Merge branch 'drm-intel-fixes' of git://people.freedesktop.org/~keithp/linux
[linux-btrfs-devel.git] / drivers / target / target_core_transport.c
bloba4b0a8d27f259abd9d57092b814884f55efa3541
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
38 #include <linux/in.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 static int sub_api_initialized;
63 static struct kmem_cache *se_cmd_cache;
64 static struct kmem_cache *se_sess_cache;
65 struct kmem_cache *se_tmr_req_cache;
66 struct kmem_cache *se_ua_cache;
67 struct kmem_cache *t10_pr_reg_cache;
68 struct kmem_cache *t10_alua_lu_gp_cache;
69 struct kmem_cache *t10_alua_lu_gp_mem_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_cache;
71 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
73 /* Used for transport_dev_get_map_*() */
74 typedef int (*map_func_t)(struct se_task *, u32);
76 static int transport_generic_write_pending(struct se_cmd *);
77 static int transport_processing_thread(void *param);
78 static int __transport_execute_tasks(struct se_device *dev);
79 static void transport_complete_task_attr(struct se_cmd *cmd);
80 static int transport_complete_qf(struct se_cmd *cmd);
81 static void transport_handle_queue_full(struct se_cmd *cmd,
82 struct se_device *dev, int (*qf_callback)(struct se_cmd *));
83 static void transport_direct_request_timeout(struct se_cmd *cmd);
84 static void transport_free_dev_tasks(struct se_cmd *cmd);
85 static u32 transport_allocate_tasks(struct se_cmd *cmd,
86 unsigned long long starting_lba,
87 enum dma_data_direction data_direction,
88 struct scatterlist *sgl, unsigned int nents);
89 static int transport_generic_get_mem(struct se_cmd *cmd);
90 static int transport_generic_remove(struct se_cmd *cmd,
91 int session_reinstatement);
92 static void transport_release_fe_cmd(struct se_cmd *cmd);
93 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
94 struct se_queue_obj *qobj);
95 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
96 static void transport_stop_all_task_timers(struct se_cmd *cmd);
98 int init_se_kmem_caches(void)
100 se_cmd_cache = kmem_cache_create("se_cmd_cache",
101 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
102 if (!se_cmd_cache) {
103 pr_err("kmem_cache_create for struct se_cmd failed\n");
104 goto out;
106 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
107 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
108 0, NULL);
109 if (!se_tmr_req_cache) {
110 pr_err("kmem_cache_create() for struct se_tmr_req"
111 " failed\n");
112 goto out;
114 se_sess_cache = kmem_cache_create("se_sess_cache",
115 sizeof(struct se_session), __alignof__(struct se_session),
116 0, NULL);
117 if (!se_sess_cache) {
118 pr_err("kmem_cache_create() for struct se_session"
119 " failed\n");
120 goto out;
122 se_ua_cache = kmem_cache_create("se_ua_cache",
123 sizeof(struct se_ua), __alignof__(struct se_ua),
124 0, NULL);
125 if (!se_ua_cache) {
126 pr_err("kmem_cache_create() for struct se_ua failed\n");
127 goto out;
129 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
130 sizeof(struct t10_pr_registration),
131 __alignof__(struct t10_pr_registration), 0, NULL);
132 if (!t10_pr_reg_cache) {
133 pr_err("kmem_cache_create() for struct t10_pr_registration"
134 " failed\n");
135 goto out;
137 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
138 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
139 0, NULL);
140 if (!t10_alua_lu_gp_cache) {
141 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
142 " failed\n");
143 goto out;
145 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
146 sizeof(struct t10_alua_lu_gp_member),
147 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
148 if (!t10_alua_lu_gp_mem_cache) {
149 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
150 "cache failed\n");
151 goto out;
153 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
154 sizeof(struct t10_alua_tg_pt_gp),
155 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
156 if (!t10_alua_tg_pt_gp_cache) {
157 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
158 "cache failed\n");
159 goto out;
161 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
162 "t10_alua_tg_pt_gp_mem_cache",
163 sizeof(struct t10_alua_tg_pt_gp_member),
164 __alignof__(struct t10_alua_tg_pt_gp_member),
165 0, NULL);
166 if (!t10_alua_tg_pt_gp_mem_cache) {
167 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
168 "mem_t failed\n");
169 goto out;
172 return 0;
173 out:
174 if (se_cmd_cache)
175 kmem_cache_destroy(se_cmd_cache);
176 if (se_tmr_req_cache)
177 kmem_cache_destroy(se_tmr_req_cache);
178 if (se_sess_cache)
179 kmem_cache_destroy(se_sess_cache);
180 if (se_ua_cache)
181 kmem_cache_destroy(se_ua_cache);
182 if (t10_pr_reg_cache)
183 kmem_cache_destroy(t10_pr_reg_cache);
184 if (t10_alua_lu_gp_cache)
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 if (t10_alua_lu_gp_mem_cache)
187 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
188 if (t10_alua_tg_pt_gp_cache)
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 if (t10_alua_tg_pt_gp_mem_cache)
191 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
192 return -ENOMEM;
195 void release_se_kmem_caches(void)
197 kmem_cache_destroy(se_cmd_cache);
198 kmem_cache_destroy(se_tmr_req_cache);
199 kmem_cache_destroy(se_sess_cache);
200 kmem_cache_destroy(se_ua_cache);
201 kmem_cache_destroy(t10_pr_reg_cache);
202 kmem_cache_destroy(t10_alua_lu_gp_cache);
203 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
204 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
205 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
208 /* This code ensures unique mib indexes are handed out. */
209 static DEFINE_SPINLOCK(scsi_mib_index_lock);
210 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
213 * Allocate a new row index for the entry type specified
215 u32 scsi_get_new_index(scsi_index_t type)
217 u32 new_index;
219 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
221 spin_lock(&scsi_mib_index_lock);
222 new_index = ++scsi_mib_index[type];
223 spin_unlock(&scsi_mib_index_lock);
225 return new_index;
228 void transport_init_queue_obj(struct se_queue_obj *qobj)
230 atomic_set(&qobj->queue_cnt, 0);
231 INIT_LIST_HEAD(&qobj->qobj_list);
232 init_waitqueue_head(&qobj->thread_wq);
233 spin_lock_init(&qobj->cmd_queue_lock);
235 EXPORT_SYMBOL(transport_init_queue_obj);
237 static int transport_subsystem_reqmods(void)
239 int ret;
241 ret = request_module("target_core_iblock");
242 if (ret != 0)
243 pr_err("Unable to load target_core_iblock\n");
245 ret = request_module("target_core_file");
246 if (ret != 0)
247 pr_err("Unable to load target_core_file\n");
249 ret = request_module("target_core_pscsi");
250 if (ret != 0)
251 pr_err("Unable to load target_core_pscsi\n");
253 ret = request_module("target_core_stgt");
254 if (ret != 0)
255 pr_err("Unable to load target_core_stgt\n");
257 return 0;
260 int transport_subsystem_check_init(void)
262 int ret;
264 if (sub_api_initialized)
265 return 0;
267 * Request the loading of known TCM subsystem plugins..
269 ret = transport_subsystem_reqmods();
270 if (ret < 0)
271 return ret;
273 sub_api_initialized = 1;
274 return 0;
277 struct se_session *transport_init_session(void)
279 struct se_session *se_sess;
281 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
282 if (!se_sess) {
283 pr_err("Unable to allocate struct se_session from"
284 " se_sess_cache\n");
285 return ERR_PTR(-ENOMEM);
287 INIT_LIST_HEAD(&se_sess->sess_list);
288 INIT_LIST_HEAD(&se_sess->sess_acl_list);
290 return se_sess;
292 EXPORT_SYMBOL(transport_init_session);
295 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
297 void __transport_register_session(
298 struct se_portal_group *se_tpg,
299 struct se_node_acl *se_nacl,
300 struct se_session *se_sess,
301 void *fabric_sess_ptr)
303 unsigned char buf[PR_REG_ISID_LEN];
305 se_sess->se_tpg = se_tpg;
306 se_sess->fabric_sess_ptr = fabric_sess_ptr;
308 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
310 * Only set for struct se_session's that will actually be moving I/O.
311 * eg: *NOT* discovery sessions.
313 if (se_nacl) {
315 * If the fabric module supports an ISID based TransportID,
316 * save this value in binary from the fabric I_T Nexus now.
318 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
319 memset(&buf[0], 0, PR_REG_ISID_LEN);
320 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
321 &buf[0], PR_REG_ISID_LEN);
322 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
324 spin_lock_irq(&se_nacl->nacl_sess_lock);
326 * The se_nacl->nacl_sess pointer will be set to the
327 * last active I_T Nexus for each struct se_node_acl.
329 se_nacl->nacl_sess = se_sess;
331 list_add_tail(&se_sess->sess_acl_list,
332 &se_nacl->acl_sess_list);
333 spin_unlock_irq(&se_nacl->nacl_sess_lock);
335 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
337 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
338 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
340 EXPORT_SYMBOL(__transport_register_session);
342 void transport_register_session(
343 struct se_portal_group *se_tpg,
344 struct se_node_acl *se_nacl,
345 struct se_session *se_sess,
346 void *fabric_sess_ptr)
348 spin_lock_bh(&se_tpg->session_lock);
349 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
350 spin_unlock_bh(&se_tpg->session_lock);
352 EXPORT_SYMBOL(transport_register_session);
354 void transport_deregister_session_configfs(struct se_session *se_sess)
356 struct se_node_acl *se_nacl;
357 unsigned long flags;
359 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
361 se_nacl = se_sess->se_node_acl;
362 if (se_nacl) {
363 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
364 list_del(&se_sess->sess_acl_list);
366 * If the session list is empty, then clear the pointer.
367 * Otherwise, set the struct se_session pointer from the tail
368 * element of the per struct se_node_acl active session list.
370 if (list_empty(&se_nacl->acl_sess_list))
371 se_nacl->nacl_sess = NULL;
372 else {
373 se_nacl->nacl_sess = container_of(
374 se_nacl->acl_sess_list.prev,
375 struct se_session, sess_acl_list);
377 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
380 EXPORT_SYMBOL(transport_deregister_session_configfs);
382 void transport_free_session(struct se_session *se_sess)
384 kmem_cache_free(se_sess_cache, se_sess);
386 EXPORT_SYMBOL(transport_free_session);
388 void transport_deregister_session(struct se_session *se_sess)
390 struct se_portal_group *se_tpg = se_sess->se_tpg;
391 struct se_node_acl *se_nacl;
392 unsigned long flags;
394 if (!se_tpg) {
395 transport_free_session(se_sess);
396 return;
399 spin_lock_irqsave(&se_tpg->session_lock, flags);
400 list_del(&se_sess->sess_list);
401 se_sess->se_tpg = NULL;
402 se_sess->fabric_sess_ptr = NULL;
403 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
406 * Determine if we need to do extra work for this initiator node's
407 * struct se_node_acl if it had been previously dynamically generated.
409 se_nacl = se_sess->se_node_acl;
410 if (se_nacl) {
411 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
412 if (se_nacl->dynamic_node_acl) {
413 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
414 se_tpg)) {
415 list_del(&se_nacl->acl_list);
416 se_tpg->num_node_acls--;
417 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
419 core_tpg_wait_for_nacl_pr_ref(se_nacl);
420 core_free_device_list_for_node(se_nacl, se_tpg);
421 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
422 se_nacl);
423 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
426 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
429 transport_free_session(se_sess);
431 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
432 se_tpg->se_tpg_tfo->get_fabric_name());
434 EXPORT_SYMBOL(transport_deregister_session);
437 * Called with cmd->t_state_lock held.
439 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
441 struct se_device *dev;
442 struct se_task *task;
443 unsigned long flags;
445 list_for_each_entry(task, &cmd->t_task_list, t_list) {
446 dev = task->se_dev;
447 if (!dev)
448 continue;
450 if (atomic_read(&task->task_active))
451 continue;
453 if (!atomic_read(&task->task_state_active))
454 continue;
456 spin_lock_irqsave(&dev->execute_task_lock, flags);
457 list_del(&task->t_state_list);
458 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
459 cmd->se_tfo->get_task_tag(cmd), dev, task);
460 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
462 atomic_set(&task->task_state_active, 0);
463 atomic_dec(&cmd->t_task_cdbs_ex_left);
467 /* transport_cmd_check_stop():
469 * 'transport_off = 1' determines if t_transport_active should be cleared.
470 * 'transport_off = 2' determines if task_dev_state should be removed.
472 * A non-zero u8 t_state sets cmd->t_state.
473 * Returns 1 when command is stopped, else 0.
475 static int transport_cmd_check_stop(
476 struct se_cmd *cmd,
477 int transport_off,
478 u8 t_state)
480 unsigned long flags;
482 spin_lock_irqsave(&cmd->t_state_lock, flags);
484 * Determine if IOCTL context caller in requesting the stopping of this
485 * command for LUN shutdown purposes.
487 if (atomic_read(&cmd->transport_lun_stop)) {
488 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
489 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
490 cmd->se_tfo->get_task_tag(cmd));
492 cmd->deferred_t_state = cmd->t_state;
493 cmd->t_state = TRANSPORT_DEFERRED_CMD;
494 atomic_set(&cmd->t_transport_active, 0);
495 if (transport_off == 2)
496 transport_all_task_dev_remove_state(cmd);
497 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
499 complete(&cmd->transport_lun_stop_comp);
500 return 1;
503 * Determine if frontend context caller is requesting the stopping of
504 * this command for frontend exceptions.
506 if (atomic_read(&cmd->t_transport_stop)) {
507 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
508 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
509 cmd->se_tfo->get_task_tag(cmd));
511 cmd->deferred_t_state = cmd->t_state;
512 cmd->t_state = TRANSPORT_DEFERRED_CMD;
513 if (transport_off == 2)
514 transport_all_task_dev_remove_state(cmd);
517 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
518 * to FE.
520 if (transport_off == 2)
521 cmd->se_lun = NULL;
522 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
524 complete(&cmd->t_transport_stop_comp);
525 return 1;
527 if (transport_off) {
528 atomic_set(&cmd->t_transport_active, 0);
529 if (transport_off == 2) {
530 transport_all_task_dev_remove_state(cmd);
532 * Clear struct se_cmd->se_lun before the transport_off == 2
533 * handoff to fabric module.
535 cmd->se_lun = NULL;
537 * Some fabric modules like tcm_loop can release
538 * their internally allocated I/O reference now and
539 * struct se_cmd now.
541 if (cmd->se_tfo->check_stop_free != NULL) {
542 spin_unlock_irqrestore(
543 &cmd->t_state_lock, flags);
545 cmd->se_tfo->check_stop_free(cmd);
546 return 1;
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
551 return 0;
552 } else if (t_state)
553 cmd->t_state = t_state;
554 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
556 return 0;
559 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
561 return transport_cmd_check_stop(cmd, 2, 0);
564 static void transport_lun_remove_cmd(struct se_cmd *cmd)
566 struct se_lun *lun = cmd->se_lun;
567 unsigned long flags;
569 if (!lun)
570 return;
572 spin_lock_irqsave(&cmd->t_state_lock, flags);
573 if (!atomic_read(&cmd->transport_dev_active)) {
574 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
575 goto check_lun;
577 atomic_set(&cmd->transport_dev_active, 0);
578 transport_all_task_dev_remove_state(cmd);
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
582 check_lun:
583 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
584 if (atomic_read(&cmd->transport_lun_active)) {
585 list_del(&cmd->se_lun_node);
586 atomic_set(&cmd->transport_lun_active, 0);
587 #if 0
588 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
589 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
590 #endif
592 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
595 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
597 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
598 transport_lun_remove_cmd(cmd);
600 if (transport_cmd_check_stop_to_fabric(cmd))
601 return;
602 if (remove)
603 transport_generic_remove(cmd, 0);
606 void transport_cmd_finish_abort_tmr(struct se_cmd *cmd)
608 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
610 if (transport_cmd_check_stop_to_fabric(cmd))
611 return;
613 transport_generic_remove(cmd, 0);
616 static void transport_add_cmd_to_queue(
617 struct se_cmd *cmd,
618 int t_state)
620 struct se_device *dev = cmd->se_dev;
621 struct se_queue_obj *qobj = &dev->dev_queue_obj;
622 unsigned long flags;
624 INIT_LIST_HEAD(&cmd->se_queue_node);
626 if (t_state) {
627 spin_lock_irqsave(&cmd->t_state_lock, flags);
628 cmd->t_state = t_state;
629 atomic_set(&cmd->t_transport_active, 1);
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
633 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
634 if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
635 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
636 list_add(&cmd->se_queue_node, &qobj->qobj_list);
637 } else
638 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
639 atomic_inc(&cmd->t_transport_queue_active);
640 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
642 atomic_inc(&qobj->queue_cnt);
643 wake_up_interruptible(&qobj->thread_wq);
646 static struct se_cmd *
647 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
649 struct se_cmd *cmd;
650 unsigned long flags;
652 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
653 if (list_empty(&qobj->qobj_list)) {
654 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
655 return NULL;
657 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
659 atomic_dec(&cmd->t_transport_queue_active);
661 list_del(&cmd->se_queue_node);
662 atomic_dec(&qobj->queue_cnt);
663 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
665 return cmd;
668 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
669 struct se_queue_obj *qobj)
671 struct se_cmd *t;
672 unsigned long flags;
674 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
675 if (!atomic_read(&cmd->t_transport_queue_active)) {
676 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
677 return;
680 list_for_each_entry(t, &qobj->qobj_list, se_queue_node)
681 if (t == cmd) {
682 atomic_dec(&cmd->t_transport_queue_active);
683 atomic_dec(&qobj->queue_cnt);
684 list_del(&cmd->se_queue_node);
685 break;
687 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
689 if (atomic_read(&cmd->t_transport_queue_active)) {
690 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
691 cmd->se_tfo->get_task_tag(cmd),
692 atomic_read(&cmd->t_transport_queue_active));
697 * Completion function used by TCM subsystem plugins (such as FILEIO)
698 * for queueing up response from struct se_subsystem_api->do_task()
700 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
702 struct se_task *task = list_entry(cmd->t_task_list.next,
703 struct se_task, t_list);
705 if (good) {
706 cmd->scsi_status = SAM_STAT_GOOD;
707 task->task_scsi_status = GOOD;
708 } else {
709 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
710 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
711 task->task_se_cmd->transport_error_status =
712 PYX_TRANSPORT_ILLEGAL_REQUEST;
715 transport_complete_task(task, good);
717 EXPORT_SYMBOL(transport_complete_sync_cache);
719 /* transport_complete_task():
721 * Called from interrupt and non interrupt context depending
722 * on the transport plugin.
