2 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
4 * Integrated Consumer Infrared Controller
6 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
24 #include <linux/slab.h>
25 #include <linux/kfifo.h>
26 #include <media/cx25840.h>
27 #include <media/rc-core.h>
29 #include "cx25840-core.h"
31 static unsigned int ir_debug
;
32 module_param(ir_debug
, int, 0644);
33 MODULE_PARM_DESC(ir_debug
, "enable integrated IR debug messages");
35 #define CX25840_IR_REG_BASE 0x200
37 #define CX25840_IR_CNTRL_REG 0x200
38 #define CNTRL_WIN_3_3 0x00000000
39 #define CNTRL_WIN_4_3 0x00000001
40 #define CNTRL_WIN_3_4 0x00000002
41 #define CNTRL_WIN_4_4 0x00000003
42 #define CNTRL_WIN 0x00000003
43 #define CNTRL_EDG_NONE 0x00000000
44 #define CNTRL_EDG_FALL 0x00000004
45 #define CNTRL_EDG_RISE 0x00000008
46 #define CNTRL_EDG_BOTH 0x0000000C
47 #define CNTRL_EDG 0x0000000C
48 #define CNTRL_DMD 0x00000010
49 #define CNTRL_MOD 0x00000020
50 #define CNTRL_RFE 0x00000040
51 #define CNTRL_TFE 0x00000080
52 #define CNTRL_RXE 0x00000100
53 #define CNTRL_TXE 0x00000200
54 #define CNTRL_RIC 0x00000400
55 #define CNTRL_TIC 0x00000800
56 #define CNTRL_CPL 0x00001000
57 #define CNTRL_LBM 0x00002000
58 #define CNTRL_R 0x00004000
60 #define CX25840_IR_TXCLK_REG 0x204
61 #define TXCLK_TCD 0x0000FFFF
63 #define CX25840_IR_RXCLK_REG 0x208
64 #define RXCLK_RCD 0x0000FFFF
66 #define CX25840_IR_CDUTY_REG 0x20C
67 #define CDUTY_CDC 0x0000000F
69 #define CX25840_IR_STATS_REG 0x210
70 #define STATS_RTO 0x00000001
71 #define STATS_ROR 0x00000002
72 #define STATS_RBY 0x00000004
73 #define STATS_TBY 0x00000008
74 #define STATS_RSR 0x00000010
75 #define STATS_TSR 0x00000020
77 #define CX25840_IR_IRQEN_REG 0x214
78 #define IRQEN_RTE 0x00000001
79 #define IRQEN_ROE 0x00000002
80 #define IRQEN_RSE 0x00000010
81 #define IRQEN_TSE 0x00000020
82 #define IRQEN_MSK 0x00000033
84 #define CX25840_IR_FILTR_REG 0x218
85 #define FILTR_LPF 0x0000FFFF
87 #define CX25840_IR_FIFO_REG 0x23C
88 #define FIFO_RXTX 0x0000FFFF
89 #define FIFO_RXTX_LVL 0x00010000
90 #define FIFO_RXTX_RTO 0x0001FFFF
91 #define FIFO_RX_NDV 0x00020000
92 #define FIFO_RX_DEPTH 8
93 #define FIFO_TX_DEPTH 8
95 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
96 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
99 * We use this union internally for convenience, but callers to tx_write
100 * and rx_read will be expecting records of type struct ir_raw_event.
101 * Always ensure the size of this union is dictated by struct ir_raw_event.
103 union cx25840_ir_fifo_rec
{
105 struct ir_raw_event ir_core_data
;
108 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
109 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
111 struct cx25840_ir_state
{
112 struct i2c_client
*c
;
114 struct v4l2_subdev_ir_parameters rx_params
;
115 struct mutex rx_params_lock
; /* protects Rx parameter settings cache */
116 atomic_t rxclk_divider
;
119 struct kfifo rx_kfifo
;
120 spinlock_t rx_kfifo_lock
; /* protect Rx data kfifo */
122 struct v4l2_subdev_ir_parameters tx_params
;
123 struct mutex tx_params_lock
; /* protects Tx parameter settings cache */
124 atomic_t txclk_divider
;
127 static inline struct cx25840_ir_state
*to_ir_state(struct v4l2_subdev
*sd
)
129 struct cx25840_state
*state
= to_state(sd
);
130 return state
? state
->ir_state
: NULL
;
135 * Rx and Tx Clock Divider register computations
137 * Note the largest clock divider value of 0xffff corresponds to:
138 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
139 * which fits in 21 bits, so we'll use unsigned int for time arguments.
141 static inline u16
count_to_clock_divider(unsigned int d
)
143 if (d
> RXCLK_RCD
+ 1)
152 static inline u16
ns_to_clock_divider(unsigned int ns
)
154 return count_to_clock_divider(
155 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
158 static inline unsigned int clock_divider_to_ns(unsigned int divider
)
160 /* Period of the Rx or Tx clock in ns */
161 return DIV_ROUND_CLOSEST((divider
+ 1) * 1000,
162 CX25840_IR_REFCLK_FREQ
/ 1000000);
165 static inline u16
carrier_freq_to_clock_divider(unsigned int freq
)
167 return count_to_clock_divider(
168 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, freq
* 16));
171 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider
)
173 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, (divider
+ 1) * 16);
176 static inline u16
freq_to_clock_divider(unsigned int freq
,
177 unsigned int rollovers
)
179 return count_to_clock_divider(
180 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
, freq
* rollovers
));
183 static inline unsigned int clock_divider_to_freq(unsigned int divider
,
184 unsigned int rollovers
)
186 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
,
187 (divider
+ 1) * rollovers
);
191 * Low Pass Filter register calculations
193 * Note the largest count value of 0xffff corresponds to:
194 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
195 * which fits in 21 bits, so we'll use unsigned int for time arguments.
