * Looks at a file's inode and if it is marked as a socket protected by
2643 * NetLabel then verify that the socket has been labeled, if not try to label
2644 * the socket now with the inode's SID. Returns zero on success, negative
2645 * values on failure.
2648 int selinux_netlbl_inode_permission(struct inode
*inode
, int mask
)
2651 struct sk_security_struct
*sksec
;
2652 struct socket
*sock
;
2654 if (!S_ISSOCK(inode
->i_mode
) ||
2655 ((mask
& (MAY_WRITE
| MAY_APPEND
)) == 0))
2657 sock
= SOCKET_I(inode
);
2658 sksec
= sock
->sk
->sk_security
;
2661 if (sksec
->nlbl_state
!= NLBL_REQUIRE
) {
2666 bh_lock_sock_nested(sock
->sk
);
2667 rc
= selinux_netlbl_socket_setsid(sock
, sksec
->sid
);
2668 bh_unlock_sock(sock
->sk
);
2676 * selinux_netlbl_sock_rcv_skb - Do an inbound access check using NetLabel
2677 * @sksec: the sock's sk_security_struct
2679 * @ad: the audit data
2682 * Fetch the NetLabel security attributes from @skb and perform an access check
2683 * against the receiving socket. Returns zero on success, negative values on
2687 int selinux_netlbl_sock_rcv_skb(struct sk_security_struct
*sksec
,
2688 struct sk_buff
*skb
,
2689 struct avc_audit_data
*ad
)
2695 rc
= selinux_netlbl_skbuff_getsid(skb
,
2696 SECINITSID_UNLABELED
,
2701 if (netlbl_sid
== SECSID_NULL
)
2704 switch (sksec
->sclass
) {
2705 case SECCLASS_UDP_SOCKET
:
2706 recv_perm
= UDP_SOCKET__RECVFROM
;
2708 case SECCLASS_TCP_SOCKET
:
2709 recv_perm
= TCP_SOCKET__RECVFROM
;
2712 recv_perm
= RAWIP_SOCKET__RECVFROM
;
2715 rc
= avc_has_perm(sksec
->sid
,
2723 netlbl_skbuff_err(skb
, rc
);
2728 * selinux_netlbl_socket_setsockopt - Do not allow users to remove a NetLabel
2730 * @level: the socket level or protocol
2731 * @optname: the socket option name
2734 * Check the setsockopt() call and if the user is trying to replace the IP
2735 * options on a socket and a NetLabel is in place for the socket deny the
2736 * access; otherwise allow the access. Returns zero when the access is
2737 * allowed, -EACCES when denied, and other negative values on error.
2740 int selinux_netlbl_socket_setsockopt(struct socket
*sock
,
2745 struct sk_security_struct
*sksec
= sock
->sk
->sk_security
;
2746 struct netlbl_lsm_secattr secattr
;
2749 if (level
== IPPROTO_IP
&& optname
== IP_OPTIONS
&&
2750 sksec
->nlbl_state
== NLBL_LABELED
) {
2751 netlbl_secattr_init(&secattr
);
2752 rc
= netlbl_socket_getattr(sock
, &secattr
);
2753 if (rc
== 0 && secattr
.flags
!= NETLBL_SECATTR_NONE
)
2755 netlbl_secattr_destroy(&secattr
);
2761 #endif /* CONFIG_NETLABEL */