724 void transport_complete_task(struct se_task *task, int success)
726 struct se_cmd *cmd = task->task_se_cmd;
727 struct se_device *dev = task->se_dev;
728 int t_state;
729 unsigned long flags;
730 #if 0
731 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
732 cmd->t_task_cdb[0], dev);
733 #endif
734 if (dev)
735 atomic_inc(&dev->depth_left);
737 spin_lock_irqsave(&cmd->t_state_lock, flags);
738 atomic_set(&task->task_active, 0);
741 * See if any sense data exists, if so set the TASK_SENSE flag.
742 * Also check for any other post completion work that needs to be
743 * done by the plugins.
745 if (dev && dev->transport->transport_complete) {
746 if (dev->transport->transport_complete(task) != 0) {
747 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
748 task->task_sense = 1;
749 success = 1;
754 * See if we are waiting for outstanding struct se_task
755 * to complete for an exception condition
757 if (atomic_read(&task->task_stop)) {
759 * Decrement cmd->t_se_count if this task had
760 * previously thrown its timeout exception handler.
762 if (atomic_read(&task->task_timeout)) {
763 atomic_dec(&cmd->t_se_count);
764 atomic_set(&task->task_timeout, 0);
766 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
768 complete(&task->task_stop_comp);
769 return;
772 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
773 * left counter to determine when the struct se_cmd is ready to be queued to
774 * the processing thread.
776 if (atomic_read(&task->task_timeout)) {
777 if (!atomic_dec_and_test(
778 &cmd->t_task_cdbs_timeout_left)) {
779 spin_unlock_irqrestore(&cmd->t_state_lock,
780 flags);
781 return;
783 t_state = TRANSPORT_COMPLETE_TIMEOUT;
784 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
786 transport_add_cmd_to_queue(cmd, t_state);
787 return;
789 atomic_dec(&cmd->t_task_cdbs_timeout_left);
792 * Decrement the outstanding t_task_cdbs_left count. The last
793 * struct se_task from struct se_cmd will complete itself into the
794 * device queue depending upon int success.
796 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
797 if (!success)
798 cmd->t_tasks_failed = 1;
800 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
801 return;
804 if (!success || cmd->t_tasks_failed) {
805 t_state = TRANSPORT_COMPLETE_FAILURE;
806 if (!task->task_error_status) {
807 task->task_error_status =
808 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
809 cmd->transport_error_status =
810 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
812 } else {
813 atomic_set(&cmd->t_transport_complete, 1);
814 t_state = TRANSPORT_COMPLETE_OK;
816 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
818 transport_add_cmd_to_queue(cmd, t_state);
820 EXPORT_SYMBOL(transport_complete_task);
823 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
824 * struct se_task list are ready to be added to the active execution list
825 * struct se_device
827 * Called with se_dev_t->execute_task_lock called.
829 static inline int transport_add_task_check_sam_attr(
830 struct se_task *task,
831 struct se_task *task_prev,
832 struct se_device *dev)
835 * No SAM Task attribute emulation enabled, add to tail of
836 * execution queue
838 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
839 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
840 return 0;
843 * HEAD_OF_QUEUE attribute for received CDB, which means
844 * the first task that is associated with a struct se_cmd goes to
845 * head of the struct se_device->execute_task_list, and task_prev
846 * after that for each subsequent task
848 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
849 list_add(&task->t_execute_list,
850 (task_prev != NULL) ?
851 &task_prev->t_execute_list :
852 &dev->execute_task_list);
854 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
855 " in execution queue\n",
856 task->task_se_cmd->t_task_cdb[0]);
857 return 1;
860 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
861 * transitioned from Dermant -> Active state, and are added to the end
862 * of the struct se_device->execute_task_list
864 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
865 return 0;
868 /* __transport_add_task_to_execute_queue():
870 * Called with se_dev_t->execute_task_lock called.
872 static void __transport_add_task_to_execute_queue(
873 struct se_task *task,
874 struct se_task *task_prev,
875 struct se_device *dev)
877 int head_of_queue;
879 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
880 atomic_inc(&dev->execute_tasks);
882 if (atomic_read(&task->task_state_active))
883 return;
885 * Determine if this task needs to go to HEAD_OF_QUEUE for the
886 * state list as well. Running with SAM Task Attribute emulation
887 * will always return head_of_queue == 0 here
889 if (head_of_queue)
890 list_add(&task->t_state_list, (task_prev) ?
891 &task_prev->t_state_list :
892 &dev->state_task_list);
893 else
894 list_add_tail(&task->t_state_list, &dev->state_task_list);
896 atomic_set(&task->task_state_active, 1);
898 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
899 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
900 task, dev);
903 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
905 struct se_device *dev;
906 struct se_task *task;
907 unsigned long flags;
909 spin_lock_irqsave(&cmd->t_state_lock, flags);
910 list_for_each_entry(task, &cmd->t_task_list, t_list) {
911 dev = task->se_dev;
913 if (atomic_read(&task->task_state_active))
914 continue;
916 spin_lock(&dev->execute_task_lock);
917 list_add_tail(&task->t_state_list, &dev->state_task_list);
918 atomic_set(&task->task_state_active, 1);
920 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
921 task->task_se_cmd->se_tfo->get_task_tag(
922 task->task_se_cmd), task, dev);
924 spin_unlock(&dev->execute_task_lock);
926 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
929 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
931 struct se_device *dev = cmd->se_dev;
932 struct se_task *task, *task_prev = NULL;
933 unsigned long flags;
935 spin_lock_irqsave(&dev->execute_task_lock, flags);
936 list_for_each_entry(task, &cmd->t_task_list, t_list) {
937 if (atomic_read(&task->task_execute_queue))
938 continue;
940 * __transport_add_task_to_execute_queue() handles the
941 * SAM Task Attribute emulation if enabled
943 __transport_add_task_to_execute_queue(task, task_prev, dev);
944 atomic_set(&task->task_execute_queue, 1);
945 task_prev = task;
947 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
950 /* transport_remove_task_from_execute_queue():
954 void transport_remove_task_from_execute_queue(
955 struct se_task *task,
956 struct se_device *dev)
958 unsigned long flags;
960 if (atomic_read(&task->task_execute_queue) == 0) {
961 dump_stack();
962 return;
965 spin_lock_irqsave(&dev->execute_task_lock, flags);
966 list_del(&task->t_execute_list);
967 atomic_set(&task->task_execute_queue, 0);
968 atomic_dec(&dev->execute_tasks);
969 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
973 * Handle QUEUE_FULL / -EAGAIN status
976 static void target_qf_do_work(struct work_struct *work)
978 struct se_device *dev = container_of(work, struct se_device,
979 qf_work_queue);
980 LIST_HEAD(qf_cmd_list);
981 struct se_cmd *cmd, *cmd_tmp;
983 spin_lock_irq(&dev->qf_cmd_lock);
984 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
985 spin_unlock_irq(&dev->qf_cmd_lock);
987 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
988 list_del(&cmd->se_qf_node);
989 atomic_dec(&dev->dev_qf_count);
990 smp_mb__after_atomic_dec();
992 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
993 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
994 (cmd->t_state == TRANSPORT_COMPLETE_OK) ? "COMPLETE_OK" :
995 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
996 : "UNKNOWN");
998 * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
999 * has been added to head of queue
1001 transport_add_cmd_to_queue(cmd, cmd->t_state);
1005 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
1007 switch (cmd->data_direction) {
1008 case DMA_NONE:
1009 return "NONE";
1010 case DMA_FROM_DEVICE:
1011 return "READ";
1012 case DMA_TO_DEVICE:
1013 return "WRITE";
1014 case DMA_BIDIRECTIONAL:
1015 return "BIDI";
1016 default:
1017 break;
1020 return "UNKNOWN";
1023 void transport_dump_dev_state(
1024 struct se_device *dev,
1025 char *b,
1026 int *bl)
1028 *bl += sprintf(b + *bl, "Status: ");
1029 switch (dev->dev_status) {
1030 case TRANSPORT_DEVICE_ACTIVATED:
1031 *bl += sprintf(b + *bl, "ACTIVATED");
1032 break;
1033 case TRANSPORT_DEVICE_DEACTIVATED:
1034 *bl += sprintf(b + *bl, "DEACTIVATED");
1035 break;
1036 case TRANSPORT_DEVICE_SHUTDOWN:
1037 *bl += sprintf(b + *bl, "SHUTDOWN");
1038 break;
1039 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1040 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1041 *bl += sprintf(b + *bl, "OFFLINE");
1042 break;
1043 default:
1044 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1045 break;
1048 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
1049 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1050 dev->queue_depth);
1051 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
1052 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1053 *bl += sprintf(b + *bl, " ");
1056 /* transport_release_all_cmds():
1060 static void transport_release_all_cmds(struct se_device *dev)
1062 struct se_cmd *cmd, *tcmd;
1063 int bug_out = 0, t_state;
1064 unsigned long flags;
1066 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1067 list_for_each_entry_safe(cmd, tcmd, &dev->dev_queue_obj.qobj_list,
1068 se_queue_node) {
1069 t_state = cmd->t_state;
1070 list_del(&cmd->se_queue_node);
1071 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock,
1072 flags);
1074 pr_err("Releasing ITT: 0x%08x, i_state: %u,"
1075 " t_state: %u directly\n",
1076 cmd->se_tfo->get_task_tag(cmd),
1077 cmd->se_tfo->get_cmd_state(cmd), t_state);
1079 transport_release_fe_cmd(cmd);
1080 bug_out = 1;
1082 spin_lock_irqsave(&dev->dev_queue_obj.cmd_queue_lock, flags);
1084 spin_unlock_irqrestore(&dev->dev_queue_obj.cmd_queue_lock, flags);
1085 #if 0
1086 if (bug_out)
1087 BUG();
1088 #endif
1091 void transport_dump_vpd_proto_id(
1092 struct t10_vpd *vpd,
1093 unsigned char *p_buf,
1094 int p_buf_len)
1096 unsigned char buf[VPD_TMP_BUF_SIZE];
1097 int len;
1099 memset(buf, 0, VPD_TMP_BUF_SIZE);
1100 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1102 switch (vpd->protocol_identifier) {
1103 case 0x00:
1104 sprintf(buf+len, "Fibre Channel\n");
1105 break;
1106 case 0x10:
1107 sprintf(buf+len, "Parallel SCSI\n");
1108 break;
1109 case 0x20:
1110 sprintf(buf+len, "SSA\n");
1111 break;
1112 case 0x30:
1113 sprintf(buf+len, "IEEE 1394\n");
1114 break;
1115 case 0x40:
1116 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1117 " Protocol\n");
1118 break;
1119 case 0x50:
1120 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1121 break;
1122 case 0x60:
1123 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1124 break;
1125 case 0x70:
1126 sprintf(buf+len, "Automation/Drive Interface Transport"
1127 " Protocol\n");
1128 break;
1129 case 0x80:
1130 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1131 break;
1132 default:
1133 sprintf(buf+len, "Unknown 0x%02x\n",
1134 vpd->protocol_identifier);
1135 break;
1138 if (p_buf)
1139 strncpy(p_buf, buf, p_buf_len);
1140 else
1141 pr_debug("%s", buf);
1144 void
1145 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1148 * Check if the Protocol Identifier Valid (PIV) bit is set..
1150 * from spc3r23.pdf section 7.5.1
1152 if (page_83[1] & 0x80) {
1153 vpd->protocol_identifier = (page_83[0] & 0xf0);
1154 vpd->protocol_identifier_set = 1;
1155 transport_dump_vpd_proto_id(vpd, NULL, 0);
1158 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1160 int transport_dump_vpd_assoc(
1161 struct t10_vpd *vpd,
1162 unsigned char *p_buf,
1163 int p_buf_len)
1165 unsigned char buf[VPD_TMP_BUF_SIZE];
1166 int ret = 0;
1167 int len;
1169 memset(buf, 0, VPD_TMP_BUF_SIZE);
1170 len = sprintf(buf, "T10 VPD Identifier Association: ");
1172 switch (vpd->association) {
1173 case 0x00:
1174 sprintf(buf+len, "addressed logical unit\n");
1175 break;
1176 case 0x10:
1177 sprintf(buf+len, "target port\n");
1178 break;
1179 case 0x20:
1180 sprintf(buf+len, "SCSI target device\n");
1181 break;
1182 default:
1183 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1184 ret = -EINVAL;
1185 break;
1188 if (p_buf)
1189 strncpy(p_buf, buf, p_buf_len);
1190 else
1191 pr_debug("%s", buf);
1193 return ret;
1196 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1199 * The VPD identification association..
1201 * from spc3r23.pdf Section 7.6.3.1 Table 297
1203 vpd->association = (page_83[1] & 0x30);
1204 return transport_dump_vpd_assoc(vpd, NULL, 0);
1206 EXPORT_SYMBOL(transport_set_vpd_assoc);
1208 int transport_dump_vpd_ident_type(
1209 struct t10_vpd *vpd,
1210 unsigned char *p_buf,
1211 int p_buf_len)
1213 unsigned char buf[VPD_TMP_BUF_SIZE];
1214 int ret = 0;
1215 int len;
1217 memset(buf, 0, VPD_TMP_BUF_SIZE);
1218 len = sprintf(buf, "T10 VPD Identifier Type: ");
1220 switch (vpd->device_identifier_type) {
1221 case 0x00:
1222 sprintf(buf+len, "Vendor specific\n");
1223 break;
1224 case 0x01:
1225 sprintf(buf+len, "T10 Vendor ID based\n");
1226 break;
1227 case 0x02:
1228 sprintf(buf+len, "EUI-64 based\n");
1229 break;
1230 case 0x03:
1231 sprintf(buf+len, "NAA\n");
1232 break;
1233 case 0x04:
1234 sprintf(buf+len, "Relative target port identifier\n");
1235 break;
1236 case 0x08:
1237 sprintf(buf+len, "SCSI name string\n");
1238 break;
1239 default:
1240 sprintf(buf+len, "Unsupported: 0x%02x\n",
1241 vpd->device_identifier_type);
1242 ret = -EINVAL;
1243 break;
1246 if (p_buf) {
1247 if (p_buf_len < strlen(buf)+1)
1248 return -EINVAL;
1249 strncpy(p_buf, buf, p_buf_len);
1250 } else {
1251 pr_debug("%s", buf);
1254 return ret;
1257 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1260 * The VPD identifier type..
1262 * from spc3r23.pdf Section 7.6.3.1 Table 298
1264 vpd->device_identifier_type = (page_83[1] & 0x0f);
1265 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1267 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1269 int transport_dump_vpd_ident(
1270 struct t10_vpd *vpd,
1271 unsigned char *p_buf,
1272 int p_buf_len)
1274 unsigned char buf[VPD_TMP_BUF_SIZE];
1275 int ret = 0;
1277 memset(buf, 0, VPD_TMP_BUF_SIZE);
1279 switch (vpd->device_identifier_code_set) {
1280 case 0x01: /* Binary */
1281 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1282 &vpd->device_identifier[0]);
1283 break;
1284 case 0x02: /* ASCII */
1285 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1286 &vpd->device_identifier[0]);
1287 break;
1288 case 0x03: /* UTF-8 */
1289 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1290 &vpd->device_identifier[0]);
1291 break;
1292 default:
1293 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1294 " 0x%02x", vpd->device_identifier_code_set);
1295 ret = -EINVAL;
1296 break;
1299 if (p_buf)
1300 strncpy(p_buf, buf, p_buf_len);
1301 else
1302 pr_debug("%s", buf);
1304 return ret;
1308 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1310 static const char hex_str[] = "0123456789abcdef";
1311 int j = 0, i = 4; /* offset to start of the identifer */
1314 * The VPD Code Set (encoding)
1316 * from spc3r23.pdf Section 7.6.3.1 Table 296
1318 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1319 switch (vpd->device_identifier_code_set) {
1320 case 0x01: /* Binary */
1321 vpd->device_identifier[j++] =
1322 hex_str[vpd->device_identifier_type];
1323 while (i < (4 + page_83[3])) {
1324 vpd->device_identifier[j++] =
1325 hex_str[(page_83[i] & 0xf0) >> 4];
1326 vpd->device_identifier[j++] =
1327 hex_str[page_83[i] & 0x0f];
1328 i++;
1330 break;
1331 case 0x02: /* ASCII */
1332 case 0x03: /* UTF-8 */
1333 while (i < (4 + page_83[3]))
1334 vpd->device_identifier[j++] = page_83[i++];
1335 break;
1336 default:
1337 break;
1340 return transport_dump_vpd_ident(vpd, NULL, 0);
1342 EXPORT_SYMBOL(transport_set_vpd_ident);
1344 static void core_setup_task_attr_emulation(struct se_device *dev)
1347 * If this device is from Target_Core_Mod/pSCSI, disable the
1348 * SAM Task Attribute emulation.
