2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
20 * Updated: Chad Sellers <csellers@tresys.com>
22 * Added validation of kernel classes and permissions
24 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
25 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
26 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
27 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License as published by
30 * the Free Software Foundation, version 2.
32 #include <linux/kernel.h>
33 #include <linux/slab.h>
34 #include <linux/string.h>
35 #include <linux/spinlock.h>
36 #include <linux/rcupdate.h>
37 #include <linux/errno.h>
39 #include <linux/sched.h>
40 #include <linux/audit.h>
41 #include <linux/mutex.h>
42 #include <net/netlabel.h>
52 #include "conditional.h"
59 extern void selnl_notify_policyload(u32 seqno
);
60 unsigned int policydb_loaded_version
;
63 * This is declared in avc.c
65 extern const struct selinux_class_perm selinux_class_perm
;
67 static DEFINE_RWLOCK(policy_rwlock
);
68 #define POLICY_RDLOCK read_lock(&policy_rwlock)
69 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
70 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
71 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
73 static DEFINE_MUTEX(load_mutex
);
74 #define LOAD_LOCK mutex_lock(&load_mutex)
75 #define LOAD_UNLOCK mutex_unlock(&load_mutex)
77 static struct sidtab sidtab
;
78 struct policydb policydb
;
79 int ss_initialized
= 0;
82 * The largest sequence number that has been used when
83 * providing an access decision to the access vector cache.
84 * The sequence number only changes when a policy change
87 static u32 latest_granting
= 0;
89 /* Forward declaration. */
90 static int context_struct_to_string(struct context
*context
, char **scontext
,
94 * Return the boolean value of a constraint expression
95 * when it is applied to the specified source and target
98 * xcontext is a special beast... It is used by the validatetrans rules
99 * only. For these rules, scontext is the context before the transition,
100 * tcontext is the context after the transition, and xcontext is the context
101 * of the process performing the transition. All other callers of
102 * constraint_expr_eval should pass in NULL for xcontext.
104 static int constraint_expr_eval(struct context
*scontext
,
105 struct context
*tcontext
,
106 struct context
*xcontext
,
107 struct constraint_expr
*cexpr
)
111 struct role_datum
*r1
, *r2
;
112 struct mls_level
*l1
, *l2
;
113 struct constraint_expr
*e
;
114 int s
[CEXPR_MAXDEPTH
];
117 for (e
= cexpr
; e
; e
= e
->next
) {
118 switch (e
->expr_type
) {
134 if (sp
== (CEXPR_MAXDEPTH
-1))
138 val1
= scontext
->user
;
139 val2
= tcontext
->user
;
142 val1
= scontext
->type
;
143 val2
= tcontext
->type
;
146 val1
= scontext
->role
;
147 val2
= tcontext
->role
;
148 r1
= policydb
.role_val_to_struct
[val1
- 1];
149 r2
= policydb
.role_val_to_struct
[val2
- 1];
152 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
156 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
160 s
[++sp
] = ( !ebitmap_get_bit(&r1
->dominates
,
162 !ebitmap_get_bit(&r2
->dominates
,
170 l1
= &(scontext
->range
.level
[0]);
171 l2
= &(tcontext
->range
.level
[0]);
174 l1
= &(scontext
->range
.level
[0]);
175 l2
= &(tcontext
->range
.level
[1]);
178 l1
= &(scontext
->range
.level
[1]);
179 l2
= &(tcontext
->range
.level
[0]);
182 l1
= &(scontext
->range
.level
[1]);
183 l2
= &(tcontext
->range
.level
[1]);
186 l1
= &(scontext
->range
.level
[0]);
187 l2
= &(scontext
->range
.level
[1]);
190 l1
= &(tcontext
->range
.level
[0]);
191 l2
= &(tcontext
->range
.level
[1]);
196 s
[++sp
] = mls_level_eq(l1
, l2
);
199 s
[++sp
] = !mls_level_eq(l1
, l2
);
202 s
[++sp
] = mls_level_dom(l1
, l2
);
205 s
[++sp
] = mls_level_dom(l2
, l1
);
208 s
[++sp
] = mls_level_incomp(l2
, l1
);
222 s
[++sp
] = (val1
== val2
);
225 s
[++sp
] = (val1
!= val2
);
233 if (sp
== (CEXPR_MAXDEPTH
-1))
236 if (e
->attr
& CEXPR_TARGET
)
238 else if (e
->attr
& CEXPR_XTARGET
) {
245 if (e
->attr
& CEXPR_USER
)
247 else if (e
->attr
& CEXPR_ROLE
)
249 else if (e
->attr
& CEXPR_TYPE
)
258 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
261 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
279 * Compute access vectors based on a context structure pair for
280 * the permissions in a particular class.
282 static int context_struct_compute_av(struct context
*scontext
,
283 struct context
*tcontext
,
286 struct av_decision
*avd
)
288 struct constraint_node
*constraint
;
289 struct role_allow
*ra
;
290 struct avtab_key avkey
;
291 struct avtab_node
*node
;
292 struct class_datum
*tclass_datum
;
293 struct ebitmap
*sattr
, *tattr
;
294 struct ebitmap_node
*snode
, *tnode
;
295 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
299 * Remap extended Netlink classes for old policy versions.
300 * Do this here rather than socket_type_to_security_class()
301 * in case a newer policy version is loaded, allowing sockets
302 * to remain in the correct class.
304 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
305 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
306 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
307 tclass
= SECCLASS_NETLINK_SOCKET
;
310 * Initialize the access vectors to the default values.
313 avd
->decided
= 0xffffffff;
315 avd
->auditdeny
= 0xffffffff;
316 avd
->seqno
= latest_granting
;
319 * Check for all the invalid cases.
321 * - tclass > policy and > kernel
322 * - tclass > policy but is a userspace class
323 * - tclass > policy but we do not allow unknowns
325 if (unlikely(!tclass
))
327 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
328 if (tclass
> kdefs
->cts_len
||
329 !kdefs
->class_to_string
[tclass
- 1] ||
330 !policydb
.allow_unknown
)
334 * Kernel class and we allow unknown so pad the allow decision
335 * the pad will be all 1 for unknown classes.
337 if (tclass
<= kdefs
->cts_len
&& policydb
.allow_unknown
)
338 avd
->allowed
= policydb
.undefined_perms
[tclass
- 1];
341 * Not in policy. Since decision is completed (all 1 or all 0) return.
343 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
346 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
349 * If a specific type enforcement rule was defined for
350 * this permission check, then use it.