197 static inline u16
count_to_lpf_count(unsigned int d
)
206 static inline u16
ns_to_lpf_count(unsigned int ns
)
208 return count_to_lpf_count(
209 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ
/ 1000000 * ns
, 1000));
212 static inline unsigned int lpf_count_to_ns(unsigned int count
)
214 /* Duration of the Low Pass Filter rejection window in ns */
215 return DIV_ROUND_CLOSEST(count
* 1000,
216 CX25840_IR_REFCLK_FREQ
/ 1000000);
219 static inline unsigned int lpf_count_to_us(unsigned int count
)
221 /* Duration of the Low Pass Filter rejection window in us */
222 return DIV_ROUND_CLOSEST(count
, CX25840_IR_REFCLK_FREQ
/ 1000000);
226 * FIFO register pulse width count compuations
228 static u32
clock_divider_to_resolution(u16 divider
)
231 * Resolution is the duration of 1 tick of the readable portion of
232 * of the pulse width counter as read from the FIFO. The two lsb's are
233 * not readable, hence the << 2. This function returns ns.
235 return DIV_ROUND_CLOSEST((1 << 2) * ((u32
) divider
+ 1) * 1000,
236 CX25840_IR_REFCLK_FREQ
/ 1000000);
239 static u64
pulse_width_count_to_ns(u16 count
, u16 divider
)
245 * The 2 lsb's of the pulse width timer count are not readable, hence
246 * the (count << 2) | 0x3
248 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1) * 1000; /* millicycles */
249 rem
= do_div(n
, CX25840_IR_REFCLK_FREQ
/ 1000000); /* / MHz => ns */
250 if (rem
>= CX25840_IR_REFCLK_FREQ
/ 1000000 / 2)
256 /* Keep as we will need this for Transmit functionality */
257 static u16
ns_to_pulse_width_count(u32 ns
, u16 divider
)
264 * The 2 lsb's of the pulse width timer count are not accessible, hence
267 n
= ((u64
) ns
) * CX25840_IR_REFCLK_FREQ
/ 1000000; /* millicycles */
268 d
= (1 << 2) * ((u32
) divider
+ 1) * 1000; /* millicycles/count */
281 static unsigned int pulse_width_count_to_us(u16 count
, u16 divider
)
287 * The 2 lsb's of the pulse width timer count are not readable, hence
288 * the (count << 2) | 0x3
290 n
= (((u64
) count
<< 2) | 0x3) * (divider
+ 1); /* cycles */
291 rem
= do_div(n
, CX25840_IR_REFCLK_FREQ
/ 1000000); /* / MHz => us */
292 if (rem
>= CX25840_IR_REFCLK_FREQ
/ 1000000 / 2)
294 return (unsigned int) n
;
298 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
300 * The total pulse clock count is an 18 bit pulse width timer count as the most
301 * significant part and (up to) 16 bit clock divider count as a modulus.
302 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
303 * width timer count's least significant bit.
305 static u64
ns_to_pulse_clocks(u32 ns
)
309 clocks
= CX25840_IR_REFCLK_FREQ
/ 1000000 * (u64
) ns
; /* millicycles */
310 rem
= do_div(clocks
, 1000); /* /1000 = cycles */
316 static u16
pulse_clocks_to_clock_divider(u64 count
)
320 rem
= do_div(count
, (FIFO_RXTX
<< 2) | 0x3);
322 /* net result needs to be rounded down and decremented by 1 */
323 if (count
> RXCLK_RCD
+ 1)
333 * IR Control Register helpers
335 enum tx_fifo_watermark
{
336 TX_FIFO_HALF_EMPTY
= 0,
337 TX_FIFO_EMPTY
= CNTRL_TIC
,
340 enum rx_fifo_watermark
{
341 RX_FIFO_HALF_FULL
= 0,
342 RX_FIFO_NOT_EMPTY
= CNTRL_RIC
,
345 static inline void control_tx_irq_watermark(struct i2c_client
*c
,
346 enum tx_fifo_watermark level
)
348 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_TIC
, level
);
351 static inline void control_rx_irq_watermark(struct i2c_client
*c
,
352 enum rx_fifo_watermark level
)
354 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_RIC
, level
);
357 static inline void control_tx_enable(struct i2c_client
*c
, bool enable
)
359 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~(CNTRL_TXE
| CNTRL_TFE
),
360 enable
? (CNTRL_TXE
| CNTRL_TFE
) : 0);
363 static inline void control_rx_enable(struct i2c_client
*c
, bool enable
)
365 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~(CNTRL_RXE
| CNTRL_RFE
),
366 enable
? (CNTRL_RXE
| CNTRL_RFE
) : 0);
369 static inline void control_tx_modulation_enable(struct i2c_client
*c
,
372 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_MOD
,
373 enable
? CNTRL_MOD
: 0);
376 static inline void control_rx_demodulation_enable(struct i2c_client
*c
,
379 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_DMD
,
380 enable
? CNTRL_DMD
: 0);
383 static inline void control_rx_s_edge_detection(struct i2c_client
