[IPV4]: Correct rp_filter help text.
[linux-2.6/verdex.git] / arch / ia64 / sn / kernel / sn2 / sn2_smp.c
blob033c8a9f000e60276bf597399d08b77d8c972218
1 /*
2 * SN2 Platform specific SMP Support
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9 */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
26 #include <asm/processor.h>
27 #include <asm/irq.h>
28 #include <asm/sal.h>
29 #include <asm/system.h>
30 #include <asm/delay.h>
31 #include <asm/io.h>
32 #include <asm/smp.h>
33 #include <asm/tlb.h>
34 #include <asm/numa.h>
35 #include <asm/hw_irq.h>
36 #include <asm/current.h>
37 #include <asm/sn/sn_cpuid.h>
38 #include <asm/sn/sn_sal.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/shub_mmr.h>
41 #include <asm/sn/nodepda.h>
42 #include <asm/sn/rw_mmr.h>
44 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
47 static __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
49 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
50 static int sn2_flush_opt = 0;
52 extern unsigned long
53 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
54 volatile unsigned long *, unsigned long,
55 volatile unsigned long *, unsigned long);
56 void
57 sn2_ptc_deadlock_recovery(short *, short, short, int,
58 volatile unsigned long *, unsigned long,
59 volatile unsigned long *, unsigned long);
62 * Note: some is the following is captured here to make degugging easier
63 * (the macros make more sense if you see the debug patch - not posted)
65 #define sn2_ptctest 0
66 #define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0)
67 #define max_active_pio(sh1) ((sh1) ? 32 : 7)
68 #define reset_max_active_on_deadlock() 1
69 #define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
71 struct ptc_stats {
72 unsigned long ptc_l;
73 unsigned long change_rid;
74 unsigned long shub_ptc_flushes;
75 unsigned long nodes_flushed;
76 unsigned long deadlocks;
77 unsigned long deadlocks2;
78 unsigned long lock_itc_clocks;
79 unsigned long shub_itc_clocks;
80 unsigned long shub_itc_clocks_max;
81 unsigned long shub_ptc_flushes_not_my_mm;
82 unsigned long shub_ipi_flushes;
83 unsigned long shub_ipi_flushes_itc_clocks;
86 #define sn2_ptctest 0
88 static inline unsigned long wait_piowc(void)
90 volatile unsigned long *piows;
91 unsigned long zeroval, ws;
93 piows = pda->pio_write_status_addr;
94 zeroval = pda->pio_write_status_val;
95 do {
96 cpu_relax();
97 } while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
98 return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
102 * sn_migrate - SN-specific task migration actions
103 * @task: Task being migrated to new CPU
105 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
106 * Context switching user threads which have memory-mapped MMIO may cause
107 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
108 * from the previous CPU's Shub before execution resumes on the new CPU.
110 void sn_migrate(struct task_struct *task)
112 pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
113 volatile unsigned long *adr = last_pda->pio_write_status_addr;
114 unsigned long val = last_pda->pio_write_status_val;
116 /* Drain PIO writes from old CPU's Shub */
117 while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
118 != val))
119 cpu_relax();
122 void sn_tlb_migrate_finish(struct mm_struct *mm)
124 /* flush_tlb_mm is inefficient if more than 1 users of mm */
125 if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
126 flush_tlb_mm(mm);
129 static void
130 sn2_ipi_flush_all_tlb(struct mm_struct *mm)
132 unsigned long itc;
134 itc = ia64_get_itc();
135 smp_flush_tlb_cpumask(mm->cpu_vm_mask);
136 itc = ia64_get_itc() - itc;
137 __get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
138 __get_cpu_var(ptcstats).shub_ipi_flushes++;
142 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
143 * @mm: mm_struct containing virtual address range
144 * @start: start of virtual address range
145 * @end: end of virtual address range
146 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
148 * Purges the translation caches of all processors of the given virtual address
149 * range.
151 * Note:
152 * - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
153 * - cpu_vm_mask is converted into a nodemask of the nodes containing the
154 * cpus in cpu_vm_mask.
155 * - if only one bit is set in cpu_vm_mask & it is the current cpu & the
156 * process is purging its own virtual address range, then only the
157 * local TLB needs to be flushed. This flushing can be done using
158 * ptc.l. This is the common case & avoids the global spinlock.
159 * - if multiple cpus have loaded the context, then flushing has to be
160 * done with ptc.g/MMRs under protection of the global ptc_lock.