352 avkey
.target_class
= tclass
;
353 avkey
.specified
= AVTAB_AV
;
354 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
355 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
356 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
357 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
358 avkey
.source_type
= i
+ 1;
359 avkey
.target_type
= j
+ 1;
360 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
362 node
= avtab_search_node_next(node
, avkey
.specified
)) {
363 if (node
->key
.specified
== AVTAB_ALLOWED
)
364 avd
->allowed
|= node
->datum
.data
;
365 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
366 avd
->auditallow
|= node
->datum
.data
;
367 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
368 avd
->auditdeny
&= node
->datum
.data
;
371 /* Check conditional av table for additional permissions */
372 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
378 * Remove any permissions prohibited by a constraint (this includes
381 constraint
= tclass_datum
->constraints
;
383 if ((constraint
->permissions
& (avd
->allowed
)) &&
384 !constraint_expr_eval(scontext
, tcontext
, NULL
,
386 avd
->allowed
= (avd
->allowed
) & ~(constraint
->permissions
);
388 constraint
= constraint
->next
;
392 * If checking process transition permission and the
393 * role is changing, then check the (current_role, new_role)
396 if (tclass
== SECCLASS_PROCESS
&&
397 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
398 scontext
->role
!= tcontext
->role
) {
399 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
400 if (scontext
->role
== ra
->role
&&
401 tcontext
->role
== ra
->new_role
)
405 avd
->allowed
= (avd
->allowed
) & ~(PROCESS__TRANSITION
|
406 PROCESS__DYNTRANSITION
);
412 printk(KERN_ERR
"%s: unrecognized class %d\n", __FUNCTION__
, tclass
);
416 static int security_validtrans_handle_fail(struct context
*ocontext
,
417 struct context
*ncontext
,
418 struct context
*tcontext
,
421 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
422 u32 olen
, nlen
, tlen
;
424 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
426 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
428 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
430 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
431 "security_validate_transition: denied for"
432 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
433 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
439 if (!selinux_enforcing
)
444 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
447 struct context
*ocontext
;
448 struct context
*ncontext
;
449 struct context
*tcontext
;
450 struct class_datum
*tclass_datum
;
451 struct constraint_node
*constraint
;
460 * Remap extended Netlink classes for old policy versions.
461 * Do this here rather than socket_type_to_security_class()
462 * in case a newer policy version is loaded, allowing sockets
463 * to remain in the correct class.
465 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
466 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
467 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
468 tclass
= SECCLASS_NETLINK_SOCKET
;
470 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
471 printk(KERN_ERR
"security_validate_transition: "
472 "unrecognized class %d\n", tclass
);
476 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
478 ocontext
= sidtab_search(&sidtab
, oldsid
);
480 printk(KERN_ERR
"security_validate_transition: "
481 " unrecognized SID %d\n", oldsid
);
486 ncontext
= sidtab_search(&sidtab
, newsid
);
488 printk(KERN_ERR
"security_validate_transition: "
489 " unrecognized SID %d\n", newsid
);
494 tcontext
= sidtab_search(&sidtab
, tasksid
);
496 printk(KERN_ERR
"security_validate_transition: "
497 " unrecognized SID %d\n", tasksid
);
502 constraint
= tclass_datum
->validatetrans
;
504 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
506 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
510 constraint
= constraint
->next
;
519 * security_compute_av - Compute access vector decisions.
520 * @ssid: source security identifier
521 * @tsid: target security identifier
522 * @tclass: target security class
523 * @requested: requested permissions
524 * @avd: access vector decisions
526 * Compute a set of access vector decisions based on the
527 * SID pair (@ssid, @tsid) for the permissions in @tclass.
528 * Return -%EINVAL if any of the parameters are invalid or %0
529 * if the access vector decisions were computed successfully.
531 int security_compute_av(u32 ssid
,
535 struct av_decision
*avd
)
537 struct context
*scontext
= NULL
, *tcontext
= NULL
;
540 if (!ss_initialized
) {
541 avd
->allowed
= 0xffffffff;
542 avd
->decided
= 0xffffffff;
544 avd
->auditdeny
= 0xffffffff;
545 avd
->seqno
= latest_granting
;
551 scontext
= sidtab_search(&sidtab
, ssid
);
553 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
558 tcontext
= sidtab_search(&sidtab
, tsid
);
560 printk(KERN_ERR
"security_compute_av: unrecognized SID %d\n",
566 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
574 * Write the security context string representation of
575 * the context structure `context' into a dynamically
576 * allocated string of the correct size. Set `*scontext'
577 * to point to this string and set `*scontext_len' to
578 * the length of the string.
580 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
587 /* Compute the size of the context. */
588 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
589 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
590 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
591 *scontext_len
+= mls_compute_context_len(context
);
593 /* Allocate space for the context; caller must free this space. */
594 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
598 *scontext
= scontextp
;
601 * Copy the user name, role name and type name into the context.
603 sprintf(scontextp
, "%s:%s:%s",
604 policydb
.p_user_val_to_name
[context
->user
- 1],
605 policydb
.p_role_val_to_name
[context
->role
- 1],
606 policydb
.p_type_val_to_name
[context
->type
- 1]);
607 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
608 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
609 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
611 mls_sid_to_context(context
, &scontextp
);
618 #include "initial_sid_to_string.h"
620 const char *security_get_initial_sid_context(u32 sid
)
622 if (unlikely(sid
> SECINITSID_NUM
))
624 return initial_sid_to_string
[sid
];
628 * security_sid_to_context - Obtain a context for a given SID.
629 * @sid: security identifier, SID
630 * @scontext: security context
631 * @scontext_len: length in bytes
633 * Write the string representation of the context associated with @sid
634 * into a dynamically allocated string of the correct size. Set @scontext
635 * to point to this string and set @scontext_len to the length of the string.
637 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
639 struct context
*context
;
645 if (!ss_initialized
) {
646 if (sid
<= SECINITSID_NUM
) {
649 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
650 scontextp
= kmalloc(*scontext_len
,GFP_ATOMIC
);
655 strcpy(scontextp
, initial_sid_to_string
[sid
]);
656 *scontext
= scontextp
;
659 printk(KERN_ERR
"security_sid_to_context: called before initial "
660 "load_policy on unknown SID %d\n", sid
);
665 context
= sidtab_search(&sidtab
, sid
);
667 printk(KERN_ERR
"security_sid_to_context: unrecognized SID "
672 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
680 static int security_context_to_sid_core(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
683 struct context context
;
684 struct role_datum
*role
;
685 struct type_datum
*typdatum
;
686 struct user_datum
*usrdatum
;
687 char *scontextp
, *p
, oldc
;
690 if (!ss_initialized
) {
693 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
694 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
699 *sid
= SECINITSID_KERNEL
;
704 /* Copy the string so that we can modify the copy as we parse it.