*c
,
386 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_EDG_BOTH
,
387 edge_types
& CNTRL_EDG_BOTH
);
390 static void control_rx_s_carrier_window(struct i2c_client
*c
,
391 unsigned int carrier
,
392 unsigned int *carrier_range_low
,
393 unsigned int *carrier_range_high
)
396 unsigned int c16
= carrier
* 16;
398 if (*carrier_range_low
< DIV_ROUND_CLOSEST(c16
, 16 + 3)) {
400 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 4);
403 *carrier_range_low
= DIV_ROUND_CLOSEST(c16
, 16 + 3);
406 if (*carrier_range_high
> DIV_ROUND_CLOSEST(c16
, 16 - 3)) {
408 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 4);
411 *carrier_range_high
= DIV_ROUND_CLOSEST(c16
, 16 - 3);
413 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_WIN
, v
);
416 static inline void control_tx_polarity_invert(struct i2c_client
*c
,
419 cx25840_and_or4(c
, CX25840_IR_CNTRL_REG
, ~CNTRL_CPL
,
420 invert
? CNTRL_CPL
: 0);
424 * IR Rx & Tx Clock Register helpers
426 static unsigned int txclk_tx_s_carrier(struct i2c_client
*c
,
430 *divider
= carrier_freq_to_clock_divider(freq
);
431 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, *divider
);
432 return clock_divider_to_carrier_freq(*divider
);
435 static unsigned int rxclk_rx_s_carrier(struct i2c_client
*c
,
439 *divider
= carrier_freq_to_clock_divider(freq
);
440 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, *divider
);
441 return clock_divider_to_carrier_freq(*divider
);
444 static u32
txclk_tx_s_max_pulse_width(struct i2c_client
*c
, u32 ns
,
449 if (ns
> IR_MAX_DURATION
)
450 ns
= IR_MAX_DURATION
;
451 pulse_clocks
= ns_to_pulse_clocks(ns
);
452 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
453 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, *divider
);
454 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
457 static u32
rxclk_rx_s_max_pulse_width(struct i2c_client
*c
, u32 ns
,
462 if (ns
> IR_MAX_DURATION
)
463 ns
= IR_MAX_DURATION
;
464 pulse_clocks
= ns_to_pulse_clocks(ns
);
465 *divider
= pulse_clocks_to_clock_divider(pulse_clocks
);
466 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, *divider
);
467 return (u32
) pulse_width_count_to_ns(FIFO_RXTX
, *divider
);
471 * IR Tx Carrier Duty Cycle register helpers
473 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client
*c
,
474 unsigned int duty_cycle
)
477 n
= DIV_ROUND_CLOSEST(duty_cycle
* 100, 625); /* 16ths of 100% */
482 cx25840_write4(c
, CX25840_IR_CDUTY_REG
, n
);
483 return DIV_ROUND_CLOSEST((n
+ 1) * 100, 16);
487 * IR Filter Register helpers
489 static u32
filter_rx_s_min_width(struct i2c_client
*c
, u32 min_width_ns
)
491 u32 count
= ns_to_lpf_count(min_width_ns
);
492 cx25840_write4(c
, CX25840_IR_FILTR_REG
, count
);
493 return lpf_count_to_ns(count
);
497 * IR IRQ Enable Register helpers
499 static inline void irqenable_rx(struct v4l2_subdev
*sd
, u32 mask
)
501 struct cx25840_state
*state
= to_state(sd
);
503 if (is_cx23885(state
) || is_cx23887(state
))
505 mask
&= (IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
);
506 cx25840_and_or4(state
->c
, CX25840_IR_IRQEN_REG
,
507 ~(IRQEN_RTE
| IRQEN_ROE
| IRQEN_RSE
), mask
);
510 static inline void irqenable_tx(struct v4l2_subdev
*sd
, u32 mask
)
512 struct cx25840_state
*state
= to_state(sd
);
514 if (is_cx23885(state
) || is_cx23887(state
))
517 cx25840_and_or4(state
->c
, CX25840_IR_IRQEN_REG
, ~IRQEN_TSE
, mask
);
521 * V4L2 Subdevice IR Ops
523 int cx25840_ir_irq_handler(struct v4l2_subdev
*sd
, u32 status
, bool *handled
)
525 struct cx25840_state
*state
= to_state(sd
);
526 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
527 struct i2c_client
*c
= NULL
;
530 union cx25840_ir_fifo_rec rx_data
[FIFO_RX_DEPTH
];
531 unsigned int i
, j
, k
;
533 int tsr
, rsr
, rto
, ror
, tse
, rse
, rte
, roe
, kror
;
534 u32 cntrl
, irqen
, stats
;
537 if (ir_state
== NULL
)
542 /* Only support the IR controller for the CX2388[57] AV Core for now */
543 if (!(is_cx23885(state
) || is_cx23887(state
)))
546 cntrl
= cx25840_read4(c
, CX25840_IR_CNTRL_REG
);
547 irqen
= cx25840_read4(c
, CX25840_IR_IRQEN_REG
);
548 if (is_cx23885(state
) || is_cx23887(state
))
550 stats
= cx25840_read4(c
, CX25840_IR_STATS_REG
);
552 tsr
= stats
& STATS_TSR
; /* Tx FIFO Service Request */
553 rsr
