2 * SN2 Platform specific SMP Support
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
26 #include <asm/processor.h>
29 #include <asm/system.h>
30 #include <asm/delay.h>
35 #include <asm/hw_irq.h>
36 #include <asm/current.h>
37 #include <asm/sn/sn_cpuid.h>
38 #include <asm/sn/sn_sal.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/shub_mmr.h>
41 #include <asm/sn/nodepda.h>
42 #include <asm/sn/rw_mmr.h>
44 DEFINE_PER_CPU(struct ptc_stats
, ptcstats
);
45 DECLARE_PER_CPU(struct ptc_stats
, ptcstats
);
47 static __cacheline_aligned
DEFINE_SPINLOCK(sn2_global_ptc_lock
);
49 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
50 static int sn2_flush_opt
= 0;
53 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
54 volatile unsigned long *, unsigned long,
55 volatile unsigned long *, unsigned long);
57 sn2_ptc_deadlock_recovery(short *, short, short, int,
58 volatile unsigned long *, unsigned long,
59 volatile unsigned long *, unsigned long);
62 * Note: some is the following is captured here to make degugging easier
63 * (the macros make more sense if you see the debug patch - not posted)
66 #define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0)
67 #define max_active_pio(sh1) ((sh1) ? 32 : 7)
68 #define reset_max_active_on_deadlock() 1
69 #define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
73 unsigned long change_rid
;
74 unsigned long shub_ptc_flushes
;
75 unsigned long nodes_flushed
;
76 unsigned long deadlocks
;
77 unsigned long deadlocks2
;
78 unsigned long lock_itc_clocks
;
79 unsigned long shub_itc_clocks
;
80 unsigned long shub_itc_clocks_max
;
81 unsigned long shub_ptc_flushes_not_my_mm
;
82 unsigned long shub_ipi_flushes
;
83 unsigned long shub_ipi_flushes_itc_clocks
;
88 static inline unsigned long wait_piowc(void)
90 volatile unsigned long *piows
;
91 unsigned long zeroval
, ws
;
93 piows
= pda
->pio_write_status_addr
;
94 zeroval
= pda
->pio_write_status_val
;
97 } while (((ws
= *piows
) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK
) != zeroval
);
98 return (ws
& SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK
) != 0;
102 * sn_migrate - SN-specific task migration actions
103 * @task: Task being migrated to new CPU
105 * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
106 * Context switching user threads which have memory-mapped MMIO may cause
107 * PIOs to issue from separate CPUs, thus the PIO writes must be drained
108 * from the previous CPU's Shub before execution resumes on the new CPU.
110 void sn_migrate(struct task_struct
*task
)
112 pda_t
*last_pda
= pdacpu(task_thread_info(task
)->last_cpu
);
113 volatile unsigned long *adr
= last_pda
->pio_write_status_addr
;
114 unsigned long val
= last_pda
->pio_write_status_val
;
116 /* Drain PIO writes from old CPU's Shub */
117 while (unlikely((*adr
& SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK
)
122 void sn_tlb_migrate_finish(struct mm_struct
*mm
)
124 /* flush_tlb_mm is inefficient if more than 1 users of mm */
125 if (mm
== current
->mm
&& mm
&& atomic_read(&mm
->mm_users
) == 1)
130 sn2_ipi_flush_all_tlb(struct mm_struct
*mm
)
134 itc
= ia64_get_itc();
135 smp_flush_tlb_cpumask(mm
->cpu_vm_mask
);
136 itc
= ia64_get_itc() - itc
;
137 __get_cpu_var(ptcstats
).shub_ipi_flushes_itc_clocks
+= itc
;
138 __get_cpu_var(ptcstats
).shub_ipi_flushes
++;
142 * sn2_global_tlb_purge - globally purge translation cache of virtual address range
143 * @mm: mm_struct containing virtual address range
144 * @start: start of virtual address range
145 * @end: end of virtual address range
146 * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
148 * Purges the translation caches of all processors of the given virtual address
152 * - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
153 * - cpu_vm_mask is converted into a nodemask of the nodes containing the
154 * cpus in cpu_vm_mask.
155 * - if only one bit is set in cpu_vm_mask & it is the current cpu & the
156 * process is purging its own virtual address range, then only the
157 * local TLB needs to be flushed. This flushing can be done using
158 * ptc.l. This is the common case & avoids the global spinlock.