705 The string should already by null terminated, but we append a
706 null suffix to the copy to avoid problems with the existing
707 attr package, which doesn't view the null terminator as part
708 of the attribute value. */
709 scontext2
= kmalloc(scontext_len
+1,GFP_KERNEL
);
714 memcpy(scontext2
, scontext
, scontext_len
);
715 scontext2
[scontext_len
] = 0;
717 context_init(&context
);
722 /* Parse the security context. */
725 scontextp
= (char *) scontext2
;
727 /* Extract the user. */
729 while (*p
&& *p
!= ':')
737 usrdatum
= hashtab_search(policydb
.p_users
.table
, scontextp
);
741 context
.user
= usrdatum
->value
;
745 while (*p
&& *p
!= ':')
753 role
= hashtab_search(policydb
.p_roles
.table
, scontextp
);
756 context
.role
= role
->value
;
760 while (*p
&& *p
!= ':')
765 typdatum
= hashtab_search(policydb
.p_types
.table
, scontextp
);
769 context
.type
= typdatum
->value
;
771 rc
= mls_context_to_sid(oldc
, &p
, &context
, &sidtab
, def_sid
);
775 if ((p
- scontext2
) < scontext_len
) {
780 /* Check the validity of the new context. */
781 if (!policydb_context_isvalid(&policydb
, &context
)) {
785 /* Obtain the new sid. */
786 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
789 context_destroy(&context
);
796 * security_context_to_sid - Obtain a SID for a given security context.
797 * @scontext: security context
798 * @scontext_len: length in bytes
799 * @sid: security identifier, SID
801 * Obtains a SID associated with the security context that
802 * has the string representation specified by @scontext.
803 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
804 * memory is available, or 0 on success.
806 int security_context_to_sid(char *scontext
, u32 scontext_len
, u32
*sid
)
808 return security_context_to_sid_core(scontext
, scontext_len
,
813 * security_context_to_sid_default - Obtain a SID for a given security context,
814 * falling back to specified default if needed.
816 * @scontext: security context
817 * @scontext_len: length in bytes
818 * @sid: security identifier, SID
819 * @def_sid: default SID to assign on error
821 * Obtains a SID associated with the security context that
822 * has the string representation specified by @scontext.
823 * The default SID is passed to the MLS layer to be used to allow
824 * kernel labeling of the MLS field if the MLS field is not present
825 * (for upgrading to MLS without full relabel).
826 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
827 * memory is available, or 0 on success.
829 int security_context_to_sid_default(char *scontext
, u32 scontext_len
, u32
*sid
, u32 def_sid
)
831 return security_context_to_sid_core(scontext
, scontext_len
,
835 static int compute_sid_handle_invalid_context(
836 struct context
*scontext
,
837 struct context
*tcontext
,
839 struct context
*newcontext
)
841 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
842 u32 slen
, tlen
, nlen
;
844 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
846 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
848 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
850 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
851 "security_compute_sid: invalid context %s"
855 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
860 if (!selinux_enforcing
)
865 static int security_compute_sid(u32 ssid
,
871 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
872 struct role_trans
*roletr
= NULL
;
873 struct avtab_key avkey
;
874 struct avtab_datum
*avdatum
;
875 struct avtab_node
*node
;
878 if (!ss_initialized
) {
880 case SECCLASS_PROCESS
:
890 context_init(&newcontext
);
894 scontext
= sidtab_search(&sidtab
, ssid
);
896 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
901 tcontext
= sidtab_search(&sidtab
, tsid
);
903 printk(KERN_ERR
"security_compute_sid: unrecognized SID %d\n",
909 /* Set the user identity. */
911 case AVTAB_TRANSITION
:
913 /* Use the process user identity. */
914 newcontext
.user
= scontext
->user
;
917 /* Use the related object owner. */
918 newcontext
.user
= tcontext
->user
;
922 /* Set the role and type to default values. */
924 case SECCLASS_PROCESS
:
925 /* Use the current role and type of process. */
926 newcontext
.role
= scontext
->role
;
927 newcontext
.type
= scontext
->type
;
930 /* Use the well-defined object role. */
931 newcontext
.role
= OBJECT_R_VAL
;
932 /* Use the type of the related object. */
933 newcontext
.type
= tcontext
->type
;
936 /* Look for a type transition/member/change rule. */
937 avkey
.source_type
= scontext
->type
;
938 avkey
.target_type
= tcontext
->type
;
939 avkey
.target_class
= tclass
;
940 avkey
.specified
= specified
;
941 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
943 /* If no permanent rule, also check for enabled conditional rules */
945 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
946 for (; node
!= NULL
; node
= avtab_search_node_next(node
, specified
)) {
947 if (node
->key
.specified
& AVTAB_ENABLED
) {
948 avdatum
= &node
->datum
;
955 /* Use the type from the type transition/member/change rule. */
956 newcontext
.type
= avdatum
->data
;
959 /* Check for class-specific changes. */
961 case SECCLASS_PROCESS
:
962 if (specified
& AVTAB_TRANSITION
) {
963 /* Look for a role transition rule. */
964 for (roletr
= policydb
.role_tr
; roletr
;
965 roletr
= roletr
->next
) {
966 if (roletr
->role
== scontext
->role
&&
967 roletr
->type
== tcontext
->type
) {
968 /* Use the role transition rule. */
969 newcontext
.role
= roletr
->new_role
;
979 /* Set the MLS attributes.
980 This is done last because it may allocate memory. */
981 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
985 /* Check the validity of the context. */
986 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
987 rc
= compute_sid_handle_invalid_context(scontext
,
994 /* Obtain the sid for the context. */
995 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
998 context_destroy(&newcontext
);
1004 * security_transition_sid - Compute the SID for a new subject/object.
1005 * @ssid: source security identifier
1006 * @tsid: target security identifier
1007 * @tclass: target security class
1008 * @out_sid: security identifier for new subject/object
1010 * Compute a SID to use for labeling a new subject or object in the
1011 * class @tclass based on a SID pair (@ssid, @tsid).
1012 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1013 * if insufficient memory is available, or %0 if the new SID was
1014 * computed successfully.
1016 int security_transition_sid(u32 ssid
,
1021 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
1025 * security_member_sid - Compute the SID for member selection.