1350 * This is currently not available in upsream Linux/SCSI Target
1351 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1353 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1354 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1355 return;
1358 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1359 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1360 " device\n", dev->transport->name,
1361 dev->transport->get_device_rev(dev));
1364 static void scsi_dump_inquiry(struct se_device *dev)
1366 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1367 int i, device_type;
1369 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1371 pr_debug(" Vendor: ");
1372 for (i = 0; i < 8; i++)
1373 if (wwn->vendor[i] >= 0x20)
1374 pr_debug("%c", wwn->vendor[i]);
1375 else
1376 pr_debug(" ");
1378 pr_debug(" Model: ");
1379 for (i = 0; i < 16; i++)
1380 if (wwn->model[i] >= 0x20)
1381 pr_debug("%c", wwn->model[i]);
1382 else
1383 pr_debug(" ");
1385 pr_debug(" Revision: ");
1386 for (i = 0; i < 4; i++)
1387 if (wwn->revision[i] >= 0x20)
1388 pr_debug("%c", wwn->revision[i]);
1389 else
1390 pr_debug(" ");
1392 pr_debug("\n");
1394 device_type = dev->transport->get_device_type(dev);
1395 pr_debug(" Type: %s ", scsi_device_type(device_type));
1396 pr_debug(" ANSI SCSI revision: %02x\n",
1397 dev->transport->get_device_rev(dev));
1400 struct se_device *transport_add_device_to_core_hba(
1401 struct se_hba *hba,
1402 struct se_subsystem_api *transport,
1403 struct se_subsystem_dev *se_dev,
1404 u32 device_flags,
1405 void *transport_dev,
1406 struct se_dev_limits *dev_limits,
1407 const char *inquiry_prod,
1408 const char *inquiry_rev)
1410 int force_pt;
1411 struct se_device *dev;
1413 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1414 if (!dev) {
1415 pr_err("Unable to allocate memory for se_dev_t\n");
1416 return NULL;
1419 transport_init_queue_obj(&dev->dev_queue_obj);
1420 dev->dev_flags = device_flags;
1421 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1422 dev->dev_ptr = transport_dev;
1423 dev->se_hba = hba;
1424 dev->se_sub_dev = se_dev;
1425 dev->transport = transport;
1426 atomic_set(&dev->active_cmds, 0);
1427 INIT_LIST_HEAD(&dev->dev_list);
1428 INIT_LIST_HEAD(&dev->dev_sep_list);
1429 INIT_LIST_HEAD(&dev->dev_tmr_list);
1430 INIT_LIST_HEAD(&dev->execute_task_list);
1431 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1432 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1433 INIT_LIST_HEAD(&dev->state_task_list);
1434 INIT_LIST_HEAD(&dev->qf_cmd_list);
1435 spin_lock_init(&dev->execute_task_lock);
1436 spin_lock_init(&dev->delayed_cmd_lock);
1437 spin_lock_init(&dev->ordered_cmd_lock);
1438 spin_lock_init(&dev->state_task_lock);
1439 spin_lock_init(&dev->dev_alua_lock);
1440 spin_lock_init(&dev->dev_reservation_lock);
1441 spin_lock_init(&dev->dev_status_lock);
1442 spin_lock_init(&dev->dev_status_thr_lock);
1443 spin_lock_init(&dev->se_port_lock);
1444 spin_lock_init(&dev->se_tmr_lock);
1445 spin_lock_init(&dev->qf_cmd_lock);
1447 dev->queue_depth = dev_limits->queue_depth;
1448 atomic_set(&dev->depth_left, dev->queue_depth);
1449 atomic_set(&dev->dev_ordered_id, 0);
1451 se_dev_set_default_attribs(dev, dev_limits);
1453 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1454 dev->creation_time = get_jiffies_64();
1455 spin_lock_init(&dev->stats_lock);
1457 spin_lock(&hba->device_lock);
1458 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1459 hba->dev_count++;
1460 spin_unlock(&hba->device_lock);
1462 * Setup the SAM Task Attribute emulation for struct se_device
1464 core_setup_task_attr_emulation(dev);
1466 * Force PR and ALUA passthrough emulation with internal object use.
1468 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1470 * Setup the Reservations infrastructure for struct se_device
1472 core_setup_reservations(dev, force_pt);
1474 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1476 if (core_setup_alua(dev, force_pt) < 0)
1477 goto out;
1480 * Startup the struct se_device processing thread
1482 dev->process_thread = kthread_run(transport_processing_thread, dev,
1483 "LIO_%s", dev->transport->name);
1484 if (IS_ERR(dev->process_thread)) {
1485 pr_err("Unable to create kthread: LIO_%s\n",
1486 dev->transport->name);
1487 goto out;
1490 * Setup work_queue for QUEUE_FULL
1492 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1494 * Preload the initial INQUIRY const values if we are doing
1495 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1496 * passthrough because this is being provided by the backend LLD.
1497 * This is required so that transport_get_inquiry() copies these
1498 * originals once back into DEV_T10_WWN(dev) for the virtual device
1499 * setup.
1501 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1502 if (!inquiry_prod || !inquiry_rev) {
1503 pr_err("All non TCM/pSCSI plugins require"
1504 " INQUIRY consts\n");
1505 goto out;
1508 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1509 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1510 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1512 scsi_dump_inquiry(dev);
1514 return dev;
1515 out:
1516 kthread_stop(dev->process_thread);
1518 spin_lock(&hba->device_lock);
1519 list_del(&dev->dev_list);
1520 hba->dev_count--;
1521 spin_unlock(&hba->device_lock);
1523 se_release_vpd_for_dev(dev);
1525 kfree(dev);
1527 return NULL;
1529 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1531 /* transport_generic_prepare_cdb():
1533 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1534 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1535 * The point of this is since we are mapping iSCSI LUNs to
1536 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1537 * devices and HBAs for a loop.
1539 static inline void transport_generic_prepare_cdb(
1540 unsigned char *cdb)
1542 switch (cdb[0]) {
1543 case READ_10: /* SBC - RDProtect */
1544 case READ_12: /* SBC - RDProtect */
1545 case READ_16: /* SBC - RDProtect */
1546 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1547 case VERIFY: /* SBC - VRProtect */
1548 case VERIFY_16: /* SBC - VRProtect */
1549 case WRITE_VERIFY: /* SBC - VRProtect */
1550 case WRITE_VERIFY_12: /* SBC - VRProtect */
1551 break;
1552 default:
1553 cdb[1] &= 0x1f; /* clear logical unit number */
1554 break;
1558 static struct se_task *
1559 transport_generic_get_task(struct se_cmd *cmd,
1560 enum dma_data_direction data_direction)
1562 struct se_task *task;
1563 struct se_device *dev = cmd->se_dev;
1565 task = dev->transport->alloc_task(cmd->t_task_cdb);
1566 if (!task) {
1567 pr_err("Unable to allocate struct se_task\n");
1568 return NULL;
1571 INIT_LIST_HEAD(&task->t_list);
1572 INIT_LIST_HEAD(&task->t_execute_list);
1573 INIT_LIST_HEAD(&task->t_state_list);
1574 init_completion(&task->task_stop_comp);
1575 task->task_se_cmd = cmd;
1576 task->se_dev = dev;
1577 task->task_data_direction = data_direction;
1579 return task;
1582 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1585 * Used by fabric modules containing a local struct se_cmd within their
1586 * fabric dependent per I/O descriptor.
1588 void transport_init_se_cmd(
1589 struct se_cmd *cmd,
1590 struct target_core_fabric_ops *tfo,
1591 struct se_session *se_sess,
1592 u32 data_length,
1593 int data_direction,
1594 int task_attr,
1595 unsigned char *sense_buffer)
1597 INIT_LIST_HEAD(&cmd->se_lun_node);
1598 INIT_LIST_HEAD(&cmd->se_delayed_node);
1599 INIT_LIST_HEAD(&cmd->se_ordered_node);
1600 INIT_LIST_HEAD(&cmd->se_qf_node);
1602 INIT_LIST_HEAD(&cmd->t_task_list);
1603 init_completion(&cmd->transport_lun_fe_stop_comp);
1604 init_completion(&cmd->transport_lun_stop_comp);
1605 init_completion(&cmd->t_transport_stop_comp);
1606 spin_lock_init(&cmd->t_state_lock);
1607 atomic_set(&cmd->transport_dev_active, 1);
1609 cmd->se_tfo = tfo;
1610 cmd->se_sess = se_sess;
1611 cmd->data_length = data_length;
1612 cmd->data_direction = data_direction;
1613 cmd->sam_task_attr = task_attr;
1614 cmd->sense_buffer = sense_buffer;
1616 EXPORT_SYMBOL(transport_init_se_cmd);
1618 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1621 * Check if SAM Task Attribute emulation is enabled for this
1622 * struct se_device storage object
1624 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1625 return 0;
1627 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1628 pr_debug("SAM Task Attribute ACA"
1629 " emulation is not supported\n");
1630 return -EINVAL;
1633 * Used to determine when ORDERED commands should go from
1634 * Dormant to Active status.
1636 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1637 smp_mb__after_atomic_inc();
1638 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1639 cmd->se_ordered_id, cmd->sam_task_attr,
1640 cmd->se_dev->transport->name);
1641 return 0;
1644 void transport_free_se_cmd(
1645 struct se_cmd *se_cmd)
1647 if (se_cmd->se_tmr_req)
1648 core_tmr_release_req(se_cmd->se_tmr_req);
1650 * Check and free any extended CDB buffer that was allocated
1652 if (se_cmd->t_task_cdb != se_cmd->__t_task_cdb)
1653 kfree(se_cmd->t_task_cdb);
1655 EXPORT_SYMBOL(transport_free_se_cmd);
1657 static void transport_generic_wait_for_tasks(struct se_cmd *, int, int);
1659 /* transport_generic_allocate_tasks():
1661 * Called from fabric RX Thread.
1663 int transport_generic_allocate_tasks(
1664 struct se_cmd *cmd,
1665 unsigned char *cdb)
1667 int ret;
1669 transport_generic_prepare_cdb(cdb);
1672 * This is needed for early exceptions.
1674 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1677 * Ensure that the received CDB is less than the max (252 + 8) bytes
1678 * for VARIABLE_LENGTH_CMD
1680 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1681 pr_err("Received SCSI CDB with command_size: %d that"
1682 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1683 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1684 return -EINVAL;
1687 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1688 * allocate the additional extended CDB buffer now.. Otherwise
1689 * setup the pointer from __t_task_cdb to t_task_cdb.
1691 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1692 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1693 GFP_KERNEL);
1694 if (!cmd->t_task_cdb) {
1695 pr_err("Unable to allocate cmd->t_task_cdb"
1696 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1697 scsi_command_size(cdb),
1698 (unsigned long)sizeof(cmd->__t_task_cdb));
1699 return -ENOMEM;
1701 } else
1702 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1704 * Copy the original CDB into cmd->
1706 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1708 * Setup the received CDB based on SCSI defined opcodes and
1709 * perform unit attention, persistent reservations and ALUA
1710 * checks for virtual device backends. The cmd->t_task_cdb
1711 * pointer is expected to be setup before we reach this point.
1713 ret = transport_generic_cmd_sequencer(cmd, cdb);
1714 if (ret < 0)
1715 return ret;
1717 * Check for SAM Task Attribute Emulation
1719 if (transport_check_alloc_task_attr(cmd) < 0) {
1720 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1721 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1722 return -EINVAL;
1724 spin_lock(&cmd->se_lun->lun_sep_lock);
1725 if (cmd->se_lun->lun_sep)
1726 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1727 spin_unlock(&cmd->se_lun->lun_sep_lock);
1728 return 0;
1730 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1733 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1734 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1736 int transport_generic_handle_cdb(
1737 struct se_cmd *cmd)
1739 if (!cmd->se_lun) {
1740 dump_stack();
1741 pr_err("cmd->se_lun is NULL\n");
1742 return -EINVAL;
1745 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD);
1746 return 0;
1748 EXPORT_SYMBOL(transport_generic_handle_cdb);
1750 static void transport_generic_request_failure(struct se_cmd *,
1751 struct se_device *, int, int);
1753 * Used by fabric module frontends to queue tasks directly.
1754 * Many only be used from process context only
1756 int transport_handle_cdb_direct(
1757 struct se_cmd *cmd)
1759 int ret;
1761 if (!cmd->se_lun) {
1762 dump_stack();
1763 pr_err("cmd->se_lun is NULL\n");
1764 return -EINVAL;
1766 if (in_interrupt()) {
1767 dump_stack();
1768 pr_err("transport_generic_handle_cdb cannot be called"
1769 " from interrupt context\n");
1770 return -EINVAL;
1773 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1774 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1775 * in existing usage to ensure that outstanding descriptors are handled
1776 * correctly during shutdown via transport_generic_wait_for_tasks()
1778 * Also, we don't take cmd->t_state_lock here as we only expect
1779 * this to be called for initial descriptor submission.
1781 cmd->t_state = TRANSPORT_NEW_CMD;
1782 atomic_set(&cmd->t_transport_active, 1);
1784 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1785 * so follow TRANSPORT_NEW_CMD processing thread context usage
1786 * and call transport_generic_request_failure() if necessary..
1788 ret = transport_generic_new_cmd(cmd);
1789 if (ret == -EAGAIN)
1790 return 0;
1791 else if (ret < 0) {
1792 cmd->transport_error_status = ret;
1793 transport_generic_request_failure(cmd, NULL, 0,
1794 (cmd->data_direction != DMA_TO_DEVICE));
1796 return 0;
1798 EXPORT_SYMBOL(transport_handle_cdb_direct);
1801 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1802 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1803 * complete setup in TCM process context w/ TFO->new_cmd_map().
1805 int transport_generic_handle_cdb_map(
1806 struct se_cmd *cmd)
1808 if (!cmd->se_lun) {
1809 dump_stack();
1810 pr_err("cmd->se_lun is NULL\n");
1811 return -EINVAL;
1814 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1815 return 0;
1817 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1819 /* transport_generic_handle_data():
1823 int transport_generic_handle_data(
1824 struct se_cmd *cmd)
1827 * For the software fabric case, then we assume the nexus is being
1828 * failed/shutdown when signals are pending from the kthread context
1829 * caller, so we return a failure. For the HW target mode case running
1830 * in interrupt code, the signal_pending() check is skipped.
1832 if (!in_interrupt() && signal_pending(current))
1833 return -EPERM;
1835 * If the received CDB has aleady been ABORTED by the generic
1836 * target engine, we now call transport_check_aborted_status()
1837 * to queue any delated TASK_ABORTED status for the received CDB to the
1838 * fabric module as we are expecting no further incoming DATA OUT
1839 * sequences at this point.
1841 if (transport_check_aborted_status(cmd, 1) != 0)
1842 return 0;
1844 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1845 return 0;
1847 EXPORT_SYMBOL(transport_generic_handle_data);
1849 /* transport_generic_handle_tmr():
1853 int transport_generic_handle_tmr(
1854 struct se_cmd *cmd)
1857 * This is needed for early exceptions.
1859 cmd->transport_wait_for_tasks = &transport_generic_wait_for_tasks;
1861 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1862 return 0;
1864 EXPORT_SYMBOL(transport_generic_handle_tmr);
1866 void transport_generic_free_cmd_intr(
1867 struct se_cmd *cmd)
1869 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1871 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1873 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1875 struct se_task *task, *task_tmp;
1876 unsigned long flags;
1877 int ret = 0;
1879 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1880 cmd->se_tfo->get_task_tag(cmd));
1883 * No tasks remain in the execution queue
1885 spin_lock_irqsave(&cmd->t_state_lock, flags);
1886 list_for_each_entry_safe(task, task_tmp,
1887 &cmd->t_task_list, t_list) {
1888 pr_debug("task_no[%d] - Processing task %p\n",
1889 task->task_no, task);
1891 * If the struct se_task has not been sent and is not active,
1892 * remove the struct se_task from the execution queue.
1894 if (!atomic_read(&task->task_sent) &&
1895 !atomic_read(&task->task_active)) {
1896 spin_unlock_irqrestore(&cmd->t_state_lock,
1897 flags);
1898 transport_remove_task_from_execute_queue(task,
1899 task->se_dev);
1901 pr_debug("task_no[%d] - Removed from execute queue\n",
1902 task->task_no);
1903 spin_lock_irqsave(&cmd->t_state_lock, flags);
1904 continue;
1908 * If the struct se_task is active, sleep until it is returned
1909 * from the plugin.
1911 if (atomic_read(&task->task_active)) {
1912 atomic_set(&task->task_stop, 1);
1913 spin_unlock_irqrestore(&cmd->t_state_lock,
1914 flags);
1916 pr_debug("task_no[%d] - Waiting to complete\n",
1917 task->task_no);
1918 wait_for_completion(&task->task_stop_comp);
1919 pr_debug("task_no[%d] - Stopped successfully\n",
1920 task->task_no);
1922 spin_lock_irqsave(&cmd->t_state_lock, flags);
1923 atomic_dec(&cmd->t_task_cdbs_left);
1925 atomic_set(&task->task_active, 0);
1926 atomic_set(&task->task_stop, 0);
1927 } else {
1928 pr_debug("task_no[%d] - Did nothing\n", task->task_no);
1929 ret++;
1932 __transport_stop_task_timer(task, &flags);
1934 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1936 return ret;
1940 * Handle SAM-esque emulation for generic transport request failures.
1942 static void transport_generic_request_failure(
1943 struct se_cmd *cmd,
1944 struct se_device *dev,
1945 int complete,
1946 int sc)
1948 int ret = 0;
1950 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1951 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1952 cmd->t_task_cdb[0]);
1953 pr_debug("-----[ i_state: %d t_state/def_t_state:"
1954 " %d/%d transport_error_status: %d\n",
1955 cmd->se_tfo->get_cmd_state(cmd),
1956 cmd->t_state, cmd->deferred_t_state,
1957 cmd->transport_error_status);
1958 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1959 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1960 " t_transport_active: %d t_transport_stop: %d"
1961 " t_transport_sent: %d\n", cmd->t_task_list_num,
1962 atomic_read(&cmd->t_task_cdbs_left),
1963 atomic_read(&cmd->t_task_cdbs_sent),
1964 atomic_read(&cmd->t_task_cdbs_ex_left),
1965 atomic_read(&cmd->t_transport_active),
1966 atomic_read(&cmd->t_transport_stop),
1967 atomic_read(&cmd->t_transport_sent));
1969 transport_stop_all_task_timers(cmd);
1971 if (dev)
1972 atomic_inc(&dev->depth_left);
1974 * For SAM Task Attribute emulation for failed struct se_cmd
1976 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1977 transport_complete_task_attr(cmd);
1979 if (complete) {
1980 transport_direct_request_timeout(cmd);
1981 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1984 switch (cmd->transport_error_status) {
1985 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1986 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1987 break;
1988 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1989 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1990 break;
1991 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1992 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1993 break;
1994 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1995 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1996 break;
1997 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1998 if (!sc)
1999 transport_new_cmd_failure(cmd);
2001 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2002 * we force this session to fall back to session
2003 * recovery.
2005 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
2006 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
2008 goto check_stop;
2009 case PYX_TRANSPORT_LU_COMM_FAILURE:
2010 case PYX_TRANSPORT_ILLEGAL_REQUEST:
2011 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2012 break;
2013 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
2014 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
2015 break;
2016 case PYX_TRANSPORT_WRITE_PROTECTED:
2017 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
2018 break;
2019 case PYX_TRANSPORT_RESERVATION_CONFLICT:
2021 * No SENSE Data payload for this case, set SCSI Status
2022 * and queue the response to $FABRIC_MOD.