= stats
& STATS_RSR
; /* Rx FIFO Service Request */
554 rto
= stats
& STATS_RTO
; /* Rx Pulse Width Timer Time Out */
555 ror
= stats
& STATS_ROR
; /* Rx FIFO Over Run */
557 tse
= irqen
& IRQEN_TSE
; /* Tx FIFO Service Request IRQ Enable */
558 rse
= irqen
& IRQEN_RSE
; /* Rx FIFO Service Reuqest IRQ Enable */
559 rte
= irqen
& IRQEN_RTE
; /* Rx Pulse Width Timer Time Out IRQ Enable */
560 roe
= irqen
& IRQEN_ROE
; /* Rx FIFO Over Run IRQ Enable */
562 v4l2_dbg(2, ir_debug
, sd
, "IR IRQ Status: %s %s %s %s %s %s\n",
563 tsr
? "tsr" : " ", rsr
? "rsr" : " ",
564 rto
? "rto" : " ", ror
? "ror" : " ",
565 stats
& STATS_TBY
? "tby" : " ",
566 stats
& STATS_RBY
? "rby" : " ");
568 v4l2_dbg(2, ir_debug
, sd
, "IR IRQ Enables: %s %s %s %s\n",
569 tse
? "tse" : " ", rse
? "rse" : " ",
570 rte
? "rte" : " ", roe
? "roe" : " ");
573 * Transmitter interrupt service
578 * Check the watermark threshold setting
579 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
580 * Push the data to the hardware FIFO.
581 * If there was nothing more to send in the tx_kfifo, disable
582 * the TSR IRQ and notify the v4l2_device.
583 * If there was something in the tx_kfifo, check the tx_kfifo
584 * level and notify the v4l2_device, if it is low.
586 /* For now, inhibit TSR interrupt until Tx is implemented */
588 events
= V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ
;
589 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_TX_NOTIFY
, &events
);
594 * Receiver interrupt service
597 if ((rse
&& rsr
) || (rte
&& rto
)) {
599 * Receive data on RSR to clear the STATS_RSR.
600 * Receive data on RTO, since we may not have yet hit the RSR
601 * watermark when we receive the RTO.
603 for (i
= 0, v
= FIFO_RX_NDV
;
604 (v
& FIFO_RX_NDV
) && !kror
; i
= 0) {
606 (v
& FIFO_RX_NDV
) && j
< FIFO_RX_DEPTH
; j
++) {
607 v
= cx25840_read4(c
, CX25840_IR_FIFO_REG
);
608 rx_data
[i
].hw_fifo_data
= v
& ~FIFO_RX_NDV
;
613 j
= i
* sizeof(union cx25840_ir_fifo_rec
);
614 k
= kfifo_in_locked(&ir_state
->rx_kfifo
,
615 (unsigned char *) rx_data
, j
,
616 &ir_state
->rx_kfifo_lock
);
618 kror
++; /* rx_kfifo over run */
626 events
|= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN
;
627 v4l2_err(sd
, "IR receiver software FIFO overrun\n");
631 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
632 * the Rx FIFO Over Run status (STATS_ROR)
635 events
|= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN
;
636 v4l2_err(sd
, "IR receiver hardware FIFO overrun\n");
640 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
641 * the Rx Pulse Width Timer Time Out (STATS_RTO)
644 events
|= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED
;
647 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
648 cx25840_write4(c
, CX25840_IR_CNTRL_REG
, cntrl
& ~v
);
649 cx25840_write4(c
, CX25840_IR_CNTRL_REG
, cntrl
);
652 spin_lock_irqsave(&ir_state
->rx_kfifo_lock
, flags
);
653 if (kfifo_len(&ir_state
->rx_kfifo
) >= CX25840_IR_RX_KFIFO_SIZE
/ 2)
654 events
|= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ
;
655 spin_unlock_irqrestore(&ir_state
->rx_kfifo_lock
, flags
);
658 v4l2_subdev_notify(sd
, V4L2_SUBDEV_IR_RX_NOTIFY
, &events
);
663 static int cx25840_ir_rx_read(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
666 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
670 union cx25840_ir_fifo_rec
*p
;
673 if (ir_state
== NULL
)
676 invert
= (bool) atomic_read(&ir_state
->rx_invert
);
677 divider
= (u16
) atomic_read(&ir_state
->rxclk_divider
);
679 n
= count
/ sizeof(union cx25840_ir_fifo_rec
)
680 * sizeof(union cx25840_ir_fifo_rec
);
686 n
= kfifo_out_locked(&ir_state
->rx_kfifo
, buf
, n
,
687 &ir_state
->rx_kfifo_lock
);
689 n
/= sizeof(union cx25840_ir_fifo_rec
);
690 *num
= n
* sizeof(union cx25840_ir_fifo_rec
);
692 for (p
= (union cx25840_ir_fifo_rec
*) buf
, i
= 0; i
< n
; p
++, i
++) {
694 if ((p
->hw_fifo_data
& FIFO_RXTX_RTO
) == FIFO_RXTX_RTO
) {
695 /* Assume RTO was because of no IR light input */
697 v4l2_dbg(2, ir_debug
, sd
, "rx read: end of rx\n");
699 u
= (p
->hw_fifo_data
& FIFO_RXTX_LVL
) ? 1 : 0;
704 v
= (unsigned) pulse_width_count_to_ns(
705 (u16
) (p
->hw_fifo_data
& FIFO_RXTX
), divider
);
706 if (v
> IR_MAX_DURATION
)
709 init_ir_raw_event(&p
->ir_core_data
);
710 p
->ir_core_data