159 * - if multiple cpus have loaded the context, then flushing has to be
160 * done with ptc.g/MMRs under protection of the global ptc_lock.
164 sn2_global_tlb_purge(struct mm_struct
*mm
, unsigned long start
,
165 unsigned long end
, unsigned long nbits
)
167 int i
, ibegin
, shub1
, cnode
, mynasid
, cpu
, lcpu
= 0, nasid
;
168 int mymm
= (mm
== current
->active_mm
&& mm
== current
->mm
);
170 volatile unsigned long *ptc0
, *ptc1
;
171 unsigned long itc
, itc2
, flags
, data0
= 0, data1
= 0, rr_value
, old_rr
= 0;
172 short nasids
[MAX_NUMNODES
], nix
;
173 nodemask_t nodes_flushed
;
174 int active
, max_active
, deadlock
, flush_opt
= sn2_flush_opt
;
177 sn2_ipi_flush_all_tlb(mm
);
181 nodes_clear(nodes_flushed
);
184 for_each_cpu_mask(cpu
, mm
->cpu_vm_mask
) {
185 cnode
= cpu_to_node(cpu
);
186 node_set(cnode
, nodes_flushed
);
196 if (likely(i
== 1 && lcpu
== smp_processor_id() && mymm
)) {
198 ia64_ptcl(start
, nbits
<< 2);
199 start
+= (1UL << nbits
);
200 } while (start
< end
);
202 __get_cpu_var(ptcstats
).ptc_l
++;
207 if (atomic_read(&mm
->mm_users
) == 1 && mymm
) {
209 __get_cpu_var(ptcstats
).change_rid
++;
214 if (flush_opt
== 2) {
215 sn2_ipi_flush_all_tlb(mm
);
220 itc
= ia64_get_itc();
222 for_each_node_mask(cnode
, nodes_flushed
)
223 nasids
[nix
++] = cnodeid_to_nasid(cnode
);
225 rr_value
= (mm
->context
<< 3) | REGION_NUMBER(start
);
229 data0
= (1UL << SH1_PTC_0_A_SHFT
) |
230 (nbits
<< SH1_PTC_0_PS_SHFT
) |
231 (rr_value
<< SH1_PTC_0_RID_SHFT
) |
232 (1UL << SH1_PTC_0_START_SHFT
);
233 ptc0
= (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0
);
234 ptc1
= (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1
);
236 data0
= (1UL << SH2_PTC_A_SHFT
) |
237 (nbits
<< SH2_PTC_PS_SHFT
) |
238 (1UL << SH2_PTC_START_SHFT
);
239 ptc0
= (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC
+
240 (rr_value
<< SH2_PTC_RID_SHFT
));
245 mynasid
= get_nasid();
246 use_cpu_ptcga
= local_node_uses_ptc_ga(shub1
);
247 max_active
= max_active_pio(shub1
);
249 itc
= ia64_get_itc();
250 spin_lock_irqsave(PTC_LOCK(shub1
), flags
);
251 itc2
= ia64_get_itc();
253 __get_cpu_var(ptcstats
).lock_itc_clocks
+= itc2
- itc
;
254 __get_cpu_var(ptcstats
).shub_ptc_flushes
++;
255 __get_cpu_var(ptcstats
).nodes_flushed
+= nix
;
257 __get_cpu_var(ptcstats
).shub_ptc_flushes_not_my_mm
++;
259 if (use_cpu_ptcga
&& !mymm
) {
260 old_rr
= ia64_get_rr(start
);
261 ia64_set_rr(start
, (old_rr
& 0xff) | (rr_value
<< 8));
268 data1
= start
| (1UL << SH1_PTC_1_START_SHFT
);
270 data0
= (data0
& ~SH2_PTC_ADDR_MASK
) | (start
& SH2_PTC_ADDR_MASK
);
273 for (ibegin
= 0, i
= 0; i
< nix
; i
++) {
275 if (use_cpu_ptcga
&& unlikely(nasid
== mynasid
)) {
276 ia64_ptcga(start
, nbits
<< 2);
279 ptc0
= CHANGE_NASID(nasid
, ptc0
);
281 ptc1
= CHANGE_NASID(nasid
, ptc1
);
282 pio_atomic_phys_write_mmrs(ptc0
, data0
, ptc1
, data1
);
285 if (active
>= max_active
|| i
== (nix
- 1)) {
286 if ((deadlock
= wait_piowc())) {
289 sn2_ptc_deadlock_recovery(nasids
, ibegin
, i
, mynasid
, ptc0
, data0
, ptc1
, data1
);
290 if (reset_max_active_on_deadlock())
297 start
+= (1UL << nbits
);
298 } while (start
< end
);
301 itc2
= ia64_get_itc() - itc2
;
302 __get_cpu_var(ptcstats
).shub_itc_clocks
+= itc2
;
303 if (itc2
> __get_cpu_var(ptcstats
).shub_itc_clocks_max
)
304 __get_cpu_var(ptcstats
).shub_itc_clocks_max
= itc2
;
307 ia64_set_rr(start
, old_rr
);
311 spin_unlock_irqrestore(PTC_LOCK(shub1
), flags
);
313 if (flush_opt
== 1 && deadlock
) {
314 __get_cpu_var(ptcstats
).deadlocks
++;
315 sn2_ipi_flush_all_tlb(mm
);
322 * sn2_ptc_deadlock_recovery
324 * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
325 * TLB flush transaction. The recovery sequence is somewhat tricky & is
326 * coded in assembly language.