1026 * @ssid: source security identifier
1027 * @tsid: target security identifier
1028 * @tclass: target security class
1029 * @out_sid: security identifier for selected member
1031 * Compute a SID to use when selecting a member of a polyinstantiated
1032 * object of class @tclass based on a SID pair (@ssid, @tsid).
1033 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1034 * if insufficient memory is available, or %0 if the SID was
1035 * computed successfully.
1037 int security_member_sid(u32 ssid
,
1042 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1046 * security_change_sid - Compute the SID for object relabeling.
1047 * @ssid: source security identifier
1048 * @tsid: target security identifier
1049 * @tclass: target security class
1050 * @out_sid: security identifier for selected member
1052 * Compute a SID to use for relabeling an object of class @tclass
1053 * based on a SID pair (@ssid, @tsid).
1054 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1055 * if insufficient memory is available, or %0 if the SID was
1056 * computed successfully.
1058 int security_change_sid(u32 ssid
,
1063 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1067 * Verify that each kernel class that is defined in the
1070 static int validate_classes(struct policydb
*p
)
1073 struct class_datum
*cladatum
;
1074 struct perm_datum
*perdatum
;
1075 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1077 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1078 const char *def_class
, *def_perm
, *pol_class
;
1079 struct symtab
*perms
;
1081 if (p
->allow_unknown
) {
1082 u32 num_classes
= kdefs
->cts_len
;
1083 p
->undefined_perms
= kcalloc(num_classes
, sizeof(u32
), GFP_KERNEL
);
1084 if (!p
->undefined_perms
)
1088 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1089 def_class
= kdefs
->class_to_string
[i
];
1092 if (i
> p
->p_classes
.nprim
) {
1094 "security: class %s not defined in policy\n",
1096 if (p
->reject_unknown
)
1098 if (p
->allow_unknown
)
1099 p
->undefined_perms
[i
-1] = ~0U;
1102 pol_class
= p
->p_class_val_to_name
[i
-1];
1103 if (strcmp(pol_class
, def_class
)) {
1105 "security: class %d is incorrect, found %s but should be %s\n",
1106 i
, pol_class
, def_class
);
1110 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1111 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1112 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1113 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1114 if (class_val
> p
->p_classes
.nprim
)
1116 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1117 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1119 perms
= &cladatum
->permissions
;
1120 nprim
= 1 << (perms
->nprim
- 1);
1121 if (perm_val
> nprim
) {
1123 "security: permission %s in class %s not defined in policy\n",
1124 def_perm
, pol_class
);
1125 if (p
->reject_unknown
)
1127 if (p
->allow_unknown
)
1128 p
->undefined_perms
[class_val
-1] |= perm_val
;
1131 perdatum
= hashtab_search(perms
->table
, def_perm
);
1132 if (perdatum
== NULL
) {
1134 "security: permission %s in class %s not found in policy, bad policy\n",
1135 def_perm
, pol_class
);
1138 pol_val
= 1 << (perdatum
->value
- 1);
1139 if (pol_val
!= perm_val
) {
1141 "security: permission %s in class %s has incorrect value\n",
1142 def_perm
, pol_class
);
1146 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1147 class_val
= kdefs
->av_inherit
[i
].tclass
;
1148 if (class_val
> p
->p_classes
.nprim
)
1150 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1151 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1153 if (!cladatum
->comdatum
) {
1155 "security: class %s should have an inherits clause but does not\n",
1159 tmp
= kdefs
->av_inherit
[i
].common_base
;
1161 while (!(tmp
& 0x01)) {
1165 perms
= &cladatum
->comdatum
->permissions
;
1166 for (j
= 0; j
< common_pts_len
; j
++) {
1167 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1168 if (j
>= perms
->nprim
) {
1170 "security: permission %s in class %s not defined in policy\n",
1171 def_perm
, pol_class
);
1172 if (p
->reject_unknown
)
1174 if (p
->allow_unknown
)
1175 p
->undefined_perms
[class_val
-1] |= (1 << j
);
1178 perdatum
= hashtab_search(perms
->table
, def_perm
);
1179 if (perdatum
== NULL
) {
1181 "security: permission %s in class %s not found in policy, bad policy\n",
1182 def_perm
, pol_class
);
1185 if (perdatum
->value
!= j
+ 1) {
1187 "security: permission %s in class %s has incorrect value\n",
1188 def_perm
, pol_class
);
1196 /* Clone the SID into the new SID table. */
1197 static int clone_sid(u32 sid
,
1198 struct context
*context
,
1201 struct sidtab
*s
= arg
;
1203 return sidtab_insert(s
, sid
, context
);
1206 static inline int convert_context_handle_invalid_context(struct context
*context
)
1210 if (selinux_enforcing
) {
1216 context_struct_to_string(context
, &s
, &len
);
1217 printk(KERN_ERR
"security: context %s is invalid\n", s
);
1223 struct convert_context_args
{
1224 struct policydb
*oldp
;
1225 struct policydb
*newp
;
1229 * Convert the values in the security context
1230 * structure `c' from the values specified
1231 * in the policy `p->oldp' to the values specified
1232 * in the policy `p->newp'. Verify that the
1233 * context is valid under the new policy.
1235 static int convert_context(u32 key
,
1239 struct convert_context_args
*args
;
1240 struct context oldc
;
1241 struct role_datum
*role
;
1242 struct type_datum
*typdatum
;
1243 struct user_datum
*usrdatum
;
1250 rc
= context_cpy(&oldc
, c
);
1256 /* Convert the user. */
1257 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1258 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1262 c
->user
= usrdatum
->value
;
1264 /* Convert the role. */
1265 role
= hashtab_search(args
->newp
->p_roles
.table
,
1266 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1270 c
->role
= role
->value
;
1272 /* Convert the type. */
1273 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1274 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1278 c
->type
= typdatum
->value
;
1280 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1284 /* Check the validity of the new context. */
1285 if (!policydb_context_isvalid(args
->newp
, c
)) {
1286 rc
= convert_context_handle_invalid_context(&oldc
);
1291 context_destroy(&oldc
);
1295 context_struct_to_string(&oldc
, &s
, &len
);
1296 context_destroy(&oldc
);
1297 printk(KERN_ERR
"security: invalidating context %s\n", s
);
1302 extern void selinux_complete_init(void);
1303 static int security_preserve_bools(struct policydb
*p
);
1306 * security_load_policy - Load a security policy configuration.