.pulse
= u
;
711 p
->ir_core_data
.duration
= v
;
713 v4l2_dbg(2, ir_debug
, sd
, "rx read: %10u ns %s\n",
714 v
, u
? "mark" : "space");
719 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev
*sd
,
720 struct v4l2_subdev_ir_parameters
*p
)
722 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
724 if (ir_state
== NULL
)
727 mutex_lock(&ir_state
->rx_params_lock
);
728 memcpy(p
, &ir_state
->rx_params
,
729 sizeof(struct v4l2_subdev_ir_parameters
));
730 mutex_unlock(&ir_state
->rx_params_lock
);
734 static int cx25840_ir_rx_shutdown(struct v4l2_subdev
*sd
)
736 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
737 struct i2c_client
*c
;
739 if (ir_state
== NULL
)
743 mutex_lock(&ir_state
->rx_params_lock
);
745 /* Disable or slow down all IR Rx circuits and counters */
747 control_rx_enable(c
, false);
748 control_rx_demodulation_enable(c
, false);
749 control_rx_s_edge_detection(c
, CNTRL_EDG_NONE
);
750 filter_rx_s_min_width(c
, 0);
751 cx25840_write4(c
, CX25840_IR_RXCLK_REG
, RXCLK_RCD
);
753 ir_state
->rx_params
.shutdown
= true;
755 mutex_unlock(&ir_state
->rx_params_lock
);
759 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev
*sd
,
760 struct v4l2_subdev_ir_parameters
*p
)
762 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
763 struct i2c_client
*c
;
764 struct v4l2_subdev_ir_parameters
*o
;
767 if (ir_state
== NULL
)
771 return cx25840_ir_rx_shutdown(sd
);
773 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
777 o
= &ir_state
->rx_params
;
779 mutex_lock(&ir_state
->rx_params_lock
);
781 o
->shutdown
= p
->shutdown
;
783 p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
786 p
->bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
);
787 o
->bytes_per_data_element
= p
->bytes_per_data_element
;
789 /* Before we tweak the hardware, we have to disable the receiver */
791 control_rx_enable(c
, false);
793 control_rx_demodulation_enable(c
, p
->modulation
);
794 o
->modulation
= p
->modulation
;
797 p
->carrier_freq
= rxclk_rx_s_carrier(c
, p
->carrier_freq
,
800 o
->carrier_freq
= p
->carrier_freq
;
803 o
->duty_cycle
= p
->duty_cycle
;
805 control_rx_s_carrier_window(c
, p
->carrier_freq
,
806 &p
->carrier_range_lower
,
807 &p
->carrier_range_upper
);
808 o
->carrier_range_lower
= p
->carrier_range_lower
;
809 o
->carrier_range_upper
= p
->carrier_range_upper
;
812 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, rxclk_divider
);
815 rxclk_rx_s_max_pulse_width(c
, p
->max_pulse_width
,
818 o
->max_pulse_width
= p
->max_pulse_width
;
819 atomic_set(&ir_state
->rxclk_divider
, rxclk_divider
);
821 p
->noise_filter_min_width
=
822 filter_rx_s_min_width(c
, p
->noise_filter_min_width
);
823 o
->noise_filter_min_width
= p
->noise_filter_min_width
;
825 p
->resolution
= clock_divider_to_resolution(rxclk_divider
);
826 o
->resolution
= p
->resolution
;
828 /* FIXME - make this dependent on resolution for better performance */
829 control_rx_irq_watermark(c
, RX_FIFO_HALF_FULL
);
831 control_rx_s_edge_detection(c
, CNTRL_EDG_BOTH
);
833 o
->invert_level
= p
->invert_level
;
834 atomic_set(&ir_state
->rx_invert
, p
->invert_level
);
836 o
->interrupt_enable
= p
->interrupt_enable
;
837 o
->enable
= p
->enable
;
841 spin_lock_irqsave(&ir_state
->rx_kfifo_lock
, flags
);
842 kfifo_reset(&ir_state
->rx_kfifo
);
843 spin_unlock_irqrestore(&ir_state
->rx_kfifo_lock
, flags
);
844 if (p
->interrupt_enable
)
845 irqenable_rx(sd
, IRQEN_RSE
| IRQEN_RTE
| IRQEN_ROE
);
846 control_rx_enable(c
, p
->enable
);
849 mutex_unlock(&ir_state
->rx_params_lock
);
854 static int cx25840_ir_tx_write(struct v4l2_subdev
*sd
, u8
*buf
, size_t count
,
857 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
858 struct i2c_client
*c
;
860 if (ir_state
== NULL
)
866 * FIXME - the code below is an incomplete and untested sketch of what
867 * may need to be done. The critical part is to get 4 (or 8) pulses
868 * from the tx_kfifo, or converted from ns to the proper units from the
869 * input, and push them off to the hardware Tx FIFO right away, if the
870 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
871 * a less critical timeframe. Also watch out for overruning the
872 * tx_kfifo - don't let it happen and let the caller know not all his
873 * pulses were written.