2024 * Uses linux/include/scsi/scsi.h SAM status codes defs
2026 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2028 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2029 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2030 * CONFLICT STATUS.
2032 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2034 if (cmd->se_sess &&
2035 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2036 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2037 cmd->orig_fe_lun, 0x2C,
2038 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2040 ret = cmd->se_tfo->queue_status(cmd);
2041 if (ret == -EAGAIN)
2042 goto queue_full;
2043 goto check_stop;
2044 case PYX_TRANSPORT_USE_SENSE_REASON:
2046 * struct se_cmd->scsi_sense_reason already set
2048 break;
2049 default:
2050 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2051 cmd->t_task_cdb[0],
2052 cmd->transport_error_status);
2053 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2054 break;
2057 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
2058 * make the call to transport_send_check_condition_and_sense()
2059 * directly. Otherwise expect the fabric to make the call to
2060 * transport_send_check_condition_and_sense() after handling
2061 * possible unsoliticied write data payloads.
2063 if (!sc && !cmd->se_tfo->new_cmd_map)
2064 transport_new_cmd_failure(cmd);
2065 else {
2066 ret = transport_send_check_condition_and_sense(cmd,
2067 cmd->scsi_sense_reason, 0);
2068 if (ret == -EAGAIN)
2069 goto queue_full;
2072 check_stop:
2073 transport_lun_remove_cmd(cmd);
2074 if (!transport_cmd_check_stop_to_fabric(cmd))
2076 return;
2078 queue_full:
2079 cmd->t_state = TRANSPORT_COMPLETE_OK;
2080 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
2083 static void transport_direct_request_timeout(struct se_cmd *cmd)
2085 unsigned long flags;
2087 spin_lock_irqsave(&cmd->t_state_lock, flags);
2088 if (!atomic_read(&cmd->t_transport_timeout)) {
2089 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2090 return;
2092 if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
2093 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094 return;
2097 atomic_sub(atomic_read(&cmd->t_transport_timeout),
2098 &cmd->t_se_count);
2099 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2102 static void transport_generic_request_timeout(struct se_cmd *cmd)
2104 unsigned long flags;
2107 * Reset cmd->t_se_count to allow transport_generic_remove()
2108 * to allow last call to free memory resources.
2110 spin_lock_irqsave(&cmd->t_state_lock, flags);
2111 if (atomic_read(&cmd->t_transport_timeout) > 1) {
2112 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2114 atomic_sub(tmp, &cmd->t_se_count);
2116 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2118 transport_generic_remove(cmd, 0);
2121 static inline u32 transport_lba_21(unsigned char *cdb)
2123 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2126 static inline u32 transport_lba_32(unsigned char *cdb)
2128 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2131 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2133 unsigned int __v1, __v2;
2135 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2136 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2138 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2142 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2144 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2146 unsigned int __v1, __v2;
2148 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2149 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2151 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2154 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2156 unsigned long flags;
2158 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2159 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2160 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2164 * Called from interrupt context.
2166 static void transport_task_timeout_handler(unsigned long data)
2168 struct se_task *task = (struct se_task *)data;
2169 struct se_cmd *cmd = task->task_se_cmd;
2170 unsigned long flags;
2172 pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2174 spin_lock_irqsave(&cmd->t_state_lock, flags);
2175 if (task->task_flags & TF_STOP) {
2176 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2177 return;
2179 task->task_flags &= ~TF_RUNNING;
2182 * Determine if transport_complete_task() has already been called.
2184 if (!atomic_read(&task->task_active)) {
2185 pr_debug("transport task: %p cmd: %p timeout task_active"
2186 " == 0\n", task, cmd);
2187 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188 return;
2191 atomic_inc(&cmd->t_se_count);
2192 atomic_inc(&cmd->t_transport_timeout);
2193 cmd->t_tasks_failed = 1;
2195 atomic_set(&task->task_timeout, 1);
2196 task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2197 task->task_scsi_status = 1;
2199 if (atomic_read(&task->task_stop)) {
2200 pr_debug("transport task: %p cmd: %p timeout task_stop"
2201 " == 1\n", task, cmd);
2202 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2203 complete(&task->task_stop_comp);
2204 return;
2207 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2208 pr_debug("transport task: %p cmd: %p timeout non zero"
2209 " t_task_cdbs_left\n", task, cmd);
2210 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2211 return;
2213 pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2214 task, cmd);
2216 cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2217 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2219 transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2223 * Called with cmd->t_state_lock held.
2225 static void transport_start_task_timer(struct se_task *task)
2227 struct se_device *dev = task->se_dev;
2228 int timeout;
2230 if (task->task_flags & TF_RUNNING)
2231 return;
2233 * If the task_timeout is disabled, exit now.
2235 timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2236 if (!timeout)
2237 return;
2239 init_timer(&task->task_timer);
2240 task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2241 task->task_timer.data = (unsigned long) task;
2242 task->task_timer.function = transport_task_timeout_handler;
2244 task->task_flags |= TF_RUNNING;
2245 add_timer(&task->task_timer);
2246 #if 0
2247 pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2248 " %d\n", task->task_se_cmd, task, timeout);
2249 #endif
2253 * Called with spin_lock_irq(&cmd->t_state_lock) held.
2255 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2257 struct se_cmd *cmd = task->task_se_cmd;
2259 if (!task->task_flags & TF_RUNNING)
2260 return;
2262 task->task_flags |= TF_STOP;
2263 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2265 del_timer_sync(&task->task_timer);
2267 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2268 task->task_flags &= ~TF_RUNNING;
2269 task->task_flags &= ~TF_STOP;
2272 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2274 struct se_task *task = NULL, *task_tmp;
2275 unsigned long flags;
2277 spin_lock_irqsave(&cmd->t_state_lock, flags);
2278 list_for_each_entry_safe(task, task_tmp,
2279 &cmd->t_task_list, t_list)
2280 __transport_stop_task_timer(task, &flags);
2281 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2284 static inline int transport_tcq_window_closed(struct se_device *dev)
2286 if (dev->dev_tcq_window_closed++ <
2287 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2288 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2289 } else
2290 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2292 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2293 return 0;
2297 * Called from Fabric Module context from transport_execute_tasks()
2299 * The return of this function determins if the tasks from struct se_cmd
2300 * get added to the execution queue in transport_execute_tasks(),
2301 * or are added to the delayed or ordered lists here.
2303 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2305 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2306 return 1;
2308 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2309 * to allow the passed struct se_cmd list of tasks to the front of the list.
2311 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2312 atomic_inc(&cmd->se_dev->dev_hoq_count);
2313 smp_mb__after_atomic_inc();
2314 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2315 " 0x%02x, se_ordered_id: %u\n",
2316 cmd->t_task_cdb[0],
2317 cmd->se_ordered_id);
2318 return 1;
2319 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2320 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2321 list_add_tail(&cmd->se_ordered_node,
2322 &cmd->se_dev->ordered_cmd_list);
2323 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2325 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2326 smp_mb__after_atomic_inc();
2328 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2329 " list, se_ordered_id: %u\n",
2330 cmd->t_task_cdb[0],
2331 cmd->se_ordered_id);
2333 * Add ORDERED command to tail of execution queue if
2334 * no other older commands exist that need to be
2335 * completed first.
2337 if (!atomic_read(&cmd->se_dev->simple_cmds))
2338 return 1;
2339 } else {
2341 * For SIMPLE and UNTAGGED Task Attribute commands
2343 atomic_inc(&cmd->se_dev->simple_cmds);
2344 smp_mb__after_atomic_inc();
2347 * Otherwise if one or more outstanding ORDERED task attribute exist,
2348 * add the dormant task(s) built for the passed struct se_cmd to the
2349 * execution queue and become in Active state for this struct se_device.
2351 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2353 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2354 * will be drained upon completion of HEAD_OF_QUEUE task.
2356 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2357 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2358 list_add_tail(&cmd->se_delayed_node,
2359 &cmd->se_dev->delayed_cmd_list);
2360 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2362 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2363 " delayed CMD list, se_ordered_id: %u\n",
2364 cmd->t_task_cdb[0], cmd->sam_task_attr,
2365 cmd->se_ordered_id);
2367 * Return zero to let transport_execute_tasks() know
2368 * not to add the delayed tasks to the execution list.
2370 return 0;
2373 * Otherwise, no ORDERED task attributes exist..
2375 return 1;
2379 * Called from fabric module context in transport_generic_new_cmd() and
2380 * transport_generic_process_write()
2382 static int transport_execute_tasks(struct se_cmd *cmd)
2384 int add_tasks;
2386 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2387 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2388 transport_generic_request_failure(cmd, NULL, 0, 1);
2389 return 0;
2393 * Call transport_cmd_check_stop() to see if a fabric exception
2394 * has occurred that prevents execution.
2396 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2398 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2399 * attribute for the tasks of the received struct se_cmd CDB
2401 add_tasks = transport_execute_task_attr(cmd);
2402 if (!add_tasks)
2403 goto execute_tasks;
2405 * This calls transport_add_tasks_from_cmd() to handle
2406 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2407 * (if enabled) in __transport_add_task_to_execute_queue() and
2408 * transport_add_task_check_sam_attr().
2410 transport_add_tasks_from_cmd(cmd);
2413 * Kick the execution queue for the cmd associated struct se_device
2414 * storage object.
2416 execute_tasks:
2417 __transport_execute_tasks(cmd->se_dev);
2418 return 0;
2422 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2423 * from struct se_device->execute_task_list and
2425 * Called from transport_processing_thread()
2427 static int __transport_execute_tasks(struct se_device *dev)
2429 int error;
2430 struct se_cmd *cmd = NULL;
2431 struct se_task *task = NULL;
2432 unsigned long flags;
2435 * Check if there is enough room in the device and HBA queue to send
2436 * struct se_tasks to the selected transport.
2438 check_depth:
2439 if (!atomic_read(&dev->depth_left))
2440 return transport_tcq_window_closed(dev);
2442 dev->dev_tcq_window_closed = 0;
2444 spin_lock_irq(&dev->execute_task_lock);
2445 if (list_empty(&dev->execute_task_list)) {
2446 spin_unlock_irq(&dev->execute_task_lock);
2447 return 0;
2449 task = list_first_entry(&dev->execute_task_list,
2450 struct se_task, t_execute_list);
2451 list_del(&task->t_execute_list);
2452 atomic_set(&task->task_execute_queue, 0);
2453 atomic_dec(&dev->execute_tasks);
2454 spin_unlock_irq(&dev->execute_task_lock);
2456 atomic_dec(&dev->depth_left);
2458 cmd = task->task_se_cmd;
2460 spin_lock_irqsave(&cmd->t_state_lock, flags);
2461 atomic_set(&task->task_active, 1);
2462 atomic_set(&task->task_sent, 1);
2463 atomic_inc(&cmd->t_task_cdbs_sent);
2465 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2466 cmd->t_task_list_num)
2467 atomic_set(&cmd->transport_sent, 1);
2469 transport_start_task_timer(task);
2470 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2472 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2473 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2474 * struct se_subsystem_api->do_task() caller below.
2476 if (cmd->transport_emulate_cdb) {
2477 error = cmd->transport_emulate_cdb(cmd);
2478 if (error != 0) {
2479 cmd->transport_error_status = error;
2480 atomic_set(&task->task_active, 0);
2481 atomic_set(&cmd->transport_sent, 0);
2482 transport_stop_tasks_for_cmd(cmd);
2483 transport_generic_request_failure(cmd, dev, 0, 1);
2484 goto check_depth;
2487 * Handle the successful completion for transport_emulate_cdb()
2488 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2489 * Otherwise the caller is expected to complete the task with
2490 * proper status.
2492 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2493 cmd->scsi_status = SAM_STAT_GOOD;
2494 task->task_scsi_status = GOOD;
2495 transport_complete_task(task, 1);
2497 } else {
2499 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2500 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2501 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2502 * LUN emulation code.
2504 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2505 * call ->do_task() directly and let the underlying TCM subsystem plugin
2506 * code handle the CDB emulation.
2508 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2509 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2510 error = transport_emulate_control_cdb(task);
2511 else
2512 error = dev->transport->do_task(task);
2514 if (error != 0) {
2515 cmd->transport_error_status = error;
2516 atomic_set(&task->task_active, 0);
2517 atomic_set(&cmd->transport_sent, 0);
2518 transport_stop_tasks_for_cmd(cmd);
2519 transport_generic_request_failure(cmd, dev, 0, 1);
2523 goto check_depth;
2525 return 0;
2528 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2530 unsigned long flags;
2532 * Any unsolicited data will get dumped for failed command inside of
2533 * the fabric plugin
2535 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2536 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2537 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2538 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2541 static void transport_nop_wait_for_tasks(struct se_cmd *, int, int);
2543 static inline u32 transport_get_sectors_6(
2544 unsigned char *cdb,
2545 struct se_cmd *cmd,
2546 int *ret)
2548 struct se_device *dev = cmd->se_dev;
2551 * Assume TYPE_DISK for non struct se_device objects.
2552 * Use 8-bit sector value.
2554 if (!dev)
2555 goto type_disk;
2558 * Use 24-bit allocation length for TYPE_TAPE.
2560 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2561 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2564 * Everything else assume TYPE_DISK Sector CDB location.
2565 * Use 8-bit sector value.
2567 type_disk:
2568 return (u32)cdb[4];
2571 static inline u32 transport_get_sectors_10(
2572 unsigned char *cdb,
2573 struct se_cmd *cmd,
2574 int *ret)
2576 struct se_device *dev = cmd->se_dev;
2579 * Assume TYPE_DISK for non struct se_device objects.
2580 * Use 16-bit sector value.
2582 if (!dev)
2583 goto type_disk;
2586 * XXX_10 is not defined in SSC, throw an exception
2588 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2589 *ret = -EINVAL;
2590 return 0;
2594 * Everything else assume TYPE_DISK Sector CDB location.
2595 * Use 16-bit sector value.
2597 type_disk:
2598 return (u32)(cdb[7] << 8) + cdb[8];
2601 static inline u32 transport_get_sectors_12(
2602 unsigned char *cdb,
2603 struct se_cmd *cmd,
2604 int *ret)
2606 struct se_device *dev = cmd->se_dev;
2609 * Assume TYPE_DISK for non struct se_device objects.
2610 * Use 32-bit sector value.
2612 if (!dev)
2613 goto type_disk;
2616 * XXX_12 is not defined in SSC, throw an exception
2618 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2619 *ret = -EINVAL;
2620 return 0;
2624 * Everything else assume TYPE_DISK Sector CDB location.
2625 * Use 32-bit sector value.
2627 type_disk:
2628 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2631 static inline u32 transport_get_sectors_16(
2632 unsigned char *cdb,
2633 struct se_cmd *cmd,
2634 int *ret)
2636 struct se_device *dev = cmd->se_dev;
2639 * Assume TYPE_DISK for non struct se_device objects.
2640 * Use 32-bit sector value.
2642 if (!dev)
2643 goto type_disk;
2646 * Use 24-bit allocation length for TYPE_TAPE.
2648 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2649 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2651 type_disk:
2652 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2653 (cdb[12] << 8) + cdb[13];
2657 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2659 static inline u32 transport_get_sectors_32(
2660 unsigned char *cdb,
2661 struct se_cmd *cmd,
2662 int *ret)
2665 * Assume TYPE_DISK for non struct se_device objects.
2666 * Use 32-bit sector value.
2668 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2669 (cdb[30] << 8) + cdb[31];
2673 static inline u32 transport_get_size(
2674 u32 sectors,
2675 unsigned char *cdb,
2676 struct se_cmd *cmd)
2678 struct se_device *dev = cmd->se_dev;
2680 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2681 if (cdb[1] & 1) { /* sectors */
2682 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2683 } else /* bytes */
2684 return sectors;
2686 #if 0
2687 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2688 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2689 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2690 dev->transport->name);
2691 #endif
2692 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2695 static void transport_xor_callback(struct se_cmd *cmd)
2697 unsigned char *buf, *addr;
2698 struct scatterlist *sg;
2699 unsigned int offset;
2700 int i;
2701 int count;
2703 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2705 * 1) read the specified logical block(s);
2706 * 2) transfer logical blocks from the data-out buffer;
2707 * 3) XOR the logical blocks transferred from the data-out buffer with
2708 * the logical blocks read, storing the resulting XOR data in a buffer;
2709 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2710 * blocks transferred from the data-out buffer; and
2711 * 5) transfer the resulting XOR data to the data-in buffer.
2713 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2714 if (!buf) {
2715 pr_err("Unable to allocate xor_callback buf\n");
2716 return;
2719 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2720 * into the locally allocated *buf
2722 sg_copy_to_buffer(cmd->t_data_sg,
2723 cmd->t_data_nents,
2724 buf,
2725 cmd->data_length);
2728 * Now perform the XOR against the BIDI read memory located at
2729 * cmd->t_mem_bidi_list
2732 offset = 0;
2733 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2734 addr = kmap_atomic(sg_page(sg), KM_USER0);
2735 if (!addr)
2736 goto out;
2738 for (i = 0; i < sg->length; i++)
2739 *(addr + sg->offset + i) ^= *(buf + offset + i);
2741 offset += sg->length;
2742 kunmap_atomic(addr, KM_USER0);
2745 out:
2746 kfree(buf);
2750 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2752 static int transport_get_sense_data(struct se_cmd *cmd)
2754 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2755 struct se_device *dev;
2756 struct se_task *task = NULL, *task_tmp;
2757 unsigned long flags;
2758 u32 offset = 0;
2760 WARN_ON(!cmd->se_lun);
2762 spin_lock_irqsave(&cmd->t_state_lock, flags);
2763 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2764 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2765 return 0;
2768 list_for_each_entry_safe(task, task_tmp,
2769 &cmd->t_task_list, t_list) {
2771 if (!task->task_sense)
2772 continue;
2774 dev = task->se_dev;
2775 if (!dev)
2776 continue;
2778 if (!dev->transport->get_sense_buffer) {
2779 pr_err("dev->transport->get_sense_buffer"
2780 " is NULL\n");
2781 continue;
2784 sense_buffer = dev->transport->get_sense_buffer(task);
2785 if (!sense_buffer) {
2786 pr_err("ITT[0x%08x]_TASK[%d]: Unable to locate"
2787 " sense buffer for task with sense\n",
2788 cmd->se_tfo->get_task_tag(cmd), task->task_no);
2789 continue;
2791 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2793 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2794 TRANSPORT_SENSE_BUFFER);
2796 memcpy(&buffer[offset], sense_buffer,
2797 TRANSPORT_SENSE_BUFFER);
2798 cmd->scsi_status = task->task_scsi_status;
2799 /* Automatically padded */
2800 cmd->scsi_sense_length =
2801 (TRANSPORT_SENSE_BUFFER + offset);
2803 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2804 " and sense\n",
2805 dev->se_hba->hba_id, dev->transport->name,
2806 cmd->scsi_status);
2807 return 0;
2809 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2811 return -1;
2814 static int
2815 transport_handle_reservation_conflict(struct se_cmd *cmd)
2817 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2818 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2819 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2820 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2822 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2823 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2824 * CONFLICT STATUS.