1307 * @data: binary policy data
1308 * @len: length of data in bytes
1310 * Load a new set of security policy configuration data,
1311 * validate it and convert the SID table as necessary.
1312 * This function will flush the access vector cache after
1313 * loading the new policy.
1315 int security_load_policy(void *data
, size_t len
)
1317 struct policydb oldpolicydb
, newpolicydb
;
1318 struct sidtab oldsidtab
, newsidtab
;
1319 struct convert_context_args args
;
1322 struct policy_file file
= { data
, len
}, *fp
= &file
;
1326 if (!ss_initialized
) {
1328 if (policydb_read(&policydb
, fp
)) {
1330 avtab_cache_destroy();
1333 if (policydb_load_isids(&policydb
, &sidtab
)) {
1335 policydb_destroy(&policydb
);
1336 avtab_cache_destroy();
1339 /* Verify that the kernel defined classes are correct. */
1340 if (validate_classes(&policydb
)) {
1342 "security: the definition of a class is incorrect\n");
1344 sidtab_destroy(&sidtab
);
1345 policydb_destroy(&policydb
);
1346 avtab_cache_destroy();
1349 policydb_loaded_version
= policydb
.policyvers
;
1351 seqno
= ++latest_granting
;
1353 selinux_complete_init();
1354 avc_ss_reset(seqno
);
1355 selnl_notify_policyload(seqno
);
1356 selinux_netlbl_cache_invalidate();
1357 selinux_xfrm_notify_policyload();
1362 sidtab_hash_eval(&sidtab
, "sids");
1365 if (policydb_read(&newpolicydb
, fp
)) {
1370 sidtab_init(&newsidtab
);
1372 /* Verify that the kernel defined classes are correct. */
1373 if (validate_classes(&newpolicydb
)) {
1375 "security: the definition of a class is incorrect\n");
1380 rc
= security_preserve_bools(&newpolicydb
);
1382 printk(KERN_ERR
"security: unable to preserve booleans\n");
1386 /* Clone the SID table. */
1387 sidtab_shutdown(&sidtab
);
1388 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1393 /* Convert the internal representations of contexts
1394 in the new SID table and remove invalid SIDs. */
1395 args
.oldp
= &policydb
;
1396 args
.newp
= &newpolicydb
;
1397 sidtab_map_remove_on_error(&newsidtab
, convert_context
, &args
);
1399 /* Save the old policydb and SID table to free later. */
1400 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1401 sidtab_set(&oldsidtab
, &sidtab
);
1403 /* Install the new policydb and SID table. */
1405 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1406 sidtab_set(&sidtab
, &newsidtab
);
1407 seqno
= ++latest_granting
;
1408 policydb_loaded_version
= policydb
.policyvers
;
1412 /* Free the old policydb and SID table. */
1413 policydb_destroy(&oldpolicydb
);
1414 sidtab_destroy(&oldsidtab
);
1416 avc_ss_reset(seqno
);
1417 selnl_notify_policyload(seqno
);
1418 selinux_netlbl_cache_invalidate();
1419 selinux_xfrm_notify_policyload();
1425 sidtab_destroy(&newsidtab
);
1426 policydb_destroy(&newpolicydb
);
1432 * security_port_sid - Obtain the SID for a port.
1433 * @domain: communication domain aka address family
1434 * @type: socket type
1435 * @protocol: protocol number
1436 * @port: port number
1437 * @out_sid: security identifier
1439 int security_port_sid(u16 domain
,
1450 c
= policydb
.ocontexts
[OCON_PORT
];
1452 if (c
->u
.port
.protocol
== protocol
&&
1453 c
->u
.port
.low_port
<= port
&&
1454 c
->u
.port
.high_port
>= port
)
1461 rc
= sidtab_context_to_sid(&sidtab
,
1467 *out_sid
= c
->sid
[0];
1469 *out_sid
= SECINITSID_PORT
;
1478 * security_netif_sid - Obtain the SID for a network interface.
1479 * @name: interface name
1480 * @if_sid: interface SID
1481 * @msg_sid: default SID for received packets
1483 int security_netif_sid(char *name
,
1492 c
= policydb
.ocontexts
[OCON_NETIF
];
1494 if (strcmp(name
, c
->u
.name
) == 0)
1500 if (!c
->sid
[0] || !c
->sid
[1]) {
1501 rc
= sidtab_context_to_sid(&sidtab
,
1506 rc
= sidtab_context_to_sid(&sidtab
,
1512 *if_sid
= c
->sid
[0];
1513 *msg_sid
= c
->sid
[1];
1515 *if_sid
= SECINITSID_NETIF
;
1516 *msg_sid
= SECINITSID_NETMSG
;
1524 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1528 for(i
= 0; i
< 4; i
++)
1529 if(addr
[i
] != (input
[i
] & mask
[i
])) {
1538 * security_node_sid - Obtain the SID for a node (host).
1539 * @domain: communication domain aka address family
1541 * @addrlen: address length in bytes
1542 * @out_sid: security identifier
1544 int security_node_sid(u16 domain
,
1558 if (addrlen
!= sizeof(u32
)) {
1563 addr
= *((u32
*)addrp
);
1565 c
= policydb
.ocontexts
[OCON_NODE
];
1567 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1575 if (addrlen
!= sizeof(u64
) * 2) {
1579 c
= policydb
.ocontexts
[OCON_NODE6
];
1581 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1589 *out_sid
= SECINITSID_NODE
;
1595 rc
= sidtab_context_to_sid(&sidtab
,
1601 *out_sid
= c
->sid
[0];
1603 *out_sid
= SECINITSID_NODE
;
1614 * security_get_user_sids - Obtain reachable SIDs for a user.
1615 * @fromsid: starting SID
1616 * @username: username
1617 * @sids: array of reachable SIDs for user
1618 * @nel: number of elements in @sids
1620 * Generate the set of SIDs for legal security contexts
1621 * for a given user that can be reached by @fromsid.
1622 * Set *@sids to point to a dynamically allocated
1623 * array containing the set of SIDs. Set *@nel to the
1624 * number of elements in the array.