875 u32
*ns_pulse
= (u32
*) buf
;
877 u32 fifo_pulse
[FIFO_TX_DEPTH
];
880 /* Compute how much we can fit in the tx kfifo */
881 n
= CX25840_IR_TX_KFIFO_SIZE
- kfifo_len(ir_state
->tx_kfifo
);
882 n
= min(n
, (unsigned int) count
);
885 /* FIXME - turn on Tx Fifo service interrupt
886 * check hardware fifo level, and other stuff
888 for (i
= 0; i
< n
; ) {
889 for (j
= 0; j
< FIFO_TX_DEPTH
/ 2 && i
< n
; j
++) {
890 mark
= ns_pulse
[i
] & LEVEL_MASK
;
891 fifo_pulse
[j
] = ns_to_pulse_width_count(
894 ir_state
->txclk_divider
);
896 fifo_pulse
[j
] &= FIFO_RXTX_LVL
;
899 kfifo_put(ir_state
->tx_kfifo
, (u8
*) fifo_pulse
,
902 *num
= n
* sizeof(u32
);
904 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
905 irqenable_tx(sd
, IRQEN_TSE
);
911 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev
*sd
,
912 struct v4l2_subdev_ir_parameters
*p
)
914 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
916 if (ir_state
== NULL
)
919 mutex_lock(&ir_state
->tx_params_lock
);
920 memcpy(p
, &ir_state
->tx_params
,
921 sizeof(struct v4l2_subdev_ir_parameters
));
922 mutex_unlock(&ir_state
->tx_params_lock
);
926 static int cx25840_ir_tx_shutdown(struct v4l2_subdev
*sd
)
928 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
929 struct i2c_client
*c
;
931 if (ir_state
== NULL
)
935 mutex_lock(&ir_state
->tx_params_lock
);
937 /* Disable or slow down all IR Tx circuits and counters */
939 control_tx_enable(c
, false);
940 control_tx_modulation_enable(c
, false);
941 cx25840_write4(c
, CX25840_IR_TXCLK_REG
, TXCLK_TCD
);
943 ir_state
->tx_params
.shutdown
= true;
945 mutex_unlock(&ir_state
->tx_params_lock
);
949 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev
*sd
,
950 struct v4l2_subdev_ir_parameters
*p
)
952 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
953 struct i2c_client
*c
;
954 struct v4l2_subdev_ir_parameters
*o
;
957 if (ir_state
== NULL
)
961 return cx25840_ir_tx_shutdown(sd
);
963 if (p
->mode
!= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
)
967 o
= &ir_state
->tx_params
;
968 mutex_lock(&ir_state
->tx_params_lock
);
970 o
->shutdown
= p
->shutdown
;
972 p
->mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
;
975 p
->bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
);
976 o
->bytes_per_data_element
= p
->bytes_per_data_element
;
978 /* Before we tweak the hardware, we have to disable the transmitter */
980 control_tx_enable(c
, false);
982 control_tx_modulation_enable(c
, p
->modulation
);
983 o
->modulation
= p
->modulation
;
986 p
->carrier_freq
= txclk_tx_s_carrier(c
, p
->carrier_freq
,
988 o
->carrier_freq
= p
->carrier_freq
;
990 p
->duty_cycle
= cduty_tx_s_duty_cycle(c
, p
->duty_cycle
);
991 o
->duty_cycle
= p
->duty_cycle
;
994 (u32
) pulse_width_count_to_ns(FIFO_RXTX
, txclk_divider
);
997 txclk_tx_s_max_pulse_width(c
, p
->max_pulse_width
,
1000 o
->max_pulse_width
= p
->max_pulse_width
;
1001 atomic_set(&ir_state
->txclk_divider
, txclk_divider
);
1003 p
->resolution
= clock_divider_to_resolution(txclk_divider
);
1004 o
->resolution
= p
->resolution
;
1006 /* FIXME - make this dependent on resolution for better performance */
1007 control_tx_irq_watermark(c
, TX_FIFO_HALF_EMPTY
);
1009 control_tx_polarity_invert(c
, p
->invert_carrier_sense
);
1010 o
->invert_carrier_sense
= p
->invert_carrier_sense
;
1013 * FIXME: we don't have hardware help for IO pin level inversion
1014 * here like we have on the CX23888.
1015 * Act on this with some mix of logical inversion of data levels,
1016 * carrier polarity, and carrier duty cycle.