2826 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2828 if (cmd->se_sess &&
2829 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2830 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2831 cmd->orig_fe_lun, 0x2C,
2832 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2833 return -EINVAL;
2836 static inline long long transport_dev_end_lba(struct se_device *dev)
2838 return dev->transport->get_blocks(dev) + 1;
2841 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2843 struct se_device *dev = cmd->se_dev;
2844 u32 sectors;
2846 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2847 return 0;
2849 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2851 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2852 pr_err("LBA: %llu Sectors: %u exceeds"
2853 " transport_dev_end_lba(): %llu\n",
2854 cmd->t_task_lba, sectors,
2855 transport_dev_end_lba(dev));
2856 return -EINVAL;
2859 return 0;
2862 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2865 * Determine if the received WRITE_SAME is used to for direct
2866 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2867 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2868 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2870 int passthrough = (dev->transport->transport_type ==
2871 TRANSPORT_PLUGIN_PHBA_PDEV);
2873 if (!passthrough) {
2874 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2875 pr_err("WRITE_SAME PBDATA and LBDATA"
2876 " bits not supported for Block Discard"
2877 " Emulation\n");
2878 return -ENOSYS;
2881 * Currently for the emulated case we only accept
2882 * tpws with the UNMAP=1 bit set.
2884 if (!(flags[0] & 0x08)) {
2885 pr_err("WRITE_SAME w/o UNMAP bit not"
2886 " supported for Block Discard Emulation\n");
2887 return -ENOSYS;
2891 return 0;
2894 /* transport_generic_cmd_sequencer():
2896 * Generic Command Sequencer that should work for most DAS transport
2897 * drivers.
2899 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2900 * RX Thread.
2902 * FIXME: Need to support other SCSI OPCODES where as well.
2904 static int transport_generic_cmd_sequencer(
2905 struct se_cmd *cmd,
2906 unsigned char *cdb)
2908 struct se_device *dev = cmd->se_dev;
2909 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2910 int ret = 0, sector_ret = 0, passthrough;
2911 u32 sectors = 0, size = 0, pr_reg_type = 0;
2912 u16 service_action;
2913 u8 alua_ascq = 0;
2915 * Check for an existing UNIT ATTENTION condition
2917 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2918 cmd->transport_wait_for_tasks =
2919 &transport_nop_wait_for_tasks;
2920 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2921 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2922 return -EINVAL;
2925 * Check status of Asymmetric Logical Unit Assignment port
2927 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2928 if (ret != 0) {
2929 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
2931 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2932 * The ALUA additional sense code qualifier (ASCQ) is determined
2933 * by the ALUA primary or secondary access state..
2935 if (ret > 0) {
2936 #if 0
2937 pr_debug("[%s]: ALUA TG Port not available,"
2938 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2939 cmd->se_tfo->get_fabric_name(), alua_ascq);
2940 #endif
2941 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2942 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2943 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2944 return -EINVAL;
2946 goto out_invalid_cdb_field;
2949 * Check status for SPC-3 Persistent Reservations
2951 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2952 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2953 cmd, cdb, pr_reg_type) != 0)
2954 return transport_handle_reservation_conflict(cmd);
2956 * This means the CDB is allowed for the SCSI Initiator port
2957 * when said port is *NOT* holding the legacy SPC-2 or
2958 * SPC-3 Persistent Reservation.
2962 switch (cdb[0]) {
2963 case READ_6:
2964 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2965 if (sector_ret)
2966 goto out_unsupported_cdb;
2967 size = transport_get_size(sectors, cdb, cmd);
2968 cmd->transport_split_cdb = &split_cdb_XX_6;
2969 cmd->t_task_lba = transport_lba_21(cdb);
2970 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2971 break;
2972 case READ_10:
2973 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2974 if (sector_ret)
2975 goto out_unsupported_cdb;
2976 size = transport_get_size(sectors, cdb, cmd);
2977 cmd->transport_split_cdb = &split_cdb_XX_10;
2978 cmd->t_task_lba = transport_lba_32(cdb);
2979 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2980 break;
2981 case READ_12:
2982 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2983 if (sector_ret)
2984 goto out_unsupported_cdb;
2985 size = transport_get_size(sectors, cdb, cmd);
2986 cmd->transport_split_cdb = &split_cdb_XX_12;
2987 cmd->t_task_lba = transport_lba_32(cdb);
2988 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2989 break;
2990 case READ_16:
2991 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2992 if (sector_ret)
2993 goto out_unsupported_cdb;
2994 size = transport_get_size(sectors, cdb, cmd);
2995 cmd->transport_split_cdb = &split_cdb_XX_16;
2996 cmd->t_task_lba = transport_lba_64(cdb);
2997 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2998 break;
2999 case WRITE_6:
3000 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
3001 if (sector_ret)
3002 goto out_unsupported_cdb;
3003 size = transport_get_size(sectors, cdb, cmd);
3004 cmd->transport_split_cdb = &split_cdb_XX_6;
3005 cmd->t_task_lba = transport_lba_21(cdb);
3006 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3007 break;
3008 case WRITE_10:
3009 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3010 if (sector_ret)
3011 goto out_unsupported_cdb;
3012 size = transport_get_size(sectors, cdb, cmd);
3013 cmd->transport_split_cdb = &split_cdb_XX_10;
3014 cmd->t_task_lba = transport_lba_32(cdb);
3015 cmd->t_tasks_fua = (cdb[1] & 0x8);
3016 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3017 break;
3018 case WRITE_12:
3019 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
3020 if (sector_ret)
3021 goto out_unsupported_cdb;
3022 size = transport_get_size(sectors, cdb, cmd);
3023 cmd->transport_split_cdb = &split_cdb_XX_12;
3024 cmd->t_task_lba = transport_lba_32(cdb);
3025 cmd->t_tasks_fua = (cdb[1] & 0x8);
3026 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3027 break;
3028 case WRITE_16:
3029 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3030 if (sector_ret)
3031 goto out_unsupported_cdb;
3032 size = transport_get_size(sectors, cdb, cmd);
3033 cmd->transport_split_cdb = &split_cdb_XX_16;
3034 cmd->t_task_lba = transport_lba_64(cdb);
3035 cmd->t_tasks_fua = (cdb[1] & 0x8);
3036 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3037 break;
3038 case XDWRITEREAD_10:
3039 if ((cmd->data_direction != DMA_TO_DEVICE) ||
3040 !(cmd->t_tasks_bidi))
3041 goto out_invalid_cdb_field;
3042 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3043 if (sector_ret)
3044 goto out_unsupported_cdb;
3045 size = transport_get_size(sectors, cdb, cmd);
3046 cmd->transport_split_cdb = &split_cdb_XX_10;
3047 cmd->t_task_lba = transport_lba_32(cdb);
3048 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3049 passthrough = (dev->transport->transport_type ==
3050 TRANSPORT_PLUGIN_PHBA_PDEV);
3052 * Skip the remaining assignments for TCM/PSCSI passthrough
3054 if (passthrough)
3055 break;
3057 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3059 cmd->transport_complete_callback = &transport_xor_callback;
3060 cmd->t_tasks_fua = (cdb[1] & 0x8);
3061 break;
3062 case VARIABLE_LENGTH_CMD:
3063 service_action = get_unaligned_be16(&cdb[8]);
3065 * Determine if this is TCM/PSCSI device and we should disable
3066 * internal emulation for this CDB.
3068 passthrough = (dev->transport->transport_type ==
3069 TRANSPORT_PLUGIN_PHBA_PDEV);
3071 switch (service_action) {
3072 case XDWRITEREAD_32:
3073 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3074 if (sector_ret)
3075 goto out_unsupported_cdb;
3076 size = transport_get_size(sectors, cdb, cmd);
3078 * Use WRITE_32 and READ_32 opcodes for the emulated
3079 * XDWRITE_READ_32 logic.
3081 cmd->transport_split_cdb = &split_cdb_XX_32;
3082 cmd->t_task_lba = transport_lba_64_ext(cdb);
3083 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
3086 * Skip the remaining assignments for TCM/PSCSI passthrough
3088 if (passthrough)
3089 break;
3092 * Setup BIDI XOR callback to be run during
3093 * transport_generic_complete_ok()
3095 cmd->transport_complete_callback = &transport_xor_callback;
3096 cmd->t_tasks_fua = (cdb[10] & 0x8);
3097 break;
3098 case WRITE_SAME_32:
3099 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
3100 if (sector_ret)
3101 goto out_unsupported_cdb;
3103 if (sectors)
3104 size = transport_get_size(1, cdb, cmd);
3105 else {
3106 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
3107 " supported\n");
3108 goto out_invalid_cdb_field;
3111 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
3112 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3114 if (target_check_write_same_discard(&cdb[10], dev) < 0)
3115 goto out_invalid_cdb_field;
3117 break;
3118 default:
3119 pr_err("VARIABLE_LENGTH_CMD service action"
3120 " 0x%04x not supported\n", service_action);
3121 goto out_unsupported_cdb;
3123 break;
3124 case MAINTENANCE_IN:
3125 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3126 /* MAINTENANCE_IN from SCC-2 */
3128 * Check for emulated MI_REPORT_TARGET_PGS.
3130 if (cdb[1] == MI_REPORT_TARGET_PGS) {
3131 cmd->transport_emulate_cdb =
3132 (su_dev->t10_alua.alua_type ==
3133 SPC3_ALUA_EMULATED) ?
3134 core_emulate_report_target_port_groups :
3135 NULL;
3137 size = (cdb[6] << 24) | (cdb[7] << 16) |
3138 (cdb[8] << 8) | cdb[9];
3139 } else {
3140 /* GPCMD_SEND_KEY from multi media commands */
3141 size = (cdb[8] << 8) + cdb[9];
3143 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3144 break;
3145 case MODE_SELECT:
3146 size = cdb[4];
3147 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3148 break;
3149 case MODE_SELECT_10:
3150 size = (cdb[7] << 8) + cdb[8];
3151 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3152 break;
3153 case MODE_SENSE:
3154 size = cdb[4];
3155 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3156 break;
3157 case MODE_SENSE_10:
3158 case GPCMD_READ_BUFFER_CAPACITY:
3159 case GPCMD_SEND_OPC:
3160 case LOG_SELECT:
3161 case LOG_SENSE:
3162 size = (cdb[7] << 8) + cdb[8];
3163 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3164 break;
3165 case READ_BLOCK_LIMITS:
3166 size = READ_BLOCK_LEN;
3167 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3168 break;
3169 case GPCMD_GET_CONFIGURATION:
3170 case GPCMD_READ_FORMAT_CAPACITIES:
3171 case GPCMD_READ_DISC_INFO:
3172 case GPCMD_READ_TRACK_RZONE_INFO:
3173 size = (cdb[7] << 8) + cdb[8];
3174 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3175 break;
3176 case PERSISTENT_RESERVE_IN:
3177 case PERSISTENT_RESERVE_OUT:
3178 cmd->transport_emulate_cdb =
3179 (su_dev->t10_pr.res_type ==
3180 SPC3_PERSISTENT_RESERVATIONS) ?
3181 core_scsi3_emulate_pr : NULL;
3182 size = (cdb[7] << 8) + cdb[8];
3183 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3184 break;
3185 case GPCMD_MECHANISM_STATUS:
3186 case GPCMD_READ_DVD_STRUCTURE:
3187 size = (cdb[8] << 8) + cdb[9];
3188 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3189 break;
3190 case READ_POSITION:
3191 size = READ_POSITION_LEN;
3192 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3193 break;
3194 case MAINTENANCE_OUT:
3195 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3196 /* MAINTENANCE_OUT from SCC-2
3198 * Check for emulated MO_SET_TARGET_PGS.
3200 if (cdb[1] == MO_SET_TARGET_PGS) {
3201 cmd->transport_emulate_cdb =
3202 (su_dev->t10_alua.alua_type ==
3203 SPC3_ALUA_EMULATED) ?
3204 core_emulate_set_target_port_groups :
3205 NULL;
3208 size = (cdb[6] << 24) | (cdb[7] << 16) |
3209 (cdb[8] << 8) | cdb[9];
3210 } else {
3211 /* GPCMD_REPORT_KEY from multi media commands */
3212 size = (cdb[8] << 8) + cdb[9];
3214 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3215 break;
3216 case INQUIRY:
3217 size = (cdb[3] << 8) + cdb[4];
3219 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3220 * See spc4r17 section 5.3
3222 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3223 cmd->sam_task_attr = MSG_HEAD_TAG;
3224 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3225 break;
3226 case READ_BUFFER:
3227 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3228 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3229 break;
3230 case READ_CAPACITY:
3231 size = READ_CAP_LEN;
3232 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3233 break;
3234 case READ_MEDIA_SERIAL_NUMBER:
3235 case SECURITY_PROTOCOL_IN:
3236 case SECURITY_PROTOCOL_OUT:
3237 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3238 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3239 break;
3240 case SERVICE_ACTION_IN:
3241 case ACCESS_CONTROL_IN:
3242 case ACCESS_CONTROL_OUT:
3243 case EXTENDED_COPY:
3244 case READ_ATTRIBUTE:
3245 case RECEIVE_COPY_RESULTS:
3246 case WRITE_ATTRIBUTE:
3247 size = (cdb[10] << 24) | (cdb[11] << 16) |
3248 (cdb[12] << 8) | cdb[13];
3249 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3250 break;
3251 case RECEIVE_DIAGNOSTIC:
3252 case SEND_DIAGNOSTIC:
3253 size = (cdb[3] << 8) | cdb[4];
3254 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3255 break;
3256 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3257 #if 0
3258 case GPCMD_READ_CD:
3259 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3260 size = (2336 * sectors);
3261 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3262 break;
3263 #endif
3264 case READ_TOC:
3265 size = cdb[8];
3266 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3267 break;
3268 case REQUEST_SENSE:
3269 size = cdb[4];
3270 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3271 break;
3272 case READ_ELEMENT_STATUS:
3273 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3274 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3275 break;
3276 case WRITE_BUFFER:
3277 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3278 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3279 break;
3280 case RESERVE:
3281 case RESERVE_10:
3283 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3284 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3286 if (cdb[0] == RESERVE_10)
3287 size = (cdb[7] << 8) | cdb[8];
3288 else
3289 size = cmd->data_length;
3292 * Setup the legacy emulated handler for SPC-2 and
3293 * >= SPC-3 compatible reservation handling (CRH=1)
3294 * Otherwise, we assume the underlying SCSI logic is
3295 * is running in SPC_PASSTHROUGH, and wants reservations
3296 * emulation disabled.
3298 cmd->transport_emulate_cdb =
3299 (su_dev->t10_pr.res_type !=
3300 SPC_PASSTHROUGH) ?
3301 core_scsi2_emulate_crh : NULL;
3302 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3303 break;
3304 case RELEASE:
3305 case RELEASE_10:
3307 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3308 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3310 if (cdb[0] == RELEASE_10)
3311 size = (cdb[7] << 8) | cdb[8];
3312 else
3313 size = cmd->data_length;
3315 cmd->transport_emulate_cdb =
3316 (su_dev->t10_pr.res_type !=
3317 SPC_PASSTHROUGH) ?
3318 core_scsi2_emulate_crh : NULL;
3319 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3320 break;
3321 case SYNCHRONIZE_CACHE:
3322 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3324 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3326 if (cdb[0] == SYNCHRONIZE_CACHE) {
3327 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3328 cmd->t_task_lba = transport_lba_32(cdb);
3329 } else {
3330 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3331 cmd->t_task_lba = transport_lba_64(cdb);
3333 if (sector_ret)
3334 goto out_unsupported_cdb;
3336 size = transport_get_size(sectors, cdb, cmd);
3337 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3340 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3342 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3343 break;
3345 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3346 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3348 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3350 * Check to ensure that LBA + Range does not exceed past end of
3351 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3353 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3354 if (transport_cmd_get_valid_sectors(cmd) < 0)
3355 goto out_invalid_cdb_field;
3357 break;
3358 case UNMAP:
3359 size = get_unaligned_be16(&cdb[7]);
3360 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3361 break;
3362 case WRITE_SAME_16:
3363 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3364 if (sector_ret)
3365 goto out_unsupported_cdb;
3367 if (sectors)
3368 size = transport_get_size(1, cdb, cmd);
3369 else {
3370 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3371 goto out_invalid_cdb_field;
3374 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3375 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3377 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3378 goto out_invalid_cdb_field;
3379 break;
3380 case WRITE_SAME:
3381 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3382 if (sector_ret)
3383 goto out_unsupported_cdb;
3385 if (sectors)
3386 size = transport_get_size(1, cdb, cmd);
3387 else {
3388 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3389 goto out_invalid_cdb_field;
3392 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3393 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3395 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3396 * of byte 1 bit 3 UNMAP instead of original reserved field
3398 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3399 goto out_invalid_cdb_field;
3400 break;
3401 case ALLOW_MEDIUM_REMOVAL:
3402 case GPCMD_CLOSE_TRACK:
3403 case ERASE:
3404 case INITIALIZE_ELEMENT_STATUS:
3405 case GPCMD_LOAD_UNLOAD:
3406 case REZERO_UNIT:
3407 case SEEK_10:
3408 case GPCMD_SET_SPEED:
3409 case SPACE:
3410 case START_STOP:
3411 case TEST_UNIT_READY:
3412 case VERIFY:
3413 case WRITE_FILEMARKS:
3414 case MOVE_MEDIUM:
3415 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3416 break;
3417 case REPORT_LUNS:
3418 cmd->transport_emulate_cdb =
3419 transport_core_report_lun_response;
3420 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3422 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3423 * See spc4r17 section 5.3
3425 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3426 cmd->sam_task_attr = MSG_HEAD_TAG;
3427 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3428 break;
3429 default:
3430 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3431 " 0x%02x, sending CHECK_CONDITION.\n",
3432 cmd->se_tfo->get_fabric_name(), cdb[0]);
3433 cmd->transport_wait_for_tasks = &transport_nop_wait_for_tasks;
3434 goto out_unsupported_cdb;
3437 if (size != cmd->data_length) {
3438 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3439 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3440 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3441 cmd->data_length, size, cdb[0]);
3443 cmd->cmd_spdtl = size;
3445 if (cmd->data_direction == DMA_TO_DEVICE) {
3446 pr_err("Rejecting underflow/overflow"
3447 " WRITE data\n");
3448 goto out_invalid_cdb_field;
3451 * Reject READ_* or WRITE_* with overflow/underflow for
3452 * type SCF_SCSI_DATA_SG_IO_CDB.