1627 int security_get_user_sids(u32 fromsid
,
1632 struct context
*fromcon
, usercon
;
1633 u32
*mysids
= NULL
, *mysids2
, sid
;
1634 u32 mynel
= 0, maxnel
= SIDS_NEL
;
1635 struct user_datum
*user
;
1636 struct role_datum
*role
;
1637 struct ebitmap_node
*rnode
, *tnode
;
1643 if (!ss_initialized
)
1648 fromcon
= sidtab_search(&sidtab
, fromsid
);
1654 user
= hashtab_search(policydb
.p_users
.table
, username
);
1659 usercon
.user
= user
->value
;
1661 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
1667 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
1668 role
= policydb
.role_val_to_struct
[i
];
1670 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
1673 if (mls_setup_user_range(fromcon
, user
, &usercon
))
1676 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
1679 if (mynel
< maxnel
) {
1680 mysids
[mynel
++] = sid
;
1683 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
1688 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
1691 mysids
[mynel
++] = sid
;
1703 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
1709 for (i
= 0, j
= 0; i
< mynel
; i
++) {
1710 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
1712 PROCESS__TRANSITION
, AVC_STRICT
,
1715 mysids2
[j
++] = mysids
[i
];
1727 * security_genfs_sid - Obtain a SID for a file in a filesystem
1728 * @fstype: filesystem type
1729 * @path: path from root of mount
1730 * @sclass: file security class
1731 * @sid: SID for path
1733 * Obtain a SID to use for a file in a filesystem that
1734 * cannot support xattr or use a fixed labeling behavior like
1735 * transition SIDs or task SIDs.
1737 int security_genfs_sid(const char *fstype
,
1743 struct genfs
*genfs
;
1745 int rc
= 0, cmp
= 0;
1749 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
1750 cmp
= strcmp(fstype
, genfs
->fstype
);
1755 if (!genfs
|| cmp
) {
1756 *sid
= SECINITSID_UNLABELED
;
1761 for (c
= genfs
->head
; c
; c
= c
->next
) {
1762 len
= strlen(c
->u
.name
);
1763 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
1764 (strncmp(c
->u
.name
, path
, len
) == 0))
1769 *sid
= SECINITSID_UNLABELED
;
1775 rc
= sidtab_context_to_sid(&sidtab
,
1789 * security_fs_use - Determine how to handle labeling for a filesystem.
1790 * @fstype: filesystem type
1791 * @behavior: labeling behavior
1792 * @sid: SID for filesystem (superblock)
1794 int security_fs_use(
1796 unsigned int *behavior
,
1804 c
= policydb
.ocontexts
[OCON_FSUSE
];
1806 if (strcmp(fstype
, c
->u
.name
) == 0)
1812 *behavior
= c
->v
.behavior
;
1814 rc
= sidtab_context_to_sid(&sidtab
,
1822 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
1824 *behavior
= SECURITY_FS_USE_NONE
;
1827 *behavior
= SECURITY_FS_USE_GENFS
;
1836 int security_get_bools(int *len
, char ***names
, int **values
)
1838 int i
, rc
= -ENOMEM
;
1844 *len
= policydb
.p_bools
.nprim
;
1850 *names
= kcalloc(*len
, sizeof(char*), GFP_ATOMIC
);
1854 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
1858 for (i
= 0; i
< *len
; i
++) {
1860 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
1861 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
1862 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
1865 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
1866 (*names
)[i
][name_len
- 1] = 0;
1874 for (i
= 0; i
< *len
; i
++)
1882 int security_set_bools(int len
, int *values
)
1885 int lenp
, seqno
= 0;
1886 struct cond_node
*cur
;
1890 lenp
= policydb
.p_bools
.nprim
;
1896 for (i
= 0; i
< len
; i
++) {
1897 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
1898 audit_log(current
->audit_context
, GFP_ATOMIC
,
1899 AUDIT_MAC_CONFIG_CHANGE
,
1900 "bool=%s val=%d old_val=%d auid=%u",
1901 policydb
.p_bool_val_to_name
[i
],
1903 policydb
.bool_val_to_struct
[i
]->state
,
1904 audit_get_loginuid(current
->audit_context
));
1907 policydb
.bool_val_to_struct
[i
]->state
= 1;
1909 policydb
.bool_val_to_struct
[i
]->state
= 0;
1913 for (cur
= policydb
.cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1914 rc
= evaluate_cond_node(&policydb
, cur
);
1919 seqno
= ++latest_granting
;
1924 avc_ss_reset(seqno
);
1925 selnl_notify_policyload(seqno
);
1926 selinux_xfrm_notify_policyload();
1931 int security_get_bool_value(int bool)
1938 len
= policydb
.p_bools
.nprim
;
1944 rc
= policydb
.bool_val_to_struct
[bool]->state
;
1950 static int security_preserve_bools(struct policydb
*p
)
1952 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
1953 char **bnames
= NULL
;
1954 struct cond_bool_datum
*booldatum
;
1955 struct cond_node
*cur
;
1957 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
1960 for (i
= 0; i
< nbools
; i
++) {
1961 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
1963 booldatum
->state
= bvalues
[i
];
1965 for (cur
= p
->cond_list
; cur
!= NULL
; cur
= cur
->next
) {
1966 rc
= evaluate_cond_node(p
, cur
);
1973 for (i
= 0; i
< nbools
; i
++)
1982 * security_sid_mls_copy() - computes a new sid based on the given
1983 * sid and the mls portion of mls_sid.