1018 o
->invert_level
= p
->invert_level
;
1020 o
->interrupt_enable
= p
->interrupt_enable
;
1021 o
->enable
= p
->enable
;
1023 /* reset tx_fifo here */
1024 if (p
->interrupt_enable
)
1025 irqenable_tx(sd
, IRQEN_TSE
);
1026 control_tx_enable(c
, p
->enable
);
1029 mutex_unlock(&ir_state
->tx_params_lock
);
1035 * V4L2 Subdevice Core Ops support
1037 int cx25840_ir_log_status(struct v4l2_subdev
*sd
)
1039 struct cx25840_state
*state
= to_state(sd
);
1040 struct i2c_client
*c
= state
->c
;
1043 u32 cntrl
, txclk
, rxclk
, cduty
, stats
, irqen
, filtr
;
1045 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1046 if (is_cx23888(state
))
1049 cntrl
= cx25840_read4(c
, CX25840_IR_CNTRL_REG
);
1050 txclk
= cx25840_read4(c
, CX25840_IR_TXCLK_REG
) & TXCLK_TCD
;
1051 rxclk
= cx25840_read4(c
, CX25840_IR_RXCLK_REG
) & RXCLK_RCD
;
1052 cduty
= cx25840_read4(c
, CX25840_IR_CDUTY_REG
) & CDUTY_CDC
;
1053 stats
= cx25840_read4(c
, CX25840_IR_STATS_REG
);
1054 irqen
= cx25840_read4(c
, CX25840_IR_IRQEN_REG
);
1055 if (is_cx23885(state
) || is_cx23887(state
))
1057 filtr
= cx25840_read4(c
, CX25840_IR_FILTR_REG
) & FILTR_LPF
;
1059 v4l2_info(sd
, "IR Receiver:\n");
1060 v4l2_info(sd
, "\tEnabled: %s\n",
1061 cntrl
& CNTRL_RXE
? "yes" : "no");
1062 v4l2_info(sd
, "\tDemodulation from a carrier: %s\n",
1063 cntrl
& CNTRL_DMD
? "enabled" : "disabled");
1064 v4l2_info(sd
, "\tFIFO: %s\n",
1065 cntrl
& CNTRL_RFE
? "enabled" : "disabled");
1066 switch (cntrl
& CNTRL_EDG
) {
1067 case CNTRL_EDG_NONE
:
1070 case CNTRL_EDG_FALL
:
1073 case CNTRL_EDG_RISE
:
1076 case CNTRL_EDG_BOTH
:
1077 s
= "rising & falling edges";
1083 v4l2_info(sd
, "\tPulse timers' start/stop trigger: %s\n", s
);
1084 v4l2_info(sd
, "\tFIFO data on pulse timer overflow: %s\n",
1085 cntrl
& CNTRL_R
? "not loaded" : "overflow marker");
1086 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1087 cntrl
& CNTRL_RIC
? "not empty" : "half full or greater");
1088 v4l2_info(sd
, "\tLoopback mode: %s\n",
1089 cntrl
& CNTRL_LBM
? "loopback active" : "normal receive");
1090 if (cntrl
& CNTRL_DMD
) {
1091 v4l2_info(sd
, "\tExpected carrier (16 clocks): %u Hz\n",
1092 clock_divider_to_carrier_freq(rxclk
));
1093 switch (cntrl
& CNTRL_WIN
) {
1115 v4l2_info(sd
, "\tNext carrier edge window: 16 clocks "
1116 "-%1d/+%1d, %u to %u Hz\n", i
, j
,
1117 clock_divider_to_freq(rxclk
, 16 + j
),
1118 clock_divider_to_freq(rxclk
, 16 - i
));
1120 v4l2_info(sd
, "\tMax measurable pulse width: %u us, %llu ns\n",
1121 pulse_width_count_to_us(FIFO_RXTX
, rxclk
),
1122 pulse_width_count_to_ns(FIFO_RXTX
, rxclk
));
1123 v4l2_info(sd
, "\tLow pass filter: %s\n",
1124 filtr
? "enabled" : "disabled");
1126 v4l2_info(sd
, "\tMin acceptable pulse width (LPF): %u us, "
1128 lpf_count_to_us(filtr
),
1129 lpf_count_to_ns(filtr
));
1130 v4l2_info(sd
, "\tPulse width timer timed-out: %s\n",
1131 stats
& STATS_RTO
? "yes" : "no");
1132 v4l2_info(sd
, "\tPulse width timer time-out intr: %s\n",
1133 irqen
& IRQEN_RTE
? "enabled" : "disabled");
1134 v4l2_info(sd
, "\tFIFO overrun: %s\n",
1135 stats
& STATS_ROR
? "yes" : "no");
1136 v4l2_info(sd
, "\tFIFO overrun interrupt: %s\n",
1137 irqen
& IRQEN_ROE
? "enabled" : "disabled");
1138 v4l2_info(sd
, "\tBusy: %s\n",
1139 stats
& STATS_RBY
? "yes" : "no");
1140 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1141 stats
& STATS_RSR
? "yes" : "no");
1142 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1143 irqen
& IRQEN_RSE
? "enabled" : "disabled");
1145 v4l2_info(sd
, "IR Transmitter:\n");
1146 v4l2_info(sd
, "\tEnabled: %s\n",
1147 cntrl
& CNTRL_TXE
? "yes" : "no");
1148 v4l2_info(sd
, "\tModulation onto a carrier: %s\n",
1149 cntrl
& CNTRL_MOD
? "enabled" : "disabled");
1150 v4l2_info(sd
, "\tFIFO: %s\n",
1151 cntrl
& CNTRL_TFE
? "enabled" : "disabled");