3454 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3455 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3456 " CDB on non 512-byte sector setup subsystem"
3457 " plugin: %s\n", dev->transport->name);
3458 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3459 goto out_invalid_cdb_field;
3462 if (size > cmd->data_length) {
3463 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3464 cmd->residual_count = (size - cmd->data_length);
3465 } else {
3466 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3467 cmd->residual_count = (cmd->data_length - size);
3469 cmd->data_length = size;
3472 /* Let's limit control cdbs to a page, for simplicity's sake. */
3473 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3474 size > PAGE_SIZE)
3475 goto out_invalid_cdb_field;
3477 transport_set_supported_SAM_opcode(cmd);
3478 return ret;
3480 out_unsupported_cdb:
3481 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3482 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3483 return -EINVAL;
3484 out_invalid_cdb_field:
3485 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3486 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3487 return -EINVAL;
3491 * Called from transport_generic_complete_ok() and
3492 * transport_generic_request_failure() to determine which dormant/delayed
3493 * and ordered cmds need to have their tasks added to the execution queue.
3495 static void transport_complete_task_attr(struct se_cmd *cmd)
3497 struct se_device *dev = cmd->se_dev;
3498 struct se_cmd *cmd_p, *cmd_tmp;
3499 int new_active_tasks = 0;
3501 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3502 atomic_dec(&dev->simple_cmds);
3503 smp_mb__after_atomic_dec();
3504 dev->dev_cur_ordered_id++;
3505 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3506 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3507 cmd->se_ordered_id);
3508 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3509 atomic_dec(&dev->dev_hoq_count);
3510 smp_mb__after_atomic_dec();
3511 dev->dev_cur_ordered_id++;
3512 pr_debug("Incremented dev_cur_ordered_id: %u for"
3513 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3514 cmd->se_ordered_id);
3515 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3516 spin_lock(&dev->ordered_cmd_lock);
3517 list_del(&cmd->se_ordered_node);
3518 atomic_dec(&dev->dev_ordered_sync);
3519 smp_mb__after_atomic_dec();
3520 spin_unlock(&dev->ordered_cmd_lock);
3522 dev->dev_cur_ordered_id++;
3523 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3524 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3527 * Process all commands up to the last received
3528 * ORDERED task attribute which requires another blocking
3529 * boundary
3531 spin_lock(&dev->delayed_cmd_lock);
3532 list_for_each_entry_safe(cmd_p, cmd_tmp,
3533 &dev->delayed_cmd_list, se_delayed_node) {
3535 list_del(&cmd_p->se_delayed_node);
3536 spin_unlock(&dev->delayed_cmd_lock);
3538 pr_debug("Calling add_tasks() for"
3539 " cmd_p: 0x%02x Task Attr: 0x%02x"
3540 " Dormant -> Active, se_ordered_id: %u\n",
3541 cmd_p->t_task_cdb[0],
3542 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3544 transport_add_tasks_from_cmd(cmd_p);
3545 new_active_tasks++;
3547 spin_lock(&dev->delayed_cmd_lock);
3548 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3549 break;
3551 spin_unlock(&dev->delayed_cmd_lock);
3553 * If new tasks have become active, wake up the transport thread
3554 * to do the processing of the Active tasks.
3556 if (new_active_tasks != 0)
3557 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3560 static int transport_complete_qf(struct se_cmd *cmd)
3562 int ret = 0;
3564 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
3565 return cmd->se_tfo->queue_status(cmd);
3567 switch (cmd->data_direction) {
3568 case DMA_FROM_DEVICE:
3569 ret = cmd->se_tfo->queue_data_in(cmd);
3570 break;
3571 case DMA_TO_DEVICE:
3572 if (cmd->t_bidi_data_sg) {
3573 ret = cmd->se_tfo->queue_data_in(cmd);
3574 if (ret < 0)
3575 return ret;
3577 /* Fall through for DMA_TO_DEVICE */
3578 case DMA_NONE:
3579 ret = cmd->se_tfo->queue_status(cmd);
3580 break;
3581 default:
3582 break;
3585 return ret;
3588 static void transport_handle_queue_full(
3589 struct se_cmd *cmd,
3590 struct se_device *dev,
3591 int (*qf_callback)(struct se_cmd *))
3593 spin_lock_irq(&dev->qf_cmd_lock);
3594 cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3595 cmd->transport_qf_callback = qf_callback;
3596 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3597 atomic_inc(&dev->dev_qf_count);
3598 smp_mb__after_atomic_inc();
3599 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3601 schedule_work(&cmd->se_dev->qf_work_queue);
3604 static void transport_generic_complete_ok(struct se_cmd *cmd)
3606 int reason = 0, ret;
3608 * Check if we need to move delayed/dormant tasks from cmds on the
3609 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3610 * Attribute.
3612 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3613 transport_complete_task_attr(cmd);
3615 * Check to schedule QUEUE_FULL work, or execute an existing
3616 * cmd->transport_qf_callback()
3618 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3619 schedule_work(&cmd->se_dev->qf_work_queue);
3621 if (cmd->transport_qf_callback) {
3622 ret = cmd->transport_qf_callback(cmd);
3623 if (ret < 0)
3624 goto queue_full;
3626 cmd->transport_qf_callback = NULL;
3627 goto done;
3630 * Check if we need to retrieve a sense buffer from
3631 * the struct se_cmd in question.
3633 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3634 if (transport_get_sense_data(cmd) < 0)
3635 reason = TCM_NON_EXISTENT_LUN;
3638 * Only set when an struct se_task->task_scsi_status returned
3639 * a non GOOD status.
3641 if (cmd->scsi_status) {
3642 ret = transport_send_check_condition_and_sense(
3643 cmd, reason, 1);
3644 if (ret == -EAGAIN)
3645 goto queue_full;
3647 transport_lun_remove_cmd(cmd);
3648 transport_cmd_check_stop_to_fabric(cmd);
3649 return;
3653 * Check for a callback, used by amongst other things
3654 * XDWRITE_READ_10 emulation.
3656 if (cmd->transport_complete_callback)
3657 cmd->transport_complete_callback(cmd);
3659 switch (cmd->data_direction) {
3660 case DMA_FROM_DEVICE:
3661 spin_lock(&cmd->se_lun->lun_sep_lock);
3662 if (cmd->se_lun->lun_sep) {
3663 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3664 cmd->data_length;
3666 spin_unlock(&cmd->se_lun->lun_sep_lock);
3668 ret = cmd->se_tfo->queue_data_in(cmd);
3669 if (ret == -EAGAIN)
3670 goto queue_full;
3671 break;
3672 case DMA_TO_DEVICE:
3673 spin_lock(&cmd->se_lun->lun_sep_lock);
3674 if (cmd->se_lun->lun_sep) {
3675 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3676 cmd->data_length;
3678 spin_unlock(&cmd->se_lun->lun_sep_lock);
3680 * Check if we need to send READ payload for BIDI-COMMAND
3682 if (cmd->t_bidi_data_sg) {
3683 spin_lock(&cmd->se_lun->lun_sep_lock);
3684 if (cmd->se_lun->lun_sep) {
3685 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3686 cmd->data_length;
3688 spin_unlock(&cmd->se_lun->lun_sep_lock);
3689 ret = cmd->se_tfo->queue_data_in(cmd);
3690 if (ret == -EAGAIN)
3691 goto queue_full;
3692 break;
3694 /* Fall through for DMA_TO_DEVICE */
3695 case DMA_NONE:
3696 ret = cmd->se_tfo->queue_status(cmd);
3697 if (ret == -EAGAIN)
3698 goto queue_full;
3699 break;
3700 default:
3701 break;
3704 done:
3705 transport_lun_remove_cmd(cmd);
3706 transport_cmd_check_stop_to_fabric(cmd);
3707 return;
3709 queue_full:
3710 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3711 " data_direction: %d\n", cmd, cmd->data_direction);
3712 transport_handle_queue_full(cmd, cmd->se_dev, transport_complete_qf);
3715 static void transport_free_dev_tasks(struct se_cmd *cmd)
3717 struct se_task *task, *task_tmp;
3718 unsigned long flags;
3720 spin_lock_irqsave(&cmd->t_state_lock, flags);
3721 list_for_each_entry_safe(task, task_tmp,
3722 &cmd->t_task_list, t_list) {
3723 if (atomic_read(&task->task_active))
3724 continue;
3726 kfree(task->task_sg_bidi);
3727 kfree(task->task_sg);
3729 list_del(&task->t_list);
3731 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3732 if (task->se_dev)
3733 task->se_dev->transport->free_task(task);
3734 else
3735 pr_err("task[%u] - task->se_dev is NULL\n",
3736 task->task_no);
3737 spin_lock_irqsave(&cmd->t_state_lock, flags);
3739 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3742 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3744 struct scatterlist *sg;
3745 int count;
3747 for_each_sg(sgl, sg, nents, count)
3748 __free_page(sg_page(sg));
3750 kfree(sgl);
3753 static inline void transport_free_pages(struct se_cmd *cmd)
3755 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3756 return;
3758 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3759 cmd->t_data_sg = NULL;
3760 cmd->t_data_nents = 0;
3762 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3763 cmd->t_bidi_data_sg = NULL;
3764 cmd->t_bidi_data_nents = 0;
3767 static inline void transport_release_tasks(struct se_cmd *cmd)
3769 transport_free_dev_tasks(cmd);
3772 static inline int transport_dec_and_check(struct se_cmd *cmd)
3774 unsigned long flags;
3776 spin_lock_irqsave(&cmd->t_state_lock, flags);
3777 if (atomic_read(&cmd->t_fe_count)) {
3778 if (!atomic_dec_and_test(&cmd->t_fe_count)) {
3779 spin_unlock_irqrestore(&cmd->t_state_lock,
3780 flags);
3781 return 1;
3785 if (atomic_read(&cmd->t_se_count)) {
3786 if (!atomic_dec_and_test(&cmd->t_se_count)) {
3787 spin_unlock_irqrestore(&cmd->t_state_lock,
3788 flags);
3789 return 1;
3792 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3794 return 0;
3797 static void transport_release_fe_cmd(struct se_cmd *cmd)
3799 unsigned long flags;
3801 if (transport_dec_and_check(cmd))
3802 return;
3804 spin_lock_irqsave(&cmd->t_state_lock, flags);
3805 if (!atomic_read(&cmd->transport_dev_active)) {
3806 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3807 goto free_pages;
3809 atomic_set(&cmd->transport_dev_active, 0);
3810 transport_all_task_dev_remove_state(cmd);
3811 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3813 transport_release_tasks(cmd);
3814 free_pages:
3815 transport_free_pages(cmd);
3816 transport_free_se_cmd(cmd);
3817 cmd->se_tfo->release_cmd(cmd);
3820 static int
3821 transport_generic_remove(struct se_cmd *cmd, int session_reinstatement)
3823 unsigned long flags;
3825 if (transport_dec_and_check(cmd)) {
3826 if (session_reinstatement) {
3827 spin_lock_irqsave(&cmd->t_state_lock, flags);
3828 transport_all_task_dev_remove_state(cmd);
3829 spin_unlock_irqrestore(&cmd->t_state_lock,
3830 flags);
3832 return 1;
3835 spin_lock_irqsave(&cmd->t_state_lock, flags);
3836 if (!atomic_read(&cmd->transport_dev_active)) {
3837 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3838 goto free_pages;
3840 atomic_set(&cmd->transport_dev_active, 0);
3841 transport_all_task_dev_remove_state(cmd);
3842 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3844 transport_release_tasks(cmd);
3846 free_pages:
3847 transport_free_pages(cmd);
3848 transport_release_cmd(cmd);
3849 return 0;
3853 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3854 * allocating in the core.
3855 * @cmd: Associated se_cmd descriptor
3856 * @mem: SGL style memory for TCM WRITE / READ
3857 * @sg_mem_num: Number of SGL elements
3858 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3859 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3861 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3862 * of parameters.
3864 int transport_generic_map_mem_to_cmd(
3865 struct se_cmd *cmd,
3866 struct scatterlist *sgl,
3867 u32 sgl_count,
3868 struct scatterlist *sgl_bidi,
3869 u32 sgl_bidi_count)
3871 if (!sgl || !sgl_count)
3872 return 0;
3874 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3875 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3877 cmd->t_data_sg = sgl;
3878 cmd->t_data_nents = sgl_count;
3880 if (sgl_bidi && sgl_bidi_count) {
3881 cmd->t_bidi_data_sg = sgl_bidi;
3882 cmd->t_bidi_data_nents = sgl_bidi_count;
3884 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3887 return 0;
3889 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3891 static int transport_new_cmd_obj(struct se_cmd *cmd)
3893 struct se_device *dev = cmd->se_dev;
3894 int set_counts = 1, rc, task_cdbs;
3897 * Setup any BIDI READ tasks and memory from
3898 * cmd->t_mem_bidi_list so the READ struct se_tasks
3899 * are queued first for the non pSCSI passthrough case.
3901 if (cmd->t_bidi_data_sg &&
3902 (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3903 rc = transport_allocate_tasks(cmd,
3904 cmd->t_task_lba,
3905 DMA_FROM_DEVICE,
3906 cmd->t_bidi_data_sg,
3907 cmd->t_bidi_data_nents);
3908 if (rc <= 0) {
3909 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3910 cmd->scsi_sense_reason =
3911 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3912 return -EINVAL;
3914 atomic_inc(&cmd->t_fe_count);
3915 atomic_inc(&cmd->t_se_count);
3916 set_counts = 0;
3919 * Setup the tasks and memory from cmd->t_mem_list
3920 * Note for BIDI transfers this will contain the WRITE payload
3922 task_cdbs = transport_allocate_tasks(cmd,
3923 cmd->t_task_lba,
3924 cmd->data_direction,
3925 cmd->t_data_sg,
3926 cmd->t_data_nents);
3927 if (task_cdbs <= 0) {
3928 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3929 cmd->scsi_sense_reason =
3930 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3931 return -EINVAL;
3934 if (set_counts) {
3935 atomic_inc(&cmd->t_fe_count);
3936 atomic_inc(&cmd->t_se_count);
3939 cmd->t_task_list_num = task_cdbs;
3941 atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3942 atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3943 atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3944 return 0;
3947 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3949 struct scatterlist *sg = cmd->t_data_sg;
3951 BUG_ON(!sg);
3953 * We need to take into account a possible offset here for fabrics like
3954 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3955 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3957 return kmap(sg_page(sg)) + sg->offset;
3959 EXPORT_SYMBOL(transport_kmap_first_data_page);
3961 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3963 kunmap(sg_page(cmd->t_data_sg));
3965 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3967 static int
3968 transport_generic_get_mem(struct se_cmd *cmd)
3970 u32 length = cmd->data_length;
3971 unsigned int nents;
3972 struct page *page;
3973 int i = 0;
3975 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3976 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3977 if (!cmd->t_data_sg)
3978 return -ENOMEM;
3980 cmd->t_data_nents = nents;
3981 sg_init_table(cmd->t_data_sg, nents);
3983 while (length) {
3984 u32 page_len = min_t(u32, length, PAGE_SIZE);
3985 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3986 if (!page)
3987 goto out;
3989 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3990 length -= page_len;
3991 i++;
3993 return 0;
3995 out:
3996 while (i >= 0) {
3997 __free_page(sg_page(&cmd->t_data_sg[i]));
3998 i--;
4000 kfree(cmd->t_data_sg);
4001 cmd->t_data_sg = NULL;
4002 return -ENOMEM;
4005 /* Reduce sectors if they are too long for the device */
4006 static inline sector_t transport_limit_task_sectors(
4007 struct se_device *dev,
4008 unsigned long long lba,
4009 sector_t sectors)
4011 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
4013 if (dev->transport->get_device_type(dev) == TYPE_DISK)
4014 if ((lba + sectors) > transport_dev_end_lba(dev))
4015 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
4017 return sectors;
4022 * This function can be used by HW target mode drivers to create a linked
4023 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4024 * This is intended to be called during the completion path by TCM Core
4025 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4027 void transport_do_task_sg_chain(struct se_cmd *cmd)
4029 struct scatterlist *sg_first = NULL;
4030 struct scatterlist *sg_prev = NULL;
4031 int sg_prev_nents = 0;
4032 struct scatterlist *sg;
4033 struct se_task *task;
4034 u32 chained_nents = 0;
4035 int i;
4037 BUG_ON(!cmd->se_tfo->task_sg_chaining);
4040 * Walk the struct se_task list and setup scatterlist chains
4041 * for each contiguously allocated struct se_task->task_sg[].
4043 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4044 if (!task->task_sg)
4045 continue;
4047 if (!sg_first) {
4048 sg_first = task->task_sg;
4049 chained_nents = task->task_sg_nents;
4050 } else {
4051 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
4052 chained_nents += task->task_sg_nents;
4055 * For the padded tasks, use the extra SGL vector allocated
4056 * in transport_allocate_data_tasks() for the sg_prev_nents
4057 * offset into sg_chain() above.. The last task of a
4058 * multi-task list, or a single task will not have
4059 * task->task_sg_padded set..
4061 if (task->task_padded_sg)
4062 sg_prev_nents = (task->task_sg_nents + 1);
4063 else
4064 sg_prev_nents = task->task_sg_nents;
4066 sg_prev = task->task_sg;
4069 * Setup the starting pointer and total t_tasks_sg_linked_no including
4070 * padding SGs for linking and to mark the end.