1985 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
1987 struct context
*context1
;
1988 struct context
*context2
;
1989 struct context newcon
;
1994 if (!ss_initialized
|| !selinux_mls_enabled
) {
1999 context_init(&newcon
);
2002 context1
= sidtab_search(&sidtab
, sid
);
2004 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
2010 context2
= sidtab_search(&sidtab
, mls_sid
);
2012 printk(KERN_ERR
"security_sid_mls_copy: unrecognized SID "
2018 newcon
.user
= context1
->user
;
2019 newcon
.role
= context1
->role
;
2020 newcon
.type
= context1
->type
;
2021 rc
= mls_context_cpy(&newcon
, context2
);
2025 /* Check the validity of the new context. */
2026 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2027 rc
= convert_context_handle_invalid_context(&newcon
);
2032 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2036 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2037 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2038 "security_sid_mls_copy: invalid context %s", s
);
2044 context_destroy(&newcon
);
2049 static int get_classes_callback(void *k
, void *d
, void *args
)
2051 struct class_datum
*datum
= d
;
2052 char *name
= k
, **classes
= args
;
2053 int value
= datum
->value
- 1;
2055 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2056 if (!classes
[value
])
2062 int security_get_classes(char ***classes
, int *nclasses
)
2068 *nclasses
= policydb
.p_classes
.nprim
;
2069 *classes
= kcalloc(*nclasses
, sizeof(*classes
), GFP_ATOMIC
);
2073 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2077 for (i
= 0; i
< *nclasses
; i
++)
2078 kfree((*classes
)[i
]);
2087 static int get_permissions_callback(void *k
, void *d
, void *args
)
2089 struct perm_datum
*datum
= d
;
2090 char *name
= k
, **perms
= args
;
2091 int value
= datum
->value
- 1;
2093 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2100 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2102 int rc
= -ENOMEM
, i
;
2103 struct class_datum
*match
;
2107 match
= hashtab_search(policydb
.p_classes
.table
, class);
2109 printk(KERN_ERR
"%s: unrecognized class %s\n",
2110 __FUNCTION__
, class);
2115 *nperms
= match
->permissions
.nprim
;
2116 *perms
= kcalloc(*nperms
, sizeof(*perms
), GFP_ATOMIC
);
2120 if (match
->comdatum
) {
2121 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2122 get_permissions_callback
, *perms
);
2127 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2138 for (i
= 0; i
< *nperms
; i
++)
2144 int security_get_reject_unknown(void)
2146 return policydb
.reject_unknown
;
2149 int security_get_allow_unknown(void)
2151 return policydb
.allow_unknown
;
2154 struct selinux_audit_rule
{
2156 struct context au_ctxt
;
2159 void selinux_audit_rule_free(struct selinux_audit_rule
*rule
)
2162 context_destroy(&rule
->au_ctxt
);
2167 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
,
2168 struct selinux_audit_rule
**rule
)
2170 struct selinux_audit_rule
*tmprule
;
2171 struct role_datum
*roledatum
;
2172 struct type_datum
*typedatum
;
2173 struct user_datum
*userdatum
;
2178 if (!ss_initialized
)
2182 case AUDIT_SUBJ_USER
:
2183 case AUDIT_SUBJ_ROLE
:
2184 case AUDIT_SUBJ_TYPE
:
2185 case AUDIT_OBJ_USER
:
2186 case AUDIT_OBJ_ROLE
:
2187 case AUDIT_OBJ_TYPE
:
2188 /* only 'equals' and 'not equals' fit user, role, and type */
2189 if (op
!= AUDIT_EQUAL
&& op
!= AUDIT_NOT_EQUAL
)
2192 case AUDIT_SUBJ_SEN
:
2193 case AUDIT_SUBJ_CLR
:
2194 case AUDIT_OBJ_LEV_LOW
:
2195 case AUDIT_OBJ_LEV_HIGH
:
2196 /* we do not allow a range, indicated by the presense of '-' */
2197 if (strchr(rulestr
, '-'))
2201 /* only the above fields are valid */
2205 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2209 context_init(&tmprule
->au_ctxt
);
2213 tmprule
->au_seqno
= latest_granting
;
2216 case AUDIT_SUBJ_USER
:
2217 case AUDIT_OBJ_USER
:
2218 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2222 tmprule
->au_ctxt
.user
= userdatum
->value
;
2224 case AUDIT_SUBJ_ROLE
:
2225 case AUDIT_OBJ_ROLE
:
2226 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2230 tmprule
->au_ctxt
.role
= roledatum
->value
;
2232 case AUDIT_SUBJ_TYPE
:
2233 case AUDIT_OBJ_TYPE
:
2234 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2238 tmprule
->au_ctxt
.type
= typedatum
->value
;
2240 case AUDIT_SUBJ_SEN
:
2241 case AUDIT_SUBJ_CLR
:
2242 case AUDIT_OBJ_LEV_LOW
:
2243 case AUDIT_OBJ_LEV_HIGH
:
2244 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2251 selinux_audit_rule_free(tmprule
);
2260 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
,
2261 struct selinux_audit_rule
*rule
,
2262 struct audit_context
*actx
)
2264 struct context
*ctxt
;
2265 struct mls_level
*level
;
2269 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2270 "selinux_audit_rule_match: missing rule\n");
2276 if (rule
->au_seqno
< latest_granting
) {
2277 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2278 "selinux_audit_rule_match: stale rule\n");
2283 ctxt
= sidtab_search(&sidtab
, sid
);
2285 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2286 "selinux_audit_rule_match: unrecognized SID %d\n",
2292 /* a field/op pair that is not caught here will simply fall through
2295 case AUDIT_SUBJ_USER
:
2296 case AUDIT_OBJ_USER
:
2299 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2301 case AUDIT_NOT_EQUAL
:
2302 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2306 case AUDIT_SUBJ_ROLE
:
2307 case AUDIT_OBJ_ROLE
:
2310 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2312 case AUDIT_NOT_EQUAL
:
2313 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2317 case AUDIT_SUBJ_TYPE
:
2318 case AUDIT_OBJ_TYPE
:
2321 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2323 case AUDIT_NOT_EQUAL
:
2324 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2328 case AUDIT_SUBJ_SEN
:
2329 case AUDIT_SUBJ_CLR
:
2330 case AUDIT_OBJ_LEV_LOW
:
2331 case AUDIT_OBJ_LEV_HIGH
:
2332 level
= ((field
== AUDIT_SUBJ_SEN
||
2333 field
== AUDIT_OBJ_LEV_LOW
) ?
2334 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2337 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2340 case AUDIT_NOT_EQUAL
:
2341 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2344 case AUDIT_LESS_THAN
:
2345 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2347 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2350 case AUDIT_LESS_THAN_OR_EQUAL
:
2351 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2354 case AUDIT_GREATER_THAN
:
2355 match
= (mls_level_dom(level
,
2356 &rule
->au_ctxt
.range
.level
[0]) &&
2357 !mls_level_eq(level
,
2358 &rule
->au_ctxt
.range
.level
[0]));
2360 case AUDIT_GREATER_THAN_OR_EQUAL
:
2361 match
= mls_level_dom(level
,
2362 &rule
->au_ctxt
.range
.level
[0]);
2372 static int (*aurule_callback
)(void) = NULL
;
2374 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2375 u16
class, u32 perms
, u32
*retained
)
2379 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2380 err
= aurule_callback();
2384 static int __init
aurule_init(void)
2388 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2389 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2391 panic("avc_add_callback() failed, error %d\n", err
);
2395 __initcall(aurule_init
);
2397 void selinux_audit_set_callback(int (*callback
)(void))
2399 aurule_callback
= callback
;
2402 #ifdef CONFIG_NETLABEL
2404 * NetLabel cache structure
2406 #define NETLBL_CACHE(x) ((struct selinux_netlbl_cache *)(x))
2407 #define NETLBL_CACHE_T_NONE 0
2408 #define NETLBL_CACHE_T_SID 1
2409 #define NETLBL_CACHE_T_MLS 2
2410 struct selinux_netlbl_cache
{
2414 struct mls_range mls_label
;
2419 * security_netlbl_cache_free - Free the NetLabel cached data
2420 * @data: the data to free
2423 * This function is intended to be used as the free() callback inside the
2424 * netlbl_lsm_cache structure.