1152 v4l2_info(sd
, "\tFIFO interrupt watermark: %s\n",
1153 cntrl
& CNTRL_TIC
? "not empty" : "half full or less");
1154 v4l2_info(sd
, "\tCarrier polarity: %s\n",
1155 cntrl
& CNTRL_CPL
? "space:burst mark:noburst"
1156 : "space:noburst mark:burst");
1157 if (cntrl
& CNTRL_MOD
) {
1158 v4l2_info(sd
, "\tCarrier (16 clocks): %u Hz\n",
1159 clock_divider_to_carrier_freq(txclk
));
1160 v4l2_info(sd
, "\tCarrier duty cycle: %2u/16\n",
1163 v4l2_info(sd
, "\tMax pulse width: %u us, %llu ns\n",
1164 pulse_width_count_to_us(FIFO_RXTX
, txclk
),
1165 pulse_width_count_to_ns(FIFO_RXTX
, txclk
));
1166 v4l2_info(sd
, "\tBusy: %s\n",
1167 stats
& STATS_TBY
? "yes" : "no");
1168 v4l2_info(sd
, "\tFIFO service requested: %s\n",
1169 stats
& STATS_TSR
? "yes" : "no");
1170 v4l2_info(sd
, "\tFIFO service request interrupt: %s\n",
1171 irqen
& IRQEN_TSE
? "enabled" : "disabled");
1177 const struct v4l2_subdev_ir_ops cx25840_ir_ops
= {
1178 .rx_read
= cx25840_ir_rx_read
,
1179 .rx_g_parameters
= cx25840_ir_rx_g_parameters
,
1180 .rx_s_parameters
= cx25840_ir_rx_s_parameters
,
1182 .tx_write
= cx25840_ir_tx_write
,
1183 .tx_g_parameters
= cx25840_ir_tx_g_parameters
,
1184 .tx_s_parameters
= cx25840_ir_tx_s_parameters
,
1188 static const struct v4l2_subdev_ir_parameters default_rx_params
= {
1189 .bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
),
1190 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1193 .interrupt_enable
= false,
1197 .carrier_freq
= 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1199 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1200 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1201 .noise_filter_min_width
= 333333, /* ns */
1202 .carrier_range_lower
= 35000,
1203 .carrier_range_upper
= 37000,
1204 .invert_level
= false,
1207 static const struct v4l2_subdev_ir_parameters default_tx_params
= {
1208 .bytes_per_data_element
= sizeof(union cx25840_ir_fifo_rec
),
1209 .mode
= V4L2_SUBDEV_IR_MODE_PULSE_WIDTH
,
1212 .interrupt_enable
= false,
1216 .carrier_freq
= 36000, /* 36 kHz - RC-5 carrier */
1217 .duty_cycle
= 25, /* 25 % - RC-5 carrier */
1218 .invert_level
= false,
1219 .invert_carrier_sense
= false,
1222 int cx25840_ir_probe(struct v4l2_subdev
*sd
)
1224 struct cx25840_state
*state
= to_state(sd
);
1225 struct cx25840_ir_state
*ir_state
;
1226 struct v4l2_subdev_ir_parameters default_params
;
1228 /* Only init the IR controller for the CX2388[57] AV Core for now */
1229 if (!(is_cx23885(state
) || is_cx23887(state
)))
1232 ir_state
= kzalloc(sizeof(struct cx25840_ir_state
), GFP_KERNEL
);
1233 if (ir_state
== NULL
)
1236 spin_lock_init(&ir_state
->rx_kfifo_lock
);
1237 if (kfifo_alloc(&ir_state
->rx_kfifo
,
1238 CX25840_IR_RX_KFIFO_SIZE
, GFP_KERNEL
)) {
1243 ir_state
->c
= state
->c
;
1244 state
->ir_state
= ir_state
;
1246 /* Ensure no interrupts arrive yet */
1247 if (is_cx23885(state
) || is_cx23887(state
))
1248 cx25840_write4(ir_state
->c
, CX25840_IR_IRQEN_REG
, IRQEN_MSK
);
1250 cx25840_write4(ir_state
->c
, CX25840_IR_IRQEN_REG
, 0);
1252 mutex_init(&ir_state
->rx_params_lock
);
1253 memcpy(&default_params
, &default_rx_params
,
1254 sizeof(struct v4l2_subdev_ir_parameters
));
1255 v4l2_subdev_call(sd
, ir
, rx_s_parameters
, &default_params
);
1257 mutex_init(&ir_state
->tx_params_lock
);
1258 memcpy(&default_params
, &default_tx_params
,
1259 sizeof(struct v4l2_subdev_ir_parameters
));
1260 v4l2_subdev_call(sd
, ir
, tx_s_parameters
, &default_params
);
1265 int cx25840_ir_remove(struct v4l2_subdev
*sd
)
1267 struct cx25840_state
*state
= to_state(sd
);
1268 struct cx25840_ir_state
*ir_state
= to_ir_state(sd
);
1270 if (ir_state
== NULL
)
1273 cx25840_ir_rx_shutdown(sd
);
1274 cx25840_ir_tx_shutdown(sd
);
1276 kfifo_free(&ir_state
->rx_kfifo
);
1278 state
->ir_state
= NULL
;