4072 cmd->t_tasks_sg_chained = sg_first;
4073 cmd->t_tasks_sg_chained_no = chained_nents;
4075 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
4076 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
4077 cmd->t_tasks_sg_chained_no);
4079 for_each_sg(cmd->t_tasks_sg_chained, sg,
4080 cmd->t_tasks_sg_chained_no, i) {
4082 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
4083 i, sg, sg_page(sg), sg->length, sg->offset);
4084 if (sg_is_chain(sg))
4085 pr_debug("SG: %p sg_is_chain=1\n", sg);
4086 if (sg_is_last(sg))
4087 pr_debug("SG: %p sg_is_last=1\n", sg);
4090 EXPORT_SYMBOL(transport_do_task_sg_chain);
4093 * Break up cmd into chunks transport can handle
4095 static int transport_allocate_data_tasks(
4096 struct se_cmd *cmd,
4097 unsigned long long lba,
4098 enum dma_data_direction data_direction,
4099 struct scatterlist *sgl,
4100 unsigned int sgl_nents)
4102 unsigned char *cdb = NULL;
4103 struct se_task *task;
4104 struct se_device *dev = cmd->se_dev;
4105 unsigned long flags;
4106 int task_count, i, ret;
4107 sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
4108 u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
4109 struct scatterlist *sg;
4110 struct scatterlist *cmd_sg;
4112 WARN_ON(cmd->data_length % sector_size);
4113 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
4114 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
4116 cmd_sg = sgl;
4117 for (i = 0; i < task_count; i++) {
4118 unsigned int task_size, task_sg_nents_padded;
4119 int count;
4121 task = transport_generic_get_task(cmd, data_direction);
4122 if (!task)
4123 return -ENOMEM;
4125 task->task_lba = lba;
4126 task->task_sectors = min(sectors, dev_max_sectors);
4127 task->task_size = task->task_sectors * sector_size;
4129 cdb = dev->transport->get_cdb(task);
4130 BUG_ON(!cdb);
4132 memcpy(cdb, cmd->t_task_cdb,
4133 scsi_command_size(cmd->t_task_cdb));
4135 /* Update new cdb with updated lba/sectors */
4136 cmd->transport_split_cdb(task->task_lba, task->task_sectors, cdb);
4138 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
4139 * in order to calculate the number per task SGL entries
4141 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
4143 * Check if the fabric module driver is requesting that all
4144 * struct se_task->task_sg[] be chained together.. If so,
4145 * then allocate an extra padding SG entry for linking and
4146 * marking the end of the chained SGL for every task except
4147 * the last one for (task_count > 1) operation, or skipping
4148 * the extra padding for the (task_count == 1) case.
4150 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
4151 task_sg_nents_padded = (task->task_sg_nents + 1);
4152 task->task_padded_sg = 1;
4153 } else
4154 task_sg_nents_padded = task->task_sg_nents;
4156 task->task_sg = kmalloc(sizeof(struct scatterlist) *
4157 task_sg_nents_padded, GFP_KERNEL);
4158 if (!task->task_sg) {
4159 cmd->se_dev->transport->free_task(task);
4160 return -ENOMEM;
4163 sg_init_table(task->task_sg, task_sg_nents_padded);
4165 task_size = task->task_size;
4167 /* Build new sgl, only up to task_size */
4168 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
4169 if (cmd_sg->length > task_size)
4170 break;
4172 *sg = *cmd_sg;
4173 task_size -= cmd_sg->length;
4174 cmd_sg = sg_next(cmd_sg);
4177 lba += task->task_sectors;
4178 sectors -= task->task_sectors;
4180 spin_lock_irqsave(&cmd->t_state_lock, flags);
4181 list_add_tail(&task->t_list, &cmd->t_task_list);
4182 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4185 * Now perform the memory map of task->task_sg[] into backend
4186 * subsystem memory..
4188 list_for_each_entry(task, &cmd->t_task_list, t_list) {
4189 if (atomic_read(&task->task_sent))
4190 continue;
4191 if (!dev->transport->map_data_SG)
4192 continue;
4194 ret = dev->transport->map_data_SG(task);
4195 if (ret < 0)
4196 return 0;
4199 return task_count;
4202 static int
4203 transport_allocate_control_task(struct se_cmd *cmd)
4205 struct se_device *dev = cmd->se_dev;
4206 unsigned char *cdb;
4207 struct se_task *task;
4208 unsigned long flags;
4209 int ret = 0;
4211 task = transport_generic_get_task(cmd, cmd->data_direction);
4212 if (!task)
4213 return -ENOMEM;
4215 cdb = dev->transport->get_cdb(task);
4216 BUG_ON(!cdb);
4217 memcpy(cdb, cmd->t_task_cdb,
4218 scsi_command_size(cmd->t_task_cdb));
4220 task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4221 GFP_KERNEL);
4222 if (!task->task_sg) {
4223 cmd->se_dev->transport->free_task(task);
4224 return -ENOMEM;
4227 memcpy(task->task_sg, cmd->t_data_sg,
4228 sizeof(struct scatterlist) * cmd->t_data_nents);
4229 task->task_size = cmd->data_length;
4230 task->task_sg_nents = cmd->t_data_nents;
4232 spin_lock_irqsave(&cmd->t_state_lock, flags);
4233 list_add_tail(&task->t_list, &cmd->t_task_list);
4234 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4236 if (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) {
4237 if (dev->transport->map_control_SG)
4238 ret = dev->transport->map_control_SG(task);
4239 } else if (cmd->se_cmd_flags & SCF_SCSI_NON_DATA_CDB) {
4240 if (dev->transport->cdb_none)
4241 ret = dev->transport->cdb_none(task);
4242 } else {
4243 pr_err("target: Unknown control cmd type!\n");
4244 BUG();
4247 /* Success! Return number of tasks allocated */
4248 if (ret == 0)
4249 return 1;
4250 return ret;
4253 static u32 transport_allocate_tasks(
4254 struct se_cmd *cmd,
4255 unsigned long long lba,
4256 enum dma_data_direction data_direction,
4257 struct scatterlist *sgl,
4258 unsigned int sgl_nents)
4260 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4261 if (transport_cmd_get_valid_sectors(cmd) < 0)
4262 return -EINVAL;
4264 return transport_allocate_data_tasks(cmd, lba, data_direction,
4265 sgl, sgl_nents);
4266 } else
4267 return transport_allocate_control_task(cmd);
4272 /* transport_generic_new_cmd(): Called from transport_processing_thread()
4274 * Allocate storage transport resources from a set of values predefined
4275 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4276 * Any non zero return here is treated as an "out of resource' op here.
4279 * Generate struct se_task(s) and/or their payloads for this CDB.
4281 int transport_generic_new_cmd(struct se_cmd *cmd)
4283 int ret = 0;
4286 * Determine is the TCM fabric module has already allocated physical
4287 * memory, and is directly calling transport_generic_map_mem_to_cmd()
4288 * beforehand.
4290 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4291 cmd->data_length) {
4292 ret = transport_generic_get_mem(cmd);
4293 if (ret < 0)
4294 return ret;
4297 * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4298 * control or data CDB types, and perform the map to backend subsystem
4299 * code from SGL memory allocated here by transport_generic_get_mem(), or
4300 * via pre-existing SGL memory setup explictly by fabric module code with
4301 * transport_generic_map_mem_to_cmd().
4303 ret = transport_new_cmd_obj(cmd);
4304 if (ret < 0)
4305 return ret;
4307 * For WRITEs, let the fabric know its buffer is ready..
4308 * This WRITE struct se_cmd (and all of its associated struct se_task's)
4309 * will be added to the struct se_device execution queue after its WRITE
4310 * data has arrived. (ie: It gets handled by the transport processing
4311 * thread a second time)
4313 if (cmd->data_direction == DMA_TO_DEVICE) {
4314 transport_add_tasks_to_state_queue(cmd);
4315 return transport_generic_write_pending(cmd);
4318 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4319 * to the execution queue.
4321 transport_execute_tasks(cmd);
4322 return 0;
4324 EXPORT_SYMBOL(transport_generic_new_cmd);
4326 /* transport_generic_process_write():
4330 void transport_generic_process_write(struct se_cmd *cmd)
4332 transport_execute_tasks(cmd);
4334 EXPORT_SYMBOL(transport_generic_process_write);
4336 static int transport_write_pending_qf(struct se_cmd *cmd)
4338 return cmd->se_tfo->write_pending(cmd);
4341 /* transport_generic_write_pending():
4345 static int transport_generic_write_pending(struct se_cmd *cmd)
4347 unsigned long flags;
4348 int ret;
4350 spin_lock_irqsave(&cmd->t_state_lock, flags);
4351 cmd->t_state = TRANSPORT_WRITE_PENDING;
4352 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4354 if (cmd->transport_qf_callback) {
4355 ret = cmd->transport_qf_callback(cmd);
4356 if (ret == -EAGAIN)
4357 goto queue_full;
4358 else if (ret < 0)
4359 return ret;
4361 cmd->transport_qf_callback = NULL;
4362 return 0;
4366 * Clear the se_cmd for WRITE_PENDING status in order to set
4367 * cmd->t_transport_active=0 so that transport_generic_handle_data
4368 * can be called from HW target mode interrupt code. This is safe
4369 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4370 * because the se_cmd->se_lun pointer is not being cleared.
4372 transport_cmd_check_stop(cmd, 1, 0);
4375 * Call the fabric write_pending function here to let the
4376 * frontend know that WRITE buffers are ready.
4378 ret = cmd->se_tfo->write_pending(cmd);
4379 if (ret == -EAGAIN)
4380 goto queue_full;
4381 else if (ret < 0)
4382 return ret;
4384 return PYX_TRANSPORT_WRITE_PENDING;
4386 queue_full:
4387 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4388 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4389 transport_handle_queue_full(cmd, cmd->se_dev,
4390 transport_write_pending_qf);
4391 return ret;
4394 void transport_release_cmd(struct se_cmd *cmd)
4396 BUG_ON(!cmd->se_tfo);
4398 transport_free_se_cmd(cmd);
4399 cmd->se_tfo->release_cmd(cmd);
4401 EXPORT_SYMBOL(transport_release_cmd);
4403 /* transport_generic_free_cmd():
4405 * Called from processing frontend to release storage engine resources
4407 void transport_generic_free_cmd(
4408 struct se_cmd *cmd,
4409 int wait_for_tasks,
4410 int session_reinstatement)
4412 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD))
4413 transport_release_cmd(cmd);
4414 else {
4415 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4417 if (cmd->se_lun) {
4418 #if 0
4419 pr_debug("cmd: %p ITT: 0x%08x contains"
4420 " cmd->se_lun\n", cmd,
4421 cmd->se_tfo->get_task_tag(cmd));
4422 #endif
4423 transport_lun_remove_cmd(cmd);
4426 if (wait_for_tasks && cmd->transport_wait_for_tasks)
4427 cmd->transport_wait_for_tasks(cmd, 0, 0);
4429 transport_free_dev_tasks(cmd);
4431 transport_generic_remove(cmd, session_reinstatement);
4434 EXPORT_SYMBOL(transport_generic_free_cmd);
4436 static void transport_nop_wait_for_tasks(
4437 struct se_cmd *cmd,
4438 int remove_cmd,
4439 int session_reinstatement)
4441 return;
4444 /* transport_lun_wait_for_tasks():
4446 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4447 * an struct se_lun to be successfully shutdown.
4449 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4451 unsigned long flags;
4452 int ret;
4454 * If the frontend has already requested this struct se_cmd to
4455 * be stopped, we can safely ignore this struct se_cmd.
4457 spin_lock_irqsave(&cmd->t_state_lock, flags);
4458 if (atomic_read(&cmd->t_transport_stop)) {
4459 atomic_set(&cmd->transport_lun_stop, 0);
4460 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4461 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4462 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4463 transport_cmd_check_stop(cmd, 1, 0);
4464 return -EPERM;
4466 atomic_set(&cmd->transport_lun_fe_stop, 1);
4467 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4469 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4471 ret = transport_stop_tasks_for_cmd(cmd);
4473 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4474 " %d\n", cmd, cmd->t_task_list_num, ret);
4475 if (!ret) {
4476 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4477 cmd->se_tfo->get_task_tag(cmd));
4478 wait_for_completion(&cmd->transport_lun_stop_comp);
4479 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4480 cmd->se_tfo->get_task_tag(cmd));
4482 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4484 return 0;
4487 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4489 struct se_cmd *cmd = NULL;
4490 unsigned long lun_flags, cmd_flags;
4492 * Do exception processing and return CHECK_CONDITION status to the
4493 * Initiator Port.
4495 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4496 while (!list_empty(&lun->lun_cmd_list)) {
4497 cmd = list_first_entry(&lun->lun_cmd_list,
4498 struct se_cmd, se_lun_node);
4499 list_del(&cmd->se_lun_node);
4501 atomic_set(&cmd->transport_lun_active, 0);
4503 * This will notify iscsi_target_transport.c:
4504 * transport_cmd_check_stop() that a LUN shutdown is in
4505 * progress for the iscsi_cmd_t.
4507 spin_lock(&cmd->t_state_lock);
4508 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4509 "_lun_stop for ITT: 0x%08x\n",
4510 cmd->se_lun->unpacked_lun,
4511 cmd->se_tfo->get_task_tag(cmd));
4512 atomic_set(&cmd->transport_lun_stop, 1);
4513 spin_unlock(&cmd->t_state_lock);
4515 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4517 if (!cmd->se_lun) {
4518 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4519 cmd->se_tfo->get_task_tag(cmd),
4520 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4521 BUG();
4524 * If the Storage engine still owns the iscsi_cmd_t, determine
4525 * and/or stop its context.
4527 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4528 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4529 cmd->se_tfo->get_task_tag(cmd));
4531 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4532 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4533 continue;
4536 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4537 "_wait_for_tasks(): SUCCESS\n",
4538 cmd->se_lun->unpacked_lun,
4539 cmd->se_tfo->get_task_tag(cmd));
4541 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4542 if (!atomic_read(&cmd->transport_dev_active)) {
4543 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4544 goto check_cond;
4546 atomic_set(&cmd->transport_dev_active, 0);
4547 transport_all_task_dev_remove_state(cmd);
4548 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4550 transport_free_dev_tasks(cmd);
4552 * The Storage engine stopped this struct se_cmd before it was
4553 * send to the fabric frontend for delivery back to the
4554 * Initiator Node. Return this SCSI CDB back with an
4555 * CHECK_CONDITION status.
4557 check_cond:
4558 transport_send_check_condition_and_sense(cmd,
4559 TCM_NON_EXISTENT_LUN, 0);
4561 * If the fabric frontend is waiting for this iscsi_cmd_t to
4562 * be released, notify the waiting thread now that LU has
4563 * finished accessing it.
4565 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4566 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4567 pr_debug("SE_LUN[%d] - Detected FE stop for"
4568 " struct se_cmd: %p ITT: 0x%08x\n",
4569 lun->unpacked_lun,
4570 cmd, cmd->se_tfo->get_task_tag(cmd));
4572 spin_unlock_irqrestore(&cmd->t_state_lock,
4573 cmd_flags);
4574 transport_cmd_check_stop(cmd, 1, 0);
4575 complete(&cmd->transport_lun_fe_stop_comp);
4576 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4577 continue;
4579 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4580 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4582 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4583 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4585 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4588 static int transport_clear_lun_thread(void *p)
4590 struct se_lun *lun = (struct se_lun *)p;
4592 __transport_clear_lun_from_sessions(lun);
4593 complete(&lun->lun_shutdown_comp);
4595 return 0;
4598 int transport_clear_lun_from_sessions(struct se_lun *lun)
4600 struct task_struct *kt;
4602 kt = kthread_run(transport_clear_lun_thread, lun,
4603 "tcm_cl_%u", lun->unpacked_lun);
4604 if (IS_ERR(kt)) {
4605 pr_err("Unable to start clear_lun thread\n");
4606 return PTR_ERR(kt);
4608 wait_for_completion(&lun->lun_shutdown_comp);
4610 return 0;
4613 /* transport_generic_wait_for_tasks():
4615 * Called from frontend or passthrough context to wait for storage engine
4616 * to pause and/or release frontend generated struct se_cmd.
4618 static void transport_generic_wait_for_tasks(
4619 struct se_cmd *cmd,
4620 int remove_cmd,
4621 int session_reinstatement)
4623 unsigned long flags;
4625 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req))
4626 return;
4628 spin_lock_irqsave(&cmd->t_state_lock, flags);
4630 * If we are already stopped due to an external event (ie: LUN shutdown)
4631 * sleep until the connection can have the passed struct se_cmd back.
4632 * The cmd->transport_lun_stopped_sem will be upped by
4633 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4634 * has completed its operation on the struct se_cmd.
4636 if (atomic_read(&cmd->transport_lun_stop)) {
4638 pr_debug("wait_for_tasks: Stopping"
4639 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4640 "_stop_comp); for ITT: 0x%08x\n",
4641 cmd->se_tfo->get_task_tag(cmd));
4643 * There is a special case for WRITES where a FE exception +
4644 * LUN shutdown means ConfigFS context is still sleeping on
4645 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4646 * We go ahead and up transport_lun_stop_comp just to be sure
4647 * here.
4649 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4650 complete(&cmd->transport_lun_stop_comp);
4651 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4652 spin_lock_irqsave(&cmd->t_state_lock, flags);
4654 transport_all_task_dev_remove_state(cmd);
4656 * At this point, the frontend who was the originator of this
4657 * struct se_cmd, now owns the structure and can be released through
4658 * normal means below.