330 sn2_ptc_deadlock_recovery(short *nasids
, short ib
, short ie
, int mynasid
,
331 volatile unsigned long *ptc0
, unsigned long data0
,
332 volatile unsigned long *ptc1
, unsigned long data1
)
335 unsigned long *piows
, zeroval
, n
;
337 __get_cpu_var(ptcstats
).deadlocks
++;
339 piows
= (unsigned long *) pda
->pio_write_status_addr
;
340 zeroval
= pda
->pio_write_status_val
;
343 for (i
=ib
; i
<= ie
; i
++) {
345 if (local_node_uses_ptc_ga(is_shub1()) && nasid
== mynasid
)
347 ptc0
= CHANGE_NASID(nasid
, ptc0
);
349 ptc1
= CHANGE_NASID(nasid
, ptc1
);
351 n
= sn2_ptc_deadlock_recovery_core(ptc0
, data0
, ptc1
, data1
, piows
, zeroval
);
352 __get_cpu_var(ptcstats
).deadlocks2
+= n
;
358 * sn_send_IPI_phys - send an IPI to a Nasid and slice
359 * @nasid: nasid to receive the interrupt (may be outside partition)
360 * @physid: physical cpuid to receive the interrupt.
361 * @vector: command to send
362 * @delivery_mode: delivery mechanism
364 * Sends an IPI (interprocessor interrupt) to the processor specified by
367 * @delivery_mode can be one of the following
369 * %IA64_IPI_DM_INT - pend an interrupt
370 * %IA64_IPI_DM_PMI - pend a PMI
371 * %IA64_IPI_DM_NMI - pend an NMI
372 * %IA64_IPI_DM_INIT - pend an INIT interrupt
374 void sn_send_IPI_phys(int nasid
, long physid
, int vector
, int delivery_mode
)
377 unsigned long flags
= 0;
380 p
= (long *)GLOBAL_MMR_PHYS_ADDR(nasid
, SH_IPI_INT
);
381 val
= (1UL << SH_IPI_INT_SEND_SHFT
) |
382 (physid
<< SH_IPI_INT_PID_SHFT
) |
383 ((long)delivery_mode
<< SH_IPI_INT_TYPE_SHFT
) |
384 ((long)vector
<< SH_IPI_INT_IDX_SHFT
) |
385 (0x000feeUL
<< SH_IPI_INT_BASE_SHFT
);
388 if (enable_shub_wars_1_1()) {
389 spin_lock_irqsave(&sn2_global_ptc_lock
, flags
);
391 pio_phys_write_mmr(p
, val
);
392 if (enable_shub_wars_1_1()) {
394 spin_unlock_irqrestore(&sn2_global_ptc_lock
, flags
);
399 EXPORT_SYMBOL(sn_send_IPI_phys
);
402 * sn2_send_IPI - send an IPI to a processor
403 * @cpuid: target of the IPI
404 * @vector: command to send
405 * @delivery_mode: delivery mechanism
406 * @redirect: redirect the IPI?