2427 static void security_netlbl_cache_free(const void *data
)
2429 struct selinux_netlbl_cache
*cache
;
2434 cache
= NETLBL_CACHE(data
);
2435 switch (cache
->type
) {
2436 case NETLBL_CACHE_T_MLS
:
2437 ebitmap_destroy(&cache
->data
.mls_label
.level
[0].cat
);
2444 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2445 * @secattr: the NetLabel packet security attributes
2446 * @ctx: the SELinux context
2449 * Attempt to cache the context in @ctx, which was derived from the packet in
2450 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2451 * already been initialized.
2454 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
2455 struct context
*ctx
)
2457 struct selinux_netlbl_cache
*cache
= NULL
;
2459 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2460 if (secattr
->cache
== NULL
)
2463 cache
= kzalloc(sizeof(*cache
), GFP_ATOMIC
);
2467 cache
->type
= NETLBL_CACHE_T_MLS
;
2468 if (ebitmap_cpy(&cache
->data
.mls_label
.level
[0].cat
,
2469 &ctx
->range
.level
[0].cat
) != 0) {
2473 cache
->data
.mls_label
.level
[1].cat
.highbit
=
2474 cache
->data
.mls_label
.level
[0].cat
.highbit
;
2475 cache
->data
.mls_label
.level
[1].cat
.node
=
2476 cache
->data
.mls_label
.level
[0].cat
.node
;
2477 cache
->data
.mls_label
.level
[0].sens
= ctx
->range
.level
[0].sens
;
2478 cache
->data
.mls_label
.level
[1].sens
= ctx
->range
.level
[0].sens
;
2480 secattr
->cache
->free
= security_netlbl_cache_free
;
2481 secattr
->cache
->data
= (void *)cache
;
2482 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
2486 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2487 * @secattr: the NetLabel packet security attributes
2488 * @base_sid: the SELinux SID to use as a context for MLS only attributes
2489 * @sid: the SELinux SID
2492 * Convert the given NetLabel security attributes in @secattr into a
2493 * SELinux SID. If the @secattr field does not contain a full SELinux
2494 * SID/context then use the context in @base_sid as the foundation. If
2495 * possibile the 'cache' field of @secattr is set and the CACHE flag is set;
2496 * this is to allow the @secattr to be used by NetLabel to cache the secattr to
2497 * SID conversion for future lookups. Returns zero on success, negative
2498 * values on failure.
2501 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
2506 struct context
*ctx
;
2507 struct context ctx_new
;
2508 struct selinux_netlbl_cache
*cache
;
2510 if (!ss_initialized
) {
2517 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2518 cache
= NETLBL_CACHE(secattr
->cache
->data
);
2519 switch (cache
->type
) {
2520 case NETLBL_CACHE_T_SID
:
2521 *sid
= cache
->data
.sid
;
2524 case NETLBL_CACHE_T_MLS
:
2525 ctx
= sidtab_search(&sidtab
, base_sid
);
2527 goto netlbl_secattr_to_sid_return
;
2529 ctx_new
.user
= ctx
->user
;
2530 ctx_new
.role
= ctx
->role
;
2531 ctx_new
.type
= ctx
->type
;
2532 ctx_new
.range
.level
[0].sens
=
2533 cache
->data
.mls_label
.level
[0].sens
;
2534 ctx_new
.range
.level
[0].cat
.highbit
=
2535 cache
->data
.mls_label
.level
[0].cat
.highbit
;
2536 ctx_new
.range
.level
[0].cat
.node
=
2537 cache
->data
.mls_label
.level
[0].cat
.node
;
2538 ctx_new
.range
.level
[1].sens
=
2539 cache
->data
.mls_label
.level
[1].sens
;
2540 ctx_new
.range
.level
[1].cat
.highbit
=
2541 cache
->data
.mls_label
.level
[1].cat
.highbit
;
2542 ctx_new
.range
.level
[1].cat
.node
=
2543 cache
->data
.mls_label
.level
[1].cat
.node
;
2545 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2548 goto netlbl_secattr_to_sid_return
;
2550 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2551 ctx
= sidtab_search(&sidtab
, base_sid
);
2553 goto netlbl_secattr_to_sid_return
;
2555 ctx_new
.user
= ctx
->user
;
2556 ctx_new
.role
= ctx
->role
;
2557 ctx_new
.type
= ctx
->type
;
2558 mls_import_netlbl_lvl(&ctx_new
, secattr
);
2559 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2560 if (ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
2561 secattr
->mls_cat
) != 0)
2562 goto netlbl_secattr_to_sid_return
;
2563 ctx_new
.range
.level
[1].cat
.highbit
=
2564 ctx_new
.range
.level
[0].cat
.highbit
;
2565 ctx_new
.range
.level
[1].cat
.node
=
2566 ctx_new
.range
.level
[0].cat
.node
;
2568 ebitmap_init(&ctx_new
.range
.level
[0].cat
);
2569 ebitmap_init(&ctx_new
.range
.level
[1].cat
);
2571 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
2572 goto netlbl_secattr_to_sid_return_cleanup
;
2574 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2576 goto netlbl_secattr_to_sid_return_cleanup
;
2578 security_netlbl_cache_add(secattr
, &ctx_new
);
2580 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2586 netlbl_secattr_to_sid_return
:
2589 netlbl_secattr_to_sid_return_cleanup
:
2590 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2591 goto netlbl_secattr_to_sid_return
;
2595 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2596 * @sid: the SELinux SID
2597 * @secattr: the NetLabel packet security attributes
2600 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2601 * Returns zero on success, negative values on failure.
2604 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
2607 struct context
*ctx
;
2609 if (!ss_initialized
)
2613 ctx
= sidtab_search(&sidtab
, sid
);
2615 goto netlbl_sid_to_secattr_failure
;
2616 secattr
->domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
2618 secattr
->flags
|= NETLBL_SECATTR_DOMAIN
;
2619 mls_export_netlbl_lvl(ctx
, secattr
);
2620 rc
= mls_export_netlbl_cat(ctx
, secattr
);
2622 goto netlbl_sid_to_secattr_failure
;
2627 netlbl_sid_to_secattr_failure
:
2629 netlbl_secattr_destroy(secattr
);
2632 #endif /* CONFIG_NETLABEL */