4660 pr_debug("wait_for_tasks: Stopped"
4661 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4662 "stop_comp); for ITT: 0x%08x\n",
4663 cmd->se_tfo->get_task_tag(cmd));
4665 atomic_set(&cmd->transport_lun_stop, 0);
4667 if (!atomic_read(&cmd->t_transport_active) ||
4668 atomic_read(&cmd->t_transport_aborted))
4669 goto remove;
4671 atomic_set(&cmd->t_transport_stop, 1);
4673 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4674 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4675 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4676 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4677 cmd->deferred_t_state);
4679 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4681 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4683 wait_for_completion(&cmd->t_transport_stop_comp);
4685 spin_lock_irqsave(&cmd->t_state_lock, flags);
4686 atomic_set(&cmd->t_transport_active, 0);
4687 atomic_set(&cmd->t_transport_stop, 0);
4689 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4690 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4691 cmd->se_tfo->get_task_tag(cmd));
4692 remove:
4693 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4694 if (!remove_cmd)
4695 return;
4697 transport_generic_free_cmd(cmd, 0, session_reinstatement);
4700 static int transport_get_sense_codes(
4701 struct se_cmd *cmd,
4702 u8 *asc,
4703 u8 *ascq)
4705 *asc = cmd->scsi_asc;
4706 *ascq = cmd->scsi_ascq;
4708 return 0;
4711 static int transport_set_sense_codes(
4712 struct se_cmd *cmd,
4713 u8 asc,
4714 u8 ascq)
4716 cmd->scsi_asc = asc;
4717 cmd->scsi_ascq = ascq;
4719 return 0;
4722 int transport_send_check_condition_and_sense(
4723 struct se_cmd *cmd,
4724 u8 reason,
4725 int from_transport)
4727 unsigned char *buffer = cmd->sense_buffer;
4728 unsigned long flags;
4729 int offset;
4730 u8 asc = 0, ascq = 0;
4732 spin_lock_irqsave(&cmd->t_state_lock, flags);
4733 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4734 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4735 return 0;
4737 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4738 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4740 if (!reason && from_transport)
4741 goto after_reason;
4743 if (!from_transport)
4744 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4746 * Data Segment and SenseLength of the fabric response PDU.
4748 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4749 * from include/scsi/scsi_cmnd.h
4751 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4752 TRANSPORT_SENSE_BUFFER);
4754 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4755 * SENSE KEY values from include/scsi/scsi.h
4757 switch (reason) {
4758 case TCM_NON_EXISTENT_LUN:
4759 /* CURRENT ERROR */
4760 buffer[offset] = 0x70;
4761 /* ILLEGAL REQUEST */
4762 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4763 /* LOGICAL UNIT NOT SUPPORTED */
4764 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4765 break;
4766 case TCM_UNSUPPORTED_SCSI_OPCODE:
4767 case TCM_SECTOR_COUNT_TOO_MANY:
4768 /* CURRENT ERROR */
4769 buffer[offset] = 0x70;
4770 /* ILLEGAL REQUEST */
4771 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4772 /* INVALID COMMAND OPERATION CODE */
4773 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4774 break;
4775 case TCM_UNKNOWN_MODE_PAGE:
4776 /* CURRENT ERROR */
4777 buffer[offset] = 0x70;
4778 /* ILLEGAL REQUEST */
4779 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4780 /* INVALID FIELD IN CDB */
4781 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4782 break;
4783 case TCM_CHECK_CONDITION_ABORT_CMD:
4784 /* CURRENT ERROR */
4785 buffer[offset] = 0x70;
4786 /* ABORTED COMMAND */
4787 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4788 /* BUS DEVICE RESET FUNCTION OCCURRED */
4789 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4790 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4791 break;
4792 case TCM_INCORRECT_AMOUNT_OF_DATA:
4793 /* CURRENT ERROR */
4794 buffer[offset] = 0x70;
4795 /* ABORTED COMMAND */
4796 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4797 /* WRITE ERROR */
4798 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4799 /* NOT ENOUGH UNSOLICITED DATA */
4800 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4801 break;
4802 case TCM_INVALID_CDB_FIELD:
4803 /* CURRENT ERROR */
4804 buffer[offset] = 0x70;
4805 /* ABORTED COMMAND */
4806 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4807 /* INVALID FIELD IN CDB */
4808 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4809 break;
4810 case TCM_INVALID_PARAMETER_LIST:
4811 /* CURRENT ERROR */
4812 buffer[offset] = 0x70;
4813 /* ABORTED COMMAND */
4814 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4815 /* INVALID FIELD IN PARAMETER LIST */
4816 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4817 break;
4818 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4819 /* CURRENT ERROR */
4820 buffer[offset] = 0x70;
4821 /* ABORTED COMMAND */
4822 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4823 /* WRITE ERROR */
4824 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4825 /* UNEXPECTED_UNSOLICITED_DATA */
4826 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4827 break;
4828 case TCM_SERVICE_CRC_ERROR:
4829 /* CURRENT ERROR */
4830 buffer[offset] = 0x70;
4831 /* ABORTED COMMAND */
4832 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4833 /* PROTOCOL SERVICE CRC ERROR */
4834 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4835 /* N/A */
4836 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4837 break;
4838 case TCM_SNACK_REJECTED:
4839 /* CURRENT ERROR */
4840 buffer[offset] = 0x70;
4841 /* ABORTED COMMAND */
4842 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4843 /* READ ERROR */
4844 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4845 /* FAILED RETRANSMISSION REQUEST */
4846 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4847 break;
4848 case TCM_WRITE_PROTECTED:
4849 /* CURRENT ERROR */
4850 buffer[offset] = 0x70;
4851 /* DATA PROTECT */
4852 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4853 /* WRITE PROTECTED */
4854 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4855 break;
4856 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4857 /* CURRENT ERROR */
4858 buffer[offset] = 0x70;
4859 /* UNIT ATTENTION */
4860 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4861 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4862 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4863 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4864 break;
4865 case TCM_CHECK_CONDITION_NOT_READY:
4866 /* CURRENT ERROR */
4867 buffer[offset] = 0x70;
4868 /* Not Ready */
4869 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4870 transport_get_sense_codes(cmd, &asc, &ascq);
4871 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4872 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4873 break;
4874 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4875 default:
4876 /* CURRENT ERROR */
4877 buffer[offset] = 0x70;
4878 /* ILLEGAL REQUEST */
4879 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4880 /* LOGICAL UNIT COMMUNICATION FAILURE */
4881 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4882 break;
4885 * This code uses linux/include/scsi/scsi.h SAM status codes!
4887 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4889 * Automatically padded, this value is encoded in the fabric's
4890 * data_length response PDU containing the SCSI defined sense data.
4892 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4894 after_reason:
4895 return cmd->se_tfo->queue_status(cmd);
4897 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4899 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4901 int ret = 0;
4903 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4904 if (!send_status ||
4905 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4906 return 1;
4907 #if 0
4908 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4909 " status for CDB: 0x%02x ITT: 0x%08x\n",
4910 cmd->t_task_cdb[0],
4911 cmd->se_tfo->get_task_tag(cmd));
4912 #endif
4913 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4914 cmd->se_tfo->queue_status(cmd);
4915 ret = 1;
4917 return ret;
4919 EXPORT_SYMBOL(transport_check_aborted_status);
4921 void transport_send_task_abort(struct se_cmd *cmd)
4924 * If there are still expected incoming fabric WRITEs, we wait
4925 * until until they have completed before sending a TASK_ABORTED
4926 * response. This response with TASK_ABORTED status will be
4927 * queued back to fabric module by transport_check_aborted_status().
4929 if (cmd->data_direction == DMA_TO_DEVICE) {
4930 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4931 atomic_inc(&cmd->t_transport_aborted);
4932 smp_mb__after_atomic_inc();
4933 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4934 transport_new_cmd_failure(cmd);
4935 return;
4938 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4939 #if 0
4940 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4941 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4942 cmd->se_tfo->get_task_tag(cmd));
4943 #endif
4944 cmd->se_tfo->queue_status(cmd);
4947 /* transport_generic_do_tmr():
4951 int transport_generic_do_tmr(struct se_cmd *cmd)
4953 struct se_device *dev = cmd->se_dev;
4954 struct se_tmr_req *tmr = cmd->se_tmr_req;
4955 int ret;
4957 switch (tmr->function) {
4958 case TMR_ABORT_TASK:
4959 tmr->response = TMR_FUNCTION_REJECTED;
4960 break;
4961 case TMR_ABORT_TASK_SET:
4962 case TMR_CLEAR_ACA:
4963 case TMR_CLEAR_TASK_SET:
4964 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4965 break;
4966 case TMR_LUN_RESET:
4967 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4968 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4969 TMR_FUNCTION_REJECTED;
4970 break;
4971 case TMR_TARGET_WARM_RESET:
4972 tmr->response = TMR_FUNCTION_REJECTED;
4973 break;
4974 case TMR_TARGET_COLD_RESET:
4975 tmr->response = TMR_FUNCTION_REJECTED;
4976 break;
4977 default:
4978 pr_err("Uknown TMR function: 0x%02x.\n",
4979 tmr->function);
4980 tmr->response = TMR_FUNCTION_REJECTED;
4981 break;
4984 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4985 cmd->se_tfo->queue_tm_rsp(cmd);
4987 transport_cmd_check_stop(cmd, 2, 0);
4988 return 0;
4992 * Called with spin_lock_irq(&dev->execute_task_lock); held
4995 static struct se_task *
4996 transport_get_task_from_state_list(struct se_device *dev)
4998 struct se_task *task;
5000 if (list_empty(&dev->state_task_list))
5001 return NULL;
5003 list_for_each_entry(task, &dev->state_task_list, t_state_list)
5004 break;
5006 list_del(&task->t_state_list);
5007 atomic_set(&task->task_state_active, 0);
5009 return task;
5012 static void transport_processing_shutdown(struct se_device *dev)
5014 struct se_cmd *cmd;
5015 struct se_task *task;
5016 unsigned long flags;
5018 * Empty the struct se_device's struct se_task state list.
5020 spin_lock_irqsave(&dev->execute_task_lock, flags);
5021 while ((task = transport_get_task_from_state_list(dev))) {
5022 if (!task->task_se_cmd) {
5023 pr_err("task->task_se_cmd is NULL!\n");
5024 continue;
5026 cmd = task->task_se_cmd;
5028 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5030 spin_lock_irqsave(&cmd->t_state_lock, flags);
5032 pr_debug("PT: cmd: %p task: %p ITT: 0x%08x,"
5033 " i_state: %d, t_state/def_t_state:"
5034 " %d/%d cdb: 0x%02x\n", cmd, task,
5035 cmd->se_tfo->get_task_tag(cmd),
5036 cmd->se_tfo->get_cmd_state(cmd),
5037 cmd->t_state, cmd->deferred_t_state,
5038 cmd->t_task_cdb[0]);
5039 pr_debug("PT: ITT[0x%08x] - t_tasks: %d t_task_cdbs_left:"
5040 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5041 " t_transport_stop: %d t_transport_sent: %d\n",
5042 cmd->se_tfo->get_task_tag(cmd),
5043 cmd->t_task_list_num,
5044 atomic_read(&cmd->t_task_cdbs_left),
5045 atomic_read(&cmd->t_task_cdbs_sent),
5046 atomic_read(&cmd->t_transport_active),
5047 atomic_read(&cmd->t_transport_stop),
5048 atomic_read(&cmd->t_transport_sent));
5050 if (atomic_read(&task->task_active)) {
5051 atomic_set(&task->task_stop, 1);
5052 spin_unlock_irqrestore(
5053 &cmd->t_state_lock, flags);
5055 pr_debug("Waiting for task: %p to shutdown for dev:"
5056 " %p\n", task, dev);
5057 wait_for_completion(&task->task_stop_comp);
5058 pr_debug("Completed task: %p shutdown for dev: %p\n",
5059 task, dev);
5061 spin_lock_irqsave(&cmd->t_state_lock, flags);
5062 atomic_dec(&cmd->t_task_cdbs_left);
5064 atomic_set(&task->task_active, 0);
5065 atomic_set(&task->task_stop, 0);
5066 } else {
5067 if (atomic_read(&task->task_execute_queue) != 0)
5068 transport_remove_task_from_execute_queue(task, dev);
5070 __transport_stop_task_timer(task, &flags);
5072 if (!atomic_dec_and_test(&cmd->t_task_cdbs_ex_left)) {
5073 spin_unlock_irqrestore(
5074 &cmd->t_state_lock, flags);
5076 pr_debug("Skipping task: %p, dev: %p for"
5077 " t_task_cdbs_ex_left: %d\n", task, dev,
5078 atomic_read(&cmd->t_task_cdbs_ex_left));
5080 spin_lock_irqsave(&dev->execute_task_lock, flags);
5081 continue;
5084 if (atomic_read(&cmd->t_transport_active)) {
5085 pr_debug("got t_transport_active = 1 for task: %p, dev:"
5086 " %p\n", task, dev);
5088 if (atomic_read(&cmd->t_fe_count)) {
5089 spin_unlock_irqrestore(
5090 &cmd->t_state_lock, flags);
5091 transport_send_check_condition_and_sense(
5092 cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE,
5094 transport_remove_cmd_from_queue(cmd,
5095 &cmd->se_dev->dev_queue_obj);
5097 transport_lun_remove_cmd(cmd);
5098 transport_cmd_check_stop(cmd, 1, 0);
5099 } else {
5100 spin_unlock_irqrestore(
5101 &cmd->t_state_lock, flags);
5103 transport_remove_cmd_from_queue(cmd,
5104 &cmd->se_dev->dev_queue_obj);
5106 transport_lun_remove_cmd(cmd);
5108 if (transport_cmd_check_stop(cmd, 1, 0))
5109 transport_generic_remove(cmd, 0);
5112 spin_lock_irqsave(&dev->execute_task_lock, flags);
5113 continue;
5115 pr_debug("Got t_transport_active = 0 for task: %p, dev: %p\n",
5116 task, dev);
5118 if (atomic_read(&cmd->t_fe_count)) {
5119 spin_unlock_irqrestore(
5120 &cmd->t_state_lock, flags);
5121 transport_send_check_condition_and_sense(cmd,
5122 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5123 transport_remove_cmd_from_queue(cmd,
5124 &cmd->se_dev->dev_queue_obj);
5126 transport_lun_remove_cmd(cmd);
5127 transport_cmd_check_stop(cmd, 1, 0);
5128 } else {
5129 spin_unlock_irqrestore(
5130 &cmd->t_state_lock, flags);
5132 transport_remove_cmd_from_queue(cmd,
5133 &cmd->se_dev->dev_queue_obj);
5134 transport_lun_remove_cmd(cmd);
5136 if (transport_cmd_check_stop(cmd, 1, 0))
5137 transport_generic_remove(cmd, 0);
5140 spin_lock_irqsave(&dev->execute_task_lock, flags);
5142 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
5144 * Empty the struct se_device's struct se_cmd list.
5146 while ((cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj))) {
5148 pr_debug("From Device Queue: cmd: %p t_state: %d\n",
5149 cmd, cmd->t_state);
5151 if (atomic_read(&cmd->t_fe_count)) {
5152 transport_send_check_condition_and_sense(cmd,
5153 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE, 0);
5155 transport_lun_remove_cmd(cmd);
5156 transport_cmd_check_stop(cmd, 1, 0);
5157 } else {
5158 transport_lun_remove_cmd(cmd);
5159 if (transport_cmd_check_stop(cmd, 1, 0))
5160 transport_generic_remove(cmd, 0);
5165 /* transport_processing_thread():
5169 static int transport_processing_thread(void *param)
5171 int ret;
5172 struct se_cmd *cmd;
5173 struct se_device *dev = (struct se_device *) param;
5175 set_user_nice(current, -20);
5177 while (!kthread_should_stop()) {
5178 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
5179 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
5180 kthread_should_stop());
5181 if (ret < 0)
5182 goto out;
5184 spin_lock_irq(&dev->dev_status_lock);
5185 if (dev->dev_status & TRANSPORT_DEVICE_SHUTDOWN) {
5186 spin_unlock_irq(&dev->dev_status_lock);
5187 transport_processing_shutdown(dev);
5188 continue;
5190 spin_unlock_irq(&dev->dev_status_lock);
5192 get_cmd:
5193 __transport_execute_tasks(dev);
5195 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
5196 if (!cmd)
5197 continue;
5199 switch (cmd->t_state) {
5200 case TRANSPORT_NEW_CMD_MAP:
5201 if (!cmd->se_tfo->new_cmd_map) {
5202 pr_err("cmd->se_tfo->new_cmd_map is"
5203 " NULL for TRANSPORT_NEW_CMD_MAP\n");
5204 BUG();
5206 ret = cmd->se_tfo->new_cmd_map(cmd);
5207 if (ret < 0) {
5208 cmd->transport_error_status = ret;
5209 transport_generic_request_failure(cmd, NULL,
5210 0, (cmd->data_direction !=
5211 DMA_TO_DEVICE));
5212 break;
5214 /* Fall through */
5215 case TRANSPORT_NEW_CMD:
5216 ret = transport_generic_new_cmd(cmd);
5217 if (ret == -EAGAIN)
5218 break;
5219 else if (ret < 0) {
5220 cmd->transport_error_status = ret;
5221 transport_generic_request_failure(cmd, NULL,
5222 0, (cmd->data_direction !=
5223 DMA_TO_DEVICE));
5225 break;
5226 case TRANSPORT_PROCESS_WRITE:
5227 transport_generic_process_write(cmd);
5228 break;
5229 case TRANSPORT_COMPLETE_OK:
5230 transport_stop_all_task_timers(cmd);
5231 transport_generic_complete_ok(cmd);
5232 break;
5233 case TRANSPORT_REMOVE:
5234 transport_generic_remove(cmd, 0);
5235 break;
5236 case TRANSPORT_FREE_CMD_INTR:
5237 transport_generic_free_cmd(cmd, 0, 0);
5238 break;
5239 case TRANSPORT_PROCESS_TMR:
5240 transport_generic_do_tmr(cmd);
5241 break;
5242 case TRANSPORT_COMPLETE_FAILURE:
5243 transport_generic_request_failure(cmd, NULL, 1, 1);
5244 break;
5245 case TRANSPORT_COMPLETE_TIMEOUT:
5246 transport_stop_all_task_timers(cmd);
5247 transport_generic_request_timeout(cmd);
5248 break;
5249 case TRANSPORT_COMPLETE_QF_WP:
5250 transport_generic_write_pending(cmd);
5251 break;
5252 default:
5253 pr_err("Unknown t_state: %d deferred_t_state:"
5254 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
5255 " %u\n", cmd->t_state, cmd->deferred_t_state,
5256 cmd->se_tfo->get_task_tag(cmd),
5257 cmd->se_tfo->get_cmd_state(cmd),
5258 cmd->se_lun->unpacked_lun);
5259 BUG();
5262 goto get_cmd;
5265 out:
5266 transport_release_all_cmds(dev);
5267 dev->process_thread = NULL;
5268 return 0;