163 void
164 sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
165 unsigned long end, unsigned long nbits)
167 int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
168 int mymm = (mm == current->active_mm && mm == current->mm);
169 int use_cpu_ptcga;
170 volatile unsigned long *ptc0, *ptc1;
171 unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
172 short nasids[MAX_NUMNODES], nix;
173 nodemask_t nodes_flushed;
174 int active, max_active, deadlock, flush_opt = sn2_flush_opt;
176 if (flush_opt > 2) {
177 sn2_ipi_flush_all_tlb(mm);
178 return;
181 nodes_clear(nodes_flushed);
182 i = 0;
184 for_each_cpu_mask(cpu, mm->cpu_vm_mask) {
185 cnode = cpu_to_node(cpu);
186 node_set(cnode, nodes_flushed);
187 lcpu = cpu;
188 i++;
191 if (i == 0)
192 return;
194 preempt_disable();
196 if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
197 do {
198 ia64_ptcl(start, nbits << 2);
199 start += (1UL << nbits);
200 } while (start < end);
201 ia64_srlz_i();
202 __get_cpu_var(ptcstats).ptc_l++;
203 preempt_enable();
204 return;
207 if (atomic_read(&mm->mm_users) == 1 && mymm) {
208 flush_tlb_mm(mm);
209 __get_cpu_var(ptcstats).change_rid++;
210 preempt_enable();
211 return;
214 if (flush_opt == 2) {
215 sn2_ipi_flush_all_tlb(mm);
216 preempt_enable();
217 return;
220 itc = ia64_get_itc();
221 nix = 0;
222 for_each_node_mask(cnode, nodes_flushed)
223 nasids[nix++] = cnodeid_to_nasid(cnode);
225 rr_value = (mm->context << 3) | REGION_NUMBER(start);
227 shub1 = is_shub1();
228 if (shub1) {
229 data0 = (1UL << SH1_PTC_0_A_SHFT) |
230 (nbits << SH1_PTC_0_PS_SHFT) |
231 (rr_value << SH1_PTC_0_RID_SHFT) |
232 (1UL << SH1_PTC_0_START_SHFT);
233 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
234 ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
235 } else {
236 data0 = (1UL << SH2_PTC_A_SHFT) |
237 (nbits << SH2_PTC_PS_SHFT) |
238 (1UL << SH2_PTC_START_SHFT);
239 ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
240 (rr_value << SH2_PTC_RID_SHFT));
241 ptc1 = NULL;
245 mynasid = get_nasid();
246 use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
247 max_active = max_active_pio(shub1);
249 itc = ia64_get_itc();
250 spin_lock_irqsave(PTC_LOCK(shub1), flags);
251 itc2 = ia64_get_itc();
253 __get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
254 __get_cpu_var(ptcstats).shub_ptc_flushes++;
255 __get_cpu_var(ptcstats).nodes_flushed += nix;
256 if (!mymm)
257 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
259 if (use_cpu_ptcga && !mymm) {
260 old_rr = ia64_get_rr(start);
261 ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
262 ia64_srlz_d();
265 wait_piowc();
266 do {
267 if (shub1)
268 data1 = start | (1UL << SH1_PTC_1_START_SHFT);
269 else
270 data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
271 deadlock = 0;
272 active = 0;
273 for (ibegin = 0, i = 0; i < nix; i++) {
274 nasid = nasids[i];
275 if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
276 ia64_ptcga(start, nbits << 2);
277 ia64_srlz_i();
278 } else {
279 ptc0 = CHANGE_NASID(nasid, ptc0);
280 if (ptc1)
281 ptc1 = CHANGE_NASID(nasid, ptc1);
282 pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
283 active++;
285 if (active >= max_active || i == (nix - 1)) {
286 if ((deadlock = wait_piowc())) {
287 if (flush_opt == 1)
288 goto done;
289 sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
290 if (reset_max_active_on_deadlock())
291 max_active = 1;
293 active = 0;
294 ibegin = i + 1;
297 start += (1UL << nbits);
298 } while (start < end);
300 done:
301 itc2 = ia64_get_itc() - itc2;
302 __get_cpu_var(ptcstats).shub_itc_clocks += itc2;
303 if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
304 __get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
306 if (old_rr) {
307 ia64_set_rr(start, old_rr);
308 ia64_srlz_d();
311 spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
313 if (flush_opt == 1 && deadlock) {
314 __get_cpu_var(ptcstats).deadlocks++;
315 sn2_ipi_flush_all_tlb(mm);
318 preempt_enable();
322 * sn2_ptc_deadlock_recovery
324 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
325 * TLB flush transaction. The recovery sequence is somewhat tricky & is
326 * coded in assembly language.
329 void
330 sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
331 volatile unsigned long *ptc0, unsigned long data0,
332 volatile unsigned long *ptc1, unsigned long data1)
334 short nasid, i;
335 unsigned long *piows, zeroval, n;
337 __get_cpu_var(ptcstats).deadlocks++;
339 piows = (unsigned long *) pda->pio_write_status_addr;
340 zeroval = pda->pio_write_status_val;
343 for (i=ib; i <= ie; i++) {
344 nasid = nasids[i];
345 if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
346 continue;
347 ptc0 = CHANGE_NASID(nasid, ptc0);
348 if (ptc1)
349 ptc1 = CHANGE_NASID(nasid, ptc1);
351 n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
352 __get_cpu_var(ptcstats).deadlocks2 += n;
358 * sn_send_IPI_phys - send an IPI to a Nasid and slice
359 * @nasid: nasid to receive the interrupt (may be outside partition)
360 * @physid: physical cpuid to receive the interrupt.