408 * Sends an IPI (InterProcessor Interrupt) to the processor specified by
409 * @cpuid. @vector specifies the command to send, while @delivery_mode can
410 * be one of the following
412 * %IA64_IPI_DM_INT - pend an interrupt
413 * %IA64_IPI_DM_PMI - pend a PMI
414 * %IA64_IPI_DM_NMI - pend an NMI
415 * %IA64_IPI_DM_INIT - pend an INIT interrupt
417 void sn2_send_IPI(int cpuid
, int vector
, int delivery_mode
, int redirect
)
422 physid
= cpu_physical_id(cpuid
);
423 nasid
= cpuid_to_nasid(cpuid
);
425 /* the following is used only when starting cpus at boot time */
426 if (unlikely(nasid
== -1))
427 ia64_sn_get_sapic_info(physid
, &nasid
, NULL
, NULL
);
429 sn_send_IPI_phys(nasid
, physid
, vector
, delivery_mode
);
432 #ifdef CONFIG_PROC_FS
434 #define PTC_BASENAME "sgi_sn/ptc_statistics"
436 static void *sn2_ptc_seq_start(struct seq_file
*file
, loff_t
* offset
)
438 if (*offset
< NR_CPUS
)
443 static void *sn2_ptc_seq_next(struct seq_file
*file
, void *data
, loff_t
* offset
)
446 if (*offset
< NR_CPUS
)
451 static void sn2_ptc_seq_stop(struct seq_file
*file
, void *data
)
455 static int sn2_ptc_seq_show(struct seq_file
*file
, void *data
)
457 struct ptc_stats
*stat
;
460 cpu
= *(loff_t
*) data
;
464 "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
465 seq_printf(file
, "# ptctest %d, flushopt %d\n", sn2_ptctest
, sn2_flush_opt
);
468 if (cpu
< NR_CPUS
&& cpu_online(cpu
)) {
469 stat
= &per_cpu(ptcstats
, cpu
);
470 seq_printf(file
, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu
, stat
->ptc_l
,
471 stat
->change_rid
, stat
->shub_ptc_flushes
, stat
->nodes_flushed
,
473 1000 * stat
->lock_itc_clocks
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
,
474 1000 * stat
->shub_itc_clocks
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
,
475 1000 * stat
->shub_itc_clocks_max
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
,
476 stat
->shub_ptc_flushes_not_my_mm
,
478 stat
->shub_ipi_flushes
,
479 1000 * stat
->shub_ipi_flushes_itc_clocks
/ per_cpu(cpu_info
, cpu
).cyc_per_usec
);
484 static ssize_t
sn2_ptc_proc_write(struct file
*file
, const char __user
*user
, size_t count
, loff_t
*data
)
489 if (copy_from_user(optstr
, user
, count
))
491 optstr
[count
- 1] = '\0';
492 sn2_flush_opt
= simple_strtoul(optstr
, NULL
, 0);
494 for_each_online_cpu(cpu
)
495 memset(&per_cpu(ptcstats
, cpu
), 0, sizeof(struct ptc_stats
));
500 static struct seq_operations sn2_ptc_seq_ops
= {
501 .start
= sn2_ptc_seq_start
,
502 .next
= sn2_ptc_seq_next
,
503 .stop
= sn2_ptc_seq_stop
,
504 .show
= sn2_ptc_seq_show
507 static int sn2_ptc_proc_open(struct inode
*inode
, struct file
*file
)
509 return seq_open(file
, &sn2_ptc_seq_ops
);
512 static const struct file_operations proc_sn2_ptc_operations
= {
513 .open
= sn2_ptc_proc_open
,
515 .write
= sn2_ptc_proc_write
,
517 .release
= seq_release
,
520 static struct proc_dir_entry
*proc_sn2_ptc
;
522 static int __init
sn2_ptc_init(void)
524 if (!ia64_platform_is("sn2"))
527 if (!(proc_sn2_ptc
= create_proc_entry(PTC_BASENAME
, 0444, NULL
))) {
528 printk(KERN_ERR
"unable to create %s proc entry", PTC_BASENAME
);
531 proc_sn2_ptc
->proc_fops
= &proc_sn2_ptc_operations
;
532 spin_lock_init(&sn2_global_ptc_lock
);
536 static void __exit
sn2_ptc_exit(void)
538 remove_proc_entry(PTC_BASENAME
, NULL
);
541 module_init(sn2_ptc_init
);
542 module_exit(sn2_ptc_exit
);
543 #endif /* CONFIG_PROC_FS */