361 * @vector: command to send
362 * @delivery_mode: delivery mechanism
364 * Sends an IPI (interprocessor interrupt) to the processor specified by
365 * @physid
367 * @delivery_mode can be one of the following
369 * %IA64_IPI_DM_INT - pend an interrupt
370 * %IA64_IPI_DM_PMI - pend a PMI
371 * %IA64_IPI_DM_NMI - pend an NMI
372 * %IA64_IPI_DM_INIT - pend an INIT interrupt
374 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
376 long val;
377 unsigned long flags = 0;
378 volatile long *p;
380 p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
381 val = (1UL << SH_IPI_INT_SEND_SHFT) |
382 (physid << SH_IPI_INT_PID_SHFT) |
383 ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
384 ((long)vector << SH_IPI_INT_IDX_SHFT) |
385 (0x000feeUL << SH_IPI_INT_BASE_SHFT);
387 mb();
388 if (enable_shub_wars_1_1()) {
389 spin_lock_irqsave(&sn2_global_ptc_lock, flags);
391 pio_phys_write_mmr(p, val);
392 if (enable_shub_wars_1_1()) {
393 wait_piowc();
394 spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
399 EXPORT_SYMBOL(sn_send_IPI_phys);
402 * sn2_send_IPI - send an IPI to a processor
403 * @cpuid: target of the IPI
404 * @vector: command to send
405 * @delivery_mode: delivery mechanism
406 * @redirect: redirect the IPI?
408 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
409 * @cpuid. @vector specifies the command to send, while @delivery_mode can
410 * be one of the following
412 * %IA64_IPI_DM_INT - pend an interrupt
413 * %IA64_IPI_DM_PMI - pend a PMI
414 * %IA64_IPI_DM_NMI - pend an NMI
415 * %IA64_IPI_DM_INIT - pend an INIT interrupt
417 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
419 long physid;
420 int nasid;
422 physid = cpu_physical_id(cpuid);
423 nasid = cpuid_to_nasid(cpuid);
425 /* the following is used only when starting cpus at boot time */
426 if (unlikely(nasid == -1))
427 ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
429 sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
432 #ifdef CONFIG_PROC_FS
434 #define PTC_BASENAME "sgi_sn/ptc_statistics"
436 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
438 if (*offset < NR_CPUS)
439 return offset;
440 return NULL;
443 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
445 (*offset)++;
446 if (*offset < NR_CPUS)
447 return offset;
448 return NULL;
451 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
455 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
457 struct ptc_stats *stat;
458 int cpu;
460 cpu = *(loff_t *) data;
462 if (!cpu) {
463 seq_printf(file,
464 "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
465 seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
468 if (cpu < NR_CPUS && cpu_online(cpu)) {
469 stat = &per_cpu(ptcstats, cpu);
470 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
471 stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
472 stat->deadlocks,
473 1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
474 1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
475 1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec,
476 stat->shub_ptc_flushes_not_my_mm,
477 stat->deadlocks2,
478 stat->shub_ipi_flushes,
479 1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec);
481 return 0;
484 static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
486 int cpu;
487 char optstr[64];
489 if (copy_from_user(optstr, user, count))
490 return -EFAULT;
491 optstr[count - 1] = '\0';
492 sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
494 for_each_online_cpu(cpu)
495 memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
497 return count;
500 static struct seq_operations sn2_ptc_seq_ops = {
501 .start = sn2_ptc_seq_start,
502 .next = sn2_ptc_seq_next,
503 .stop = sn2_ptc_seq_stop,
504 .show = sn2_ptc_seq_show
507 static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
509 return seq_open(file, &sn2_ptc_seq_ops);
512 static const struct file_operations proc_sn2_ptc_operations = {
513 .open = sn2_ptc_proc_open,
514 .read = seq_read,
515 .write = sn2_ptc_proc_write,
516 .llseek = seq_lseek,
517 .release = seq_release,
520 static struct proc_dir_entry *proc_sn2_ptc;
522 static int __init sn2_ptc_init(void)
524 if (!ia64_platform_is("sn2"))
525 return 0;
527 if (!(proc_sn2_ptc = create_proc_entry(PTC_BASENAME, 0444, NULL))) {
528 printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
529 return -EINVAL;
531 proc_sn2_ptc->proc_fops = &proc_sn2_ptc_operations;
532 spin_lock_init(&sn2_global_ptc_lock);
533 return 0;
536 static void __exit sn2_ptc_exit(void)
538 remove_proc_entry(PTC_BASENAME, NULL);
541 module_init(sn2_ptc_init);
542 module_exit(sn2_ptc_exit);
543 #endif /* CONFIG_PROC_FS */